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Introduction

“For thirty-six million citizens to go and fetch the corn they want
from Odessa, is a manifest impossibility.... The consumers can-
not act for themselves. They must, by necessity, have recourse to
intermediates. ...” -Frédéric Bastiat, “The Intermediates”

How are prices set in a market economy with decentralized information? How
are we able to extract full gains from trade in a competitive market without
centrally coordinated price formation and resource allocation? In 1962, sepa-
rate research efforts proved that neither rationality nor complete information
are necessary market conditions to reach competitive equilibrium'. Behavioral
extensions to this framework have shown significant progress towards a coherent
model of competitive price formation under varying conditions of decentralized
trade and individual rationality. Unfortunately, economics continues to lack a
generally valid model of decentralized price formation.

Advances in technology and methods has led to substantial testing of the insti-
tutional and behavioral boundaries of the standard microeconomic framework.
Models using different learning behavior bestow irrational agents with varying
cognitive abilities to reach competitive equilibrium. Similarly, models with dif-
ferent decentralized trading mechanisms show different rates of convergence to
the equilibrium price as well as different levels of allocative efficiency (Smith,
1982; Plott, 1982; Gode, Sunder, 1997). Few efforts to modify the standard
framework have been made to provide a model that proves to be consistent
with competitive equilibrium outcomes under a broader set of market condi-
tions. Using empirical evidence and analysis, they postulate that introducing
speculative intermediacy into the microeconomic framework can allow models
to capture a dynamic process of competitive price formation at larger scales.
But according to the prevailing literature, an effort to synthesize these general-
izations into a working framework is yet to be found.

Based on the works done by Becker (1962) and Smith (1962), Gode and Sun-
der (1993) show that exchange among boundedly irrational® agents in a non-
tatonnement trading institution can sustain high levels of allocative efficiency.
Recent behavioral extensions use adaptive learning® models that provide market
outcomes consistent with competitive equilibrium in stationary environments

IWorking separately in 1962, Gary Becker and Vernon Smith were able to prove that
neoclassical market-level predictions are consistent with a broader set of agent behavior and
market institutions than omniscient rationality and Walrasian tatonnement. Becker(1962)
proved irrational agents with bounded opportunity sets where able to reach equilibrium out-
comes through a tatonnement trading process. Smith (1962) showed that a decentralized
trading mechanism with rational agents can reach levels of efficiency similar to a tatonnement
trading process.

2A bounded irrational agent is cognitively limited, has no memory, and chooses randomly
from a non-negative and bounded opportunity set — i.e., no-loss condition.

3 Adaptive learning behavior describes the strategic making of decision based on experience



with low volumes of trade. (Crockett, Spear, Sunder, 2008; Duffy, Unver, 2006).

Parting with neoclassical tradition, Spulber (1996) proposes incorporating in-
termediation into the standard economic framework to determine how markets
reach equilibrium outcomes while adjusting to changes in supply and demand.
In concept, the mediation of trade between buyers and sellers by price-setting in-
termediaries (dealers) motivated by profits allows markets to allocate resources
efficiently. Rust and Hall (2003) present an extension to Spulber’s model where
buyers and sellers have the additional option of trading in an exchange operated
by specialist (market-makers) with publicly posted prices. The evidence shows
that adding a market-maker increases expected gains from trade for buyers and
sellers while reducing dealers’ profit-margin.

Substituting an impromptu matching exchange mechanism with intermediary
spot markets fails to capture direct exchange among buyers and sellers and in-
tertemporal market price formation. Miller et. al. (1977) addressed these issues
in an empirical study of intertemporal competitive equilibrium in speculative
markets. Just as complete information is not necessary a necessary condition
in intratemporal markets, perfect foreknowledge of supply and demand is not a
necessary precondition for a seasonal market to reach competitive equilibrium
outcomes. Spulber (1998) develops a conceptual model of a multilateral ex-
change with publicly posted prices where buyers and sellers can trade directly
with each other or trade with market-makers. Spulber suggests that market-
makers competing to gain an arbitrage advantage drives transactions costs down
and increases the welfare of consumers and producers.

This study is an attempt to synthesize these insights into a behavioral model
of intermediation in speculative markets. I present an extension to Gode and
Sunder (1993) multilateral exchange model with individual adaptive learning
behavior (Duffy, Unver, 2006). Buyers and sellers use reinforcement learning®
to formulate bids and offers based on a convex combination of individual val-
uation and a prevalent market price subject to budgetary restrictions. Using
concepts from Spulber (1998) I introduce a cohort of market-makers with spe-
cialized information and the capacity to hold cash and keep inventory across
periods. The bidding behavior of the market-maker is a hybrid of reinforce-
ment learning and belief-based learning®. Market-makers update their bidding
and offering strategies based on a set of expected future market clearing prices
and the current market average price. They are willing to provide additional

and observational history. In a comparative study by Feltovich (2000) adaptive learning
models outperformed Nash equilibrium in asymmetric information experimental games. A
survey of learning behavioral computational and experimental models can be found in Camerer
(2003).

4This is the ‘law of effect’ (Thorndike, 1911). Actions or strategies that have yielded
relatively higher payoffs in the past are more likely to be played in the future.

5In belief-based learning models, the player recognizes that he is playing a game and forms
beliefs about the likely play of others (Duffy, 2006).



liquidity and immediacy in the market based on a perceived dynamic arbitrage
profit according to their forecast of future market outcomes. This allows them
to coordinate exchange among buyers and sellers across periods, which leads to
increase in intertemporal allocation efficiency.

Related Literature

The neoclassical competitive market theory of supply and demand price deter-
mination postulates a Walrasian tatonnement mechanism of resource allocation
among ‘utility-maximizers’ endowed with complete albeit imperfect information.
The underlying market process is regarded as a central auctioneer collecting bids
and offers simultaneously while assigning a market price instantaneously. Under
a construct of bilateral exchange with two goods, equilibrium analysis implies a
market clearing price and efficient resource allocation as a consequence of indi-
vidual optimization.

The notion of a market price somehow emerging from a groping process of ex-
change among omniscient optimizers, still prevalent in textbooks, no longer per-
meates the research literature. Becker (1962) proved basic features of economic
theory such as a downward sloping demand curve can be derived in markets
where irrational individuals have bounded feasibility sets. That is, competi-
tive market outcomes can be achieved under random choice behavior subject to
budget restrictions. In his seminal work on experimental markets with a mul-
tilateral exchange process, Smith (1962) concluded that a decentralized system
of trade is able to reach equilibrium outcomes. According to the experimental
evidence, inexperienced student traders with private valuations could extract
100% of the trade surplus in markets with publicly posted prices. Incidentally,
Smith observed that an increase in the number of trade contracts led to a faster
convergence towards equilibrium outcomes — even with a handful of students.

Over the past half century these findings have pervaded research efforts to ex-
plain the decentralized process of competitive price formation. The prevailing
consensus in the experimental literature is that competitive models work best
when markets are organized as double auctions (Plott, 1982). Research evidence
shows that double auction markets converge to competitive equilibrium prices
and full allocative efficiency with a few participants, regardless of the complete-
ness of information and agent rationality (Friedman, 1984; Plott, 1982; Smith,
1982; Smith, Williams, Bratton, Vannoni, 1982). Additionally, the stationary
repetition — i.e., static replication — of trading rounds of finite duration improves
information aggregation, leading to faster convergence to competitive equilib-
rium and nearly full allocative efficiency (Friedman, 1984; Gode, Sunder, 1997;
Miller, Plott, Smith, 1977; Plott, Sunder, 1988). In light of these findings, I
choose the double auction trading mechanism and forgo any comparative insti-
tutional analysis to focus on gaining further insight into the behavioral process



that leads markets towards competitive outcomes.

Based on the framework used by Smith (1962), Gode and Sunder (1993) set
out to test the allocative efficiency of a double auction market with cognitively
limited automated traders. By replacing humans subjects with zero-intelligence
(Z1)% machine traders, they were able to show that high levels of allocative effi-
ciency can be sustained without a tatonnement trade mechanism or individual
optimization. Additionally, ZI-traders subject to budget constraints — no-loss
restriction — were able to reach allocative efficiency levels statistically indistin-
guishable from those of their human counterparts. Market discipline imposed
on traders, not trader cognition, is the primary cause of the high allocative ef-
ficiency in a multilateral exchange market (Gode, Sunder, 1993).

Gode and Sunder (1993) modeling framework has become the platform for be-
havioral models of markets with a multilateral exchange process. Crockett et.
al. (2008) built a computer microsimulated market to test the effects of added
trader cognition on allocative efficiency in a zero-intelligence environment. They
propose an algorithmic model as an alternative to Walrasian tdtonnement where
boundedly rational agents with neoclassical preferences learn competitive equi-
librium in a repeated static exchange economy. The simulated evidence shows
the existence of an informationally decentralized institution and a set of be-
haviorally plausible strategies capable of reaching competitive equilibrium out-
comes.

Extending on Gode and Sunder (1993) automata simulation, Duffy and Unver
(2004) built an agent-based computational economic model (ACE)” of a double
auction market with cognitively superior traders. These near-zero-intelligence
(NZI) traders formulate bids and offers as a convex combination of randomly
generated prices and the mean traded price from the previous period. The sim-
ulated market outcomes are not only qualitatively similar to the experimental
data but it many instances they closely approximate their magnitude in volume
and price changes. Duffy and Unver conclude that the ZI approach effectively
exposes the significance of institutions and other economic environment features
relative to human cognition in the determination of observed market outcomes.

These computational efforts have expanded the set of market economies known
to be consistent with competitive equilibrium predictions. But they are un-
able to explain the decentralized process of competitive price formation in non-
stationary markets with large fluctuations in trade volume. Crockett et. al.

6ZI-traders are computer simulated automata generating independent and identically dis-
tributed random bids and offers from a set of trading prices, without memory or profit maxi-
mization motive.

"The use of agent-based simulations in economics have been categorized as Agent Based
Computational Economic Models (ACE). ACE models simulate autonomous agents interact-
ing in an environment given a set of rules to assess the performance of a system as a whole.



(2008) credit the inability of their model to coordinate trade with more than
two traders due to the lack of an intermediary institution. They posit the use
of an intermediary as a way to fully extract gains from trade. Duffy and Unver
(2004) acknowledge their model’s inability to capture how increased experience
affects trading behavior in laboratory markets. This may be credited to their
simulated traders lacking foresight and being devoid of an incentive for intertem-
poral speculation.

Spulber (1996) proposes to introduce intermediacy as part of the basic frame-
work of mainstream economics. He postulates a conceptual model where price-
setting firms coordinate all trade and efficiently allocate resources. These market
intermediaries are motivated by profit to set market clearing prices, effectively
matching sales and purchases. These dealers’ ability to extract gains from trade
is measured by how accurately they anticipate shifts in supply and demand
based on costly gathered and processed information. They stand ready to pro-
vide immediacy and liquidity in accordance with their expectations of arbitrage
profits under the risk of uncertainty in market outcomes.

Rust and Hall (2003) presented a computational model of market intermediation
that extends upon the framework proposed by Spulber (1996). This simulated
market with endogenously determined microstructure introduces an additional
type of intermediary to mediate trade, i.e., the market-maker. In this model
buyers and sellers have the option of trading in an exchange operated by market-
makers where prices are posted publicly. Or they can search for better offers to
be negotiated privately among ‘brokers’ in a dealer-market. According to the
simulated data, Rust and Hall conclude that the addition of a market-maker
publicly posting prices strictly increases the expected gains from trade among
buyers and sellers at the expense of the dealers’ profit margins.

Both Rust and Hall (2003) and Spulber (1996) require all exchanges between
buyers and sellers to be intermediated. Thus they fail to account for direct ex-
change, which is a substantial portion of market trade. Rust and Hall’s model
also fails to account for information asymmetry among all types of intermedi-
aries, which implies homogeneity in forecasting abilities among intermediaries.

Miller et. al. (1977) conducted an empirical study to test whether seasonal
markets can reach intertemporal competitive equilibrium under the same in-
formation conditions that yield competitive equilibrium in stationary markets.
Based on the experimental evidence, they conclude that perfect foreknowledge
of supply and demand is not a necessary condition for speculative markets to
reach outcomes consistent with intertemporal competitive equilibrium predic-
tions. Extending on his previous work, Spulber (1998) develops a model with
a market microstructure where market-makers formulate bids and offers based
on expectations of future market outcomes. They participate in a multilateral
exchange market with publicly posted prices where buyers and sellers are able



to trade directly with each other. Spulber postulates that competition among
market-makers to gain an arbitrage advantage drives transactions costs down
while increasing consumer and producer welfare.

