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Objectives and study method: The objective of this study is to develop ex-

act algorithms that can be used as management tools for the agricultural produc-

tion planning and to obtain exact solutions for two of the most well known two-

dimensional packing problems: the strip packing problem and the bin packing prob-

lem.

For the agricultural production planning problem we propose a new hierarchical

scheme of three stages to improve the current agricultural practices. The objective of

the first stage is to delineate rectangular and homogeneous management zones into
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the farmer’s plots considering the physical and chemical soil properties. This is an

important task because the soil properties directly affect the agricultural production

planning. The methodology for this stage is based on a new method called “Positions

and Covering” that first generates all the possible positions in which the plot can

be delineated. Then, we use a mathematical model of linear programming to obtain

the optimal physical and chemical management zone delineation of the plot.

In the second stage the objective is to determine the optimal crop pattern that

maximizes the farmer’s profit taken into account the previous management zones

delineation. In this case, the crop pattern is affected by both management zones

delineation, physical and chemical. A mixed integer linear programming is used to

solve this stage.

The objective of the last stage is to determine in real-time the amount of water

to irrigate in each crop. This stage takes as input the solution of the crop planning

stage, the atmospheric conditions (temperature, radiation, etc.), the humidity level

in plots, and the physical management zones of plots, just to name a few. This

procedure is made in real-time during each irrigation period. A linear programming

is used to solve this problem.

A breakthrough happen when we realize that we could propose some adapta-

tions of the P&C methodology to obtain optimal solutions for the two-dimensional

packing problem and the strip packing.

We empirically show that our methodologies are efficient on instances based

on real data for both problems: agricultural and two-dimensional packing problems.

Contributions and conclusions: The exact algorithms showed in this study

can be used in the making-decision support for agricultural planning and two-

dimensional packing problems.

For the agricultural planning problem, we show that the implementation of the

new hierarchical approach can improve the farmer profit between 5.27% until 8.21%
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through the optimization of the natural resources. An important characteristic of

this problem is that the soil properties (physical and chemical) and the real-time

factors (climate, humidity level, evapotranspiration, etc.) are incorporated.

With respect to the two-dimensional packing problems, one of the main con-

tributions of this study is the fact that we have demonstrate that many of the best

solutions founded in literature by others approaches (heuristics approaches) are the

optimal solutions. This is very important because some of these solutions were up

to now not guarantee to be the optimal solutions.

Firma de la directora:

Dra. Yasmı́n Á. Rı́os Soĺıs



Chapter 1

Introduction

In this chapter, we give an overview about the two topics described in this Ph.D.

dissertation. The first one is associated to the “Agricultural Planning” problems,

and the second one is related to the “Two-Dimensional Packing” problems. Each

one of these topics and the proposed methodology is defined in Section 1.1 and 1.2,

respectively. Finally, in Section 1.3 we show the dissertation structure.

1.1 Agricultural Planning

1.1.1 Problem statement

The traditional methods implemented by the farmers in the agricultural planning

process frequently do not consider the spatial variability of the soil properties inside

of the agricultural fields. This is an important problem because the spatial variability

of soil properties is one of the main impairments, which affects the productivity and

crop quality.

To improve the benefits of the agricultural planning practices, it is necessary

to known the spatial variability of the soil properties of the field where the crops

are going to be sown. In this context, it is required to do a difference between the

physical and chemical soil properties. The physical properties affects in the water

supply practices while the chemical properties determine the amount of inputs to

apply in the field as: seeds, pesticides, fertilizers.

1
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Delineating the field into site-specific management zones is usually imple-

mented to face within-field variability. Unfortunately, classical zoning methods (clus-

tering methods, mainly), based on soil fertility variables, have a disadvantage: the

zones have oval or irregular shapes, which is not practical for the variable rate tech-

nology and machinery.

In this work, we present two zoning methods that optimally delineate rect-

angular homogeneous management zones, using relative variance to guarantee the

homogeneity of each zone. The first zoning method relies on a mono-objective inte-

ger linear programming model that is efficiently solved to optimality. The objective

of this model is minimizing the variance of the zones selected to partitioning the

field (see Section 2.1).

The second zoning method is based on a bi-objective integer linear program-

ming model that minimizes the number of zones used to delineate the field, and

maximizes the homogeneity level of each zone (see Section 2.3.2). The field is de-

lineated using both properties physical and chemical. Experimental results on real

and generated instances validate the methods and enable a graphical visualization

of the solution.

Once the field has been delineated with the physical and chemical management

zones, the next step is to select the optimal crop pattern, which maximizes the farmer

profit (see Section 2.2). The optimal crop pattern means that the model is going to

select the best crop for each plot considering their physical and chemical management

zones. For this purpose, another mixed integer linear programming model has been

developed where, for each zone, the supply of inputs is given in a site-specific way.

For the case of the bi-objective model for management zones, the previous model

helps to determine which delineating is the best for each parcel.

Finally, we show another mathematical model that at each irrigation turn

decides how much and which plots must be watered such to maximize the total final

yields (see Section 2.2). The model considers the physical management zones and
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the humidity level of each parcel to determine in real-time the optimal amount of

water for each crop. This is a critical decision in countries where water shortages

are frequent. In this study we integrate these stages in a hierarchical process for the

agriculture planning and empirically prove that our methodologies are efficient on

instances based on real data.

1.1.2 Objectives

General objective

To develop a decision-making tool that helps to the farmers to improve the agri-

cultural planning practices, with the objective of maximizing the farmer profit and

optimizing the available resources through the whole production cycle.

Specific objectives

• To develop a decision-making tool that optimally delineates rectangular ho-

mogeneous management zones inside of agricultural fields.

• To develop a decision-making tool to select the optimal crop pattern which

maximizes the farmer profit at the end of the production cycle.

• To develop a decision-making tool to determine the optimal amount of water

to be irrigated in each crop considering its real-time water requirements and

its phenological stage of growing, which maximizes the farmer profit at the end

of the production cycle.

1.1.3 Hypothesis

The development of a decision-making tool will improve the agricultural planning

practices, maximizing the farmer profit, minimizing the production costs and opti-

mizing all the available resources for the whole production cycle.
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1.1.4 Scientific methodology

The next methodology is used to develop each one of the objectives proposed in

Section:

• Bibliography review. The objective of this stage is to find approaches related

with the agricultural planning practices and see which methodologies have been

proposed to solve this problem: exact and heuristic methods. Our methodology

is going to be compared with these methods.

• Mathematical formulation. A linear programming mathematical model is going

to be developed for each phase of the agricultural planning problem. The

CPLEX solver will be used to solve these models.

• Computational implementation and experimental results. In this stage, we

generate some instances using random data to validate the models perfor-

mance. The models are solved with the branch and bound algorithm of

CPLEX.

• Results analysis. The experimental results are analyzed to verify the correct

performance of the proposed models.

1.2 Two-Dimensional Packing Problems

1.2.1 Problem statement

The Two-Dimensional Packing Problems are classical problems that we can found

in several industries process where is necessary to allocate a set of rectangular items

inside of larger rectangular sheets of material. For example: wood, paper, steel or

glass industries.

Inside of this class of problems, we can distinguish two kinds of problems: The

Bin Packing Problem and the Strip Packing Problem. In the Two-Dimensional Bin
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Packing Problem we have an unlimited number of identical rectangular bins with

fixed width and height, and a set of rectangular items each one with specific width

and height. The objective of this problem is to allocate the set of rectangular items

using the minimum number of bins.

For the Two-Dimensional Strip Packing Problem we have a rectangular strip

with fixed width but infinite height, and a set of rectangular items each one with

specific width and height. In this case, the objective consist in allocate all the set of

rectangular items into the strip using the minimum height of the strip.

Both problems, Strip and Bin Packing, are NP-Hard in the strong sense, since

a reduction of this problems can be easily made for the one-dimensional bin packing

problem, that is strongly NP-Hard. Due to the combinatorial complexity of the

problem, many studies have been focused to use heuristics and metaheuristics meth-

ods to solve this problem, and just a few approaches used exact methods to give a

solution for the problem.

In this study, we present a new formulation and a methodology, called Positions

and Covering (P&C), to obtain exact solutions for the Two-Dimensional Bin and

Strip Packing Problems, see Section 3.1 and 3.2, respectively. The methodology is

based on a two-stage procedure where is solved a Set-Covering formulation of integer

linear programming. The P&C methodology was tested using the benchmark of

literature for Bin and Strip Packing problems. P&C was able to solve small and

medium instances, but for large instances P&C cannot solve them.

1.2.2 Objective

To develop a new methodology that optimally solves the classical NP-Hard two-

dimensional bin and strip packing problems.
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1.2.3 Hypothesis

The new methodology will obtain optimal solutions for the classical NP-Hard two-

dimensional bin and strip packing problems.

1.2.4 Scientific methodology

The next methodology is used to develop each one of the objectives proposed in

Section:

• Bibliography review. The objective of this stage is to find approaches related

with the methodologies proposed for two-dimensional packing problems and

see which methodologies have been proposed to solve these problems: exact

and heuristic methods. Our methodology is going to be compared with these

methods.

• Mathematical formulation. A linear programming mathematical model is going

to be developing for each two-dimensional packing problem. The CPLEX

solver will be used to solve these models.

• Computational implementation and experimental results. In this stage, we

use the benchmark instances, for each two-dimensional packing problem, to

validate the models performance. The models are solved with the branch and

bound algorithm of CPLEX.

• Results analysis. The experimental results are analyzed to verify the correct

performance of the proposed models.

1.3 Dissertation structure

The Ph.D. dissertation is structured for 3 chapters. Each ones is described next:
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• Chapter 2 shows the topics related to the Agricultural Planning Problems.

Section 2.1 presents a new method to “Delineate Rectangular and Homoge-

neous Management Zones”. Section 2.2 shows “A Crop Planning and Real

Time Irrigation Method Based on Site-specific Management Zones and Linear

Programming”. Finally, in Section 2.3 is presented “A Hierarchical Planning

Scheme Based on Precision Agriculture” to improve the agricultural practices.

• In Chapter 3 are presented the topics related to exact solutions for the Two-

Dimensional Packing Problems. In this sense, we present a new methodology

called “Positions and Covering (P&C)” to obtain exact solutions for the Bin

and Strip Packing Problems, see Sections 3.1 and 3.2, respectively. A short

description about a decomposition approach to solve large scale instances of

the Bin and Strip Packing Problems, using the P&C methodology, is showed

in Appendix B.

• Chapter 4 presents the final conclusions and the future work for both topics

tackled in this scientific work: the agricultural and two-dimensional packing

problems.

• Appendix A presents some basic concepts related to the optimization area, a

short history about the operations research, and a brief description of some

terms used in this Ph.D. dissertation, as linear programming and multi-objective

optimization, are showed too.

• Appendices C and D show a summary of notation for the crop planning prob-

lem (CPP) and the real-time irrigation problem (RTIP), respectively.



Chapter 2

Agricultural Planning

2.1 Delineation of Rectangular and

Homogeneous Management Zones

This research produced the article: Cid-Garcia, N. M., Albornoz V., Rios-Solis, Y.

