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ABSTRACT 

 

The work of this thesis is concerned with fitting Hypo-exponential and Erlang phase type 

distributions for modeling real life processes with non-exponential service time. There exist 

situations where exponential distributions cannot explain the distribution of service time 

properly. This thesis presents the application of two traditional statistical estimation 

techniques to approximate the service distributions of processes with coefficient of 

variation less than one. It also presents an algorithm to fit Hypo-exponential distribution for 

complex situations which can’t be handled properly with traditional estimation techniques. 

The result shows the effect of variation of sample size and other parameters on the 

efficiency of the estimation techniques by comparing their respective outputs. Furthermore 

it checks how accurately the proposed algorithm approximates a given distribution. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Queuing theory 

 
In day to day life we very often encounter situations where we need to wait in a line in order to 

receive service. Such waiting lines are called queues. Some real life examples of queues are: 

 Waiting line for medical check-up at hospital 

 Waiting for seats at restaurants 

 Security checking at airport 

 Waiting to receive service at banks 

 Traffic lights 

A queue is formed when arrival of customers is faster than they are served. Diagram of 

a simple queuing system is given below. 
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Figure 1.1 Components of a simple queuing system 

 

 

In order to provide quality service i.e. to reduce the waiting time of customers, more number 

of servers have to be planted. On the other hand, this increases cost of maintenance increasing 

the service cost and with large number of servers the utility of the system could be less 

resulting in less efficient system. So an optimum number of servers have to found in terms of 

quality and efficiency. Here comes the role of queuing theory. 

 Queuing theory is the mathematical study of systems including queues. “Queuing 

theory was developed to provide models to predict the behavior of systems which attempt to 

provide service for randomly arising demands. The earliest problems studied where those of 

telephone traffic congestion. The pioneer investigator was Danish mathematician A. K. 

Erlang, who in 1990 published “The Theory of Probabilities and Telephone Conversations” 

(Gross and Harris, 1985). It analyzes congestions and delays in the waiting line by examining 

different components of the queuing system such as arrival rate, service rate, number of 

servers and number of customers in the system, etc. Queuing theory is used to develop more 
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efficient systems that reduce customer waiting times, increase number of customers to be 

served, and reduce the service costs. 

 

1.2 Queuing system characteristics 

 
There are six characteristics that specify a queuing system. 

Arrival process: This defines the manner in which customers arrive to the queuing system. 

Arrival process is defined in terms of probability distributions of inter arrival 

time i.e. the time difference between two consecutive arrivals. Many 

possible assumptions exist for arrival process to a queuing system. Some of 

them are bulk arrival, balking, reneging etc. Common inter arrival 

distributions include Poisson, Erlang, Deterministic, General distribution 

with known mean and variance etc. 

Service process: It is defined in terms of probability distribution of the service time. The 

Service time is the time spent by the customer while receiving service. Like 

the arrival process, there are many possible assumptions for service time 

distribution. Most common assumptions are independent identically 

distributed random variables and exponential service time distribution. The 

other possible distributions of service time can be Erlang, Coxian, Hyper-

exponential, Hypo-exponential, Deterministic, General distribution with 

known mean and variance etc. 
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Number of Servers: It is the number of parallel service channels that can provide service 

simultaneously. These Servers may or may not be identical. The service 

discipline determines the allocation of the customers to the servers. 

System Capacity: It is defined as the maximum number of permitted customers in the system 

(including those in service). System capacity can be finite or infinite. Some 

queueing processes puts a restriction on the maximum number of allowed 

customers in the system. Such queuing systems are called finite length 

queuing system. If there is no restriction on the number of incoming 

customers, the queuing system is referred as an infinite queuing system.  

Queue Discipline: The queue discipline defines the order in which waiting customers are 

provided service. The most common disciplines are: 

 First in first out (FIFO): Customers are served according to the 

order they arrive to the system. 

 First in last out (FILO): Customers are served in the reverse 

order of their entry. So, the ones who joins last will get service 

first.  

 Served in random order (SIRO): Under this rule customers are 

selected for service at random, irrespective of their arrivals in the 

service system. Every customer in queue is equally likely to be 

selected.  

 Priority Service: Under this rule, customers are grouped in 

priority classes on the basis of some attributes. 
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 Processor Sharing: The server is switched between all the queues 

for a predefined slice of time in a round-robin manner.  

Number of service phases: A queuing system may contain a single or multiple service 

phases. An example of a multi-phase queuing system can be medical 

checkup in a hospital where each patient has to pass through several phases 

such as medical history: ear, nose, eye checkup; blood test and so on. In 

some multi- phase queuing process, recycling or feedback can take place 

(Gross and Harris, 1985:6). 

In general a queuing process is described by a series of symbols and slashes such as 

A/B/X/Y/Z, where A indicates arrival pattern, B the service pattern, X the number of service 

channels, Y the restriction on system capacity and Z the queue discipline. 

 

1.3 Problem description 

Analyzing a queuing system requires a clear understanding of the appropriate service 

measurements. To understand real life queuing systems and to obtain a mathematical model 

for them, it is necessary to make some assumptions. To model a queuing service process, the 

most commonly made assumption is that the time of service is exponentially distributed. The 

wide of use of the exponential distribution lies in its memory less property. The memory less 

property of the exponential distribution states that the remaining time left of a service process 

at any point of time is unpredictable. In other words, if the life time of an item possesses an 

exponential distribution, then at any point of the use of that item one can make the statement 

that the item is as good as a new item in terms of its failure time. 
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Exponential distribution is a very convenient choice for modeling service and inter-

arrival time distributions. It gives very acceptable results in characterizing system behavior. 

Nevertheless there exist situations where this could not be a good choice of modelling. One 

important example of this situation is when the service times are completely predictable (i.e. 

deterministic). There also exist processes which possess coefficient of variation greater than or 

less than one. So, an exponential distribution could not explain these processes well as it has 

coefficient of variation equal to one.  

The thesis focusses on the processes where the server provides services in sequential 

phases where each customer has to start from the first phase and goes on covering all of them 

one by one. If the holding time in each phase is exponentially distributed then the total process 

service time will have a distribution which is the sum of exponential distributions of all the 

phases. In such cases comes the necessity of fitting Hypo-exponential phase type distribution 

and Erlang phase type distribution to better explain the service time distribution of such 

processes. Here some parameter estimations techniques and approximation algorithm will be 

described which can be used to fit Hypo-exponential and Erlang phase type distributions real 

life processes with non-exponential service time having coefficient of variation less than one.  

The present research has been divided into six chapters. Rest of this chapter gives some 

related work in this direction and the objectives of the current research. Chapter 2 describes 

some commonly used phase type distributions. Chapter 3 deals with characterizations of 

Erlang and Hypo-exponential distributions. This includes how to calculate the mean, variance 

and other characteristics of these two distributions following Chapter 4 which gives some real 

life applications of Hypo-exponential and Erlang distributions. In Chapter 5 we will be 

describing types of statistical method that will be used for estimation of parameters. This 

includes two traditional methods of estimation i.e. method of method (MOM) and maximum 
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likelihood estimation (MLE). Furthermore an approximation algorithm is given to 

approximate distributions where information is known in terms of mean and variance only.  

Chapter 6 provides in detail how to use these methods to estimate the parameters of Erlang 

and Hypo-exponential distributions for different situations. At final, Chapter 7 simulates the 

results obtained by applying proposed method on randomly generated data using RStudio 

software and analyzes the result. 

 

1.4 Literature review 

 
Queueing theory was developed to provide models to predict behavior of systems that attempt 

to provide service for random demands.  The earliest problems studied were those of 

telephone traffic congestion.  For the first time A.K. Erlang in 1909 published “The Theory of 

Probabilities and Telephone Conservations” in this connection. Later on he observed that a 

telephone system was generally characterized by either M/M/c or by M/D/1 system. Later on a 

number of works have been done in this area. The works of Molina, Felix Pollaczek, Lindley, 

Bailey, Linderman, Reuter, Kendall, Benes, Bhat, Conway, Little, Maxwell, Neuts, Prabhu, 

Satty are worth mentioning.  