The application of computational and experimental methods in economics has
overcome the problems of general validity in empirical models. Simulated and
human experiments allow a model to be simultaneously tested to large set of
environmental, institutional and behavioral permutations. The robust results in
these studies are transferable to a broader set of economies than those narrowly
defined in microeconomic theories®. To wit, computational and experimental
models have provided a wider array of market institutions and behavior that
standard neoclassical theory discards as irrelevant or incompatible with com-
petitive equilibrium. Upon a review of the available literature, however, these
efforts fall short of providing a coherent explanation of dynamic process of com-
petitive price formation in a decentralized mechanism of multilateral exchange.
I introduce speculation into Smith’s (1982) framework to determine decentral-
ized intertemporal competitive price formation.

A Double Auction Market ACE Model

The model presented here maintains the essential governing rules of the Double
Auction (DA) as proposed by Smith (1982). The DA has properties specifically
suitable for testing propositions based on competitive price theory”. It provides
a close characterization of multilateral exchange markets (i.e., securities and
commodities), making it ideal to study the introduction of intermediation in
speculative market.

In terms of a microeconomic system, a double auction market is composed of a
microeconomic environment with private individual valuations and a microeco-
nomic institution with a decentralized trading process. Traders posts bids and
offers based on privately held beliefs about the valuations and publicly posted
prices. In this computational rendition of the DA framework, the behavioral as-
pect attempts to model traders’ abstract considerations based on institutional
properties and communication rights subject to heterogeneous cognitive and

8Smith (1982) refers to this precept as parallelism. He states that “propositions about
the behavior of individuals and the performance of institutions that have been tested in
laboratory microeconomies apply also to nonlaboratory microeconomies where similar ceteris
paribus conditions hold”.

9Smith et. al. (1982) conducted a comparative study of competitive market institutions.
They showed that the double auction mechanisms was far superior to all but a unanimous
voting tdtonnement mechanism. The DA market outcomes are much nearer to competitive
equilibrium predictions than all non-voting tatonnement process and allocate resources far
more efficiently. The efficiency drawback all for tAtonnement processes, as compared to DA,
is that they are slower to converge to a competitive market price and “require more conditions
to be fulfilled for an inefficient trade to occur”(Sunder, 2002).



budgetary constraints.

Based on ample experimental data, the performance of the baseline behav-
ioral model — i.e., no intermediation — is measured by the proximity of the
computational and experimental market outcomes under identical institutional
arrangements. The extended intermediary model, where market-makers have
arbitraging privileges, intends to capture intertemporal aspect in real-world
market outcomes that remain unaccounted. To this end, the performance of
this extended model is measured by the proximity of the computational market
with microsimulated data of real-market outcomes.

Market

The market represents the microeconomic environment as proposed by Smith
(1982). The microeconomic environment is the set of all initial endogenous at-
tributes: list of goods, number and type of agents, agents’ characteristics and
initial endowments. In both computational and human experimental models
of the DA market, the environment is a set of randomly generated market at-
tributes. The environment is generated via a discrete event stochastic computer
simulation — Monte Carlo simulation.

The market provides the necessary conditions for the DA to operate — i.e.,
number of trading days, length of market period, and so forth. Thus, it provides
the set of initial circumstances that cannot be altered by the DA institution.

Controller

The controller represents the DA market institution. It is the rule mechanism
responsible for assigning property rights over messages and the exchange of
goods. At any point during the simulation, it acts as an automated auctioneer.
It makes ‘market-calls’ for a trading period to begin or end. It also calls for
offers on a unit up for auction and announces the best offers on record.

At any point in a trading period, it takes bids or ask while there are units and
capital available and trading offers converge to an acceptable price range. Upon
opening a unit for auction, it announces a bidding price by a buyer and an asking
price by a seller. Subsequently, any entering bid must be higher and any enter-
ing ask must be lower to be admitted. Once an offer — bid or ask — is reported, it
becomes the standing offer and cannot be withdrawn. Specifically, an entering
bid becomes the standing bid if it is higher than the last bid announced. Sim-
ilarly, an entering ask becomes the standing ask if it is lower than the last ask
announced. A sale contract is formed when the standing bid and standing ask
overlap. The contract price is equal to the latest standing offer to be announced.



Once a contract occurs the auction for that unit ends. A new auction for another
unit begins with the clearing of all previously posted auction bids and asks. All
initial prices are reseted and this process continues until the end of a trading
period. At the beginning of a new period all bids and asks are cleared. And the
running average price is set to a midpoint between the highest possible ask and
the lowest possible bid.

Agents

Based on a DA market structure, this model generates three types of agents:
buyers, sellers, and market-makers.

Buyers and sellers are relatively unsophisticated trading agents. They exhibit
reinforcement learning behavior in their offer-formulation strategies. Both are
given initial endowments. The seller is endowed with goods and the buyer with
capital. Each of them are also given an initial closed and bounded set of het-
erogenous valuations.

Buyers and sellers are unaware of others’ valuations. And they do not account
for others’ actions in their strategic planning. Both of them, however, are able
to recall previous trading prices and quantities within a period. They use this
information to compute and track a running average of the market price.

Both buyers and sellers update their valuations by drawing from a independent
and identically distributed set of random values. As trading progresses, this set
of values converges to their true valuations. Both of them use a weighted sum of
their converging valuations and running average price to formulate their offers.
But only the buyers are constrained by their available account balances.

The weights given to each part of the weighted sum are representative of a
tradeoff in offering strategies. Giving more weight to a converging set of values
exhibits myopic behavior'?, ignoring market information. Giving more weight
to the running average price exhibits herding behavior'!, relying heavily on mar-
ket information.

Market-makers are more sophisticated trading agents. They exhibit a hybrid of
reinforcement learning and belief-based learning behavior. They consider market
pricing as well as their own estimated expectations of forecasted market-clearing
prices. Thus, market-makers are able to arbitrage of their (adjusted) expecta-
tions whenever these are more profitable than the running average market price.

10Myopic behavior reflects nearsightedness in strategic decision making where agents assign
more weight to their own individual beliefs about valuation.

11 Herding behavior reflects mimicry in strategic decision making where agents assign more
weight to moving average market price.



Buyers

The buyer has one set of values for all the units he wants to purchase within a
given trading period. This set is represented by a one dimensional array. The
size of this array is equal to the number of desired units for that period.

At the beginning of every period, the buyer chooses his initial bid, by, from an
independent and identically distributed set of random values. This set of values
is skewed towards a neighborhood of the minimum price the buyer designates
for the current period, P,,;,. Lacking information about the market trading
price, this strategy reflects an initial tendency to drive a hard bargain based
solely on individual valuations:

by = (1 — 67¢(17¢)) : (U - szn) + Prin (1)

where v is the induced value and ¢ ~ U [0, 1] is a uniformly distributed random
number such that bg ~ U [Pmm, 313"‘}%‘“’]. Once trading starts, the buyer’s
bid formulation changes to include publicly posted market information in his
dynamically adjusted strategy. At any point in his individual sequence of posted
bids, s, the buyer formulates a bid, bs, as a tradeoff between a dynamically
adjusted set of individual valuations and the market record of trading prices in
the current period:

(P+v)
bs = min aUs+(1—a)~#,xs (2)

where o € (0,1) is an anchoring weight!2, P is the moving average of the trade
contract prices in the current market period and x; is the remaining purchasing
balance. The buyer’s converging willingness-to-pay (WTP), U, is an inde-
pendent and identically distributed random number within a set of converging
valuations. This set of valuations is slightly skewed towards the converging unit
value, v®, to reflect an increasing willingness to settle:

Us = 6_8¢2(1_¢)2 : (US - P:mn) + P;un (3)

where ¢ ~ U [0,1] is a uniformly distributed random number such that Us ~

3v°42P;
5

min vs] . The converging minimum price, P?

 in» Tepresents a dynamically
adjusted lower bound of the set of “acceptable” bid prices. It approaches the
buyer’s trade-unit value, v, at a subjective rate of convergence determined by
the buyer’s number of tradable units remaining and the buyer’s number of bids
posted:

min =V — (L= Asn) - (U = Prin) (4)

12The anchoring weight refers to the tendency of a buyer or seller to rely on their converging
valuations.

10



where A;, — 0" = PS5, — Pp, and Ay, — 1= P25, — v. The converging
trade-unit value, v*®, represents a dynamically adjusted upper bound of the set
of “acceptable” bid prices — or adjusted reservation bidding price. It approaches
the buyer’s trade-unit value, v, at a subjective rate of convergence determined
by the buyer’s number of tradable units remaining and the buyer’s number of

bids posted:
1
'US:’U—g(]._)\S,n)'('U_Pm'Ln) (5)

where A\s, — 07 = 0% — %(v—i—Pmm) and A\s,, — 1 = v® — v. As both
converging variables approach the trade-unit value, U, provides a contraction
mapping that collapses into a small neighborhood around the trade-unit value.
Thus, as trading progresses, the buyer’s bid approaches a weighted sum of the
buyer’s trade-unit value and the moving average of the current period’s trading
prices.

Seller

The seller has one set of costs for all units she has for sale within a given trading
period. This set is represented by a one dimensional array. The size of this array
is equal to the number of units for sale for that period.

At the beginning of every period, the seller chooses her initial ask, ag, from an
independent and identically distributed set of random values. This set of values
is skewed towards a neighborhood of the maximum price the seller designates
for the current period, P,,q,. Lacking information about the market price, this
strategy reflects an initial tendency to drive a hard bargain based solely on
individual valuations:

ag=c+e 179 (P .. —¢) (6)

where ¢ is the induced cost and ¢ ~ U [0, 1] is a uniformly distributed random
number such that ag ~ [%P’”‘“”,Pmaz]. Once trading starts, the seller’s ask
formulation changes to include publicly posted market information in her dy-
namically adjusted strategy. At any point in her individual sequence of posted
asks, s, the seller formulates an ask, as, as a tradeoff between a dynamically
adjusted set of individual valuations and the market record of publicly posted
trading prices for the current period:
(P+<)
2

where o € (0, 1) is an anchoring weight and P is the moving average of the trade
contract price in the current trading period. The seller’s converging willingness-
to-accept (WTA), Wy, is an independent and identically distributed random
number with a set of converging valuations. This set of valuations is slightly

as=aWs+(1-a)- (7)

11



skewed towards the converging unit cost, ¢®, to reflect an increasing willingness
to settle:
W, =P, — e 897007 (ps ) (8)

max max

where ¢ ~ U [0,1] is a uniformly distributed random number such that Wy ~

e 3c’2P° o
’ 5

] The converging maximum price, P? represents a dynami-

max’
cally adjusted upper bound of the set of “acceptable” ask prices. It approaches
the seller’s trade-unit cost, ¢, at a subjective rate of convergence determined by
the seller’s number of tradable units remaining and the seller’s number of asks
posted:

Phos=c+ (1= Xsn) (Praz — ) (9)
where Ag,, — 07 = PS5, — Phpa, and Ay, — 1= P35 — c. The converging

trade-unit cost, ¢®, represents a dynamically adjusted lower bound of the set
of “acceptable” ask prices — or adjusted reservation asking price. It approaches
the seller’s trade-unit cost, ¢, at a subjective rate of convergence determined by
seller’s number of tradable units remaining and her individual number of posted
asks:

¢ =c+ % (1= Xsn) - (Praz — ©) (10)
where Ay, — 07 = ¢ — 1(c+ Ppgg) and Ay, — 1 = ¢ — ¢. As both
converging variables approach the trade-unit cost, Wy, provides a contraction
mapping that collapses into a small neighborhood around the trade-unit cost.
Thus, as trading progresses, the seller’s ask approaches a weighted sum of the
seller’s trade-unit cost and the moving average of the current period’s trading
prices.

Subjective rate of convergence, A, ,

The individual process by which each buyer and seller agent converges to his
own true valuations reflects an increasing willingness-to-settle subject to un-
successful attempts to trade. It represents a truth-revealing mechanism with a
convergence speed proportional to the number of offers entered and the number
of remaining units intended for trade.

The subjective rate of convergence, As,, is a Gaussian function of an agent’s
individual individual sequence of trade offerings, s, and the remaining number
of units desired to trade, n:

As,n :exp{( _ (n+ﬁ2) } (11)

s2+n2)72 4+ 2n

where 72 is the number of traded units, such that i o« % Generally,

lm A, =1 (12)

§—00
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Subjective rate of convergence
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Figure 1: Subjective rate of convergence, A ,,, 7 € [0,10], s € [0, 500]

but as shown in the figure below, A, ,, — 1 much faster as 7 — 0.