A., & Ortega R. (2013). “Rectangular shape management zone delineation using

integer linear programming”. Computers and electronics in agriculture, 93, 1-9.

Abstract

The spatial variability of the soil properties is one of the main impairments to the

productivity and crop quality in agriculture. Delineating the field into site-specific

management zones is usually implemented to face within-field variability. Classical

zoning methods, based on soil fertility variables, have a disadvantage: the zones

have oval shapes which are not practical for the variable rate technology and ma-

chinery. In this work, we present a new zoning method that optimally delineates

rectangular homogeneous management zones, using relative variance to guarantee

the homogeneity. This zoning method, based on soil properties, relies on an integer

linear programming model that is efficiently solved to optimality. Experimental re-

sults on real and generated instances validated the method and enabled a graphical

visualization of the solution.

8
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2.1.1 Introduction

One of the main aspects of precision agriculture is to provide farming manage-

ment methods to respond to within-field variability. It relies on new technologies

like satellite imagery, information technology, and geospatial tools to improve the

decision-making process in agricultural production. As mentioned in Ortega y San-

tibáñez (2007), in contrast with “traditional” uniform field management, precision

agriculture permits the application in a site-specific manner of agronomic practices

such as fertilization, weed and pest control, as a function of the information compiled

from collected field data. The impact of precision agriculture derives from the fact

that most factors determining crop yield and quality are variable in space and time.

To be more efficient, management decisions must be time- and site-specific and not

rigidly programmed.

Within precision agriculture, an important area is the site-specific nutrient

management since there is a need of delineating management zones within fields

before planting the crops to improve the overall yield. More precisely, a manage-

ment zone is a sub-region of a field that is relative homogeneous with respect to

soil parameters, and for which a specific rate of inputs is needed (Roudier et al.,

2008). Indeed, variable rate technology uses equipment to apply inputs at a precise

location to achieve site-specific application rates of inputs to reduce input and labor

costs, maximize productivity, and to reduce the impact wastage on the environment.

Mainly, variable rate technology in agriculture includes fertilizer, lime, seeding, and

pesticides.

As mentioned by Doerge (1999), the most meaningful factors to include in

a management zone strategy are those with the most direct effects on crop yield:

soil moisture relationships, soil pH, soil pathogen infestation, and extremes in soil

nutrient levels (see also Cambardella et al. (1994); Ortega y Flores (1999)).

Trying to delineate management zones efficiently and accurately is a mayor

challenge where decision support systems are needed (McBratney et al., 2005). In
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this study we used data of the soil properties to propose the Integer Linear Pro-

gramming Management Zone delineation method (ILPMZ for short) based on a

mathematical model that could be easily inserted in any decision support system.

The main advantage of the zones that the ILPMZ zoning method computes, is that

they have a rectangular shape which is an important characteristic for agriculture

machinery. Moreover, rectangular parcels (or portions of them) allow easier adop-

tion of variable rate technologies based on prescription maps than irregular parcels.

Additionally, this zoning method could also be applied for drip irrigation designs.

There are several approaches in the literature for properly determining site-

specific management zones. Most of them are based on clustering algorithms, i.e.,

they are classification-based approaches.

• Approaches based on information of the soil. For example Schepers et al.

(2004) and Fraisse et al. (2001) use soil and relief information; Carr et al.

(1991) base their zoning on topographic maps; while methods of Mulla (1991),

Mortensen et al. (2003), and Bhatti et al. (1991) need soil sampling.

• Approaches based on yield maps, combining data from several seasons. We

can cite Blackmore (2000), Diker et al. (2004), and Pedroso et al. (2010).

Doerge (1999) pointed out that crop yield patterns from yield maps may not

be stable enough across seasons to accurately define management zones without

supplemental information.

• Integration of the two previous approaches as in Whelan et al. (2003), Franzen

y Nanna (2003), Hornung et al. (2003, 2006). In Roudier et al. (2008) they use a

watershed segmentation algorithm where the user can introduce morphologies

of the desired zones.

The combination of the different layers of information can be performed by a

cluster procedure using K-means or Fuzzy K-means methods (Ortega et al., 2002;

Li et al., 2005; Jiang et al., 2011), or principal component analysis with a cluster
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method (Ortega y Flores, 1999). The Fuzzy K-means algorithm is widely used and

the choice of the data layers processed by the clustering is an issue (Jaynes et al.,

2005). A major drawback is the resulting fragmentation of the zones (Simbahan y

Dobermann, 2006; Frogbrook y Oliver, 2007; Li et al., 2005). Moreover, this zones

are oval shaped and disjoint due to the clustering methods.

Figure 2.1 schemes the real word problematic we solve in this work: Some

farmers become aware that precision agriculture leads to important saving (e.g., in

fertilizers) by delineating management zones. For this, they invest in soil samples of

their fields that are then analyzed in a laboratory (dots in the maps are the places

where the soil samples where taken). The results of the properties of the soil samples

Organic Matter (OM) Phosphorus (P)

34.80% above
optimal level.
3.97% above.
optimal level

Optimal level.

3.97% below

6.06% below
optimal level.

optimal level.

27.31% above
optimal level.
10.34% above
optimal level.

Optimal level.

13.79% below

48.27% below
optimal level.

optimal level.

Clustering zoning method 
(MapInfo) for the OM property 

Thematic map for the OM 
property (MapInfo) 

Four possible solutions for the delineation of management zones for the OM property. 
Notice there are millions of different solutions for this field

Figure 2.1: Left upper map: thematic map for the organic matter property (OM)

obtained with MapInfo. Right upper map: Clustering zoning method from MapInfo

for the OM property. Each color of this map represents a management zone (green,

orange, light blue, and dark blue). Bottom maps: four (out of millions) different

solutions of management zones obtained by making a grid based on the smallest size

of a zone.

can be visualized as thematic maps like the one in the left upper part of Figure 2.1
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(Organic Matter (OM) is used as soil property and MapInfo as visualization soft-

ware). By using a clustering method (e.g., the one in MapInfo software) with the

organic matter as soil chemical property we obtain the upper right map of the same

figure. Each color of this map represents a management zone (green, orange, light

blue, and dark blue). We can notice that the resulting zones are disjoint and are

irregular shaped which difficulty the use of machinery and therefore the application

of resources and inputs. Farmers then think about tracing a grid and delineate their

own zones based on the clustering zones or on the thematic map which results in

any of the solutions presented in the bottom of Figure 2.1. The drawback of this

approach is that there is an exponential number of different possible management

zone delineations. In order to find the best delineation, farmers must try all of them

(e.g., compute the costs of fertilizers) and this would literally take years to be com-

pleted. With the ILPMZ method we offer the farmer the best management zones

delineation in minutes such that they are rectangular and the most homogeneous

possible within each zone.

To the best of our knowledge, this is the first approach that directly offers

rectangular shape zones which is an important characteristic for variable rate tech-

nologies since it facilitates the work and operation of machinery. Indeed, broadcast

seeders (used for spreading lime or fertilizer), manure spreader or sprayers are usu-

ally towed behind a tractor. If a management zone is rectangular then it is easier for

the farmer to indicate its limits to the tractor driver. Therefore, agricultural inputs

are spread exactly in the management zone that requires them.

The ILPMZ method delineates the most homogeneous rectangular manage-

ment zones from a field with respect to the properties of the soil. It consists of three

main stages:

a) Instance generation. In this stage, data from grid soil sampling of a given

field is processed: for each soil sample we have its coordinates, and a set

of soil properties (pH, organic matter, phosphorus, nitrogen, etc.). Then, a

thematic map of the field is created with respect to the wished soil property
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(or properties) and all the quarters (or potential zones) are computed together

with their variances.

b) Mathematical model. With the input of stage a), we propose an Integer Lin-

ear Programming (ILP) that is solved with a branch and bound algorithm (see

Section A.3). The aim of the ILP is to find a set of the most homogeneous

quarters that minimizes the sum of their variance and that covers the whole

field.

A main contribution is the insertion of the relative variance into the model to

guarantee the homogeneity of the managements zones.

c) Visualization. This module translates the solution given by the mathematical

model into a graphical view of the most homogeneous rectangular zones for

the field.

The main novelty of procedure ILPMZ is that step a) is not only an instance

generator, it also computes the different potential management zones of the parcels.

This way step b) becomes tractable since the mathematical model can be exactly

solved in seconds.

The rest of this paper is as follows. In Section 2.1.2 we introduce our ILPMZ

delineation method. The instance generation phase is described in Section 2.1.2, the

Mathematical model is introduced in Section 2.1.2 while the visualization phase is

described in Section 2.1.2. In Section 2.1.3 we experimentally test our methodology,

prove its efficiency, and accuracy. Finally, Section 2.1.4 concludes the work.

2.1.2 Materials and Methods

The ILPMZ method delineates rectangular management zones from a field with

respect to some properties of the soil. As mentioned, it consists of three main

stages: Instance generation, Mathematical model, and Visualization. Each one of

these parts of the ILPMZ methodology is explained with more details in this section.
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Instance generation

The objective of this stage is to generate an instance for the Mathematical Model

stage from the soil samples that have been taken from the field. These soil samples

are approximately equidistant in the field since they were generated from a system-

atic grid sampling with the help of the Software SMS Mobile and a GPS receiver

model AgLeader 1500 with e-diff. Sample positions were collected in geographic

coordinates (lon, lat) using the WGS84 datum. Coordinates were then converted to

UTM zone 19 S and from them to Cartesian coordinates, in meters.

An example of the soil sample data needed by our methodology can be visu-

alized in Table 2.1. This table presents the data of 40 soil samples of an agriculture

field close to Santiago, Chile (we use this field along the work and call it Real Field

instance). This field has 256 meters width and 305.6 meters long (around 7.82 ha).

The samples are approximately spaced by 50 meters one from each other so four

soil samples are needed to cover an ha. Then, the samples are labelled (first and

fourth column of the table) and their positions are translated into a Cartesian map

(coordinates (x, y) in the table). Finally, the information about each soil property

is presented (pH, organic matter rate (OM), amount of phosphorus (P), and sum of

bases (SB). Phosphorus is the most limiting factor in Chilean soils while SB and OM

are good indicators of overall soil fertility. Organic matter was determined by the

wet oxidation method, extractable P by the Olsen method, while SB corresponds to

the sum of bases determined by the CH3COONH4 method of INIA (2006).

The visualization of this data is called a thematic map. In Figure 2.2 two

thematic maps are presented from the data of Table 2.1. The left map is the thematic

map for the OM property and the right one is for the P property. Here we used

MapInfo with the default grid and the inverse distance weighting interpolator. It

can be noted that any interpolation method such as kriging, nearest neighbour or

other could have been used, since data is spatially dependent.
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Table 2.1: Coordinates and values of the soil properties for each one of the 40 soil

samples taken from a 7.82 ha field close to Santiago, Chile. OM is in %, P in mg

kg−1 and SB in Cmol(+) kg−1.