 Normally queueing theory is thought of as an applied probabilistic analysis of waiting 

times mainly focused on minimum waiting time under standard conditions.  But statistical 

inference plays a major role in any use of queueing models in decision making.  The earliest 

work in this direction seems to be that of Clarke (1957), who obtained the maximum 

likelihood estimator (MLE) of the parameters of M/M/1 queueing equilibrium. Acharya et.al 

(2013) analyzes the derivation of maximum likelihood estimates for the arrival rate and 
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service rates in a stationary M/M/c queue with heterogeneous servers. Cox (1955) and Wolff 

(1965) carried out the investigation with several ideas. Wolff (1965) discussed maximum 

likelihood estimation for a class of ergodic queueing models which give rise to birth and death 

processes. The paper by Benes (1957) and Gross and Harris (1985) are also worth mentioning.  

Bhat and Rao (1987) have discussed the problem in detail.  They have studied the asymptotic 

inference for single server queues. Basawa and Prabhu (1981) have studied the asymptotic 

inference for single server queues and have proved consistency and asymptotic normality of 

the MLE of the parameters in a G/G/1 queue, while Acharya (1999) has studied the rate of 

convergence of the distribution of the maximum likelihood estimators of the arrival and the 

service rates in a G/G/1 queueing system.   

 Statisticians generally divide the statistical problems into two types.  Those are 

parameter estimation and distribution selection.  A short history of the parameter estimation 

case is given above.  But for the distribution selection case, appropriate data are to be 

examined as a basis for determining a choice of model. 

 Several studies have been done related to fitting phase type distribution to service time 

of a process. For example; Maode (2009) tried to fit Coxian distribution to actual service time 

and Hypo-exponential distribution to the interrupted service time of the optical burst switching 

network. In 2011, Nigel Thomas in his book: Computer Performance Engineering modelled 

the replenishment time of an Inventory as Hyper-exponential and Hypo-exponential 

distribution respectively and found that the previous case gives the optimal policy. Similarly, 

Khalid et.al (2001) has modelled the input-output operation time of a single bus multiple 

processor system as 3 phase Hypo-exponential distribution and 3 phases Erlang distribution 

respectively to measure system performances. Goldberg and Whitt (2007) fitted exponential, 

Hypo-exponential and Hyper-exponential distribution to service time of two phase inspection 
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process for calculating the last departure time from an M/G/1queue with a terminating arrival 

process. 

 This thesis work tries emphasizes queuing process with non-exponential service time 

having coefficient of variation less than one. It presents the use of traditional estimation 

techniques (MOM & MLE) for fitting Erlang and Hypo-exponential distribution to real life 

service process with coefficient of variation less than one. Bakoban(2012) presents Bayesian 

and non-Bayesian estimation of Erlang distribution under progressive censoring. In practice it 

often occurs that the only information of random variables that is available is their mean and 

standard deviation, or if one is lucky, some real data. To obtain an approximating distribution 

it is required to fit a phase-type distribution based on the mean and the coefficient of variation 

of a given positive random variable, by using the given estimation techniques. Traditional 

estimation techniques are also very simple to implement and it can be used with any kind of 

data set. On the other hand, it explains curve fitting algorithm for approximation of Hypo-

exponential distribution with more than two phases that can’t be handled properly by 

traditional estimation techniques. This approximation also algorithm tries to approximate a 

given distribution based on the mean and the coefficient of variation of a given sample of data 

and hence can be used widely. 

 

1.5 Objective 

The main objective of this thesis is to explain the different statistical estimation techniques and 

curve fitting algorithm for better approximation of Erlang and Hypo-exponential phase type 
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distribution to model real life processes with non-exponential service time. Thus, the specific 

objectives of this research are: 

 To estimate the parameters of Erlang distribution for fitting distribution to service 

process getting service by the server in multiple phase where each phase is assumed to have an 

exponential distribution with same rate. 

 To estimate parameters of Hypo-exponential distribution for fitting distribution to 

service process getting service by the server in multiple phase where each phase is assumed to 

have an exponential distribution with different rate. 

 To simulate these estimation techniques using randomly generated data set and analyze 

the outcome. 
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CHAPTER 2 

PHASE TYPE DISTRIBUTION 

 

2.1 Introduction 

 
A probability distribution resulting from the convolution of two or more exponential 

distributions is known as phase type distribution. If a system consists of one or more inter-

related service phases occurring in sequence, then the entire process is said to possess a 

continuous phase type distribution or simply phase type distribution. The order of execution of 

these phases can again be either deterministic or stochastic in nature. The absorption time in 

Markovian processes are known to have this kind of distribution. There also exists a discrete 

time equivalent of the phase type distribution popularly known as discrete phase type 

distribution.  It is the probability distribution resulting from the convolution of two or more 

geometric distributions. The absorption time in a discrete Markov chain possesses a discrete 

phase type distribution. Phase type distributions are generally used to approximate any 

positive-valued distribution. 

 

2.2 Continuous phase type distribution 

There exist several different types of continuous phase type distributions. The difference 

between them lies in the order of execution of the sequential phases of the process. All of them 

are widely used to model real life processes. 
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2.2.1 Exponential distribution 

It is the simplest and most commonly used among all the phase type distribution. The time 

between occurrences of two consecutive events of a Poisson process is described by an 

exponential distribution. Mathematically an exponential distribution is defined by one 

parameter λ called rate of the distribution.  

A random variable X is said to have exponential distribution with rate λ and denoted 

as                , if its probability density function is given by 

                                                                 
The cumulative probability function is given as 

                                                                          
Where mean is 

             
And variance is 

           

           

 

2.2.2 Erlang distribution 

An Erlang distribution was first introduced by Danish mathematician Agner Krarup Erlang to 

examine number of telephone calls made at the same time to the same station. After his name 

the distribution was named as Erlang distribution. This distribution is used to model service 

time of a process which consists of a number of phases to be executed sequentially starting at 
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phase one. If a process consists of several phases in sequence and the time spent in each phase 

is exponentially distributed with same rate, then the distribution of the total service time of the 

process will be sum of several exponential distributions with same rate. The resulting 

distribution is known as Erlang distribution.  

An Erlang distribution is a continuous probability distribution that is defined by two 

parameters called shape parameters and rate parameter. The number of phases in the process is 

called the shape of the distribution. Erlang distribution is a special case of gamma distribution 

when shape parameter k is a positive whole number. When k is equal to 1, Erlang distribution 

is reduced to an exponential distribution. The initial probability distribution (Grinstead, 

1997:406) of an Erlang distribution is given as the vector:            . 

It signifies that the process starts at first phase with a probability 1 and at 

any other phase with probability 0. So, the entry point of a client to the process is 

always first phase. 

Following figure depicts the diagram of a process having service time T with Erlang 

distribution. 

              

                 µ                    µ                                  µ                   µ  

    

                    

                                                                        

 

 
                                                           T 

Figure 2.1 State transition diagram of Erlang distribution 
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A random variable T having Erlang distribution with shape k and rate µ  is denoted as:                  
 

Probability density function of T is given by (Rodriguez, 2010:14) 

         
                           

Cumulative probability function of T is given as (Rodriguez, 2010:14) 

                           
            

 

2.2.3 Hypo-exponential distribution 

Hypo-exponential distribution is a generalization of Erlang distribution. It is used to model 

processes with many sequential phases where time spent in each phase is exponentially 

distributed with different rates unlike an Erlang distribution where all the phases have the 

same rate of distribution. In other words, a Hypo-exponential distribution is a convolution of k 

exponential distributions, each phase ‘i’ with their own rate µ i. An Hypo-exponential 

distribution is defined by a vector of rates indicating rates of different phases. A random 

variable T with an Hypo-exponential distribution with k phases and rates (µ 1, µ2… µ k) is 

mathematically denoted as:           (µ1, µ2… µk). The initial probability distribution 

(Grinstead, 1997) of an Hypo-exponential distribution is same as that of an Erlang distribution 

given by:            . So, a process with Hypo-exponential distribution always 
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starts at first phase. The following figure depicts the diagram of a process having service 

time T with an Hypo-exponential distribution with shape parameter k and rates (µ1, µ2… µk). 