In this case with 10 tradable units and within a window of 500 posted offerings

lim Mg, > lm A 13
s—500 " 7 s55000 0" (13)
A0+ A—10

where As500,0 =~ 1 and As00,10 = 0.8. As his individual sequence of offers to trade
increases an agent will tend reveal his true valuations, regardless of the number
of units traded. But with a larger number of tradable units remaining in his
possession, not yet traded, the agent will tend to reveal his true valuations at
a faster rate. This intends to reflect a sense of desperation proportional to the
potentially foregone gains from trade.

Market-maker

The market-maker is a more ‘sophisticated’ trading agent. Unlike the buyers
and the sellers, he is able to aggregate information across periods to capture
an otherwise forgone intertemporal profit'3. That is, the market-maker has a

13In accordance with observations by Plott and Sunder (1982), market-makers competing
to earn an arbitrage profit are able to aggregate and disseminate their privileged information

13



‘memory’ of past outcomes, a knowledge of theoretically predicted outcomes,
and an ability to forecast future outcomes.

Also unlike the buyers and sellers, the market-maker is not endowed with goods
or capital at the beginning of each trading period.

Instead, each market-maker is endowed with the set of theoretically predicted
market-clearing prices and quantities for all trading periods. Each market-maker
also has an ability to formulate a limited set of forecasted market-clearing prices
— with some degree of uncertainty. And he is also able to observe the standing
bids and asks in the current period.

At any point in a trading period, the market-maker can formulate a bid or an
ask based on his knowledge of the standing offers. If his discounted value for
the current period ¢, V¢, is greater than the standing ask plus a small amount

Vi>a* 49 (14)
then he places a bid equal to the standing ask, such that
by =a* (15)

Else, he chooses a bid from a uniformly distributed closed set of random values.
This set of values is bounded below by the standing ask. And it is bounded
above by the standing ask plus a small number:

by ~ U [a*,a* + 6] (16)

Conversely, if his discounted cost for the current period t € {1,2,...,T}, Ct, is
less than the standing bid minus a small amount

Ct<b*—¢ (17)
then he places an ask equal to the standing bid, such that
as =b* (18)

Otherwise, he chooses an ask from a uniformly distributed closed set of random
values. This set is bounded below by the standing bid minus a small amount.
It is bounded above by the standing bid:

as ~ U [b* — 6,b%] (19)

Using the sets of theoretically predicted and forecasted outcomes, the market-
maker formulates his discounted value for period :

= max{(l +7)" " E [p] +ip7,u2} (20)

about the current and future states of nature due to the institutional features of the DA
market. See Plott and Sunder (1982) and Plott (1986) for further discussion.
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and his discounted cost for period t:
C’t:min{(l—i—?")TE[p]—ipfr,/fi} (21)
— 2

where 7 is the interest rate, 7 is the number of periods of foresight into the
future, i is the inventory cost, and g4 is the median of the set of theoretically
2

predicted market-clearing prices.

For all periods t such that t4+7 < T, the market-maker uses a subset of theoret-
ically predicted market-clearing prices, p; = {ps41, D42, - -, Pe4r}, to estimate
an expected clearing price over the range of periods of foresight:

1 t+7
Elp]==> m (22)
T =1

For any period t given a 7 periods of foresight, such that t+7 > T, the estimated
market-clearing price is

T
1
E |pt :; Z Pk (23)
k=T—71

At either discount valuation, this estimate is multiple by a compounded interest
rate. And the set of forecasted market-clearing prices, {p:, Pt+1,-.-,Pr}s 18
multiplied by the inventory cost. The sequence of forecasted market clearing
prices is constructed using a double exponential smoothing process. This allows
to correct for trend as well as forecasted past the current period ¢:

P11 = P
21 = pP2—p1 (24)
fort >1
pr = VB (1—7) (Pro1 +2-1)
2z = pPr—pPi—1)+ 1 —¥) 21 (25)

where v € (0, 1) is the data smoothing factor, ¢ € (0,1) is the trend smoothing
factor and P, is the final moving average trading price of the previous period,
t — 1. To forecast past the last recorded moving average trading price for ¢ + 7,
we construct a series of estimates:

Pi+r = Pt T T2 (26)
The discounted value is set equal to the maximum value between a sum of the
weighted estimated and forecasted prices, and the set of theoretically predicted

prices. Similarly, the discounted cost is set equal to the minimum value between
a subtraction of the weighted estimated and forecasted prices, and the set of
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theoretically predicted prices.

The market-maker’s profits from his offers are the margins between the standing
offers and his discounted valuations.

Results

Baseline model with no market-maker

Figure 2 shows the series of contract prices of the trading periods for multiple
simulated realities of a DA market without market-makers. The box-plot mea-
surements provide a visually discernible distribution of the trade contract prices
among buyers and sellers in the agent-based simulated market. Each point in
the scatter plot represents the theoretically predicted equilibrium price within
a trading period. The line plot represents theoretically predicted intertemporal
equilibrium prices adapted from the formulation used by Miller et al. (1977).

14 Miller et. al. (1977) use an extension of spatial price equilibrium theory for a DA market
with unknown seasonal variants. For seasons : = {1,2} with supply S; (p;) and demand
D; (ps), let p} be its (intratemporal) equilibrium price such that D; (pf:) =S, (p:‘) Suppose
T is the carry over cost from season one to season 2 such that p5 > pi + T. They define a
pair of intertemporal equilibrium prices, (p?,pg), such that the following market conditions
are satisfied:

P =p+T,  Si(p}) —Di () = D2 (p3) — Sz (p9)
I adapted their formulation with no carryover costs, T' = 0, to define theoretical intertemporal
equilibrium prices between any two periods, 4,7 + 1:

Py =pY, Si (pY) = Di (p)) = Dig1 (pY41) — Sit1 (pY11)

where speculative carryover is motivated by an arbitrage opportunity from one period to the
next.
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ABM simulated vs EQ predicted market prices
4 buyers, 4 sellers, 0 market-makers, alpha = 0.5
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Figure 2: Agent-based simulated vs. theoretically predicted trade contract
prices (no market-maker)

In spite differences in their microstructures, this baseline model exhibits similar
behavior to Gode and Sunder (1993) ZI-C model. The set of market environ-
ment attributes for each period follow a stochastic process with a drift (i.e.,
random walk). Coupled with a lack of memory of events from previous periods,
the series of contract prices manifests a lack of intertemporal learning. Addi-
tionally, imposing intratemporal memory (i.e., moving average trading price)
and converging valuations in the formulation of offerings manifests intratempo-
ral learning.

This baseline model exhibits a volatility of prices and convergence to equilib-
rium much closer to price series in human experiments than Gode and Sunder
(1993). Each period’s set of market contract prices closely converges around its
corresponding competitive equilibrium price — from above or below, according
to the shape of the supply and demand curves. Table 1 outlines the interquartile
range, median and mean contract prices along with the coefficient of variation
(cv) ¥, as well as the theoretically predicted intratemporal and intertemporal
equilibrium prices.

15The coefficient of variation, or cv, is a standardize measure of dispersion defined as the
o

ratio of the standard deviation to the mean, —. It shows the extent of variability with respect
In

to the mean of the population.
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EQ predicted prices
ABM trade contract prices intra- inter-
period N mean cv p25 p50 p75 temporal | temporal
1 72 3.591 .1534 3.241 3.5550 3.983 3.5 6
2 96 7.652  .0525  7.347 7.591 7.780 7.1 7.2
3 120 7.604  .0437  7.342 7.563 7.767 7.31 11
4 58 12,491 .0269 12.318 12.491 12.728 13.488 12.12
5 59  10.597 .0364 10.407 10.664 10.877 11.126 11.05
6 70  10.662 .0388 10.436 10.691 10.956 11.018 12.9
7 62  13.449 .0317 13.146 13.458 13.693 14.428 13.12
8 65 11.074 .0332 10.792 11.104 11.357 11.624 15
9 50 17.563 .0298 17.185 17.598 17.973 18.46 20
10 44 19.550 .0284 19.214 19.496 19.877 20.61 20

Table 1: No market-maker simulated trade contract vs. theoretically predicted
prices

The simulated DA market data set shows each period’s contract prices tightly
distributed about the mean. The set of contract prices from the first period
shows the largest measure of dispersion with a coefficient of variation of .15345
— such that (u1,01) = (3.591,.5510). The rest of the periods have measures of
dispersion three to five times smaller. Additionally, the mass of the distribu-
tion for each period’s contract prices seems skewed towards its corresponding
intratemporal equilibrium price while only incidentally coinciding with the in-
tertemporal equilibrium prices.

Model with a single market-maker

Figure 3 shows the series of contract prices of the trading periods for multiple
simulated realities of a DA market with a single market-maker able to make
forecasts with four periods of foresight. In contrast with the baseline model,
the addition of a market-maker formulating offerings as a function of observed
market prices in previous periods and estimates of future equilibrium prices
manifest intertemporal learning in the series of trade contracts.
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ABM simulated vs EQ predicted market prices
4 buyers, 4 sellers, 1 market—-makers, alpha = 0.5, foresight = 4
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Figure 3: Agent-based simulated vs. theoretically predicted trade contract
prices (single market-maker)

This modified DA market with a single market-maker exhibits greater volatility
of prices than the baseline model. Each period’s set of market prices does not
converge as tightly around the corresponding intratemporal equilibrium price.
Conversely, the overall distribution of market contract prices follows the in-
tertemporal equilibrium prices closer than the baseline. The series of interquar-
tile ranges show the central tendency of market contract prices converging to
the corresponding intratemporal equilibrium prices.

Table 2 shows a greater measure of dispersion of trade contract prices with the
addition of a single market-maker. Outside the first period with a coefficient of
variation of .1982, the measure of dispersion in each period of this single market-
maker model is two to four times larger than the measure in the corresponding
period in the baseline model.
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EQ predicted prices
ABM trade contract prices intra- inter-
period N mean cv p25 p50 P75 temporal | temporal
1 104  3.948 .1982  3.506 3.921 4.510 3.5 6.5
2 107 9.949 .0906  9.506 10.102  10.543 11.199 7.3
3 111 5.710 1836  5.067 5.553 6.346 4.114 6.5
4 130 10.127 .0678  9.607 9.968 10.561 10.460 10.41
5 120 9.861 .0582  9.498 9.851 10.337 10.378 9.9
6 117 9.234 .0765  8.782 9.267 9.665 8.77 8.81
7 125 9.278 .1021 8.706 9.212 9.813 8.86 10.25
8 152 11.591 0797 10.832 11.529 12.207 12.116 13
9 158 12.759 .0747 12.133 13.039 13.394 13.891 17
10 111 19.087 .0569 18.674 19.268 19.736 20.793 17

Table 2: Single market-maker simulated trade contract vs. theoretically pre-
dicted prices

Similarly to baseline model, this data set shows the bulk of the series for each
period’s contract prices skewed towards its corresponding intratemporal equi-
librium price. Unlike the baseline model, there is a higher incidence of the series
of intertemporal prices falling into the higher or lower quartiles of the series of
trade contract prices.

Figure 4 shows the series of trade contract prices separated by market-maker
participation for each market period over 12 simulated realities. The blue scat-
ter plots depict the series of trade prices where neither contracting party was
a market-maker. The red scatter plots depict the series of trade prices where
one of the contracting parties was a market-maker. For each period’s scatter
plot, the blue and red vertical lines mark the intratemporal and intertemporal
equilibrium prices, respectively.

In spite of some overlap among the two series of trade contract prices, the
blue series (no market-maker) converges to values nearer to the intratemporal
equilibrium while the red series (market-maker) converge to values nearer the in-
tertemporal equilibrium. Outside the last two periods where boundary issues in
forecasting'® manifest in the red series of trade contract prices, the difference in
trends is highlighted where intratemporal and intertemporal equilibrium prices
are markedly different (i.e., periods one, two, three and seven).

16 A market-maker estimates the market-clearing price at time t as an average of predicted
competitive equilibrium prices for the next 7 periods. For any period ¢ such that the next 7
periods exceed the total number periods, t+7 > T', the market-clearing price estimation aver-
ages the predicted competitive equilibrium prices from period T'— 7 to period T'. Specifically,
the single market-maker estimates the market-clearing price in periods six to ten using the
same average of the predicted competitive equilibrium prices for periods six to ten. Similarly,
the hypothetically predicted intertemporal equilibrium price uses the same midpoint value for
second to last and last periods — i.e., periods nine and ten.
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Figure 4: ABM trade contract prices by market-maker participation in trade
transaction

Table 3 outlines the interquartile range, dispersion and central tendency of the
series of trade contract prices for each period parsed out by whether one of
the transacting parties was a market-maker or not. Notwithstanding boundary
issues in the last two periods, the measures of central tendency and the mass
of the distribution of the two series converge more noticeably apart for periods
where the intratemporal equilibrium and intertemporal (predicted) equilibrium
prices are further apart.