Sample
Coordinates Soil properties

Sample
Coordinates Soil properties

(x, y) pH OM P SB (x, y) pH OM P SB

1 0.00, 9.14 5.2 11.8 8.0 5.89 21 297.68, 166.36 5.6 10.4 4.0 8.26

2 48.97, 8.46 5.5 12.8 4.0 7.97 22 253.87, 160.20 5.4 18.7 11.0 8.88

3 97.52, 5.57 5.2 14.9 10.0 7.63 23 206.99, 157.26 5.6 10.5 11.0 6.03

4 150.52, 9.42 5.4 14.0 7.0 11.44 24 158.29, 155.16 5.5 16.8 3.0 9.48

5 201.07, 8.25 5.5 11.2 4.0 6.36 25 105.27, 153.53 5.4 14.8 5.0 7.85

6 250.24, 0.00 5.4 14.7 4.0 9.31 26 56.47, 156.87 5.5 12.6 5.0 5.38

7 298.57, 84.00 5.6 12.5 6.0 10.03 27 6.15, 151.48 5.4 15.1 7.0 6.50

8 249.94, 78.89 5.6 9.6 4.0 7.99 28 6.33, 204.03 5.4 11.7 5.0 5.88

9 208.71, 73.33 5.5 14.3 6.0 8.20 29 58.83, 205.57 5.5 16.0 4.0 8.09

10 160.73, 66.20 5.5 15.0 6.0 9.23 30 108.59, 207.64 5.4 13.8 4.0 8.18

11 102.69, 59.51 5.4 14.5 5.0 6.64 31 159.65, 203.22 5.6 12.6 3.0 7.95

12 53.66, 58.30 5.4 11.1 6.0 6.00 32 206.04, 199.18 5.4 14.4 6.0 7.50

13 2.81, 52.71 5.3 14.1 5.0 5.67 33 255.23, 205.16 5.4 15.4 5.0 8.23

14 6.93, 101.13 5.3 16.3 6.0 5.51 34 303.14, 212.73 5.7 11.2 5.0 9.51

15 58.25, 105.04 5.4 12.7 7.0 6.36 35 278.06, 242.75 5.2 16.6 22.0 7.30

16 104.05, 107.24 5.4 14.2 6.0 7.80 36 208.60, 243.31 5.5 15.6 8.0 9.21

17 156.53, 111.44 5.5 11.4 5.0 6.72 37 158.68, 247.47 5.5 16.1 5.0 9.51

18 204.49, 114.91 5.5 11.5 8.0 6.11 38 108.00, 249.65 5.4 13.9 6.0 6.90

19 250.37, 119.77 5.4 16.7 6.0 8.75 39 58.16, 253.69 5.5 15.4 5.0 9.69

20 296.17, 124.74 5.5 13.5 5.0 7.81 40 12.72, 254.37 5.4 10.7 4.0 7.71

These thematic maps reveal the diversity of the soil in the field. It is easy

to conclude that applying the same amount of inputs (seed, fertilizers, pesticides,

water, etc.) throughout the field, would result in few zones at optimum level. With

only these thematic maps, it is an extremely difficult task to delineate the most

homogeneous managements zones of the field. Moreover, the management zones

should be rectangular to be a realistic solution for a farmer. It is known that fields

with rectangular shape are better in terms of machinery efficiency. Additionally, for
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Organic Matter (OM) Phosphorus (P)

34.80% above
optimal level.
3.97% above.
optimal level

Optimal level.

3.97% below

6.06% below
optimal level.

optimal level.

27.31% above
optimal level.
10.34% above
optimal level.

Optimal level.

13.79% below

48.27% below
optimal level.

optimal level.

Figure 2.2: Thematic maps of organic matter and phosphorus generated with the

information of Table 2.1.

drip irrigation design, rectangular fields are usually used. This leads to the ILPMZ

management zone delineation problem which belongs to the NP-hard class. In this

article, a new integer linear programming is proposed in order to obtain the best

solution among the combinatorial number of zoning patterns of the field.

With the information of the samples, we proceed to generate all the potential

zones (or quarters) of the field. Unlike a cutting stock problem, here we are not

generating all possible patterns of a field. Instead, we are forming the potential

rectangles that could be a zone. This search is the key point of ILPMZ and it can

be done in O(WidthF × LengthF ) where WidthF is the number of samples in the

width of the field while LengthF is the number of samples in its length.

An illustration is given in Figure 2.3. The left hand side of this figure shows

a thematic map of a small field with nine samples. On the right side, all potential

zones are marked. For this example, we have a total of 36 rectangular quarters

(generated by Algorithm 1 presented below). Usually, the soil samples are almost

equidistant, e.g., four soil samples (two width for two long) are needed to cover an

ha and the minimum area covered is of a quarter of ha. The number of soil samples

to cover an ha may change according to each farmer’s requirements.
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Figure 2.3: The 36 quarters of a field.

The total number of potential zones |Q| can be computed by the following

formula:

|Q| =
(
WidthF−MinWidthQ+1∑

i=1

i

)(
LengthF−MinLengthQ+1∑

j=1

j

)
.

Indeed, this determination of all potential zones is not hard since there are only

a polynomial number of them. This manner, some of the computations are done

outside the mathematical model of step b), making it more tractable to solve.

The determination of all possible quarters is implemented by Algorithm 1.

The input of this algorithm is the soil samples data (as in Table 2.1), the number of

samples in the width of the field (WidthF ), the number of samples in the length of

the field (LengthF ), the minimum quantity of samples the width of a quarter (zone)

must contain (MinWidthQ), and the minimum quantity of samples the length of

a quarter must contain (MinLengthQ). The algorithm starts creating the smallest

quarters width wise. Then it checks if there is still some width to cover. After, it

checks the length.
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Algorithm 1 Quarters generation of a field.

1: INPUT: WidthF , LengthF , MinWidthQ, MinLengthQ, soil samples

2: for j = MinWidthQ To WidthF do

3: for l = 0 To (WidthF − 1) do

4: if (j + l) ≤ WidthF then

5: for i = MinLengthQ To LengthF do

6: for k = 0 To (LengthF − 1) do

7: if (k + i) ≤ LengthF then

8: creation of a new quarter

9: end if

10: end for

11: end for

12: end if

13: end for

14: end for

With this algorithm we can create the correspondence matrix C = {cij}. If

cij = 1, then quarter i covers sample point j, cij = 0 otherwise. Once all the

potential quarters are enumerated, we also compute for each one of them its variance,

i.e., we compute the variance of a particular soil property for the set of the samples

included in a potential quarter. The correspondence matrix of the field of Figure 2.3

appears in Table 2.2. The rows are the quarters, the columns are the sample points

except for the last column that corresponds to the variance of the quarter. Notice

quarter 1 only covers soil sample 1 and therefore, its variance is 0. Quarter 6 covers

soil samples 1, 2, and 3, while quarter 36 covers all soil samples (i.e., there is only

one zone that is equal to the field).

Most of the fields are not initially rectangular (see the example of Figure 2.3).

In this case, the ILPMZ method inserts dummy soil samples to fill a rectangle where

the field can be contained. This dummy samples are like the real ones: equidistant

one from each other. Nevertheless, their data about the properties is very high
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Table 2.2: Correspondence matrix C for the field of example of Figure 2.3 with the

variance of each quarter i.

Sample point j
σ2
i

1 2 3 4 5 6 7 8 9

P
ot

en
ti

al
q
u

ar
te

r
i

1 1 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0

4 1 1 0 0 0 0 0 0 0 0.21

5 0 1 1 0 0 0 0 0 0 0.57

6 1 1 1 0 0 0 0 0 0 0.57

7 0 0 0 1 0 0 0 0 0 0.00

8 0 0 0 0 1 0 0 0 0 0.00

9 0 0 0 0 0 1 0 0 0 0.00

10 0 0 0 1 1 0 0 0 0 2.40

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

36 1 1 1 1 1 1 1 1 1 2.07

with respect to the real samples. This manner, the mathematical model make this

dummy soil samples to be alone or with other dummy samples which facilitates their

elimination in the visualization stage of the ILPMZ method.

Next stage of the ILPMZ algorithm is the Mathematical Model. It requires

the correspondence matrix of the potential quarters together with their variances.

Mathematical model

Once we have the data from the samples transformed into a correspondence matrix,

we proceed to run an integer linear programming model. This model minimizes the

sum of the variance of the potential quarters such that they cover the whole field

and that comply with a given relative variance that guarantees the homogeneity of

the management zones. This manner, the field will have delineated homogeneous

rectangular management zones.
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Let I be the set of potential quarters and J the set of soil samples of the

field. Each quarter i has ni soil sample points. The total number of soil samples

points is N . Farmers do not wish to have tiny management zones because of their

machinery, so let LS be the maximum number of zones in the field while LI is the

minimum one. Now we can state the decision variables of our model:

xi =





1 if quarter i is chosen,

0 otherwise.

Our proposed integer linear programming is named ILP and is as follows.

min
∑

i∈I σixi (2.1)

subject to: (2.2)

∑
i∈I cijxi = 1 ∀j ∈ J (2.3)

∑
i∈I xi ≤ LS (2.4)

∑
i∈I xi ≥ LI (2.5)

xi ∈ {0, 1} ∀i ∈ I

Objective function (2.1) minimizes the sum of the variance of each chosen zone (or

potential management zone). Restriction (2.3) ensures that every point sample j is

covered by only one zone, i.e., the whole filed is partitioned into non overlapping

zones. Constraints (2.4) and (2.5) limit the number of zones in which the field will

be partitioned.

To guarantee a homogeneous zoning delineation we propose to introduce to

the ILP model the relative variance since it has been proved to be a high quality

criterion to measure the efficiency of a zoning method Ortega y Santibáñez (2007).

Suppose a set of quarters Q satisfy restrictions (2.3)–(2.5), i.e., quarters in Q cover

all the field and satisfy the minimum and maximum number of allowed zones, then

the relative variance of Q is as follows:

RV (Q) = 1−
∑

i∈Q σ
2
wi

σ2
T

,
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where σ2
T is the total variance of all the field and sum of the σ2

wi
for i ∈ Q is the

variance within defined as follows:

∑

i∈Q

σ2
wi

=

∑
i∈Q(ni − 1)σ2

i

N − |Q| . (2.6)

Numerator in (2.6) considers the number of samples ni in quarter i (minus one

degree of freedom) as a weight and the denominator takes into account the number

of selected quarters (total number N minus the number of quarters |Q|). Therefore,

we introduce the following restriction to ILP:
(

1−
∑

i∈I(ni − 1)σ2
i xi

σ2
T

[
N −∑i∈I xi

]
)
≥ α. (2.7)

Restriction (2.7) implies that the relative variance of all the chosen quarters is at least

α which is a parameter that has to be greater than 0.5 (value given by the experts)

to guarantee an homogeneous behaviour of the zoning method. This restriction can

be easily put into a linear form:

(1− α)σ2
T

[
N −

∑

i∈I

xi

]
≥
∑

i∈I

(ni − k)σ2
i xi. (2.8)

Model ILP enhanced with restriction (2.8) delineates a field into rectangular and

most homogeneous management zones. ILP is an NP-hard problem1 that can be

solved with a branch and bound method2 for a field with 30 × 30 soil samples (see

Section 2.1.3). This efficiency is mainly due to the elegance of ILP: few restrictions

but sufficiently close to the convex hull of the solution space. Therefore, there is

no need of extra valid inequalities and even less, there is no need of an heuristic

algorithm which would provide solutions without optimality guarantee.