 

 

 

 

                                      µ 1                     µ2                                           µk-1                            µk 

  

                    

 

 

                                                           
                                                                                            

                                                                                   T 

 

The probability density function of T is given by (Bolch, 1998:33-34) 

                 
 i

  
       i    i

 i   j

 
                          i     

The cumulative probability distribution of T is given as 

                i
            j           i   

      i                i     

 

 

2.2.4 Hyper-exponential distribution 

“A random variable T is said to have Hyper-exponential distribution if T is with probability pi, 

where i =1, 2… k an exponential random variable Ti” (Adan, 2001:15). This kind of 

distribution is generally used to model situation where several parallel but mutually exclusive 

Figure 2.2 State transition diagram of Hypo-exponential distribution 
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processes occurs with different probability and each process is exponentially distributed with 

respect to their own rates. A random variable T distributed Hyper-exponentially is 

mathematically represented as: 

                       
1

 
k
                                                 i   

                                           
This is pictorially depicted below. 

 

 

 

 

 

 

 

 

 

 

 

 

        

 
 Unlike the Hypo-exponential and Erlang distribution, a Hyper-exponential distribution 

can have either of its phases as the initial phase with a specified probability and then follow an 

exponential distribution with a specified rate. The initial probability distribution (Grinstead, 

1997) of a Hyper-exponential distribution with k phases is given as:          . It means 

the process will start at phase i with probability    where i = 1, 2 … k. 

Its probability density function is given by (Rodriguez, 2010:15) as: 

 
2  

   

Star End 

   

   

Figure 2.3 State transition diagram of a Hyper-exponential distribution 

1  

2  
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                   
1
 

2
 

k
      i    i   

     
          i                  

         
The cumulative probability distribution is given by (Rodriguez, 2010:15) 

         
         i                                           

Where the mean is 

        
 i

 
        

 

And the variance is 

           
 i

 
              

 i

  
 j

                         
   

 
    

This distribution is used in the field of telephony to enhance the service of telecommunication 

network. 

2.2.5 Coxian distribution 

Coxian distribution is a generalization of a Hypo-exponential distribution. In Coxian 

distribution, the process starts from the first phase with probability one, but unlike a Hypo-

exponential distribution, it can reach to the absorbing state from either of its phases. It is 

depicted by the following diagram. 
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As shown in the diagram, the process starts at phase one. Once it is in some phase i, 

where i = (1, 2 … k-1), it can move either to the next phase i+1 with probability αi or directly 

to the absorbing state with probability (1- αi). Once the process is in state k, it can only move 

to the absorbing state with probability one. More over the time spent in phase i is 

exponentially distributed with rate µ i. 

A random variable having a Coxian distribution with k phases is mathematically 

denoted as:                          
1
 

2
 

k
  . The initial probability vector is same 

as that of a Hypo-exponential distribution which is given as: π = (1, 0…0). 

The probability density function is given as:                                      
The cumulative probability function is given as:                                   

 

    

µ µ µk  

End  

           

      

Figure 2.4 State transition diagram of a Coxian distribution 
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Where      
   
   
   
 

k

k-kk-

k-kk-

-µ

µα-µ

µα-µ

µα-µ

µα-µ

00000

0000

000

000

000

111

222

222

111











   
   
   
 
 

   
1
 

2
 

k
       1 is k × 1 one vector 

The mean is:                 
Coxian distribution is used prominently in the theory of networks of queues. Any 

distribution function can be approximated arbitrarily closely by a Coxian distribution. There 

are many other kinds of phase type distribution which are constructed by the convolution of 

one or more of the above mentioned distributions. Those distributions are used for analyzing 

more complex processes. For example a mixture of phase type distribution results from the 

combination of two or more Erlang distribution. Also when the number of phases tends to 

infinity, the Erlang distribution becomes a deterministic distribution i.e. the total time of the 

entire process becomes a constant. In the category of discrete phase type distribution lie 

geometric distribution, binomial distribution and negative binomial distribution. 

 In this thesis we will be focusing on the service processes that possess coefficient of 

variation less than one which can be approximated well with two continuous phase type 

distributions i.e. Erlang and Hypo-exponential distributions. 
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CHAPTER 3 

CHARACTERIZATION OF PHASE TYPE DISTRIBUTION 

 

3.1 Erlang distribution 

As discussed earlier an Erlang distribution is the convolution of more than one exponential 

distribution with same rate. 

The probability density function of a random variable T with an Erlang distribution 

with shape parameter k and rate parameter µ  denoted as T                 is given by 

         
                                 

 

Figure 3.1 Probability density plot of Erlang distribution 
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3.1.1 Phase transition matrix 

The rate transition matrix between phases of an Erlang distribution is given as 

  
   
   
   
 

µ

µ-µ

µ-µ

µ-µ

µ-µ

00000

0000

000

000

000









   
   
   
 
 

 

3.1.2 Initial probability vector 

The initial probability distribution (Grinstead, 1997) of an Erlang distribution is given by:               
This indicates that the process starts at the first phase with probability one and at the other 

phase with probability 0. So, only the first phase can be the entry point of the process. 

 

3.1.3     Moment     Moment of an Erlang distribution with parameter k and µ  is given by 

                    
             
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                      
            

                        
                    

Substituting       in the above equation we will get 

                          
                    

                                                                       
                       

                    
                    

                                                                          

                  in the interval [0,∞) to give 1 (Walck, 2007). So, the above equation is 

reduced to 

                      
                     

                   
                       

                   
                       

                                     
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                                                          
                                                                      ) 
                        

                     
 

3.1.4 Mean & Variance 

                    


  


 

The second raw moment of an Erlang distribution is given as 

                    
         


 

So the variance will be given as: 

                    
 

  

        
     


     


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3.1.5 Coefficient of variation 

The coefficient of variation is defined only for continuous variables. It is the ratio between the 

mean standard deviation and the mean value of the variable. Its discrete analogue is known as 

Lexis ratio which is the ration between variance and mean. 

The coefficient of variation for Erlang distribution with shape k and rate µ  is calculated as: 

    
    
      

                                       
 

3.2 Hypo-exponential distribution 

A Hypo-exponential distribution is the convolution of more than one exponential distribution 

but with different rates.  

 

3.2.1 Phase transition matrix 

The rate transition matrix of a Hypo-exponential distribution is given as 



 

 

25 

 

  
   
   
   
 

k

kk

kk









-00000

-0000

0-00

00-0

000-

1-1-

2-2-

22

11









   
   
   
 
 

 

3.2.2 Initial probability vector 

The initial probability vector Grinstead, 1997) of a Hypo-exponential distribution is given by:               This indicates that the process starts at the first phase with probability one 

and from the other phase with probability 0. So, only the first phase can be the entry point of 

the process. 

 

3.2.3 Cumulative distribution function  

The cumulative distribution function of a random variable T with Hypo-exponential 

distribution with the phase transition matrix S and initial probability vector    is given 

according to theorem (Rodriguez, 2010: 10) as:               

Theorem: If              , the distribution function of   is given by 
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The probability density function of a random variable T with Hypo-exponential distribution 

with the phase transition matrix S and initial probability vector    is given by theorem 

(Rodriguez, 2010: 9) as:                  

Theorem: If              , its density  function of  is given by  

                 
            

 

3.2.4     Moment 

By theorem of (Rodriguez, 2010: 10), n
th 

moment of a Hypo-exponential distribution is given 

as:                     

Theorem: Let                 The    moment of   is given by 

                    
 

3.2.5 Mean & Variance                            

            


i
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     
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       

i
  

     
                                        
    

i
  

       
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
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2

i

 
    

3.2.6 Coefficient of variation 

The coefficient of variation for Hypo-exponential distribution with parameters  
1
 

2
 

k
  is calculated as: 

      
 2

i

     
   

 i

            
i

        

         


i

  
        

 2

i

 
        


i

   


j

  
    

  
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
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

j
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CHAPTER 4 

APPLICATIONS OF ERLANG AND HYPO-EXPONENTIAL 

DISTRIBUTIONS  

 

4.1 Applications of Erlang distribution 

Fitting an Erlang distribution demands the assumption that the rate of each phase of a process 

is same. If the number of phases of a process is known in advance or rates of all the phases are 

assumed to be equal, then the coefficient of variation c of the total time of a process satisfies:                            

Then Erlang-k distribution gives a better fit to the total time of the process (Adan, 2001). 