For periods one, two, three and seven where the difference between predicted
equilibrium prices is greater there is less overlap between the two series of trade
contract prices.The interquartile range overlap between the two series in periods
one and two is limited to a single quartile. There is no such overlap between
the two series in periods three and seven. In all four of these periods, the mean
and median of the series of trade prices where neither contracting party was a
market-maker converge to values closer to the intratemporal equilibrium price
than the series of all trade contracts. The mean and median of the series of
trade prices where one of the contracting parties was a market-maker converge
to values closer to the intertemporal equilibrium price than the series of all trade
contracts. In contrast, for the rest of the periods the interquartile range over-
lap between the two series is nearly complete and the mean and median prices
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converge to values closer together.

EQ predicted prices

ABM trade contract prices intra- inter-
period N mean cv P25 p50 p75 temporal | temporal
1 No MM 57 3.578 .1836 3.167 3.656 4.078 35 6.5

MM 47 4.398 1557 3.897 4.419 4.875
2 No MM 52 10.375 .0589 10.016 10.413 10.746 11.199 73
MM 55 9.546 .0996 8.939 9.733 10.307
3 No MM 49 5.154 1806  4.667 5.078 5.311
4.114 6.5

MM 62 6.150 1504 5.444 6.066 6.732

4 No MM 51 9.860 .0590  9.433 9.911 10.257

10.460 10.41
MM 79  10.300 .0676  9.710  10.032  10.739
5 NoMM | 57  9.898 .0559 9.491  9.832  10.371
10.378 9.9
MM 63  9.828 .0604 9.505  9.868  10.278
6 No MM | 67 8848 .0632 8512 8956  9.235 g7 481
MM 50 9.750  .0548  9.418 9.790 9.960 ' '
7 No MM | 66 8610 .0714 8209 8753  9.033
8.86 10.25
MM 59  10.025 .0645 9.569  9.865  10.554
8 No MM | 43 11.357 .0471 10.970 11.379 11.687 12116 13
MM 109 11.683 .0878 10.810 11.599 12.513 '
9 No MM | 40 12.967 .0392 12.608 13.049 13.266 13.801 17
MM 118 12.688 .0831 11.820 13.028 13.412 '
10 No MM | 21 19.148 .0323 18.849 19.206 19.571
20.793 17

MM 90 19.072 .0614 18.609 19.317 19.785

Table 3: Single market-maker distribution of trade contract prices by market-
maker participation

Table 3 shows that coefficients of variation for the series of trade prices where
neither contracting party was a market-maker are strictly smaller than the cor-
responding coefficients of variation in the series of all trade contract prices in
Table 2. In comparison, the coefficient of variation in the series of trade prices
where one of the contracting parties is a market-maker is smaller than the coef-
ficient of variation in the series of all trade contract prices in periods one, three,
six and seven, nearly the same in period four, and greater everywhere else.

Model with two market-makers

Figure 5 shows the series of contract prices of the trading periods for multi-
ple simulated realities of a DA market with two market-makers able to make
forecasts with different foresights. In keeping with the previous version, the ad-
dition of market-makers formulating offers as weighted sums of previous periods’
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market prices and estimated future equilibrium prices manifests intertemporal
learning in the series of trade contracts.

ABM simulated vs EQ predicted market prices
4 Buyers, 4 Sellers, 2 Market—Makers, alpha = 0.5, foresight ={3,2}

Prices
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0 1 2 3 4 5 6 7 8 9 10
period

Figure 5: Agent-based simulated vs. theoretically predicted trade contract
prices (dual market-maker)

This dual market-maker version exhibits greater volatility than the baseline
and single market-maker versions of the DA market model. Similar to the sin-
gle market-maker version, the distribution of market prices for each period does
not converge tightly around the corresponding intratemporal prices. In general
the interquartile ranges exhibit measures of central tendency of trade prices con-
verging to values close to the intratemporal equilibrium prices while the overall
series of trade prices follows the intertemporal equilibrium prices much closer
than both of the previous versions.

Table 4 shows a noticeably greater measure of dispersion in the series of trade
contract prices for the dual market-maker version of the DA market than the
baseline. Outside the series of trade contract prices for periods seven, eight and
nine, the measures of dispersion for this version are larger than the correspond-
ing measures of dispersion in the single market-maker version. In period seven
the double market-maker version shows a coefficient of variation of .0774, which
is clearly smaller than the corresponding coefficient of variation of .1021 for the
single market-maker. For periods eight and nine, however, the coeflicients of
variation are very similar with differences in a 1073 range.
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EQ predicted prices
ABM trade contract prices intra- inter-
period N mean cv p25 p50 P75 temporal | temporal
1 123 4.378 2150  3.603 4.357 5.117 3.625 6.125
2 251 7.683 1376 7.140 7.738 8.187 8.749 6.2
3 147 4.988 2102 4.281 4.846 5.677 3.678 6.5
4 130 12.815 .0923 11.770 12.766 14.022 12.12 12.9
5 149  14.099 .0656  13.259  14.427 14.775 13.723 16.25
6 127  16.135 .0843 15.394 16.313 17.141 19.907 17
7 169 15.723 .0774 14.722 15449 16.637 14.535 15.5
8 170 16.227 .0704 15.204 15.992 16.979 16.095 16.1
9 174 17.022 .0711 16.121 16.649 17.818 16.144 19.5
10 172 20.063 .0716 19.075 20.076 21.177 22.297 19.5

Table 4: Dual market-maker simulated trade contract vs. theoretically predicted
prices

With the exception of period six, these results show the bulk of the series for each
period’s trade contract prices skewed towards the corresponding intratemporal
equilibrium price. However, the interquartile ranges show a greater measure of
dispersion from the median that coincide a lot closer with the intertemporal
equilibrium price than the single market-maker version.

Figure 6 shows the series of trade contract prices separated by market-maker
participation for each market period over 12 simulated realities. The blue scat-
ter plots depict the series of trade prices where neither contracting party was
a market-maker. The red scatter plots depict the series of trade prices where
one of the contracting parties was a market-maker. For each period’s scatter
plot, the blue and red vertical lines mark the intratemporal and intertemporal
equilibrium prices, respectively.

In contrast with Figure 4, there is an inordinate amount of trades where one of
the contracting parties was a market-maker. Only the first four periods show
any discernible pattern of trades where neither contracting party was a market-
maker. For period two the series of trades where neither contracting party
was a market-market is subsumed by the sheer volume of trades where one of
the contracting parties was a market-maker. Nevertheless, a pattern can be
discerned where both series cluster together to form darker-blue (near purple)
contrast. For periods one and three the blue series (no market-maker) con-
verges towards values nearer the intratemporal equilibrium while the red series
(market-maker) converges towards values nearer the intertemporal equilibrium.
Period four already shows a disproportionately larger number of contracts with
a market-maker with an intermittent trend difference with respect to contracts
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made with no market-maker — i.e., runs one, four and seven.

For periods five to nine the ratio of trades where one of the contracting parties
was a market-maker to trades where neither contracting party was a market-
maker ranges from 7:1 to 14:1. For period ten only in three out of 172 trades
neither contracting party was a market-maker. Similar to plots for the single
market-maker version, the red series of trade prices converges closer towards
values nearer the intertemporal equilibrium price where it is further apart from
the intratemporal equilibrium price. When the intratemporal and intertemporal
equilibrium prices are closer together, the red series shows greater dispersion and
no clear converging trend.

Trade contract prices — 2 Market—-Makers, Foresights = {3,2}
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Figure 6: ABM trade contract prices by market-maker participation in trans-
action

Table 5 shows measures of central tendency and dispersion that exhibit a crowd-
ing effect as a result of the inordinate amount of trades where one of the parties
was a market-maker. Most of the periods continue to show convergence of the
two series of trade contracts consistent with the patterns observed in the sin-
gle market-maker version of the model. However, periods two and four show a
reversal in the tendency for the two series to converge noticeably apart for pe-
riods where the intratemporal and intertemporal equilibrium prices are further
apart. To wit, in period two the overwhelming density of the widely disperse
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distribution of trades where one of the contracting parties was a market-maker
nearly subsumes the distribution of trades where neither contracting party was
a market-maker. Also the bulk of the series converge very close together. In pe-
riod four, where the intratemporal and intertemporal equilibrium prices a closer
together, the mass of the distribution of the two series converge further apart
and there is no overlap between their interquartile ranges.

EQ predicted prices
ABM trade contract prices intra- inter-
period N mean cv p25 p50 p75 temporal | temporal
1 No MM | 49  3.674 .1980 3.013  3.576  4.337
3.625 6.125
MM 74 4.845 1572 4.276  4.883  5.479
2 NoMM | 50 8052 .0621 7.708  7.926  8.384 8719 6.2
MM 201 7.591  .1498  6.875 7.678 8.011 ' '
3 No MM | 57  4.419 2324 3.767  4.354  4.792 3678 65
MM 90  5.349  .1673  4.717  5.335  6.028 ' '
4 No MM | 27 11.526 .0381 11.105 11.543 11.938 1912 12.9
MM 103 13.153 .0820 12.335 13.171  14.209 ’ ’
5 No MM | 18 13.055 .0325 12.860 13.003 13.427
13.723 16.25
MM 131 14.243  .0619 13.593 14.527 14.823
6 No MM | 12 17.653 .0363 17.048 17.730 18.184 19.907 17
MM 115 15977 .0825 15.203 16.174 16.951 '
7 No MM | 19 14.962 .0737 14.084 14.592 16.027
14.535 15.5
MM 150 15.819 .0759 14.819 15.506 16.760
8 No MM | 12 15.991 .0592 14.863 16.182 16.828
16.095 16.1
MM 158  16.245 .0711 15.209 15.982 17.021
9 NoMM | 20 16.070 .0362 15.698 16.030 16.365
16.144 19.5
MM 154 17.146 .0709 16.170 16.737  18.085
10 NoMM | 3  21.053 .0180 20.621 21.204 21.334
22.297 19.5
MM 169 20.045 .0720 19.067 20.066 21.082

Table 5: Double market-maker distribution of trade contract prices by market-
maker participation

With the exception of period three, Table 5 shows that the coefficients of varia-
tion for the series of trade prices where neither contracting party was a market-
maker are smaller than the corresponding coeflicients of variation for the series
of all trade contract prices in Table 4. Except for period one with a coefficient of
variation of .198 for this series, the rest of periods have coefficients of variation
two to three times smaller than the corresponding coefficients of variation for
the series of all trade contracts.

In comparison, aside from period two the coefficients of variation for the series
of trade prices where one of the contracting parties was a market-maker are
slightly smaller than the corresponding coefficients of variation for the series of
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all trade contract prices. For periods one, three and four, the difference between
the coefficients of variation is in the range of 10~! to 10~2. For periods five to
ten this difference narrows to range of 1073 to 10~* | which by comparison are
nearly indistinguishable.

Comparing the models for goodness of fit and efficiency

Table 6 outlines the coefficients of determination!” for the series of trade con-
tract prices over 12 simulated realities of each DA market version. The top
number on each cell represents the R? between the observed trade prices in
the simulated market and the theoretically predicted equilibrium. The bottom
number in parenthesis represents the root mean squared error (RMSE), which
can be interpreted as the standard deviation between the observed simulated
trade prices and equilibrium predictions.

All trades Trades w/o MM | Trades w/ MM
Version intra inter intra inter intra | inter
No MM .9849 | .8429 B B B B
(.5167) | (1.664)
.9325 | .6995 .9594 .6691 .9179 .6926
(.9805) | (2.067) | (.6855) | (1.957) | (1.098) | (2.124)
.8911 | .8903 .9662 .8591 .8644 .8896

(1.719) | (1.725) | (.9338) | (1.906) | (1.808) | (1.631)

Single MM

Dual MM

Table 6: Coefficients of determination (R?) for intratemporal and intertemporal
equilibrium prices

Table 6 shows that the simulated outcomes in the baseline model approxi-
mate the intratemporal equilibrium predictions better than either market-maker
model. Namely, the baseline model has an R? of .9849 is nearer to perfect fit
(i.e., R? = 1) than either the single or dual market-maker models by about 10~2
and 1071, respectively. The respective RMSE for the baseline model (.5167) is
nearly half the RMSE for the single market-maker and a little less than a third
the RMSE for the dual market-maker. Thus indicating that the baseline trade
prices converge consistently closer to the theoretical predictions than either of
the market-maker models.