To the best of our knowledge, there is not a field in Chile with more than 30×30

soil samples. Although, there could be larger instances where a different solution

methodology would be required since ILP is NP-hard. The key point of determining

the potential zones at the instance generation stage makes the ILP mathematical

model simpler but still NP-hard.

1A knapsack problem or a general assignment problem can be easily reduced to ILP.
2A branch and bound is an enumeration algorithm. Therefore, when it ends it gives the optimal

solution (more details in Wolsey (1998)).
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Visualization

The solution of ILP, as it is given by standard optimization software is not friendly

for a farmer. A visualization stage must translate the solution of ILP into a map

that is useful for the farmer. This map must indicate the characteristics of each one

of the final zones so that the farmer knows, for example, where to fertilize. Notice

that the dummy soil samples that we inserted in the Instance Generation stage must

be deleted at this point since they will be naturally discarded by the method (see

more detail in Section 2.1.3).

A summary of the ILPMZ method is presented in Figure 2.4. Initially we

only have the soil samples from the field we want to delineate into rectangular

homogeneous management zones. If the field is not rectangular, then we must add

dummy samples that will be then deleted. Then, the method proceeds with the

Instance Generation stage where the thematic maps of the different soil properties

are presented, the potential quarters are generated together with their variance, and

finally, the correspondence matrix is computed. This information is the input of the

mathematical model ILP which is solved by a branch and bound method. If there

is not a feasible solution then one must adjust either the value of LS (maximum

number of zones in the field) or reduce parameter α which is equal to relax the

homogenization of the zones.

Figure 2.4: Summary of the ILPMZ method.
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Indeed, a strict bound on LS or in the shape of the quarters may lead to the

unfeasibility of ILP. Then, the method must be flexible in one of these parameters

with respect to the farmers wishes. More details are presented in Section 2.1.3.

2.1.3 Experimental Results

In this section we validate the ILPMZ method in eleven different fields:

• Real field: vineyard close to Santiago, Chile, with 256 meters width and 305.6

meters long (around 7.82 ha). Tables 2.1 and 2.2 of Section 2.1.2 describe this

instance.

• Large fields: 10 fictitious fields based on generated data (realistic parameters)

with at most 900 soil samples (30 × 30 samples). This fields are to test the

efficiency of the ILPMZ method.

Two codes need to be executed for the ILPMZ method on a standard personal

PC3:

• Quarters generation: Algorithm 1 creates all the possible quarters that could be

a management zone. This algorithm was coded in Visual Basic for Applications

for Excel.

• B&B: The branch and bound algorithm to solve mixed integer linear programs

was implemented by GAMS/CPLEX 12.2 using default options, except for the

optimal criterion fixed at 0.

Table 2.3 present the experimental results, for OM, P, pH and, SB soil proper-

ties of an vineyard field close to Santiago, Chile, that has a total of 42 soil samples (6

soil samples width by 7 length) with a total number of quarters |Q| = 588 (generated

by Algorithm 1 of Section 2.1.2). For this field the minimum shape of a manage-

ment zone, w× l = 1× 1 means the minimum zone is w soil samples width for l soil

3PC Intel Core 2 Duo of 2.0 GHz, and 4 GB of RAM.
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samples long (one can translate soil samples into distance easily). The homogeniza-

tion parameter α is set to 0.5. First column of Table 2.3 is the maximum number

of management zones the farmer wishes for this field. Second column presents the

solution of the objective function of ILP for the total variance where“–” means that

no feasible solution could be found (parameters α must be reduced). Last column

corresponds to the resulting number of management zones used to partition the field.

Table 2.3: ILPMZ method applied to a 7.82 ha field close to Santiago, Chile, for the

MO, SB, pH, and P soil properties, with the homogenization parameter α = 0.5,

and total size of quarters |Q| = 588.

OM SB

LS σ2 Zones LS σ2 Zones

42 0.00 42 42 0.00 42

20 3.12 20 20 0.93 20

15 4.73 15 15 1.34 13

10 9.43 10 10 1.64 10

9 11.52 9 7 3.59 7

8 – – 6 – –

pH P

LS σ2 Zones LS σ2 Zones

42 0.000 42 42 0.00 42

20 0.002 19 20 1.25 18

15 0.004 12 15 1.95 15

10 0.006 10 10 3.46 10

5 0.014 5 5 4.24 5

4 0.021 4 3 6.21 3

3 – – 2 – –

Table 2.3 shows that the ILPMZ with the homogeneity parameter α = 0.5 leads

to high quality solutions. The maximum number of management zones LS plays an
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important role since in most of the solutions this bound is reached. The smaller the

management zones, the most homogeneous they are going to be. Nevertheless, a

farmer does not wish to have tiny management zones. When LS is too restrictive,

the ILP may not find feasible solutions that satisfy α = 0.5. Therefore, one could

relax this parameter by reducing it until the ILP finds a solution as presented in

Scheme 2.4.

The relationship between variance and quarters for the OM and P soil proper-

ties with α equal to 0.5 is showed in Figure 2.5. As expected, the number of quarters

increases when the value of the variance decreases. Hence, the maximum number of

zones given by the farmer to partition the field is an important aspect to consider

since the value of the variance within the field depends on it.
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Figure 2.5: Relationship between Variance and Quarters applied to a 7.82 ha field

close to Santiago, Chile, for the OM and P soil properties for α = 0.5.

Figure 2.6 is the visualization of the ILPMZ applied to the real instance related

to the SB soil property. The left side has a minimum size of the management zones

of w × l = 1 × 1 while the right side is set to w × l = 2 × 1. As mentioned, the

result of the zoning drastically vary depending on the minimum size of the quarter

and the homogeneity parameter α.
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Sum of Bases (1x1) Sum of Bases (2x1)

45.05% above
optimal level.
5.58% above
optimal level.

Optimal level.

9.64% below

31.72% below
optimal level.

optimal level.

Figure 2.6: ILPMZ applied to a real field close to Santiago, Chile, related to the

SB soil property with minimum size of the management zones w × l = 1 × 1 and

w × l = 2× 1, respectively.

Table 2.4: ILPMZ method applied to the real instance for the OM and SB soil

properties.

OM SB

w × l α LS |Q| σ2 Zones w × l α LS |Q| σ2 Zones

1×2 0.1 42 441 17.35 6 1×2 0.4 42 441 7.24 7

1×2 0.1 20 441 17.35 6 1×2 0.4 20 441 7.24 7

1×2 0.1 5 441 22.18 5 1×2 0.4 7 441 7.24 7

1×2 0.1 4 441 – – 1×2 0.4 6 441 – –

2×1 0.4 42 420 19.50 11 2×1 0.5 42 420 7.75 8

2×1 0.4 20 420 19.50 11 2×1 0.5 20 420 7.75 8

2×1 0.4 9 420 21.49 9 2×1 0.5 7 420 7.76 7

2×1 0.4 8 420 – – 2×1 0.5 6 420 – –

2×2 0.0 42 315 4.61 1 2×2 0.3 42 315 5.09 4

2×2 0.0 20 315 4.61 1 2×2 0.3 20 315 5.09 4

2×2 0.0 10 315 4.61 1 2×2 0.3 4 315 5.09 4

2×2 0.0 5 315 4.61 1 2×2 0.3 3 315 – –

3×3 0.0 42 150 4.61 1 3×3 0.2 42 150 3.17 2

3×3 0.0 20 150 4.61 1 3×3 0.2 20 150 3.17 2

3×3 0.0 10 150 4.61 1 3×3 0.2 2 150 3.17 2

3×3 0.0 5 150 4.61 1 3×3 0.2 1 150 – –
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In Tables 2.4 and 2.5 are showed the results obtained by ILPMZ when varying

the minimum size of a zone (w × l) in the Real Instance (first column). Second

column is related to parameter α. It is first set to 0.5, but if no solution can be

found (ILP is unfeasible) then it is reduced by 0.1. In the table we show the first

α for which a feasible solution could be found. Third column LS is the maximum

number of zones desired by the farmer. Once we have an α that makes ILP to be

feasible, then we decrease LS. Fourth column represent the total number of potential

zones |Q| (taking into account w × l). Column σ2 is the objective function of the

ILP. Last column is the number of management zones delineated by ILPMZ. Each

one of the tests took no more than 0.63 seconds in a personal PC.

Table 2.5: ILPMZ method applied to the real instance for the pH and P soil prop-

erties.

pH P

w × l α LS |Q| σ2 Zones w × l α LS |Q| σ2 Zones

1×2 0.4 42 441 0.01 4 1×2 0.5 42 441 6.21 3

1×2 0.4 20 441 0.01 4 1×2 0.5 20 441 6.21 3

1×2 0.4 4 441 0.01 4 1×2 0.5 3 441 6.21 3

1×2 0.4 3 441 – – 1×2 0.5 2 441 – –

2×1 0.4 42 420 0.05 9 2×1 0.3 42 420 102.6 3

2×1 0.4 20 420 0.05 9 2×1 0.3 20 420 102.6 3

2×1 0.4 8 420 0.06 8 2×1 0.3 3 420 102.6 3

2×1 0.4 7 420 – – 2×1 0.3 2 420 – –

2×2 0.2 42 315 0.07 5 2×2 0.3 42 315 102.6 3

2×2 0.2 20 315 0.07 5 2×2 0.3 20 315 102.6 3

2×2 0.2 5 315 0.07 5 2×2 0.3 3 315 102.6 3

2×2 0.2 4 315 – 4 2×2 0.3 2 315 – –

3×3 0.1 42 150 0.02 2 3×3 0.2 42 150 53.07 3

3×3 0.1 20 150 0.02 2 3×3 0.2 20 150 53.07 3

3×3 0.1 2 150 0.02 2 3×3 0.2 3 150 53.07 3

3×3 0.1 1 150 – – 3×3 0.2 2 150 – –
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From Tables 2.4 and 2.5 we remark that if the minimal size of a zone drastically

affects the delineation of the zones. Indeed, if w×l is 3×3 for the Real Instance, then

it would be difficult for ILPMZ to find homogeneous zones for this field. The option

is either to reduce this minimum size of the zones or reduce the wished homogeneity

within the zones. Experts suggest that best delineations of management zones are

achieved with a homogeneity parameter α greater than 0.5. Therefore, it would be

better to reduce the minimum size of the wished zones than reducing parameter α.

Notice that the number of zones obtained by ILPMZ (last column) is not always

equal to LS which is the maximum number of zones that a farmer would want.