Following are the examples of some of the situations those can be modelled as an Erlang 

distribution. 

 

4.1.1 Machine repairing system  

In machine reparation processes, certain machines require several steps to be completed 

sequentially. If the time of repair spent in each phase is exponentially distributed with same 

parameters, then the total repairing time of the machines can be modelled as an Erlang 

distribution. 
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4.1.2 Compilation of the computer programs 

Compilation of a computer program consists of several blocks that are processed sequentially, 

one after the other. If time spent is each block follows an exponential distribution with same 

rate independent of other blocks, then total compilation time will be sum of several 

exponential distributions with same rate. So, the total compilation time will have an Erlang 

distribution. 

 

4.1.3 Hits on a web page  

If the waiting time until next hit to a webpage is modelled as an exponential distribution with 

some rate µ > 0, then the total waiting time till the n
th

 hit will be the sum of n exponential 

random variables with the same µ . Let          are the waiting time for successful hits. Here                             Then, the total time until n
th 

hit to the web page will be            which is sum of n exponential random variables with the same rate µ  and 

hence Y                  
 

4.1.4 Traffic congestion in telecommunication network 

Suppose arrival of calls to a customer care service follows exponential distribution with rate µ . 

We want to find the probability that it takes at least t minutes for n people to call. Let      

denote the inter arrival time between                                       So, the total time 

T until receiving n successive calls is the sum of ‘n’ exponential random variables which can 

be denoted as:                                              
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4.2 Applications of Hypo-exponential distribution 

Suppose a service process consists of several phases providing different services with different 

rates, then the Hypo-exponential distribution will be a good choice for distribution of the total 

service time of the process. A Hypo-exponential distribution being a generalization of the 

Erlang distribution fits many real life processes and has more versatile use. 

 

4.2.1 Software rejuvenation model 

A software system can be modelled as three states as shown in the figure. 

 

 

 

 

                     Robust state                 failure probable state               failed state  

                                                        T 

Let T1 = Time spent in Robust state and             
1
  and T2 = Time spent in failure probable 

state and           
2
  Then total life time T of the software can be modelled as a two phase 

Hypo-exponentially distributed random variable. So, T = T1 + T2. In other words,            
1
 

2
    

 

 

Figure 4.1 Software rejuvenation model 
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4.2.2 Triple modular redundant system (TMR) 

A triple modular redundant system is composed of three identical components, where two 

secondary components act as backup. The second component will be powered on only after 

the primary component fails and the third back up is activated only after the first two 

components fails. A detector circuit checks the output of primary component in order to 

identify its failure and a switch is used to configure and power on the secondary component. 

 

Figure 4.2 Triple modular redundant system 

 

 

Let the lifetimes of the three gates are three independent and exponentially distributed 

random variables denoted as T1, T2  and T3 with parameter µ1, µ2 and µ3 respectively. Then the 

distribution of time to failure of the whole system T can be modelled as sum of three 

exponential variables with different rates which can be calculated as:             

Alternatively,             
1
 

2
 

3
   

http://en.wikipedia.org/wiki/File:Triple_Modular_Redundancy.JPG
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4.2.3 Disk service time 

Performance of the hard disk is very important to the overall speed of the system. A slow hard 

disk hinders the potential of a fast processor like no other system components. The effective 

speed of a hard disk is determined by the disk service time. Disk access process consists of 

three sequential sub processes called disk seek, disk latency and disk transfer. If each sub 

process service time is assumed to be exponentially distributed with its own parameter 
1
, 

2

and 
3
 respectively, then the disk service time may be modelled as a 3-phase Hypo-

exponential distribution as the overall time is the sum of the seek time, the latency time and 

the transfer time. 

 

4.2.4 Input output operation of a computer 

The input-output operation of a computer is defined as transfer information between computer 

main memory and the outside world. The I/O operations consists of two phases of operations 

in sequence i.e. control operations and data transfer operations. So, the service time of input 

output operation of a computer can be modeled as a two phase Hypo-exponential distribution. 

  



34 

 

 

CHAPTER 5 

METHOD OF ESTIMATION 

 

For the parameter estimation of an Erlang distribution, we will be using two very traditional 

parameter estimation techniques. They are method of moment (MOM) and method of 

maximum likelihood estimation (MLE). For a Hypo-exponential distribution with more than 

two phases, we will approximate the distribution by using a recently discovered algorithm of 

Markus Sommereder (Sommereder, 2011) which will be explained in the next chapter. 

 

5.1 Method of moment estimation 

The method of moment is the oldest statistical technique for constructing estimators of the 

parameters which is based on matching the sample moments with the corresponding 

distribution moments. The method of moments was introduced by Karl Pearson in 1894. 

Suppose we have random sample of size n of data              following certain 

probability distribution say f with respect to some parameter set                

 So, the probability distribution function of X in terms of   is given as:         . Our 

objective is to estimate the k parameters of the distribution. Now suppose the first k population 

moments can be expressed as functions of the θs as below. 
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It is a system of k equations with k unknowns. The solution set of this system of 

equations will give an estimate of k parameters. 

The method of moment estimation is fairly simple to implement. They provide good 

initial solutions for maximum likelihood estimation. But very often the solutions given by 

method of moment are biased. 

 

5.2 Maximum likelihood estimation 

Given a sample of data possessing certain probability distribution, the maximum likelihood 

estimation (MLE) tries to estimate the parameter by maximizing the joint probability density 

function of all the samples. In other words, it will find a parameter that when put to the 

probability density distribution, makes the observed data ‘‘most likely”. The principle of MLE 

was originally developed by R.A. Fisher in the1920s. 

The maximum likelihood estimation begins with writing a mathematical expression 

known as the likelihood function of the sample data. After choosing a proper model for the 

data set, the likelihood of the data set is obtained by multiplying the probability density 

function of all the data. This expression contains unknown model parameters. Values of these 

parameters that maximize the sample likelihood are known as the Maximum Likelihood 

Estimates or MLE's. 
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Let               are ‘n’ independent and identically distributed random variables 

following certain probability distribution say f with respect to some parameter set                 
So, the probability distribution function of X in terms of   is given as         and the 

joint density distribution of the dataset is given as:                                  

Given observed values                     the likelihood of θ is the function 

                               

                
            

 

Rather than maximizing this product which can be quite tedious, we often use the fact 

that the logarithm is an increasing function. So, it will be equivalent to maximize the log 

likelihood which is given as: 

                               
     

                        
    

 

The values of    that maximize this function will give an estimate of the parameters of the 

model. The point where this objective function achieves its maxima, the derivative with 

respect to the parameters will vanish. So the solution can be found by equating the partial 

derivative of the log likelihood with respect to the parameters to 0 and the by solving a set of 

equations. 
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This system of equations has k equation with k unknown parameters to be estimated which can 

be solved to get an estimate of the parameters (                
There are some advantages of the maximum likelihood methods over other methods. 

 MLE is consistent, asymptotically normal, and asymptotically efficient under 

some regularity conditions. 

 MLE can be developed for a large variety of estimation situations. 

 MLE often has lower variance than other methods. 

There are also some supposed disadvantages  

 MLE can be sensitive to the choice of starting values, or may not provide a 

global optimum. 

 MLE can be highly biased for small samples. 
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CHAPTER 6 

PARAMETER ESTIMATION OF PHASE TYPE DISTRIBUTION 

 

6.1. Estimation for Erlang distribution when shape parameter is known 

Suppose a process consists of k sequential phases to be executed where each phase service 

time is exponentially distributed with same rate µ . In other words, the service time of the 

process T has an Erlang distribution with shape k which is known to us and a rate µ  which has 

to be estimated. 