The measures of fitness of observed simulated outcomes with respect to the
theoretically predicted intertemporal equilibrium show the baseline model out-
performing the single market-maker model while being outperformed by the dual
market-maker model. The baseline model has an R? of .8429 with a RMSE of

17The coefficient of determination, or R?, describes the goodness-of-fit between a model
and observed data. It is the proportion of the variance in the dependent variable that is
predictable from the independent variable.
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(1.664) which is a closer approximation than the single market-maker version
with an R? of .6995 and a RMSE of (2.067). In contrast, the dual market-maker
has an R? of .8903 and a RMSE of (1.725).

This apparent inconsistency in performance is an artifact of the formulation of
the intertemporal equilibrium price. Namely, the intertemporal equilibrium
price is formulated as a one period midpoint value forecast. Meanwhile, a
market-maker’s forecast is an interpolation function of the order of the number
of periods of foresight (i.e., O7). So the larger the foresight range, the greater
the discrepancy between the dynamically forecasted price approximation and
the theoretical predicted series of intertemporal equilibrium prices.

Comparing coefficients of determination across each market-maker model ver-
sion shows an effect of market-maker participation on the fitness of the se-
ries of trade contract prices with respect to predicted equilibrium prices. In
both versions the series of trade prices where neither contracting party was a
market-maker shows an improvement in fitness with respect to the intratem-
poral equilibrium price and a decline with respect to intertemporal equilibrium
prices. Similarly, in both versions the series of trade prices where one of the
contracting parties was a market-maker shows a decline in fitness with respect
intratemporal equilibrium prices. While this series also shows a slight decline
in fitness with respect to intertemporal equilibrium prices, it is nearly negligible
by comparison. In the single market-maker DA model the series of trade prices
where one of the contracting parties is a market-maker has an R? of .6926 and a
RMSE of (2.124). In the dual market-maker DA model the series of trade prices
where one of the contracting parties is a market-maker has an R? of .8896 and a
RMSE of (1.631). Both cases show a decrease from the R? of all trade contract
prices of 1073 and only the single market-maker series has a slightly larger de-
viation.

Figure 7 shows the corresponding series of gains from trade across 10 periods
of 12 simulated realities for each version of the DA market model. Using the
same graphical representation as in Figures 2, 3 and 5, for each panel the box-
plot provides a visually discernible distribution of the gains from trade for every
period over all realities. The green line plot represents the set of theoretically
predicted competitive equilibrium economic surplus for every period. The red
line plot represents the theoretically predicted intertemporal equilibrium eco-
nomic surplus — corresponding to the intertemporal equilibrium prices. For the
second and third panel, the area between the orange lines represents the set of
arbitrage gains from trade due to market-maker participation for every period
over all realities'®.

18 These arbitrage gains from trade are a convex combinations of every potential permutation
of intratemporal and intertemporal economic surpluses given the possibility of market-maker
participation.
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The top panel shows the distribution of the gains from trade for every period
of the baseline model closely converging towards the intratemporal equilibrium
economic surplus. For seven out of ten periods the set of gains from trade
collapse almost exactly to their corresponding intratemporal equilibrium pre-
dictions.

By comparison, only the distribution of the gains from trade for periods two and
five approximate the corresponding intertemporal equilibrium economic surplus
— where the intratemporal and intertemporal equilibrium predictions are almost
or exactly the same.

The addition of a single market-maker to the baseline model increases gains
from trade above the levels predicted by intratemporal and intertemporal equi-
librium. The middle panel shows the bulk of the series of gains from trade exceed
both the intratemporal and intertemporal equilibrium predictions for nine out
of ten periods. In period two the measures of central tendency converge to the
intertemporal equilibrium and the bottom half of the distribution of gains from
trade lies between the intertemporal and intratemporal equilibrium. By con-
trast, the bulk of the series of gains from trade fall below the predicted arbitrage
gains from trade due to market-maker participation for half of the periods. For
periods four to eight the bulk of the series of gains from trade in the simulated
DA market either exceed or match the predicted arbitrage gains from trade due
to market-maker participation — where the series of arbitrage gains from trade
approximate the predicted intertemporal equilibrium surplus.

The bottom panel shows that the addition of a second market-maker increases
the gains from trade above all three series of predicted outcomes. Only the first
period shows the bulk of the series of the gains from trade in the simulated DA
market fall below the predicted arbitrage gains from trade. In periods three
and six the measures of central tendency of the series of simulated outcomes
converge within the range of predicted arbitrage gains from trade such that half
of the distribution falls below. For the rest of the periods the bulk of the series
of simulated outcomes exceed the predicted arbitrage gains.
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Mean market efficiency
Baseline Single Market-Maker Dual Market-Maker
Period | intra | inter | intra ‘ inter ‘ arbitrage | intra ‘ inter ‘ arbitrage

1 9833 .5463 | 2.962 1.326 .6071 2.778 1.506 .8583
2 9978 9724 | 2.719 .9224 .6854 4.539 2.423 2.044
3 1.00 .4049 | 2.299 1.696 .7923 4.071  2.312 .9628
4 9833 .7825 | 1.375 1.342 1.472 2.497  2.293 1.481
5 19624 9543 | 1.425 1.362 1.056 5.462 2.493 1.216
6 29926  .7800 | 1.752 1.748 1.542 3.107 2.064 1.017
7 9458 7227 | 1.811 1.487 .8999 3.432  2.176 1.621
8 9841 4749 | 2.043 1.853 1.420 2.338 2.032 2.082
9 9083 .7788 | 3.670 1.204 .8526 5.104 1.735 1.314
10 .8611  .7494 | 4.283 1.495 .6548 4.497  2.009 1.197

Table 7: Mean allocative efficiency of simulated DA market gains from trade
with respect to predicted outcomes

Table 7 outlines the measures of allocative efficiency as defined by Smith (1962)!°
for the outcomes of each DA market simulation model with respect to the pre-
dicted levels. The table shows that the gains from trade in the baseline DA
market model nearly reach full efficiency with respect to the intratemporal equi-
librium predictions. The average mean intratemporal efficiency of the baseline
simulation over 10 market periods is .9621, or 96.21 percent. Dismissing the
results for the last two periods due to boundary issues, the truncated average
over the first eight periods increases the mean efficiency to 98.12 percent. These
baseline results are nearly indistinguishable from the efficiency levels reported
by Gode and Sunder (1993). By comparison, the mean efficiency of the baseline
model with respect to the intertemporal equilibrium is .7166, or 71.66 percent.
Only periods two and five reach intertemporal market allocative efficiency levels
similar to those reported by Miller et al. (1977).

The levels of intratemporal allocative efficiency for the single market-maker
model show its series of gains from trade clearly exceed the equilibrium predic-
tions. The average mean intratemporal efficiency of this simulated DA market
over 10 periods is 2.43, or 243 percent. Similarly, the levels of intertemporal
allocative efficiency show that with the exception of period two the series of
gains from trade exceed equilibrium predictions. The average mean intertempo-
ral efficiency of this simulation’s gains from trade is 1.44, or 144 percent, which
far exceeds the average allocative efficiency of 96.3 percent reported in Miller
et al. (1977) speculative market. By contrast, the simulated DA market gains
from trade reach full efficiency with respect to the arbitrage gains from trade
due to market-maker participation for only four out of the 10 periods. The
average mean efficiency of the remaining six periods is .7486, or 74.86 percent.

19The allocative efficiency is the sum total of the profits made in the DA simulated market
period divided by the theoretically predicted total maximum profit.
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When pooled together, the series of gains from trade over all 10 periods reach
99.82 percent allocative efficiency with respect to the arbitrage gains from trade.

The levels allocative efficiency for the dual market-maker model show its se-
ries of gains from trade far exceed both the intratemporal and intertemporal
equilibrium predictions. The average mean intratemporal and intertemporal ef-
ficiencies of this simulated DA market over 10 periods are 3.78 and 2.10 — 378
and 210 percent — respectively. These results exceed the levels in Gode and Sun-
der (1993) as well as Miller et al. (1977). In contrast to the previous versions
of the simulated DA market, the bulk of the series of gains from trade for 8 out
of 10 periods surpass the levels of full efficiency with respect to the arbitrage
gains from trade. The average mean arbitrage efficiency over 10 periods is 1.37,
or 137 percent.

Figure 8 shows the series of gains from trade for the single market-maker model
separated by market-maker participation for each market period over 12 simu-
lated realities. The blue scatter plots depict the series of gains from trade where
neither contracting party was a market-maker. The red scatter plots depict the
series of gains from trade where one of the contracting parties was a market-
maker. For each period’s scatter plot, the blue and red vertical lines mark the
intratemporal and intertemporal equilibrium surplus, respectively.

For periods one, two, three, nine and 10 the gains from trade made where one
of the contracting parties was a market-maker are consistently larger than those
made where neither was a market-maker. For the bulk of the series in periods
four and five this trend is reversed. From periods six to eight the bulk of both
series are indistinguishable.

Except for period 10 the bulk of the series of gains from trade where neither con-
tracting party was a market-maker cluster near the intratemporal equilibrium
predictions. Except for periods four and five, the bulk of the series of gains from
trade where one of the contracting parties was a market-maker cluster about
or above the intratemporal predictions. Almost all the series where neither
contracting party was a market-maker cluster noticeably below intertemporal
equilibrium levels — except for periods four to six, which are closer approxima-
tions. For periods one, three, eight, nine and ten the bulk of the series where
one of the contracting parties was market-maker cluster above intertemporal
equilibrium levels. In periods six and seven the series scatter near the equilib-
rium level. For periods two, four and five the series cluster noticeably below
intertemporal levels.
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Gains from trade — 1 Market-Maker, Foresight = 4
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Figure 8: Single market-maker DA market gains from trade by market-maker
participation in transactions

Single market-maker mean efficiency
Contracts w/o MM Contracts w/ MM
Period | intra ‘ inter ‘ arbitrage | intra ‘ inter ‘ arbitrage
1 9082 .4066 .1865 2.728 1.221 .5602
2 .8670 .2942 .2186 2.062 .6995 6201
3 .8436  .6223 .2904 1.634 1.205 .5626
4 .8268  .8067 .8852 .6349  .6195 6797
5 .8619  .8241 .6394 .6544  .6257 .4854
6 9262 9242 .8148 9145 9125 .8044
7 8776 7207 4356 1.030 .8462 5114
8 .8392  .7610 .5845 1.351 1.225 9411
9 .8159  .2678 1893 3.169 1.039 .7350
10 .6056 .2114 .0926 4.399 1.536 6727

Table 8: Single market-maker allocative efficiency by market-maker participa-

tion

Table 8 breaks down the measures of allocative efficiency for the single market-
maker DA model by whether one of the contracting parties was a market-maker
or not. The average mean intratemporal efficiency of the series of gains from
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trade where neither contracting party was a market-maker is .8372, or 83.72
percent. Setting aside period ten, this series of gains from trade range between
81.59 and 92.62 percent of the intratemporal allocative efficiency. By compari-
son, the average mean intertemporal efficiency of the same series of gains from
trade is .5839, or 58.39 percent. Excluding periods four, five an six, the series
of gains from trade range between 21.14 and 76.10 percent of the intertemporal
allocative efficiency. Coincidently, the average mean arbitrage efficiency for the
series is .4336, or 43.36 percent, and the series range between 9.26 and 58.48
percent when periods four, five and six are excluded.

For the series of gains from trade where one of the parties was a market-maker
seven out of ten periods exceed full intratemporal allocative efficiency. The aver-
age mean intratemporal efficiency of the series is 1.85, or 185 percent. The mean
intratemporal efficiency levels for periods four, five and six are 61.59, 62.57 and
91.45 percent, respectively — the rest of the periods exceed full intratemporal
efficiency. The average mean intertemporal efficiency of the series of gains from
trade is .9931, or 99.31 percent. For periods two, four, five, six and seven the
levels of mean intertemporal efficiency range between 61.95 and 91.25 percent
— the rest of the periods exceed full intertemporal efficiency. The levels of ar-
bitrage efficiency of the series range between 48.54 and 94.11 percent with an
average mean efficiency of .6473.

Figure 9 shows the series of gains from trade for the dual market-maker model
separated by market-maker participation for each market period over 12 simu-
lated realities. The blue scatter plots depict the series where neither contracting
party was a market-maker. The red scatter plots depict the series where one of
the contracting parties was a market-maker. For each period’s scatter plot, the
blue and red vertical lines mark the intratemporal and intertemporal equilib-
rium surplus, respectively.