Table 2.6 presents the solution for the Large instance set. The main purpose is

to test the ILPMZ method on intances that have different sizes. The columns of this

table are as follows: number of the instance (first column), number of soil samples in

the width (WidthF ) and length (LengthF ) of the field, total number of soil samples

(fourth column), total number of quarters generated (fifth column), total time in

minutes for generating all the quarters (“Q time” column), loading time of the

model in seconds (“Loading time” column), and B&B time in seconds (last column).

For all instances the B&B is totally executed until the optimal solution is found. We

Table 2.6: ILPMZ applied to the set of large instances.

Instance WidthF LengthF # Samples |Q| Q time Loading time B&B time

1 6 7 42 588 0.03 0.63 0.33

2 10 10 100 3025 0.40 1.26 0.46

3 15 10 150 6600 1.33 4.71 2.67

4 15 15 225 14400 4.25 8.65 3.40

5 15 20 300 25200 18.30 31.15 19.95

6 20 20 400 44100 22.78 48.11 22.10

7 20 25 500 68250 54.40 92.51 41.26

8 25 25 625 105625 84.88 227.35 121.27

9 25 30 750 151125 174.05 415.82 223.95

10 30 30 900 216225 250.96 1852.54 193.66
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can say that the ILP model is very efficient since for the large instances it does not

take more than four minutes. The main issue is the loading time of the model which

contains all the information about the quarters of the field. Nevertheless, since this

ILPMZ is only needed at the beginning of the planning period, the total time is

reasonable. Notice that instance 9 is smaller in size than 10 but it is harder to solve

by the branch and bound (although, the magnitude order remains the same). This

behavior is frequent for integer linear programmings since an instance is not only

harder because of its size but also because of the parameters of the variables and

resources.

2.1.4 Conclusions of Section

Dividing the field into site-specific management zones is an interesting manner to face

within-field variability. Classical zoning methods, based on soil properties, have a

disadvantage: the zones have oval shapes which are not practical for the fertilization

machinery which is most of the times towed by a tractor.

In this work, we present a new zoning method that optimally delineates rect-

angular homogeneous management zones, using relative variance to guarantee the

homogeneity within the zones. Our ILPMZ method based on an integer linear pro-

gramming model can be efficiently solved even for a large fields.

Experimental results show that the ILPMZ method is efficient and practical

so it could be embedded in any decision system.
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2.2 A Crop Planning and Real Time Irrigation
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This research produced the article: Cid-Garcia, N. M., Bravo-Lozano, A. G., &

Rios-Solis, Y. A. (2014). “A crop planning and real-time irrigation method based on

site-specific management zones and linear programmng”. Computers and electronics

in agriculture, 107, 20-28.

Abstract

The spatial variability of the physical and chemical soil properties directly affects the

agricultural production planning. In this study, we present two mathematical models

that consider the physical and chemical site-specific management zones within the

parcels. The first model is for the crop planning problem. At the beginning of

the production cycle, it assesses the chemical and physical management zones to

determine the optimal crop pattern for maximizing the farmer’s expected profit.

The second model is a real-time irrigation method that takes the solution of the

crop planning problem as input. Then, at each irrigation period, it considers the

physical management zones and the humidity level of each parcel to determine in

real-time the optimal amount of water for each crop irrigation. This is especially

important in regions where droughts are frequent. We empirically show that our

methodologies are efficient on instances based on real data.

30
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2.2.1 Introduction

At the beginning of the production cycle, farmers must decide which crops they

are going to plant in each one of their parcels. It is one of the most complex

decisions since it is impacted by the spatial variability of the physical and chemical

soil properties within each parcel. Soil variability directly affects crop pattern choice

because it has a great impact on water balance, nutrient dynamics, and response

to the application of inputs (seeds and fertilizers). For example, if a parcel is rich

in nitrogen and phosphorus then planting maize or tomatoes could lead to higher

yields without using much fertilizer. However, if half of the parcel is poor in nitrogen

then the farmers may decide to fertilize only half of the parcel instead of fertilizing

it entirely.

Moreover, the crop planning decisions must also consider several factors as the

expected prices of crops yielded, the expected amount of available water for the

production cycle, the cost of irrigating a parcel (some parcels may be far away and

their irrigation may consume more electricity), the phenological stages of the crops,

the number of hectares in each parcel, the expected amount of resources, and so on.

In this paper we propose a methodology to help the farmers to consider all

these attributes to determine the optimal crop pattern to maximize the farmer’s

profit; we call this problem as the Crop Planning Problem (CPP). For this, the

farmers must first delineate chemical and physical management zones within their

parcels. A management zone is a sub-region of a parcel, which expresses a relatively

homogeneous combination of yield limiting factors, for which a single rate of a specific

crop input is appropriate (Ortega y Santibáñez, 2007; Al-Karadsheh et al., 2002;

McBratney et al., 2005). Managing fields as zones helps to reduce input costs (Moore

y Wolcott, 2000; Doerge, 1999). To facilitate the use of agricultural machinery,

these management zones should have a rectangular shape. Farmers can then use

the ILPMZ method proposed by Cid-Garcia et al. (2013) that efficiently creates

rectangular shape homogeneous management zones.
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The main chemical soil properties that a farmer might consider are: pH, organic

matter rate, phosphorus, and nitrogen4. The main physical soil properties are: field

capacity or permanent wilting point, which is based on the texture, structure, and

porosity of the field, and influences the movement and retention of water; air and

solutes in the soil, which impact plant growth and organism activity. All these

properties may be altered by management practices that are usually expensive. It is

therefore imperative to consider which zones need theses practices. Figure 2.7 shows

an example of the chemical and physical management zones (at the right hand side

of the figure) of three parcels (at the left hand side of the figure) determined by the

ILPMZ method. Notice that the number and size of the physical and chemical zones

are different for each parcel. In Chile, Ortega et al. (2002) have demonstrated that

the use of management zones based on soil properties, produce a positive impact on

vineyards and traditional crops.

Parcels

Physical Management Zones

Chemical Management Zones

Figure 2.7: Chemical and physical management zones of three parcels.

An important contribution of this study is to solve the CPP that considers

the chemical and physical management zones of the parcels to decide the optimal

crop pattern. Then at the beginning of each irrigation period, in order to decide the

optimal water irrigation level for each parcel, farmers need to consider a number of

4The properties suitable for a specific crop in Mexico are available in SAGARPA or in INIFAP.

In other countries they can be found in FAO.

http://www.sagarpa.gob.mx
http://www.inifap.gob.mx
http://www.fao.org
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factors: the physical management zones of their parcels; the crops planted in each

one; the phenological stages of the crops; the real-time humidity of the soil deter-

mined by sensors, and the available water. These decisions are crucial, especially in

arid and semiarid regions, since farmers seek to maximize total profit. We call this

the Real-Time Irrigation Problem (RTIP), and it is also a key contribution of this

paper.

Control strategies that locally modify the irrigation volumes must be adaptive

in order to use scarce resources more effectively (McCarthy et al., 2008; Smith et

al., 2009). The linear programming model we present for RTIP considers the yield

response to water shortages, the climate conditions, the evapotranspiration of the

crops in a specific geographical region, and the phenological stage of the crops. In

this manner, with RTIP we use only the necessary amount of water or, if there is

a water shortage, RTIP determines which parcels to fully irrigate, which ones must

be under deficit irrigation, and which ones will be lost, to optimize the allocation of

water resources.

This article is structured as follows. In the rest of this section we make a

brief literature review. Then in Section 2.2.2, CPP is presented together with its

mathematical model. The output of this problem serves as input for the model of

RTIP (Section 2.2.2). In Section 2.2.3, we show that our new approaches are efficient

with instances based on real data. Section 2.2.4 concludes this work. A summary of

the mathematical notation can be found in C and D.

Related literature

Sarker et al. (1997) propose a linear programming model to solve the CPP that

considers land type, alternative crops, crop patterns, input requirement, investment,

and output. Later, Sarker y Ray (2009) formulate a CPP as a multiobjective opti-

mization model. A major result of their work is that their algorithm delivers superior

solutions to the nonlinear version.
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Mainuddin et al. (1997) propose a crop planning model for an existing ground-

water irrigation. Adeyemo y Otieno (2010) present an evolutionary algorithm to

solve the multiobjective crop planning model: minimize the total irrigation water,

to maximize both the total net income from farming and the total agricultural out-

put. Itoh et al. (2003) consider crop planning under uncertainty.

In Casadesús et al. (2012); Xu et al. (2011); Hedley y Yule (2009); Hassanli et

al. (2009) the authors propose heuristics for scheduling irrigation plans according to

weather conditions, crop development, and other factors. A work that is closely re-

lated to ours is Alminana et al. (2010), where they present models and algorithms to

determine water irrigation scheduling by taking into account the irrigation network

topology, water volume, technical conditions, and logistical operations. McCarthy

et al. (2013) review the existing literature of advanced control process in irrigation.

Few works deal with both crop and irrigation problems as we do in this re-

search. Ortega Álvarez et al. (2004) propose a non-linear model solved by genetic

algorithms to identify production plans, and water irrigation management strategies.

They estimate crop yield, production and gross margin as a function of the irrigation

depth. Sahoo et al. (2006) propose fuzzy multiobjective linear programming models

for land-water-crop system planning. Reddy y Kumar (2008) present a multiobjec-

tive approach for the optimal crop pattern and operation policies for a multi-crop

irrigation reservoir system.

As we see from the literature review, there are several studies concerning CPP

or RTIP which use real-time information in their methodology from a great diversify

of technological devices, as humidity sensors, as we do in this work. However, few

approaches use this real-time information to feed mathematical models and execute

them in real-time too. This is an important characteristic because we can give to

farmer a response in real-time from the current conditions (weather, water, seeds,

etc.). Moreover, for both mathematical models, CPP and RTIP, we propose exact

solutions (optimal solutions) in an efficient period of time, instead of approxima-

tions. Many of the previous methods consider management zones but, to the best of
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our knowledge, this is the first approach which uses rectangular and homogeneous

physical and chemical management zones with mathematical programming.

2.2.2 Materials and Methods

In this section we present our methodologies for the crop planning problem (Sec-

tion 2.2.2) and real-time irrigation problem (Section 2.2.2).

We use the term field for the whole land that can be irrigated by a water well

or a dam. This field is made up of different parcels. In each parcel j a single crop i

is going to be planted. Each parcel j is subdivided into z management zones (see

Figure 2.8). All the management zones z of a parcel j must be planted with the

same crop i. This is by farmer requirements, as they prefer not to have more than

one crop in the same parcel. We could easily modify the model to plant a different

crop in each management zone if necessary.

Field

Parcel j

M
an

ag
em

en
t 

zo
ne

 z

Figure 2.8: Terms used in this article: field, parcel, and management zone.

Crop Planning Problem, CPP

The CPP problem decides which crops i to plant in different parcels j considering the

chemical and physical management zones of these parcels. The farmer’s objective is

to maximize the total expected profit given a limited expected water availability for

the production cycle.
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We propose a mixed integer linear programming (MIP) to solve CPP (see

Section A.5). The parameters of the MIP model for CPP are as follows. Let I be

the set of the different crops a farmer could plant, J the set of parcels of the farmer’s

field, ZCh(j) the set of chemical management zones within parcel j and ZPh(j) the

set of physical management zones within parcel j (see Figure 2.7) .