 

6.1.1 Method of moment 

As here we need to estimate only one parameter i.e. the rate parameter of the Erlang 

distribution given that the shape parameter is known, we will need only the first distribution 

moment and the first sample moment. Let          be some samples of data from this 

population. 

First moment of an Erlang distributed variable                 is given by:   

       


 

The sample moment based on the sample is given by 

                     
       

 

Equating the population moment with the sample moment we get 
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

  
From above equation the rate parameter of the Erlang distribution can be estimated as: 

  

        
 

6.1.2 Maximum likelihood estimation 

The probability density function of an Erlang distribution with parameters k and µ is given as  

         
                           

Let          are some observed values of total service time in a random sample of size n.  

The likelihood function of the above sample is given as:                                                          

                                                                        

                                         
 

Taking natural logarithm on both side of the equation: 

                                                                    

                                                       
          

    

                               
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The value of µ  that maximizes the log likelihood function can be determined by solving the 

following equations:                          


                   
    

This is the same as estimated by MOM. So, from this we can observe that if the shape 

parameter is known and fixed, we will get the same estimate of the parameter for the rate of an 

Erlang distribution by MOM and MLE. 

 

6.2 Estimation for Erlang distribution when shape parameter is unknown 

When both the parameters of an Erlang distribution are unknown, an approximation can be 

made to the original distribution. As the shape parameter of an Erlang distribution denotes the 

number of service phases in a process, so, it can take positive integer values. On the other 

hand the rate can be any positive real number. Therefore, Erlang distribution is a mixed 

parameter distribution where one parameter (shape) is a discrete random variable and the other 

parameter (rate) is a continuous random variable. 

 We know that the coefficient of variation of an Erlang distribution with k phases will 

be equal to       (Adan, 2001). So, the coefficient of variation of the sample can be taken to 

approximate the number of phases in a process. 

 Suppose we have a sample of data whose coefficient of variation is c < 1 and let the 

process consists of k phases in sequence. From this the shape parameter (k) can be 

approximated as below.                           
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Now once the shape parameter has been estimated, the rate parameter of the distribution can 

be estimated as:      

                                              
Finally a local search will be performed in the neighborhood of k to check if our 

estimate is optimum and if no then, for what values of k and µ  maximum likelihood occurs. 

 

6.3 Parameter estimation of Hypo-exponential distribution 

For a Hypo-exponential distribution, each phase has its own service rate. As the number of 

phases increases, the number of rate parameters to be estimated also increases. So, there exists 

no exact estimation method that can be applied to a Hypo-exponential distribution directly. 

Rather each Hypo-exponential distribution has to be analyzed separately depending upon the 

number of phases it consists. But there exists an approximation algorithm to approximate the 

distribution. 

When the number of phase of a Hypo-exponential distribution is two, the traditional 

method of estimation can be applied but as the number of phases increases, the complexity of 

the system increases. In this thesis, to approximate such Hypo-exponential distribution, we 

will use the algorithm provided by Markus Sommerender (Sommereder, 2011). 

  

6.3.1 Estimation using MOM & MLE when shape parameter with two phases  

Let the rates of Hypo-exponential distribution are 
1
    

2
. With no loss of generality we 

can assume that 
1

 
2 .  Let          are some observed values of total service time in a 

random sample of size n. The first two raw moments of the sample           are given as: 
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The two measures of moments of Hypo (µ1, µ2) are given as: 

       


1

  


2

     
                                                                       

      

          
 2

1

  
 2

2

        

                                                                                      

               


i

                                       
  

1
 

2
           . 

Substituting values of 
1
     

2
, following sets of equations are obtained.                                                                                                            

This is a quadratic equation in    whose solution is given by: 

                 

And putting the values of         can be obtained as: 
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Assuming       , the final set of estimated values are found as: 

                                        

Finally substituting the values of           , the rates of the Hypo-exponential distribution can 

be estimated as: 

                                        

To find the maximum likelihood estimates of a two phase Hypo-exponential distribution, 

results obtained from MOM can be taken as initial guess for MLE and can be improved. 

 The probability density function of a Hypo-exponential distribution with 

rates 
1
     

2
 is given by: 

    
1
 

2
   

1


1

 
2

     
2  

2


1

 
2


1
   

1
 

Let          are observed values of total service time in a random sample of size n.  

The maximum likelihood function of this distribution is given as:   
1
 

2
             

       
1
 

2
        

1
 

2
        

1
 

2
          

1
 

2
  

  
1


1

 
2


2
    

2  
2


1

 
2


1
    

1    
1


1

 
2

      
2

 
2


1

 
2


1
    

1   



44 

 

Taking natural logarithm on both the sides     
1
 

2
                

1
 

2
              

      
    

1


1

 
2


2
     2  

2


1

 
2


1
    1   

The values of µ1 and µ 2 that maximize the log likelihood function can be determined by 

solving the following equations:   
1

  
1
 

2
               

   
1

     
    

1


1

 
2

       2  
2


1

 
2

      1      

  

         
2

   
1
 

2
               

   
2

     
    

1


1

 
2


2
     2  

2


1

 
2


1
    1      

Solving these two partial equations gives rise to a set of two equations with two variables as 

below. 


1

   
1
    

2
     

1
    

2


1
 

1
 

2
  

      


2

   
2
    

2
     

1
    

2


2
 

1
 

2
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Both of these equations are not in closed form. So, they can be solved by any numerical 

method to estimate the values of µ1 and µ2. For our simulation we will be using Newton 

Raphson method to find optimal solutions of such equations. 

 

6.3.2 Estimation when number of phases is more than two 

As the number of phases becomes three or more, these methods will become very 

cumbersome to apply directly. Sometimes they give imaginary values. To handle such 

distributions, Markus Sommereder has proposed a curve fitting algorithm in his book 

“Modelling of Queueing Systems with Markov Chains” (Sommereder, 2011) for better 

approximation to this kind of multiphase Hypo-exponential distributions. He used the fact that 

every Hypo-exponential distribution with more than two phases can be approximated by a 

combination of an Erlang distribution and an exponential distribution. Based upon this fact we 

are proposing here two algorithms to approximate such cases. 

 

I. Algorithm-1 

Suppose a Hypo-exponential distribution has k number of service phases. This Hypo-

exponential distribution can be divided into a combination of k-1 phases Erlang distribution A 

and an exponential distribution B as denoted by the following diagram.  
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                                      Erlang distribution A                                     Exponential 

                                                (k-1) phases                                          distribution B 

 

Now this can be considered as a two phase Hypo-exponential distribution with rates 


A

and 
B

. The maximum likelihood estimates can be found for these rates using method 

described above for two phase Hypo-exponential distribution. Let’s denote the estimated 

solutions to be  A
      B

 . But as A is an Erlang distribution with k-1 phases, so rate of each 

phase of Erlang distribution will be: 

        A
  

Thus the final estimated solutions found by MLE will be given as: 

        A
         A

              B
   

 

II. Mark Sommereder’s algorithm 

Suppose a Hypo-exponential distribution has k phases. This Hypo-exponential distribution can 

be divided into a combination of k-1 phase Erlang distribution A and an exponential 

distribution B as denoted in the figure 6.1. 

     
          

Figure 6.1 Hypo-exponential distribution as sum of an Erlang and an 

exponential distribution 
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 Let us denote             are the coefficient of variations of the given Hypo-

exponential distribution, Erlang distribution A and exponential variation B respectively. Let 


A

 and 
B

 are the rates of A and B respectively. An Erlang distribution with k-1 phases will 

have coefficient of variation (Adan, 2001) equals to: 

       
which means 

          
The coefficient of variation of an exponential distribution is 1. Therefore,    

                                            
Now the total coefficient of variation of the entire Hypo-exponential distribution c is given as 

                          

Let us assume that mean of A is 1 or       . 

                                         
Therefore    
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This is a quadratic equation in      which can be solved for      to get the following 

solution. 

 

                      

But mean time of entire process is sum of mean time spent in A and mean time spent in B.                                  