In contrast to Figure 8, the gains from trade where one of the contracting parties
was a market-maker are consistently larger than those where neither contracting
party was a market-maker for all periods.
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Gains from trade — 2 Market—-Makers, Foresights = {3,2}
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Figure 9: Dual market-maker DA market gains from trade by market-maker

participation in transactions

In keeping with the analysis of the series of trade prices for the dual market-
maker DA model, the series of gains from trade exhibits an inordinate portion
of contracts where one of the parties was a market-maker. The portion of con-
tracts where neither party is a market-maker rapidly dwindles after period four.
Coincidently, all the series where neither contracting party was a market-maker
cluster well below the intratemporal equilibrium levels for periods 4 through 10.
For periods 1 through 3, the series scatter closer around the predicted intratem-
poral equilibrium levels. By contrast, all the series where one of the contracting
parties was a market-maker consistently exceed both the intratemporal and in-
tertemporal equilibrium predictions for all 10 periods.
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Dual market-maker mean efficiency
Contracts w/o MM Contracts w/ MM
Period | intra ‘ inter ‘ arbitrage | intra ‘ inter ‘ arbitrage
1 8676 .4703 .2680 2.008 1.0889 .6205
2 .6868 .5194 4387 2.615 1.978 1.670
3 .8103  .5068 2110 3.017  1.887 7856
4 .5568 5111 .3303 2.101  1.929 1.246
5 4333 1978 .0964 5.409  2.469 1.203
6 3917 1840 .0908 4.270  2.006 .9904
7 .5257  .5055 3767 1.857 1.786 1.331
8 3728 3674 .3801 1.695 1.671 1.729
9 5145 2584 .1955 3.180 1.598 1.209
10 2663 1191 .2459 4.465 1.997 1.190

Table 9: Dual market-maker allocative efficiencies by market-maker participa-
tion

Table 9 shows the measures of allocative efficiency for the dual market-maker
broken down by whether one of the contracting parties was a market-maker or
not. Apart from the mean intratemporal efficiencies for periods 1 through 3,
the gains from trade where neither contracting party was a market-maker reach
55.68 percent or lower of any efficiency measure. The average mean intratem-
poral, intertemporal and arbitrage efficiencies for the series of contracts where
neither party was a market-maker are .5426, .3639 and .2459 — 54.26, 36.39 and
24.59 percent — respectively.

Consistent with the graphical results, both the mean intratemporal and in-
tertemporal efficiencies for the gains from trade where one of the contracting
parties was a market-maker reach levels far exceeding their respective equilib-
rium predictions. The mean intratemporal efficiency peaks at 541 percent in
period 5 and drops as low as 169.5 percent in period 8. The mean intertemporal
efficiency peaks at 247 percent in period 5 and drops as low as 109 percent in
period 1. The average mean intratemporal and intertemporal efficiencies for
the series of contracts where one of the parties was a market-maker are 3.062
and 1.841 — 306.2 and 184.1 percent — respectively. By comparison, except for
periods one and three the gains from trade either meet or exceed full arbitrage
efficiency levels.
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The mean arbitrage efficiency peaks at 173 percent in period five and drops as
low as 62 percent in the first period. The average mean arbitrage efficiency for
contracts where one of the parties was a market-maker is 1.198.

Figure 10 shows the relative change in trade contract prices and competitive
equilibrium prices for each version of the simulated DA market. The relative
change in price for period t is the absolute value of the difference in price between
tand t — 1 divided by the price in period t — 1, P o I_Jtl’l . The blue dropped-line
series represents the relative change in the median trade contract price in each
simulated market period over 12 realities. The red dropped-line series repre-
sents the relative change in the theoretically predicted competitive equilibrium
prices. The top panel shows the relative changes in trade contract prices closely
approximate the relative changes in competitive equilibrium prices in the base-
line DA market. The middle and top panels show relative changes in trade
contract prices consistently smaller than relative changes in competitive equilib-
rium prices by similar orders of magnitude for the single and dual market-maker
DA markets, respectively.

absolute value of relative change in price, |APPt_11 |
Baseline Single Market-Maker Dual tMarket-Maker
Period | simulated \ predicted | simulated \ predicted | simulated \ predicted

1 — — — — — —
2 1.135 1.028 1.576 2.199 L7759 1.414
3 .0037 .0296 .4503 .6326 3737 .5796
4 .6515 .8452 .7905 1.542 1.634 2.294
5 1463 1751 .0117 .0078 1301 1325
6 .0025 .0098 .0592 .1550 1307 4507
7 .2588 .3095 .0059 .0103 .0530 .2699
8 .1749 .1948 2515 .3675 .0351 .1074
9 .b848 .5880 1309 .1465 .0411 .0030
10 .1079 1165 ATTT 4968 .2058 .3812
1 .3407 .3663 4176 .6176 .3755 .6258
cv 1.109 1.007 1.216 1.229 1.404 1.205

Table 10: Absolute value of relative change in market price between periods

Table 10 outlines the absolute value of relative price change for the series of
trade contracts and competitive equilibrium predictions for each version of the
simulated DA market. Other than period two, the relative change in prices
in trade contracts for the baseline DA market simulation are smaller than the
predicted competitive equilibrium prices. For period two the relative change
in trade contract prices is .107 bigger than the relative change in competitive
equilibrium prices. By contrast, the relative change in trade contract prices in
period 4 is .1936 smaller than the relative change in competitive equilibrium
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prices. For the rest of the periods the relative changes in trade contract prices
are with 1072 to 1072 smaller than the relative changes in competitive equilib-
rium prices. The average of the absolute values of relative price changes in trade
contracts for the baseline DA market is .3407, while it is .3663 for the predicted
equilibrium prices.

The absolute values for both market-maker DA models exhibit a pronounced
reduction in relative change in the simulations’ trade contract prices with re-
spect to their corresponding relative changes in competitive equilibrium prices.
Namely, the relative changes in trade contract prices are noticeably smaller
than the corresponding relative changes predicted in competitive equilibrium
for periods with a steep change with respect to the previous period’s equilib-
rium price. For periods with a very slight change with respect to the previous
period’s equilibrium price the differences in relative change are nearly negligible.
For example, period 5 in the single market-maker DA simulation with an equi-
librium price decrease of .0618 with respect to period 4 shows a relative change
in trade contract prices slightly bigger than the relative change in competitive
equilibrium prices — similarly for period 9 in the dual market-maker simulation.

Overall, the introduction of a market-maker exhibits an attenuating effect on the
relative change in trade contract prices. The average absolute value of relative
change in prices for trade contracts and competitive equilibrium predictions in
the single market-maker DA model are .4176 and .6176 —41.67 and 61.76 percent
— respectively. Similarly, the average absolute value of relative change in prices
for trade contracts and competitive equilibrium predictions in the dual market-
maker DA model are .3755 and .6258 —37.55 and 62.58 percent — respectively.

Concluding Remarks

Taking the intertemporal equilibrium measurement proposed by Miller et al.
(1977), the introduction of speculative intermediacy into a competitive market
with random unknown shifts in demand and supply yields gains from trade al-
most uniformly exceeding full intertemporal market efficiency. Absent a market-
maker (speculator), boundedly rational (non-optimizers) buyers and sellers in a
multilateral exchange process with decentralized information are able to reach
near full efficiency levels within most market periods. Conversely, absent a
market-maker most of the market periods reach between 2/5 and 4/5 of full in-
tertemporal efficiency.

The levels of intratemporal and intertemporal market efficiency in trade trans-
actions between buyers and sellers in a market with a single market-maker are
qualitatively similar to those in a market with no market-maker. Namely, they
exhibit a similar pattern of variation across periods with slightly lower values.
In contrast, trade transactions where one of the contracting parties is a market-
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maker show a disproportionate reduction in intra and intertemporal efficiencies
across periods with small differences in intratemporal equilibrium prices. Specif-
ically, periods four to six drop below full intra and intertemporal efficiency while
period seven barely reaches full intratemporal efficiency but drops below full
intertemporal efficiency. For the market with two market-makers the low vol-
ume of transactions between buyers and sellers show lower values but a similar
pattern of variation to the intra and intertemporal levels of efficiency of trade
between buyers and sellers in the previous markets. The inordinate number of
transactions where one of the contracting parties is a market-maker show re-
ductions in intra and intertemporal efficiencies qualitatively similar to those for
a market with a single market-maker. While all periods surpass full intra and
intertemporal efficiency levels, periods four, seven and eight drop near or below
their respective averages.

The predicted arbitrage gains from trade are measurements to contrast the intra
and intertemporal autarkic market equilibrium outcomes with the additional
potential profits made possible by speculative intermediation. As such, they
provide a linear combination of the average gains from every possible trade of
intra and intertemporal equilibrium inframarginal units given market-makers’
forecasts. Both markets with speculative intermediacy are able to reach full
arbitrage efficiency where relative changes in equilibrium prices between peri-
ods are small. For the rest of periods the market with a single market-maker
reaches between 4/7 and 6/7 of full arbitrage efficiency, where the vast major-
ity is attributable to transactions with the market-maker. For the market with
one additional market-maker, the bulk of the profits from trade in the remaining
periods exceed full arbitrage efficiency — almost entirely attributable to the over-
whelming portion of trades where one of the contracting parties was a market-
maker.

To the extent that trade prices in the baseline model closely approximate in-
tratemporal equilibrium predictions, the introduction of speculative intermedi-
acy shows a tendency to increase the volatility of market-clearing prices within
each market period. In spite of acyclical shifts in demand and supply between
market periods, contract prices in the baseline simulation exhibit a rate of con-
vergence toward intratemporal equilibrium similar to those in human exper-
iments. According to the coefficients of determination in Table 6, adding a
market-maker increases the rate of dispersion for each market period’s set of
trade contract prices and reduces goodness-of-fit with the respective competi-
tive equilibrium predictions. Similarly, within markets with speculative inter-
mediacy the series of trade prices where one of the contracting parties was a
market-maker shows greater dispersion and reduced goodness-of-fit to intratem-
poral equilibrium than the series of trade prices where neither contracting party
was a market-maker. For either market with speculative intermediacy, the series
of trade prices where neither contracting party was a market-maker show less
dispersion and closer convergence to intratemporal equilibrium prices than the
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series of ALL trade contract prices — qualitatively similar to rates in the mar-
ket without market-makers. Coincidently, the series of trade prices where one
of the contracting parties is a market-maker show more dispersion and sparser
convergence to intratemporal equilibrium prices than the corresponding series
of ALL trade contract prices — qualitatively similar to rates in the markets with
market-makers.

Insofar as the intertemporal equilibrium measurement adapted from Miller et
al. (1977) is a linear midpoint approximation between one period and the next,
the sparser convergence and greater dispersion of trade prices in the DA market
with a single market-maker with respect to the baseline market is an artifact
of the market-maker’s forecasts based on a 4*® degree polynomial approxima-
tion. By contrast, the DA market with dual market-makers using quadratic and
cubic polynomial approximations to forecast future prices show closer conver-
gence but a greater dispersion of trade prices. For either market with specu-
lative intermediacy, the series of trade prices where neither contracting party
is a market-maker shows more dispersion and sparser convergence to intertem-
poral equilibrium than the corresponding series of ALL trade contract prices.
Both markets with speculative intermediacy show nearly identical rates of con-
vergence to intertemporal equilibrium prices between the series of ALL trade
contract prices and the series of trade prices where one of the contract parties
was a market-maker. For the DA market with a single market-maker, the series
of trade prices where one of the contracting parties is a market-maker shows
greater dispersion than the set of ALL trade contract prices. Meanwhile the
dual market-maker case shows a decrease in dispersion.

A more revealing measure of the effect of speculative intermediacy on a DA mar-
ket with acyclical shifts in supply and demand is the relative change in trade
contract prices compared to the relative change in intratemporal equilibrium
prices. Absent a market-maker, the difference in the relative changes in price
between the series of trades in each period of the DA market and their respec-
tive competitive equilibrium predictions is almost negligible. By contrast, both
DA markets with speculative intermediacy show a significant attenuation in
the relative change in trade contract prices with respect to the relative change
in predicted equilibrium prices across periods. In other words, the introduc-
tion of speculative intermediacy reduces the volatility of the series of prevalent
market-clearing prices across trading periods in DA market with acyclical shifts
in supply and demand.