Below are the costs and benefits needed by CPP.

• Gi is the expected benefit of selling a tonne (tn) of crop i at the end of the

production cycle. This value varies each year and changes with respect to the

market place where the farmer sells.

• Cirrjz cost of irrigate one cubic meter (m3) of water in parcel j and physical

zone z ∈ ZPh(j). Indeed, there could be a higher cost of irrigating a distant

parcel or a zone with poor physical properties.

• Cseedi is the cost of buying a kilogram (kg) of seeds of crop i.

• Cplantijz is the cost of planting an hectare (ha) of crop i in parcel j and

chemical zone z ∈ ZCh(j).

The information known to the farmer about the field and crop characteristics is as

follows.

• haj is the number of ha of parcel j.

• hacjz and hapjz correspond to the number of ha in chemical management zone

z ∈ ZCh(j) of parcel j and physical management zone z ∈ ZPh(j) of parcel j,

respectively.

• Iseedi is the quantity of seeds in kg of crop i in the farmer’s stock.

• Seedi is the quantity of seeds in kg needed to plant a ha of crop i.

• Yi is the expected yield in tn by ha of crop i at the end of the production cycle.
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• Di is the demand in tn of crop i ∈ I0 ( I where I0 is a subset of the crop set I.

This is to model situations where a farmer is paid in advance for some yields

of a specific crop.

The MIP model for CPP has two parameters related to the water:

• W is the expected total amount of water in m3 for the whole production cycle.

• Wijz is the expected amount of water in m3 needed for irrigating a ha planted

with crop i in parcel j and physical management zone z ∈ ZPh(j).

To obtain parameter Wijz it is first necessary to calculate the total expected

amount of water, in m3 by ha, consumed by crop i planted in parcel j during the

whole production cycle. This information can be obtained from historic data or by

using the Penman-Monteith equation (Allen et al., 2006):

ETcvij = ETov ·Kcvij (2.9)

where ETcvij is the crop evapotranspiration that represents the amount of water

(in mm) required by the crop i at phenological stage v for parcel j, ETov is the

reference crop evapotranspiration that expresses the evaporating power of the atmo-

sphere (in mm) during phenological stage v. Kcvij is known as the crop coefficient and

its value change from crop to crop, phenological stage of the crop v, and geographic

location j.

However, each physical management zone z ∈ ZPh(j) has different amounts of

stored water (rain or previous irrigation). Therefore, the total expected amount of

water consumed by crop i in parcel j and physical management zone z ∈ ZPh(j)

throughout the production cycle (Wijz) is equal to the sum of the total expected

amount of water required by crop i in its vegetative cycle v (
∑

v ETc
v
ij) minus the

sum of the total stored water in parcel j in physical zone z ∈ ZPh(j) in the vegetative

cycle v (
∑

v SW
v
jz), see equation (2.10). The value of

∑
v SW

v
jz can be obtained from

moisture sensors (in m3 by ha) but the units of
∑

v ETc
v
ij are in mm. Therefore, to
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get the amount of water in m3 by ha, we divide
∑

v ETc
v
ij by 1,000 to convert its

value to meters, and finally multiply it by 10,000 (surface of a ha) which is equal to

10 ·∑v ETc
v
ij:

Wijz =

(
10 ·

∑

v

ETcvij

)
−
∑

v

SW v
jz. (2.10)

Notice that it is necessary to know the duration of the crop production cycle (days),

the duration of each one of the phenological stages, and the sowing date (month) to

get the value of ETcvij.

The main variables of the CPP integer linear programming model are xij .

These are equal to one if crop i is planted in parcel j, zero otherwise.

CPP requires another set of decision variable si related to the amount of seeds

that the farmer could buy of crop i in kg, i ∈ I. The ILP model for CPP is as

follows:

max
∑
i∈I

∑
j∈J

[
xij ·Gi · Yi · haj − xij

∑
z∈ZCh(j)

Cplantijz · hacjz

−xij

∑
z∈ZPh(j)

Cirrjz ·Wijz · hapjz
]
−∑

i∈I
si · Cseedi (2.11)

subject to: (2.12)

∑
i∈I

xij ≤ 1 j ∈ J (2.13)

∑
j∈J

∑
z∈ZCh(j)

Yi · hacjz · xij ≥ Di i ∈ I0 (2.14)

∑
j∈J

∑
z∈ZCh(j)

Seedi · hacjz · xij ≤ Iseedi + si i ∈ I (2.15)

∑
i∈I

∑
j∈J

[
∑

z∈ZPh(j)

Wijz · hapjz
]
xij ≤ W (2.16)

si ≥ 0,xij ∈ {0, 1} i ∈ I, j ∈ J

The first term in the objective function (2.11) represents the benefits of selling the

expected yields of each crop planted in each parcel. The second term corresponds

to the cost of planting the crops in each chemical management zone of each parcel

(it includes fertilizers and pesticides: approximately between 20% and 30% of the

production costs). The third term is about the irrigation costs per parcel and per
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physical management zone of the parcel. Finally, we have the cost of buying seeds.

We can say that (2.11) maximizes the total expected profit. Restrictions (2.13)

ensure a unique assignment of crop i to each parcel j. Restrictions (2.14) specify

that there are some crops i that must be planted in order to satisfy a certain demand

Di negotiated by the farmer before planting. Notice this is only for few crops in I0.

Restrictions (2.15) determine the amount of seeds needed and also the amount of

seeds that must be bought. Restrictions (2.16) establish that the expected amount

of water needed to irrigate the crops must be sufficient for the whole production

cycle.

The CPP is a NP-hard problem since a reduction of the Knapsack problem

(Garey y Johnson, 1979) is straight forward. However, in Section 2.2.3 we show that

this model is elegant enough to optimally solve real size instances by a branch-and-

bound algorithm in less than one second.

Real-Time Irrigation Problem, RTIP

The production cycle is divided into irrigation periods. At the beginning of each

irrigation period the farmer must take some decisions (specially if there is a drought):

which crops need to be irrigated optimally, which crops should be in deficit irrigation,

and which crops should not be irrigated (up until the point of allowing a crop to die)

in order to maximize the profit at the end of the production cycle. The aim of RTIP is

to determine the amount of water to be supplied to crops at each irrigation period,

according to their current water requirements, the climate, physical management

zones, phenological stage of the crops, the amount of water available at the irrigation

period, and the moisture content stored on the soil (humidity sensors are placed in

each one of the management zones of the parcels).

Before presenting the linear programming model (LP) for RTIP (see Section

A.2), we discuss the main parameters and matters concerning about the water re-

quirements and humidity sensors.
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Yield response to water

The crop water production function we use is based on the one given by the

FAO (Doorenbos et al., 1979):

Y apijz

Y ap−1ijz

= 1−Kypi
(

1−
ETapijz

W p
ijz · hajz

)
. (2.17)

We can specify each one of the factors of this equation, such that the only

unknown parameter is Y ap
ijz, which corresponds to the real yields of crop i in

parcel j, in physical zone z ∈ ZPh(J) at period p, i.e., the yield reached by crop at

the current irrigation period. To obtain this value, is necessary to know the yield

of crop in the last irrigation period. This parameter is specified by Y ap−1ijz , which

represents the yield reached by crop i, in parcel j, in physical zone z ∈ ZPh(J) in

the last irrigation period p. Only when p is the first irrigation period, Y ap−1ijz is the

harvested yield of crop i under an optimal growing environment, i.e., the crop yield

is not limited by water, nutrients, pests, nor diseases.

W p
ijz represents the maximum water requirements of a crop i in parcel j and

physical zone z ∈ ZPh(J) at period p. This value can be computed by equa-

tion (2.10), using only the vegetative stages up to the current irrigation period p.

ETapijz represents the current amount of water in crop i of parcel j in physical

zone z ∈ ZPh(J) at period p. This parameter corresponds to stored water in the soil,

SW p
jz, by rain or previous irrigation periods, plus the amount of water supplied in

the current irrigation period, wp
jz. The water level stored in each one of the physical

management zones of the parcels, before the current irrigation, is determined by a

moisture sensor in real-time (in this research we used WATERMARK 200SS-V. The

sensors are located in each physical management zone of the field, next to the roots

of the crops, and with their data it is easy to determinate the amount of stored

water, in m3 by ha.

Finally, response factor Kypi represents the relationship between water and

yield for crop i at irrigation period p. This value is crop specific and has different

http://www.irrometer.com/sensors.html
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values at each irrigation period p. In combination with the previous parameters, the

water production function (2.17) can be computed for each crop (more information

in Geerts y Raes (2009) or in Barnes et al. (2000)).

Figure 2.9 is a linear approximation of the expected yield of a crop with deficit

irrigation during its production cycle. The expected yield decreases with respect to

the crop coefficient, its vegetative stage, and the available water. For example, in the

firsts periods P1 and P2, the crop is optimally irrigated, therefore the expected yield

is still 100%. Nevertheless, in P3 and P5 the crop is not optimally irrigated (there

are water shortages) so the expected yield decreases and it will never recovered to

100% even if in later periods the crop is watered to optimal level. In this case, the

yield reached at the end of the production cycle will be 70% of the expected yield

at the beginning of the production cycle.

Ex
pe

ct
ed

 Y
ie

ld
 (

%
)

Irrigation period

100% 100%

100%
100%

100%

100%
90%

70% 70%

120

100

80

60

40

20

0

P1 P2 P3 P4 P5 P6

90%

Figure 2.9: Expected yield behavior of a crop with deficit irrigation.

Mathematical model for RTIP

At the beginning of each irrigation period, the farmer knows the volume of

available water. This volume may not be the expected one, therefore some crops

will not be optimally irrigated. With the RTIP the farmer would know which crops

to irrigate in order to obtain the best profit from the total crop yields. The additional

parameters needed to formulate the LP are listed below:
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• Gp
i expected benefit of selling a tn of crop i at the end of the production cycle

given that we are at period p. Indeed, this value is known at the beginning of

each irrigation period p but may vary from period to period.

• γ(j) = i is a function that indicates that crop i is sown in parcel j (this is

obtained from the solution of CPP).

• W p
ijz corresponds to the real amount of water in m3/ha that crop i needs in

physical management zone z ∈ ZPh(J) of parcel j at period p. It is trivial to

compute which vegetative stages v corresponds to crop i at period p, so we

omit cumbersome notation.

• SW p
jz is the amount of water in m3/ha that already exists in physical man-

agement zone z ∈ ZPh(J) of parcel j at the beginning of period p. This

information is retrieved from the humidity sensors in m3/ha.

• W p represents the amount of available water in m3 at period p.

• Kypi is the yield response factor of crop i at period p.

• Y ap−1ijz is the crop yield in tn/ha in physical management zone z ∈ ZPh(J) of

parcel j computed at the previous irrigation period p.