             A
              B

  k
          

Finally A is an Erlang distribution with rate 
A

and k-1 phases. So, the rate of each phase is 

given by: 

 

1
  2

     1k
         A

  

Therefore complete solution to the above Hypo-exponential distribution with k phases is given 

by ( 1
  2

   1k
  k

 ). 

 

6.3.3 When shape parameter is unknown 

If the shape of a Hypo-exponential distribution is unknown, the estimation has to be 

performed in two steps. In first step, shape parameter will be estimated. In second step, rate 

parameter for the corresponding shape will be calculated.  This algorithm is described below. 
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Curve fitting algorithm 

Step-1: Estimating number of phases in a Hypo-exponential distribution 

For a Hypo-exponential distribution with k phases and each phase with different rate, the 

relation between coefficient of variation c and number of phase k is given by (Adan, 2001) as:             

 So from the coefficient of variation of the data, the value of k can be estimated as: 

                                   , then we need at least k phases to approximate the distribution. 

 

 

 

Step-2: Approximation of rates of each phase 

Once the k has been estimated, one of the algorithms given in section 6.2.1 for Hypo-

exponential distribution with known shape parameter can be used to estimate rates of the 

phases. 
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CHAPTER 7 

RESULT AND ANALYSIS 

 

7.1 Parameter estimation for Erlang distribution when shape parameter is known 
 

For this thesis work, all results are simulated using RStudio 0.97.312 version on Windows- XP 

platform. RStudio is a free and open source integrated development environment (IDE) for R, 

a programming language for statistical computing and graphics. 

 

7.1.1 Effect of sample size on estimation of rate 

It is evident that with an increase in sample size, the estimation becomes more and more 

accurate. Nevertheless to see how the sample size effects the estimation of rate parameter in an 

Erlang distribution, we simulate the outcome of our analysis taking different sample size i.e. 

for n=100, n=1000, n=10000 respectively of same population generated by taking k=5 and 

µ=5. The obtained result is shown in the following diagram. 
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Figure7.1 Effect of simple size on estimation of rate 

 
It is clear from the figure that the deviation of the estimated value is more if the sample size is 

small. We see highest deviation from the original rate for n=100. But for n=10000, estimated 

rate line is very close to the original rate line. To measure the deviation of the estimated rate 

from the original rate, we repeat the experiment taking k=5 and µ=5 taking n=100, n =1000 

and n =10000. For each sample size, we make 1000 repetitions to get 1000 estimates of rate 

from which the variance is calculated. The result is listed in the following table. 

       

Table 7.1 Variance vs. Sample size of Erlang distribution with known shape 

SAMPLE 

SIZE 

ACTUAL 

RATE 

MEAN 

ESTIMATED 

RATE 

VARIANCE 
SAMPLE 

SIZE RATIO 

VARIANCE 

RATIO 

10 5 5.119231736 0.5748992 - - 

100 5 5.002251978 0.05093505 10 ≈      

1000 5 4.998244856 0.00504865 100 ≈      

10000 5 5.000357957 0.00051769 1000 ≈       
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It can be observed from the table, as the sample size increases, the variance of 

estimation decreases because as sample size increases, mean of the sample becomes more 

accurate and centered towards its original value which leads to give more accurate estimation 

of the rate parameter. The percentage of decrease in variance is found to be approximately 

same as the percent of increase in sample size. This means if the sample size increases by 10
x 

times, the variance decreases approximately by 10
x
 times which is evident from the variance 

ratio. 

7.1.2 Effect of number of phases on estimation of rate 

To see if number of phases in a process has any effect on the estimation of rate parameter of 

an Erlang distribution, we fix the value of µ  to be 5 and simulate the result obtained by 

traditional statistical estimation techniques (MOM or MLE) for a sample size of 100 and 

varying value of  k from 1 to 500.  The result of this simulation is depicted in the following 

diagram. 

 

Figure 7.2 Effect of number of phases on estimation of rate parameter of Erlang 

distribution when shape parameter is known 
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From the above graphic it can be observed that for this simulation, maximum deviation 

of the estimation of rate occurs at k=2 which gives µ=5.808889041. But as the number of 

phase increases, the estimated rate gets more and more close to the actual value. From this we 

can say that as the number of phase increases, then the accuracy estimation of rate parameter 

increases and for very large value of k, estimated rates becomes equal to actual rate. In other 

words:             This seems to happen following the law of large
1
 numbers. As      

the number of exponential distributions approximating the Erlang distribution becomes   and 

this leads to give an exact estimation of rate parameter of the distribution. 

 

7.1.3 Effect of value of rate on estimation of rate 

If the k and n is fixed does the value µ  has any effect on its estimation, to answer this question 

we performed simulation taking k=5 and n=100 while varying value of µ  from 1 to 100. The 

result is depicted in the following diagram. 

                                                 
1
 According to the law, the average of the results obtained from a large number of trials should be close to the 

expected value, and will tend to become closer as more trials are performed. 
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Figure 7.3 Effect of value of rate on estimation of rate parameter of Erlang distribution 

when shape parameter is known 

  

 

 

From the figure it is clear that for lower rate, the estimation is more accurate than those 

with higher values. When the rate is less, the estimated rate is more probable to be close to the 

original rate. But as it increases, the deviation from the original value also increases. In this 

case the deviation is highest when rate is 91 when the estimated rate becomes 99.48592705. 

To see how the variance is related to the value of rate, we run the experiment fixing n=100 and 

k=5 while varying µ  =1, µ=100, µ=1000 respectively. The result is shown in the following 

table. 
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Table 7.2 Variance vs. Actual rate of Erlang distribution with known shape 

ACTUAL RATE 
MEAN ESTIMATED 

RATE 
VARIANCE 

ACTUAL 

RATE RATIO 

VARIANCE 

RATIO 

1 1.00045 0.002037402 - - 

10 10.00450 0.2037402 10       

100 100.04504 20.37402 100 
       

1000 1000.45040 2037.402 1000          

 

From the table it can be observed that when the rate increases by a factor of 10,100 and 

1000, the variance of estimation increases approximately by 100, 10000 and 1000000 

respectively. In other words if the rate increases by 10
x
, the variance will be increased 

approximately by 10
2x

.  This means if rate of a process is high, then variance of estimation 

will also be high and hence we need large sample of data in order to minimize the variance 

and to better estimate the distribution. 

 

7.2 Estimation for Erlang distribution when shape parameter is unknown 

 

7.2.1 Simulation taking shape and rate both equal to 5 

To see an example, the result obtained from our analysis of estimation of shape and rate 

parameters of Erlang distribution when both are unknown is simulated performing 100 

experiments arbitrarily setting shape and rate both to 5. Each experiment consists of 100 

samples of data. For each experiment, estimated shape, estimated rate and the log likelihood 
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values are found. To check if (estimated shape, estimated rate) is the point where maximum 

likelihood occurs for the given data or there is any deviation, the log likelihood values are 

checked around the estimated shape in an interval:                                                        
The result is depicted in the following figure.       

Figure 7.4 Log likelihood estimation of an Erlang distribution when both shape and rate 

parameters are unknown 

 
 

It can be viewed from the figure that most of the times our estimation gives maximum 

likelihood estimation. In fact out of 100 experiments, in 76 experiments we get maximum 

likelihood estimation by our proposed estimation algorithm. In other 24 points where 

maximum likelihood occurs in the neighborhood of the estimated phase, the difference is very 

small.  Here the maximum deviation between estimated log likelihood and maximum log 

likelihood occurs during 24
th

 experiments where the shape and rates are estimated to be 6 and 

6.020859317 respectively while maximum likelihood occurs at phase 4 with rate 
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4.013906212.  Estimated log likelihood and maximum log likelihood are found to be -

61.37416426 and -59.12778444 respectively. So, the difference is only 2.246379822. In other 

words we can say if we replace our estimated shape and rate by maximum likelihood shape 

and rate, then the joint probability density function value will increase only by an amount 

1.873153e-26 which is very small. To see how accurately we approximate a given curve of 

Erlang distribution, simulation is done taking k=5 and µ=5 for a random sample of data with 

100 samples until we get different values of estimated log likelihood and maximum log 

likelihood. A screen shot of such case is given below.  