Far from constituting a definitive microeconomic framework of intermediation
as postulated by Spulber (1998), this study provides a simple speculative in-
termediacy model of decentralized intertemporal price formation in competitive
markets with unknown acyclical shifts in supply and demand. The simulations’
findings show that every additional market-maker increases consumer and pro-
ducer surplus and reduces the volatility of market-clearing prices across periods
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at the cost of increased volatility of trade contract prices within periods. Factor-
ing issues of difference in polynomial degrees between forecasted market-clearing
prices and intertemporal equilibrium prices, these findings show boundedly ratio-
nal market-makers are able to reach competitive intertemporal outcomes with-
out perfect foreknowledge of a market with acyclical random shifts in supply
and demand. In other words, these findings suggest that neither rationality nor
complete information are necessary conditions to reach intertemporal allocative
efficiency in a speculative market. While further improvements to intertempo-
ral measurements are needed, these findings indicate that acyclical DA markets
with unknown shifts in demand and supply can reach intertemporal competi-
tive equilibrium under similar conditions that yield competitive equilibrium in
decentralized trade among non-optimizers in stationary markets as shown by
Gode and Sunder (1993).
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Appendix A: Software documentation

This section is intended as an overview of the anatomy and physiology (i.e.,
structure and functionality) of the simulation. Its main purpose is to provide
the reader with a better understanding of the different components and how
they relate to one another. There are three distinct interacting modules that
comprise the overall simulation program.

First, a value generator module takes an endogenously determined microstruc-
ture of the trade environment. This module consists of a single MATLAB
microsimulation program. It reads in a text file containing a general descrip-
tion of the economic agents, resources, schedules of valuations, and constraints.
Then it writes out a series of vector structures that assign the initial market
environment attributes: resource allocation, induced valuations, etc.

Second, a Double Auction (DA) simulation module generates the behavioral
model. Artificial agents interact given induced valuations and market rules
(i.e., institutional settings). This Agent Based Model (ABM) consists of eight
interacting submodules programmed in JAVA.

Third, statistical analysis module takes in the ABM simulated data to mea-
sure the effect of an intermediary (or market-maker). Specifically, it measures
and compares the outcomes of a baseline version without market-makers and a
version with market-makers using STATA. In addition, it measures both ABM
versions with the theoretically predicted outcomes from the microsimulation.

Value Generator Module

The value generator is a discrete event stochastic microsimulation written in
MATLAB. It reads in a text file with fixed parameters representing general
market attributes. These would include the number of trading units, buyers,
sellers, market-makers, and time periods, as well as corresponding values and
costs.

The microsimulation uses this information to generate a baseline supply-and-
demand model with buyers and sellers trading across periods. It replicates this
model with the participation of market-makers. This traces the theoretical equi-
librium price and quantity for both settings, with and without market makers.
Price volatility and market efficiency are compared between these scenarios. Fi-
nally, it writes out all this information in vector structures. These are read by
the ABM module that assigns initial attributes to DA market and its agents.
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Global static parameters input file

The input file contains the global static parameters, which are the ‘building
blocks’ of the microsimulation. It is a simple flat text file?® made up of rows
of tabulated numerical information. Each row represents a series of records
separated by line-breaks. And each record consists of a series of non-identical
fields separated by the tab character. It can be directly typed with a text editor
or created through a JAVA user interface. The following picture shows one
example of an input file.

8 00 | ] inputFile.txt

B3.3

4

4

18

2

12 12

6.8 5.45 4.9 4.35 3.8 3.25 2.7 2.15 1.6 1.85 1.8 1.8
6.8 5.5 5.8 4.5 4.8 3.5 3.8 2.5 2.8 1.5 1.8 1.8
2

12 12

1.8 1.5 2.9 2.5 3.0 3.5 4.8 4.5 5.0 5.5 6.8 6.8
1.8 1.55 2.1 2.65 3.2 3.75 4.3 4,85 5.4 5.85 6.8 6.8
2

1

18 4 2

lee.9

lgeg.@

2

3 2

8.5

8.5

This text file is a list of vectors of number values. Each vector contains one
or more number elements of either real or integer values. As it is visually dis-
cernible, all elements in a record vector are the same type of number. The
elements in the list displaying a digital fraction are real numbers — whole num-
bers are integers.

The first row is the ‘seed’ for MATLAB’s random number generator. The sec-
ond, third, fourth and fifth rows are the number of buyers, number of sellers,

20 A flat file is a data file containing records with no structured relationships. It can be a
plain text file with one record or more per line. Each field within a record is separated by
a delimiter consisting of either a comma, semi-colon, or tab space. For the purposes of this
study, a flat text file will refer to the latter.
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number of periods and number of demand curves, respectively. The sixth row
is a vector of the number of elements demanded for each demand curve. The
seventh and eight rows are vectors of the unit values in a demand curve.

The ninth and tenth rows are the number of supply curves and the correspond-
ing vector of their respective number of elements supplied. The eleventh and
twelfth rows are vectors of the unit costs in a supply curve.

The thirteen row signals the allocation method. If the number is ‘1’ the alloca-
tion of units is uniform, and if it’s ‘2’ the allocation is random. The fourteenth
row is the number of trends that randomly shape the supply and demand curves.
The fifteenth row is a vector of the number of trend periods, the upper and lower
limits of the trends.

The sixteenth and seventeenth rows are the overspending penalty and budget
endowment, respectively.

The eighteenth and nineteenth row are the number of market-makers and the
corresponding vector of their respective number of periods of foresight.

The twentieth and twentieth-first rows are the anchoring weights for the buyers
and sellers, respectively.

This text file of globally static parameters feeds into the MATLAB microsim-
ulation to run and build the market structure. The terms ‘unit value’ and
‘unit cost’ are equivalent to willingness to pay (WTP) and willingness to accept
(WTA), respectively. The trend variable represents trends in the elasticity of
supply and demand, not in prices or quantities.

MATLAB value generator file

The value generator is a numerical simulation program written in MATLAB.
It reads in the parameters from the input file and generates a microsimulated
series of market structures. It was possible to construct the value generator
module in JAVA or any other multi-paradigm, general purpose language (i.e.,
C, C++, SmallTalk). I opted to build it in MATLAB because it allows for very
fast and easy vector building and manipulation.
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11 %% Open files

12 - clear all;

Elf= workingDir = '/Users/jav/Desktop/MMACEE/MMACECode/";

14

15 $input file: InputFile - Global static microstrucutre parameters

16 - inputFile = fopen(strcat(workingDir, 'matlabInputFiles/inputFile.txt"),'r"');
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18 soutput files

19 - globalOutFile = fopen(strcat(workingDir, 'matlabOutputFiles/globalOutput.txt’), 'w'); %global vars
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26 - seedNol = fscanf(inputFile, '%f',1);
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28 - noSellers = fscanf(inputFile, '%i’',1);

29 - noPeriods = fscanf(inputFile,'%i’',1);
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script

Upon being initialized, the value generator creates four writeable text files.
These are flat text files created to hold the microsimulation’s final data struc-
tures. The names of the four files are globalOutput, unitsOutput, marketOutput,
equilibrium Output.

e globalOutput holds the general attributes of the economic agents and the
DA market institution: number of periods and agents, maximum values,
anchoring weights for convergence to true valuations, and penalties.

o unitsOutput file holds the number of per-period units for sale by each seller
and number of per-period units desired by each buyer.

e marketOutput file holds two dimensional arrays. One contains values for
each desired unit by each buyer; the other array has the costs for each
unit for sale by each seller throughout the periods.

o equilibriumOutput file holds the equilibrium price.

Next, the global parameters are read from the input file. For single-field records
this program scans the file for a single entry. Each entry is formatted according
to the type of character value (integer, real, string). For multiple-field records
one-dimensional arrays were formed to scan and store each field one by one.
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After assigning the data to the initial variables, the program constructs six types
of vectors to hold the microsimulated data. The data represents a microeco-
nomic structure of supply and demand.

e value_ cost is a two-dimensional vector with a two-dimensional sub-vector
of sellers’ costs and buyers’ values for each period.

e cquilPrice and equilQty are one-dimensional vectors with the equilibrium
prices and quantities calculated for each period.

e buyersUnits is a two-dimensional vector with the per-period number of
desired units by each buyer.

o sellerUnits is a two-dimensional vector with the number of units for sale.

e SDSet is a two-dimensional vector with index pairs of the supply and
demand vectors used in each period.

Before replicating the double auction trading periods, a Brownian motion func-
tion simulates a random walk with a given trend and drift.

At each trading period a new seed number is assigned to a random number
generator (RNG). This generator is used in assigning the indexes of the supply
and demand curves to be selected. In the first trading period, it simply selects
the supply and demand vectors assigned randomly from all the possible choices.

For all other periods the random number generator also finds an equilibrium
point where the vectors of decreasing values and increasing costs overlap. The
overlap happens between an inframarginal point where value is greater than
cost, and a extramarginal point where value is less than or equal to cost. The
equilibrium price is the midpoint between a range of prices bound by an upper
and a lower limit. The upper limit is the lowest price between the inframarginal
value and the extramarginal cost. The lower limit is the highest price between
the inframarginal cost and the extramarginal value.

A period trend is set within given upper and lower bounds to reshape and
randomly shift the supply and demand curves. If no trend is set, supply and
demand shift to a midpoint between the equilibrium prices from the current and
previous period. If a trend is set, supply and demand shift to a random-walk
point within the established bounds.

After the shift, the random number generator checks whether or not the supply
and demand curves still cross. If the vectors of costs and values do not have
an overlapping point, it shifts both curves by an arbitrary distance between
a random-walk point and the current equilibrium price. Any post-shift nega-
tive values and costs vector components get assigned a zero value, and a new
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maximum value is determined. With the demand and supply curves properly
aligned, the units desired or to be sold are assigned either uniformly or randomly.

In a uniform allocation (i.e., allocation value = 1), each buyer and each seller get
assigned an equal amount of units. The values and costs are sorted randomly
and assigned to each buyer and seller one-by-one. Then the buyers’ values get
sorted in a descending manner while the sellers’ costs get sorted in an ascending
manner to resemble the demand and supply schedules.

If the allocation is done randomly (i.e., allocation value = 2), each buyer and
seller get one initial unit assigned along with a randomly selected value or cost.
The remaining units and their respective values and costs are assigned among
the vectors of buyers, sellers, values and costs with a randomly generated index
number.

The random allocation of units can create an asymmetry in vector sizes among
agents. Buyers and sellers with fewer than the maximum number of units get
assigned an additional number of ‘non-tradable’ units. This is done until all
agents of the same type have the same number of units. These non-tradable
units get a value of zero for a buyer and a cost greater than the maximum price
for the seller. This procedure brings uniformity in units and vector sizes. The
vector structures stay symmetric and matrix operations are expedited. Units
and values are sorted in the same manner as the uniform allocation of units to
resemble demand and supply schedules.

Once all units and values are assigned, the equilibrium quantity is calculated
in a manner similar to the equilibrium price. A graphical representation of the
current period’s supply and demand price determination is then built.

At the end of each period all vector information of the model gets stored in
the vector structures created at the beginning of the microsimulation. Values,
costs, number of units, and equilibrium price-quantity pairs get added into val-
ues_ costs, buyerUnits, sellerUnits, equilPrice and equiQty.

After repeating this process for all trading periods, the data are written into
the corresponding flat text files. All buyers, sellers, and institutional attributes
are recorded into the globalOutput. The number of units for each buyer and
seller get recorded into the unitsOutput. All values and costs get recorded into
the marketOutput. The equilibrium price-quantity pairs get recorded into the
equilibrium Qutput.

Finally, the graphical representation for each period’s supply and demand model
is plotted together with the graph of price levels across periods.
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Double Auction Simulation Module

The DA simulation module consists of autonomous agents interacting in an eco-
nomic environment through a set of institutional rules. The code is in JAVA
because it is a general purpose, class-based, object-oriented computer program-
ming language.

The object oriented programming (OOP) allows concepts to be represented as
objects with attributes and methods. The OOP attributes are data fields de-
scribing objects. Methods are procedures to be carried out by these objects.
A class is a self-instantiating, self-referring construct with its own states and
behavior.

The interface development environment (IDE) used to edit the JAVA code was
Netbeans. Netbeans has the most comprehensive collection of built-in libraries
and manuals as well as an easy to use graphical user interface (GUI) toolkit.
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The ABM simulation consists of three distinct super-classes, or agent sub-
modules. A controller class represents the double auction. It allocates resources
and access to exchange according to a set of trading rules. A market class
represents the economic environment with the distinguishing attributes of the
market. An agent class represents an individual agent interacting in this system.
This class has three instances or subclasses: buyer, seller, and market-maker.
Each class is an agent type with the corresponding attributes and behavior.

In OOP all classes are instantiated and interact in a main class or construct. In
the beginning all the microsimulation data structures are read from the MAT-
LAB output files and loaded into JAVA matrix structures. Then the general
attributes of the controller and all the specific attributes of each player are as-
signed.