The variables of the LP model are wp
jz which corresponds to the amount of

irrigated water in m3 in physical management zone z of parcel j at period p, and

Y ap
ijz which corresponds to the current expected total crop yield in tn/ha achieved

in management zone z of parcel j computed after irrigation period p.

For each irrigation period p of the production cycle, the following LP must be

solved:

max
∑
i∈I
Gp
i

(
∑

{j|γ(j)=i}

∑
z∈ZPh(j)

hapjz · Y ap
ijz

)

subject to: (2.18)

Y ap
ijz = Y ap−1ijz

(
1−Kypγ(j)

(
1−

wp
jz + SW p

jz · hapjz
W p
ijz · hapjz

))
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i ∈ I, {j | γ(j) = i}, z ∈ ZPh(j) (2.19)

∑
j∈J

∑
z∈ZPh(j)

wp
jz ≤ W p (2.20)

wp
jz + (SW p

jz · hapjz) ≤ W p
ijz · hapjz

i ∈ I, {j | γ(j) = i}, z ∈ ZPh(j) (2.21)

∑
{j|γ(j)=i}

∑
z∈ZPh(j)

Y ap
ijz · happjz ≥ Di i ∈ I0 (2.22)

wp
jz,Y ap

ijz ≥ 0 j ∈ J, z ∈ ZPh(j)

The objective function reflects the fact that we are maximizing the total yield

revenues: the price per tn times the total number of ha times the current crop

yield (tn/ha), for all crops planted in the different parcels of the field. Restric-

tions (2.19) correspond to the yield response to the water function of Eq.(2.17).

Restriction (2.20) limits the amount of water that the farmer can use for this pe-

riod. Restrictions (2.21) indicate that the real amount of water ETapijz cannot exceed

the maximum (or optimal) amount of water W p
ijz required by crop i in parcel j in

physical zone z at irrigation period p. Restrictions (2.22) determine that the current

yield computed at period p of crop i ∈ I0. It must satisfy the demand negotiated

beforehand by the farmer.

RTIP’s linear programming has continuous variables, and therefore belongs to

the polynomial complexity class (Garey y Johnson, 1979). This means that it is

possible to solve this problem efficiently, as we show in Section 2.2.3.

2.2.3 Experimental Results

In this section we empirically show that the models for CPP (Section 2.2.3) and

RTIP (Section 2.2.3) are valid and efficient for problems of realistic magnitude.

Mathematical models for CPP and RTIP were solved using the General Al-

gebraic Modeling System (GAMS) with the optimizer CPLEX 12.2 of IBM (with

default options, except that the optimal criterion fixed at 0). The experiments were

executed on a Virtual Machine with Windows 7 fitted with 1 GB of RAM and a

http://www.gams.com/
http://www.gams.com/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
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processor Intel Core 2 Duo of 3.06 GHz running on a iMac equipped with the same

processor and 4 GB of RAM. Optimal solutions were reached in less than 1 second

for all instances of CPP or RTIP.

Crop Planning Problem

In this section we assesses the CPP model performance through four groups of in-

stances that differ in the number of parcels. Small instances have 10 parcels, Medium

have 50, Large have 100, and ELarge have between 1,000 and 20,000. For each one

of these sets, 10 different instances were generated based on real data. Each instance

has a set I of 19 possible crops to sow except for the ELarge instances that have 114.

The real sizes of the fields in Mexico are on average between the Small and Medium

instances. However, a few fields exist in Mexico with the size of the Large instances.

The only purpose of the ELarge instances is to assess the scalability of our approach.

The data relates to 19 crops grown during the spring-summer production cycle

in the state of Michoacán, Mexico in 2008, is presented in Table 2.7. The first and

second columns refers to the identification number (ID) and name of the crop i,

respectively. The third column shows the expected yield Yi of the crop i in tn/ha

at the end of the production cycle. This parameter is updated yearly by SIACON5,

INFOSIAP6, or SNIIM7. It can be obtained for each state, crop, and type of irrigation

system. The fourth column is the amount of seeds Seedi in unit/ha needed to sown

crop i. The term unit represents kg, plants, or packages of each crop seeds needed.

Sowing costs Cplanti in $/ha (obtained from INFOSIAP) and seed costs Cseedi in

$/unit of crop i (obtained from SNIIM or SIACON) are presented in the fifth and

sixth column, respectively. The expected benefit Gi of selling a tn of the crop i at the

end of the production cycle is showed in the seventh column. In Mexico this value

5The agri-food consultation information system (SIACON) about agriculture, livestock, and

fisheries; data are averages of last year.
6Agri-food and fisheries information system (INFOSIAP); data are averages of last year.
7National information system and market integration (SNIIM) of the Mexican ministry of econ-

omy.
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can be obtained from SIACON or from SNIIM. For other countries the information

can be obtained from FAOSTAT8. We assume that the demand Di to be satisfied

by the farmer is equal to zero for all crops, and the stock of seeds Iseedi, is also 0.

Table 2.7: Crop data from spring-summer cycle in the state of Michoacán, Mexico.

ID
Crop

Expected Seed Sowing Seed Expected

Yield Amount Cost Cost Benefit

(i ∈ I) (Yi) (Seedi) (Cplanti) (Cseedi) (Gi)

tn/ha unit/ha $/ha $/unit $/tn

1 Sesame TCS 0.60 4.00 2,318.00 10.00 13,681.80

2 Sesame TMF 0.50 4.00 8,117.91 10.00 13,681.80

3 Onion BMF 40.60 12,500.00 69,251.08 0.15 3,381.17

4 Green pepper BMF 24.70 12,500.00 106,121.91 0.15 4,923.99

5 Strawberry BMF 20.40 85,228,00 74,543.27 0.11 3,943.97

6 Strawberry GMF 20.40 85,228.00 48,533.07 0.11 3,493.97

7 Corn grain BCF 4.85 25.00 10,273.02 17.10 4,373.49

8 Corn grain BMF 5.38 25.00 10,013.49 17.10 4,373.49

9 Corn grain GCF 4.85 25.00 9,693.02 17.10 4,373.49

10 Corn grain GMF 5.38 25.00 10,668.41 17.10 4,373.49

11 Corn grain TCF 2.41 25.00 10,512.40 17.10 4,373.49

12 Sorghum grain BMF 8.31 3,24.00 12,022.65 1.50 3,491.25

13 Sorghum grain GMF 8.31 3,24.00 7,891.88 1.50 3,491.25

14 Sorghum grain TMF 4.71 3,24.00 6,674.43 1.50 3,491.25

15 Red Tomato BMF 38.10 12,500.00 75,259.74 0.56 2,171.99

16 Red Tomato GMF 38.10 12,500.00 74,440.68 0.56 2,171.99

17 Green Tomato BCF 16.20 12,300.00 50,574.63 0.15 3,416.17

18 Green Tomato BMF 17.80 12,300.00 41,867.90 0.15 3,416.17

19 Green Tomato TCF 2.70 12,300.00 34,056.14 0.15 3,416.17

The maximum number of chemical and physical management zones z per par-

cel j in all instances is a random number between 1 and 5 (this range has been given

by an agricultural expert that corresponds to farmer finding it impracticable to have

many zones in a parcel). The number of ha per chemical and physical management

8System of the statistics division of the food and agriculture organization (FAO).
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zone of each parcel hacjz and hapjz is a random number between 1 and 7. The

irrigation costs Cirrjz per physical zone for each one of the parcels j is uniformly

chosen between 1.8 and 2.2 (these parameters are based on real data from SIACON

or SNIIM). The parameters to compute Eqs. (2.9) and (2.10) were obtained from

FAO and INIFAP9.

Table 2.8 presents the experimental results of Small, Medium, and Large in-

stances for CPP and their comparison with the traditional method (TM) most often

used in practice (at least in Mexico), which is: plant the crop that generates the

maximum benefit such that the same crop cannot be cultivated in a parcel for more

than three consecutive cycles. The first column is the instance type. The number of

management zones in the field is in the second column, while the field surface (FS)

is in the third one. The fourth column is the expected amount of water for the whole

production cycle, established by the upper bound allowed by CONAGUA10: no more

than 6,000 m3 of water, per cycle, per ha. The “CPP” column shows the solution of

the ILP model and “TM” column shows the solution of the traditional method (total

profit in Mexican pesos MXN $). The seventh column is the percentage increase on

profit by using CPP instead of TM. Finally, the last column is the time (in seconds)

that the branch-and-bound algorithm needs to solve the ILP of CPP.

In Table 2.8, we see that farmers can increase their profits in at least 5.27%

using CPP, as compared to the traditional method. Considering that the total

expected benefits are around 520,000 dollars for the Small instances, this percentage

is substantial for farmers. This profit arises from CPP’s site-specific application of

nutrients in each management zone of the parcel. Moreover, with the traditional

method, a farmer cannot guarantee that the expected water will be sufficient while

in CPP we have already taken it into account.

9The Mexican national institute for forestry, agriculture and livestock (INIFAP).
10The Mexican national water commission (CONAGUA).
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Table 2.8: Experimental results of Crop Planning Problem (CPP) versus the Tradi-

tional Method (TM).

Instance Zones
FS Water CPP TM Increase Time

ha m3 $ $ % s

Small 1 38 150 900,000 8,771,266.70 8,191,359.79 6.61 0.171

Small 2 22 81 486,000 4,791,148.75 4,424,095.86 7.66 0.163

Small 3 21 82 492,000 4,846,297.81 4,590,747.87 5.27 0.168

Small 4 24 85 510,000 4,995,785.01 4,641,084.74 7.09 0.151

Small 5 35 155 930,000 9,094,239.54 8,449,174.77 7.09 0.162

Small 6 44 184 1,104,000 10,775,424.29 10,035,631.24 6.86 0.168

Small 7 39 177 1,062,000 10,417,072.47 9,678,911.01 7.08 0.156

Small 8 29 109 654,000 6,407,156.99 5,945,176.13 7.21 0.166

Small 9 31 148 888,000 8,725,180.10 8,084,161.63 7.34 0.173

Small 10 38 157 942,000 9,202,489.92 8,569,720.69 6.87 0.174

Medium 1 142 559 3,354,000 32,810,677.55 30,269,585.22 7.74 0.217

Medium 2 166 605 3,630,000 35,594,702.11 30,269,585.22 8.21 0.169

Medium 3 148 603 3,618,000 35,414,119.28 32,573,101.79 8.02 0.152

Medium 4 155 630 3,780,000 36,912,518.04 34,050,041.84 7.75 0.181

Medium 5 149 602 3,612,000 35,450,662.58 32,554,719.11 8.16 0.166

Medium 6 147 577 3,462,000 33,945,798.52 31,254,250.19 7.93 0.176

Medium 7 165 684 4,104,000 40,201,116.23 36,976,538.02 8.02 0.164

Medium 8 151 617 3,702,000 36,354,771.08 33,388,917.28 8.15 0.176

Medium 9 149 574 3,444,000 33,741,334.80 31,048,444.68 7.98 0.181

Medium 10 161 665 3,990,000 39,056,761.62 35,926,757.51 8.01 0.224

Large 1 283 1,107 6,642,000 65,025,451.21 59,920,420.35 7.85 0.177

Large 2 301 1,186 7,116,000 69,830,754.70 64,307,858.00 7.90 0.186

Large 3 316 1,250 7,500,000 73,526,772.16 67,701,296.51 7.92 0.385

Large 4 296 1,153 6,918,000 67,693,577.61 62,382,047.15 7.84 0.21

Large 5 318 1,298 7,788,000 76,199,527.44 70,347,748.19 7.67 0.182

Large 6 318 1,269 7,614,000 74,489,320.40 68,663,542.51 7.82 0.253

Large 7 279 1,152 6,912,000 67,614,304.96 62,327,357.54 7.81 0.185

Large 8 289 1,106 6,636,000 64,939,139.48 59,807,787.54 7.90 0.331

Large 9 301 1,124 6,744,000 66,004,727.06 60,896,244.00 7.73 0.186

Large 10 301 1,225 7,350,000 71,915,787.31 66,265,903.94 7.85 0.186
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We tested ELarge instances with CPP. We found that the resolution times are

never longer than one second. Therefore, even if we were crop planning for a whole

state or region, CPP would be able to offer exact solutions in a reasonable time. We

have not compared the solutions of CPP with TM for the ELarge instances because

not all of their parameters are based on real data.