 

 

What is shape of the Erlang distribution k? 5 

What is rate of the Erlang distribution r? 5 

What is sample size n? 100 

               TITLE                                                    VALUE 

1          ORIGINAL SHAPE                                5.000000 

2          ESTIMATED SHAPE                             5.000000 

3          MAX-LIKE-SHAPE                                4.000000 

4          ORIGINAL RATE                                   5.000000 

5          ESTIMATED RATE                                5.304504 

6          MAX-LIKE-RATE                                   4.243603 

7          ESTIMATED LOG LIKLIHOOD         -53.852889 

8          MAX-LOG LIKELIHOOD                    -53.755090 

  
The result is depicted in the following two figures.                                        
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Figure 7.5 Probability density curves of Erlang distribution for original, estimated and 

maximum log likelihood values when both parameters are unknown 

 

 

For all the phases in the range:                                                           
the log likelihood values are calculated and plotted against their corresponding phase. This 

result is depicted in the first plot of figure 7.5. The second plot consists of three curves i.e. the 

probability density curve with respect to the actual shape and actual rate, probability density 

curve with respect to the estimated shape and estimated rate and the probability density curve 

with maximum log likelihood values. From the second plot we can say that even if our 

estimated values does not correspond to the maximum likelihood value, but still it gives a very 

close approximation to the original curve and also the deviation from the maximum likelihood 

curve is very low. 
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7.2.2 Effect of variation of shape parameter on estimation 

To study the effect of the number of phases on the estimation algorithm, we simulate the result 

taking n=100, µ=5 and varying value of k from 2 to 100. The outcome is shown as below. 

 

Figure 7.6 Effect of variation of shape parameter on estimation of both parameters of 

Erlang distribution when both parameters are unknown 

 

 
 

 
 

Outcome of the simulation shows that, our proposed algorithm gives optimum result 

indifferent of the values of k. In other words, this algorithm gives maximum likelihood 

estimate for the set of data even for high values of number of phases. This can be shown as 

almost in every points, estimated log likelihood of the algorithm coincides with maximum log 

likelihood. 
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7.3 Parameter estimation for Hypo-exponential distribution when shape 

parameter is known with two phases 

 

7.3.1 MOM & MLE estimation             

Taking k=2 and n=100, rates are estimated by traditional MOM and then improved by MLE.  

Result is depicted in the following diagram. 

Figure 7.7 Probability density curve of Hypo-exponential distribution as estimated by 

MOM & MLE when number of phase is two 
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Table 7.3 Log likelihood values and rates of a two phase Hypo-exponential    

distribution by MOM    &MLE 

 RATES LOG LIKELIHOOD 

ACUAL VALUES 5,10 27.82216 

MOM VALUES 4.38633,11.057331 24.69732 

MLE VALUES 5.020418,9.360505 27.86882 

For our simulation we got optimum result using MLE as it yields maximum log likelihood 

27.86882 which is even better than the original log likelihood value. 

 

7.3.2 Effect of increase in µ2  on estimation of rate of µ1 

Simulation is done by fixing µ1 = 1 while varying µ2 from 2 to 1000. The estimated rates are 

plotted against original rates to get the following figure. 

Figure 7.8 Effect of increase in rate in a Hypo-exponential distribution on estimation of 

rate parameter by MLE when number of phase is two 
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From the first figure, we can say that the estimation of rate of a phase depends on the 

rate of the other phase but up to certain point. This is very evident as µ2 increases, initially 

estimated µ1 goes closer to its actual value and then after some point it again goes away from 

its original value up to certain point and again with the increase in µ2, it approaches to its 

actual value. This way µ1 oscillates around its original value. But after certain value of µ2, 

estimated µ1 becomes constant irrespective of the value of µ2. This occurs because here 

maximum likelihood estimate were found by using Newton Raphson method that uses 

derivative of the previous guess to improve the guess in the next iteration. At certain high 

value of µ2, this derivative vanishes after reaching a particular solution leading the error term 

to 0 and thus the solution can’t be improved anymore. So, estimated µ1 becomes constant after 

this value. 

In the second figure we don’t find any regular pattern. At first the deviation between 

estimated µ2 and actual µ2 seems to increase to certain point around 60 and then estimated µ2 

goes closer to its actual value. This behavior continues and for higher values of µ2, the 

estimated value follows a very irregular pattern. This can be said because for some very high 

values of µ2, we get good estimation but for some others, the deviation is very much high. 

 

7.4 Parameter estimation for Hypo-exponential distribution when shape 

parameter is known with more two phases 
 

To find how accurately the approximation is made by our stated algorithm, simulation is 

performed with n = 100 and varying k from 1 to 5. The corresponding rates are assigned in the 

multiple of 5 starting from 5. Result of the simulation using MLE and Mark Sommereder 

algorithm for different values of k and rates are listed in the following two tables.     
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Table 7.4 Log likelihood values and rates of Hypo-exponential distribution with two or 

more phases by MOM &MLE 

NO OF 

PHASES 

ACTUAL 

RATES 

ESTIMATED 

RATES 

NO OF 

ITERATIONS 

PERFORMED 

ACTUAL LOG 

LIKELIHOOD 

ESTIMATED 

LOG 

LIKELIHOOD 

2 5,10 6.574947, 6.573979 17 30.11103 30.67761 

3 5,10,15 

10.662834,10.662834, 

5.334286 

11 19.52041 17.45173 

4 5,10,15,20 

13.961742, 13.961742, 

13.961742, 4.653031 

16 12.85738 7.299488 

5 5,10,15,20,25 

17.098868, 17.098868, 

17.098868, 17.098868 

4.274399 

10 9.076633 0.6102097 
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Table 7.5 Log likelihood values and rates of two phase Hypo-exponential distribution by 

MARK SOMMEREDER algorithm & MLE 

NO OF 

PHASES 

ACTUAL 

RATES 

APPROXIMATED 

RATES 

NO OF 

ITERATIONS 

PERFORMED 

ACTUAL 

LOG 

LIKELIHOOD 

ESTIMATED 

LOG 

LIKLIHOOD 

2 5,10 6.512225, 6.520448 5 30.11103 30.66998 

3 5,10,15 

10.668783, 10.668783,  

5.331363 

9 19.52041 17.45173 

4 5,10,15,20 

13.961025, 13.961025, 

13.961025,  4.653876 

11 12.85738 7.299488 

5 5,10,15,20,25 

17.099388, 17.099388, 

17.099388, 17.099388,  

4.274678 

10 9.076633 0.6102099 

 
 

Comparing the last columns of table 7.4 with table 7.5, it can be concluded that Mark 

Sommereder algorithm always provide equally good or better initial solution for maximum 

likelihood estimation techniques then that of MOM irrespective of the number of phases. For 

our data sample, it is yielding better solution for k=2 and k=5. Moreover Mark Sommereder 

algorithm approaches to the optimal solution in less or equal number of iterations. 