Each agent formulates a trading strategy based on a dynamically adjusted learn-
ing process. At the beginning of every period, buyers and sellers formulate offers
according to the limited information given by their initial attributes. As the
number of trades increases buyers and sellers update their offers taking into ac-
count the ‘going prices’ of the trades. Their offer formulation strategies reflect a
tradeoff between a running average of trading prices and a converging tendency
to reveal their true valuations.

Market-makers are more sophisticated. Their offer formulation strategies reflect
the ability to aggregate information across periods to turn an intertemporal
profit. Specifically, it reflects their ability to infer future outcomes with some
certainty.
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In each period agents trade according to DA rules until all units run out or
they reach a ‘stalemate’ in standing offers. At the end of each period, all the
information from trades is saved into a series of data structures. When there are
no more trading periods, this information is recorded into a comma-separated
values (CSV) file for statistical analysis.

Market class

The Market class, or market, is the set of all market attributes. In the be-
ginning of the simulation it retrieves the name and location of the MATLAB
output files. Then it opens a file input stream for each corresponding flat file:
globalsFile, unitsFile, marketConstructFile, equilibriumFile.

The market calls on one method to read and process the data of each input
stream.

e The buildMarketGlobals method reads the globalsFile stream and stores
its data in a one-dimensional string list-array.

e The buildUnitsArray method reads the unitsFile stream and stores its
data in a two-dimensional integer value array. The number of rows is the
number of buyers and sellers. The number of columns is the number of
trading periods. This array stores the number of units for each agent at
each trading period.

e The buildMarketConstruct method reads the marketConstructFile stream
and stores its data in a two-dimensional real-value array. The rows corre-
spond to the number of buyers and sellers. The columns correspond to the
periods multiplied by the units per agent. It stores each agent’s valuations
for each unit at each period.

e The buildEquilibrium method reads the equilibriumFile stream and stores
its data in a two-dimensional real-value array. It has two rows; the number
of columns equals the number of trading periods. It stores the equilibrium
price and quantity for each period.

At each trading period, the controller class calls upon the market to retrieve all
period specific data. The list of market method calls is too extensive and thus
forgone.

Controller class

The controller is the rule mechanism of this simulated microeconomic system. It
assigns property and communication rights to each agent. Before trade begins,
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it retrieves the set of global variables from the market and instantiates buyer,
seller, and market-maker. The controller assigns each agent a specific anchoring
weight, type, and index. For each market-maker it additionally assigns an initial
endowment, units, and inventory costs.

Throughout the trading periods the controller acts as an automated auctioneer.
At the beginning of each period, the clearingPeriodData method erases data
from previous periods. Then the buildPeriodData method reinitializes and con-
structs the set of microeconomic data structures for the current period.

The setSeed method assigns a different seed to each buyer, seller and market-
maker to generate random numbers. The setMinPrice and setMazPrice methods
set the minimum and maximum prices for that trading period. The setValues
method sets the current period’s vector of valuations for each buyer. Similarly
the setCosts method sets the current period’s cost vector for each seller.

The updateMMUnits method updates the current period units for the market-
makers. The updatelnvCosts, updateIntRates, and updateMMDelta methods
update the market-makers’ inventory costs, interest rates, and learning weight.

The stoppingRule method is a cyclic redundancy check. It continuously checks
after each offer whether or not a set of three trading conditions are met. The
first condition checks whether or not there are any units left to buy. The second
condition checks whether or not there are any units left for sale. The third
condition checks whether or not the trading offers being posted are converging.
When all three conditions are met the trading period continues.

The callAgentInder method emulates a market call for offers. It randomly sets
an integer number and selects the agent with a matching index number to place
an offer. From here there are four possibilities.

e If the agent has any units left to trade, the controller takes its offer.

e If the agent is a buyer, the updateBidFEvent method takes in the buyer ID
along with its bid. If the entering bid is lower than the standing bid, or
highest bid on record, the bid is discarded.

e If the entering bid is higher than the standing bid (but lower than the
standing ask) the setStandingBid method registers the entering bid as the
standing bid. The same is true if the entering bid is the lowest asking
price on record.

e If the entering bid is higher than the standing bid and standing ask then
a sale contract is made.
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A trading price is registered and the standing bid is set to the minimum price
while the standing ask is set to the maximum price. Buyers and sellers entering
a sale contract decrease their units by one. They set the corresponding valu-
ations out of trading range and register their profits in their respective accounts.

After the trade is made, the setStandingBid and setStandingAsk methods reset
all offers in the market. The process to call for offers is repeated. All trades,
trade prices, bids, asks, and standing offers in each period get registered. Call-
ing for offers and trading continues contingent on the stoppingRule method
conditions being met. Something similar happens for the seller. Verification of
whether or not the entering asking price is lower than the standing ask and the
standing bid is simply reversed.

If the callAgentIndex method ‘selects’ a market-maker, it is necessary to also
determine the type of offer being made. Updating standing bids and asks follows
the same process as before. But valuations do not need to be set out of trading
range; market-makers formulate offers according to their future expectations.

Once all units have been traded (or offers do not converge) the stopping rule
signals the current trading period to stop. The printPeriod TradesRecord method
prints out to file the record of all market calls, bids, standing bids, asks, standing
asks, trade events, trade prices, running average prices, midpoint spreads, and
the participating agents. This continues while there are periods to trade.

Agent

The agent is a super-class with a series of attributes and procedures inherent
to the buyer, seller, and market-maker agents. It’s an abstract agent construct
superseded by extensions of itself to its subclasses. Each type of agent extends
the agent class by adding or modifying attributes and methods to its own spec-
ifications. Upon being instantiated the agent-construct method assigns itself a
type, a seed, and an index. The type and index can be used separately or to-
gether as identifiers. The seed helps to generate uniformly distributed random
numbers for multiple purposes.

The setType and setInder methods dynamically change the parameter values
of an agent’s type and index. The setRandomNumber method uses seeding
numbers to dynamically change its random number generator. The getType,
getIndex and getRandomNumber methods retrieve the type, index and random
number.

The main component of the agent’s decision making mechanism is dynamic
adaptive learning. This enables the agent to change the weigh coeflicients of
parameters in the formulation of a strategy. A common parameter in the for-
mulation of offering strategies for all agent types is the running average price
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— or moving average price. It provides agents with public information of the
price trend, reflecting the preferences in the market place. Agents can adjust
their offerings to better their chances of making a trade. To this end, the up-
dateAvgPrice and getAvgPrice methods set and retrieve the running average
price, respectively.

Another aspect of this adaptive learning behavior is an agent’s tendency to
modify its willingness to reveal its true valuation. As more offers are posted
and sale contracts realized, the agent increasingly adjusts its willingness to take
an offer closer to its true valuation. The setAdjustedSequence method sets a
sequence by using a global counter, its number of units left, and its previous
sequence since its last trade.

The number of units may be greater than or equal to zero; the trade sequence
counter is less than or equal to zero. The agent’s adjusted sequence is set equal
to the sequence counter. The number of units may greater than or equal to
zero; the trade sequence counter is greater than zero. The adjusted sequence
is equal to a global counter multiplied by an exponential function with a sig-
moidal function for an exponent. Otherwise, the adjusted sequence just equals
the global counter.

The getAdjustedSequence method retrieves this sequence counter and uses it in
the formulation of an offering strategy.

Producer

The seller (producer class) is an extension of the agent class. It possesses all
the same attributes and methods with modifications specific to its characteris-
tics. Upon being instantiated it gets its type, vector of costs, maximum asking
price, anchoring (learning) weight, seed, and index assigned. The setCosts and
getCosts methods set and retrieve the vector of costs. If a seller enters a trade,
the decUnits method reduces its number of units by one. The setUnits method
sets the number of units. The getUnits method retrieves the number of units
the seller has left.

The getAsk method formulates an asking price offer given a global counter and
running average price. At the beginning of a trading period, the seller formulates
an offer by picking an asking price between the maximum price and its true cost
for the unit up for trade. As the number of offers increases and the running
average price is known, the offering strategy changes. The asking price is set
equal to the weighted sum between a willingness to accept converging to its true
cost and the running average price.
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Consumer

The buyer (consumer class) possesses all the same attributes and methods with
modifications specific to its characteristics. Upon being instantiated it gets its
type, vector of values, minimum bid, anchoring (learning) weight, penalty, seed,
and index. The setValues and getValues methods set and retrieve the vector
of values. If the buyer enters a trade, the decUnits method reduces its number
of units by one. The setUnits method sets the number of units. The getUnits
method retrieves the number of units the buyer has left.

The getBid method formulates a bid given a global counter and the running
average price. At the beginning of the trading period, the buyer formulates an
offer by picking a bid between the minimum bid and its true value for the unit
up for trade. As the number of offers increases and the running average price
is known, the bidding strategy changes. The bid is set equal to the weighted
sum between a willingness to pay converging to its true value and the running
average price.

Market-maker

Like the other classes, upon being instantiated the market-maker gets its type,
seed, and index. Unlike the buyer and seller, the market-maker does not get a
vector of induced valuations or number of units for each trading period. Instead,
it gets an initial set of dynamically updatable parameters to formulate its offers
throughout the trading periods.

Market-makers are endowed with budgets and a set of units for trade. A static
maximum value and a minimum cost keep its offers within reasonable bounds.
It gets an inventory cost, interest rate, and an arbitrarily small number (3). It
also gets an array of forecasted equilibrium prices of an arbitrary number of
future periods.

At any point in a trading period, the market-maker can enter an offer to buy
or sell a unit. Like the buyer, it has a getBid method to formulate a bid. Like
the seller, it has a getAsk method to formulate an ask.

Unlike both the buyer and the seller, the market-maker does not use a period’s
sequence counter or the running average price to formulate an offer strategy. It
uses the theoretically predicted equilibrium (clearing) prices from the microsim-
ulation to generate an estimated expected value over all clearing prices and the
array of forecasted clearing prices. It calculates a discounted value and a dis-
count cost using these parameters along with inventory cost and interest rates.

Also unlike the buyer and seller, the number of offers in a period does not affect
a market-maker’s offer strategy. When entering a bid, if its discounted value
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is greater than the standing ask by a small amount it sets the bid equal to
the standing ask. Otherwise, it formulates a random normal bid uniformly dis-
tributed between the standing ask and the standing ask plus a small number.
When entering an ask, if the discounted cost is less than standing bid by a
small amount the market-maker sets the ask equal to the to the standing bid.
Otherwise, it formulates a random normal ask uniformly distributed between
the standing bid and the standing bid plus a small number.

Finally, the market-maker has one method to set and one method to retrieve
every attribute value. It is a very extensive list and thus forgone in this docu-
mentation.

Statistical Analysis Module

The statistical analysis module consists of exploratory data analysis (EDA) and
descriptive statistics. Box and scatter plots provide graphical representations of
the main characteristics each the entire dataset. Mainly, I use non-parametric
analysis to examine the central tendency, variability and dispersion of each
model version’s dataset of prices and gains from trade.

By comparing the central tendency and dispersion of each period’s set of market
clearing prices to determine price volatility. Comparing the each period’s distri-
bution of trade contract prices with the theoretical intratemporal and intertem-
poral equilibrium prices gives us the goodness-of-fit of simulated outcomes. The
same process comparing simulated gains from trade and theoretical economic
surpluses allows to examine the intratemporal and intertemporal market ef-
ficiencies. Finally, comparing the change in simulated market-clearing prices
across periods with the change in theoretical predicted values shows us the level
of intertemporal price variability.

This statistical analysis program is written in STATA, which is a general-purpose
statistical analysis software package.

Box-plot analysis is used to have visually discernible measurements of mean
and standard deviation. Also the box-plot allows the information to be parsed
into the 25", 50" and 75" percentiles. This are measurements of the bottom
quartile, median and top quartile. And they are represented by the bottom box,
the band near the middle and the top box, respectively. The top and bottom
outliers, or whiskers, represent the the largest and smallest observations. They
are joined by the outer lines that represent one standard deviation from the
mean.
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The box-plots are divided into two groups. The first group represents the base-
line results, which is the outcome of the agent-based simulation without market-
makers. The second group represents the results with market-makers in the
agent-based simulation.

This module analyzes the mean and standard deviation of the trading prices and
market clearing prices of both groups. It also analyzes the mean and standard
deviation of units traded for both groups. These measurements are compared
with the theoretical predictions of the microsimulation data to assess their fit-
ness.

By comparing variations in prices and units traded between groups, this mod-
ule shows the effects of the market-makers in intertemporal price volatility and
intertemporal market efficiency.
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