Diagrammatic comparisons of these two techniques before applying MLE are given 

below. 
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Figure 7.9 Probability density curves of Hypo-exponential distribution for different 

number of phases as approximated by MOM and Mark Sommereder algorithm 
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7.5 Estimation when shape parameter is unknown 

Result of the simulation using MOM and Mark Sommereder algorithm for different values of 

shapes and rates are listed in tables 7.6 and table 7.7 respectively. 
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Table 7.6 Log likelihood values and rates of a Hypo-exponential distribution by MOM 

&MLE with shape unknown 

NO OF 

PHASES 

ESTIMATED 

NO OF 

PHASES 

ACTUAL 

RATES 

APPROXIMATED 

RATES OF PHASES 

ACTUAL 

LOG 

LIKELIHOO

D 

ESTIMATE

D LOG 

LIKLIHOO

D 

2 3 5,10 

13.149894, 13.149894,  

6.573979 

30.11103 30.67761 

3 3 5,10,15 

10.662833, 10.662833,  

5.334286 

19.52041 17.45173 

4 4 5,10,15,20 

13.961742, 13.961742, 

13.961742,  4.653031 

12.85738 7.299488 

5 4 5,10,15,20,25 

12.824150, 12.824150, 

12.824150,  4.274399 

9.076633 0.6102097 

 

 
Table 7.7 Log likelihood values and rates of a Hypo-exponential distribution by MARK 

SOMMRENDER algorithm & MLE with shape unknown 

 

NO OF 

PHASES 

ESTIMATED 

NO OF 

PHASES 

ACTUAL 

RATES 

APPROXIMATED 

RATES OF PHASES 

ACTUAL 

LOG 

LIKELIHOOD 

ESTIMATED 

LOG 

LIKELIHOOD 

2 3 5,10 

13.024450, 13.024450,  

6.520448 

30.11103 30.66998 

3 3 5,10,15 

10.668783, 10.668783,  

5.331363 

19.52041 17.45173 

4 4 5,10,15,20 

13.961025, 13.961025, 

13.961025,  4.653876 

12.85738 7.299488 

5 4 5,10,15,20,25 

12.824541, 12.824541, 

12.824541,  4.274678 

9.076633 0.6102099 
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Comparing table 7.6 with table 7.7, it is found that, both these algorithm produce 

almost equal rates for different phases. Although for some cases, the Mark’s algorithm gives 

slightly better solutions and it approaches the optimal solutions in less number of iterations, it 

has one drawback. For some samples it can’t be applied as it is gives negative rate values for 

different phases
2
. On the contrary, the traditional estimation techniques can be applied to all 

data samples to find maximum likelihood estimation. 

 

7.6 Conclusion 

An exponential distribution is a very convenient choice to model service times of real world 

situations. But some processes don’t respond to this distribution well. In service processes 

where a server provides service in phases sequentially, and time taken to provide service in 

each phase is exponentially distributed, then Erlang and Hypo-exponential distributions will 

best suit to model such situations. Furthermore, many service processes though consists of a 

single phase possess coefficient of variation less than one which contradicts the use of an 

exponential distribution. In such situations, Erlang and Hypo-exponential distribution can be 

used to study the mathematical behavior of the systems.  

In this thesis we have used different estimation techniques to estimate parameters of 

Erlang and Hypo-exponential distribution. At first, Erlang distribution with known shape 

parameters is estimated using MOM and MLE where both of these two methods yield the 

same estimated value for rate parameter. Additionally it is observed that if the sample size 

increases by 10
x 

times, the variance of estimation of rate parameter decreases approximately 

                                                 
2
 
When Mark’s algorithm is applied to the sample generated by set. seed (123) operation in R, we get mean time of the entire process E(T) to 

be 0.3060185 while E(B) was found to be 2.466863. This leads to generate negative mean time in process A i.e. E(A) was found to be -

10.06495 which is not possible.
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by 10
x
 times and if rate increases by 10

x
, the variance of observed value is increased by a 10

2x
. 

It is also found that as the number of phase increases, the accuracy of estimation of rate 

parameter increases and for some very high value of phase, estimated rates becomes equal to 

actual rate. This estimation technique can be used to model total time in machine reparation 

process, to handle traffic congestion in telecommunication networks, etc. In order to fit an 

Erlang distribution with unknown shape parameter, coefficient of variation is used to estimate 

the shape parameter first and then from this estimated shape, rate parameter is estimated using 

traditional method of estimations. Using this algorithm, optimum results were found in 76 out 

of 100 experiments and we got optimum result even for high values of number of phases of 

the service process. This algorithm can be used build model for situations where information 

in known only in terms of Mean and Standard deviation of the service processes with some 

real data. One important example is model compilation time of a computer, I/O operations of a 

computer.  

 Next we deal with Hypo-exponential distribution. To estimate rates of a Hypo-

exponential distribution with two phases, MOM and MLE are used. But when the number of 

phases is more than two, to approximate the distribution, we have used the approximation 

algorithm by Markus Sommerender. To fit a Hypo-exponential distribution with unknown 

shape parameter, again coefficient of variation is used to estimate the shape parameters from 

which rate parameters are estimated. For a two phase Hypo-exponential distribution the 

original curve was found to be very well approximated using these two traditional estimation 

techniques MOM and MLE. For Hypo-exponential distribution with more than two phases, it 

was found that Mark Sommereder algorithm always provide equally good or better initial 

solution then that of MOM irrespective of the number of phases. Moreover Mark Sommereder 

algorithm approaches to the optimal solution in less or nearly equal number of iterations. 
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These estimations techniques can be applied to fit model for TMR systems, software 

rejuvenation systems etc. For Hypo-exponential distribution with both parameters unknown, it 

was found that estimated rates as obtained by both of these algorithms are nearly equal for 

different phases. For some cases, Mark’s algorithm gives slightly better solutions and it 

approaches the optimal solutions in less number of iterations. These algorithms are best suited 

for situations like modelling hard disk performance time, time for I/O operations of a 

computer etc. 

 

7.7 Future work 

Estimating the change point in queueing models 

Let nXXX .....,,, 21   be a sequence of independent random variables with probability 

distribution functions  nFFF .....,,, 21   respectively. Then, in general, the change point problem 

is to test the following hypothesis: 

 nFFFH  .....: 210  

Versus the alternative  

 nkkk FFFFFFH   ..........: 21211 . 

If the distributions nFFF .....,,, 21   belong to the common parametric family  F  where p
R , 

then the change point problem is to test the hypothesis about the population parameter

nii ,....,2,1,  ,  
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   nH .....: 210 (Unknown) 

Versus the alternative 

 nkkkH    ..........: 21211  

 The problem of testing of parameter change has long been a core issue in statistical 

inferences. It originally started in the quality control context and then rapidly moved to 

various areas such as economics, finance, transportation systems, statistical quality control, 

inventory, production processes, communication networks and queueing, control problems, 

medicine. Since the paper of Page (1955), the problem has generated much interest and a vast 

amount of literatures have been published in various fields. For a general review, we refer to 

Csorgo and Horvath(1997), Chen and Gupta (2000) and the articles therein. The change point 

problem was first dealt in independent identically distributed samples but it became very 

popular in time series models since the structural change often occurs in economic models 

owing to a change of policy and critical social events. For relevant references in independent 

identically distributed samples and time series models, we refer to Hinkley (1971) , Brown, 

Durbin, and Evans (1975), Zacks (1983), Picard (1985), Csorgo and Horvath (1988). 

     The problem of detecting changes in the inter arrival time distribution of customers 

is a vital concern to various management personnel and system operators in the service 

planning and health care sectors. Discovering the positions of change point in the inter arrival 

time distribution would be of great help in planning services to customers.  Suppose that for an 

observed queueing system, the predetermined value for the traffic intensity ,1   is fixed 

(where   is the ratio of mean arrival rate to mean service rate).  If a shift in traffic intensity 

from its prior value due to change occurs in the mean inter arrival time distribution, then to 
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keep a similar value of traffic intensity, the number of servers or the service time of servers 

can be adjusted accordingly.   

All of the above procedures require the application of statistical hypothesis testing. 

However, the problems of estimating change point of the inter arrival time distribution have 

not been discussed in the queueing literature yet. A comprehensive review for estimating the 

change points in a sequence of observation Nxxx ,.....,, 21 with distribution functions 

NFFF ,....,, 2,1 was given by Krishnaiah and Miao (1988). Besides maximum likelihood and 

least square estimates, the Bayesian method is also a very useful technique for estimating 

parameters. Chernoff and Zacks(1964) described a Bayesian estimator for a change point in 

the mean of a sequence of normal random variables based on an arbitrarily specified prior 

probability distribution. Jain and Das (1993) considered a unified approach for estimating the 

change point of a sequence of observations and related testing procedures of a sequence of 

observations from the Bayesian point of view.   Jain (2001) has considered a Bayesian 

approach for estimating at most one change point that occurs in a sequence of random 

variables whose density functions belong to an exponential family. However, one change point 

method with some modifications can be applicable for cases with more than one change point. 

In future one may investigate into the following problems: 

To study the problem of estimating the change point in the arrival rate and 

service rate for certain known queueing models like 1// kEM and 1// kHM  

Hypo-exponential and study the properties of the estimators. 
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