In Tables 2.9 and 2.10, we modified the instance Small 2 to observe the model’s

behavior when the water parameters change and when there is a demand on certain

crop’s yields. Table 2.9 shows the behavior of CPP when water is progressively

reduced, and the farmer has not negotiated production for any crop. The first

column indicates the instance label. The second one shows the reduction made to

the total amount of water (originally set to 486,000 m3). The third column is the

maximum revenue and last column is the time (in seconds) of the branch-and-bound

algorithm takes to find a solution.

Table 2.9: Experimental results of CPP, based on instance Small 2, to see the effect

on farmer’s profit when a progressive reduction of water availability exist. In this

case, the farmer has not negotiated production for any crop.

Instance
Water reduction Max revenues Time

% $ s

Small 2 1 0 4,791,148.75 0.103

Small 2 2 10 4,791,148.75 0.101

Small 2 3 20 4,791,148.75 0.106

Small 2 4 30 4,791,148.75 0.111

Small 2 5 40 4,612,531.00 0.081

Small 2 6 50 3,904,648.80 0.020

Small 2 7 60 3,140,433.65 0.060

Small 2 8 70 2,371,206.90 0.081

Small 2 9 80 1,603,112.41 0.035

Small 2 10 90 771,504.10 0.027

Small 2 11 100 0.00 0.000

In Table 2.9 we observe that even if we reduce the amount of water by 30%

with respect to water available at the beginning of the production cycle, and we do
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not have demand for any crop, the solution remains the same as in Table 2.8. It

means that the optimal assignment of crops to parcels would not use all the available

water. But, if we reduce the amount of water by more than or equal to 40% the

water available at the beginning of the production cycle, we can see the impact on

the farmer’s profit.

Table 2.10 shows the behavior of CPP when water is progressively reduced

and the farmer has negotiated production for a crop. In this case the farmer has

negotiated 30 tn for crops 1, 4, 7, and 16 (sesame, green pepper, corn, and red

tomato), presented in Table 2.7. The first column indicates the label of the instance.

The second one shows the reduction made to the total amount of water (originally

set the by CONAGUA to 486,000 m3). Third column is the maximum revenue and

last column is the time (seconds) of the branch-and-bound algorithm.

Table 2.10: Experimental results of CPP, based on instance Small 2, to see the effect

on the farmer’s profit when a progressive reduction of water availability exist. In

this case, the farmer has negotiated 30 tn of production for sesame, green pepper,

corn, and red tomato.

Instance
Water reduction Max revenues Time

% $ s

Small 2 12 0 877,690.95 0.105

Small 2 13 10 877,690.95 0.119

Small 2 14 20 877,690.95 0.111

Small 2 15 30 -125,012.11 0.081

Small 2 16 40 -125,012.11 0.061

Small 2 17 50 No solution 0.031

Instance Small 2 12 shows the sizeable impact that previously negotiated de-

mands can have on the revenues. Notice that the second and third rows show that

the total amount of water is not the key constraint, since it is reduced by 10% and

by 20% without any impact on revenues. However, the fourth and fifth rows show

that reducing the amount of water between 30% and 40% where there is previously
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negotiated demand, may result in negative benefits. This is due several factors: the

costs of producing the crops are high (production costs, seed costs, irrigation costs)

or, crops with previously negotiated demand are very expensive to produce and do

not offer enough benefits. This negative value shows it is not profitable for the

farmer to produce these crops under these conditions. The last row indicates that if

available water is reduced by greater than or equal to 50% versus the water at the

beginning of the production cycle, the model indicates there is no solution. This is

because there is neither enough water nor resources to produce any crops.

Real-Time Irrigation Problem

The results of CPP are used as parameters to validate RTIP’s performance. So, in

this stage it is already known which crop i has been sown in parcel j. Now the

farmer must decide the amount of water to be supplied to each crop during each

irrigation period p to maintain its total expected yields at their maximum.

To illustrate how RTIP works, we will use the solution of instance Small 2 12.

In this instance the solution of CPP is to sow sesame TCS in parcels 1, 3, 6, 7, 8,

and 10; to sow onion TMF in parcel 2; to sow corn grain BCF in parcel 4; to sow

red tomato GMF in parcel 5; and to sow green pepper BMF in parcel 9, to obtain

an expected income of $877,690.95 at the end of the production cycle.

Table 2.11 presents the parameters needed for RTIP in instance Small 2 12 at

irrigation period 1. The first row is the yield response factor Kypγ(j) of crop γ(j) sown

in parcel j at irrigation period 1. This parameter is obtained from FAO. The last

row is the maximum expected yield Y ap−1ijz in tn/ha in each physical management

zone z ∈ ZPh(j) of parcel j (this value is provided by INIFAP, SIAP, SNIIM, or

FAO). This value is only used during the first irrigation period, in future periods

this value is updated with the model solution, Y apijz.

In instance Small 2 12 we evaluate six irrigation periods. We simulate a

drought during periods 3-5. The values of the existing water in the soil SW p
jz,
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Table 2.11: Parameters of RTIP at irrigation period 1 for instance Small 2 12.

Sesame Onion Corn Red Tomato Green Pepper

Kypγ(j) 0.30 0.45 0.40 0.40 1.10

Y ap−1ijz 0.60 40.60 4.85 38.10 24.70

are given by the humidity sensors. The amount of water required by crop i in each

physical management zone z ∈ ZPh(j) of parcel j at current irrigation period p,

ETcpijz, is calculated with Eqs. (2.9) and (2.10) using information from INIFAP.

Table 2.12 shows the final expected yields for each crop (columns 2-6) of in-

stance Small 2 12 after each irrigation period (first column), the percentage of irri-

gation water (column 7) with respect to the total available water (81,000 m3 for each

period), and farmer’s expected final profit (column 8) after each irrigation period.

Table 2.12: Expected yields by crop, % of water used for irrigation, and farmer’s

expected profit after each irrigation period.

Irrigation
Expected Yields (tn)

Water Profit
Period

Sesame Green Corn Red Onion

TCS pepper BMF grain BCF Tomato GMF TMF % $

1 30.00 98.80 33.95 114.30 690.20 53.40 3,627,366.19

2 30.00 98.80 33.95 114.30 690.20 53.40 3,627,366.19

3 30.00 98.80 30.00 114.30 464.60 100.00 2,847,269.31

4 30.00 98.80 30.00 114.30 329.80 100.00 2,391,531.03

5 30.00 36.39 30.00 41.65 291.52 100.00 1,796,976.97

6 30.00 36.39 30.00 41.65 291.52 61.10 1,796,976.97

RTIP complies with the established demand in the CPP (sesame, green pepper,

corn grain and red tomato) at the end of the production cycle. We can see that crops

with no initial demand are the most affected when there is not enough water, even

if these crops would have given more benefits to the producer, such as the onion.

Notice that during periods 1, 2, and 6 the farmer saved a significant percentage

of the available water, making the simulated drought less severe. In the first two

periods the crops were irrigated at the optimal level, so the farmer’s profit remained
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at 100%. However, periods 3, 4, and 5, required more water in each irrigation period.

This situation drove a decrease of 50.06% in the farmer’s final profit.

Fig. 2.10 shows the expected yield of each physical management zone after

each irrigation period. The X axis represents the parcels while the Y axis is the

expected profit expressed as a percentage. Periods 2 and 6 are not shown because

they remained the same as the previous period.
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Figure 2.10: Expected yield reached in each management zone after each irrigation

period.

During periods 1 and 2, the crops are in their initial phenological stages, mean-

ing all the crops can be irrigated at the optimal level. In period 3 there is not enough

water to irrigate all crops at the optimal level, so the expected yields of parcel 2 in

zones 2, 3, and 4, and the expected yields of parcel 4 in zone 4 decrease considerably.

Since there is not enough water to irrigate the crops at the optimal level on their

flowering and yield formation stages, the expected yields of parcel 2 in zones 2, 3,

and 4 decrease again at period 4. At period 5 the expected yield of parcel 2 in zones

2, 3 and 4, the expected yields of parcel 5 in zone 1, and the expected yields of



Chapter 2. Agricultural Planning 53

parcel 9 in zones 1 and 2 decrease considerably. At period 6 the crops are in their

final phenological stage and do not consume much water, meaning all of them can

be irrigated at the optimal level.

RTIP guarantees to supply only the amount of water needed to satisfy the crop

water requirements and helps the farmer when a severe drought arises by taking into

account the physical soil properties of the parcel, prices in the market, the current

climate, and the phenological stages of the crops.

2.2.4 Conclusions of Section

Soil diversity within agricultural production parcels is an important characteristic

that affects both the agricultural planning and water management processes. Divid-

ing the field into site-specific management zones, that take chemical and physical

soil properties into consideration, is an interesting critical way to face within-field

variability and improve the agricultural practices.

In this study, we present a new methodology based on mathematical models of

linear programming and site-specific management zones (chemical and physical) to

determine the optimal crop pattern and to decide in real-time the amount of water

to be used in crop irrigation at each irrigation period.

The use of site-specific management zones is a strategy that helps to determine

the crop pattern and the use of water in agricultural fields considering the crop

requirements in real-time. However, this activity represent an extra-cost (in effort

and investment) because it is necessary to have soil samples and to analyze them

to determine the soil properties of each parcel and their site-specific management

zones. The number of management zones in a parcel can be determined by several

factors as the homogeneity of parcel and the investment capital, just to name a few.

In this study, we assume that the site-specific management zones of each parcel has

been previously delineated. Also, it is nec- essary to invest in technology, as humidity

sensors, to monitor in real-time the crop requirements in each one of the management
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zones. All the previous factors represent an extra effort to farmer but, the profit of

the farmer at the end of the production cycle can increase considerably with respect

to the traditional method and, the costs of using site-specific management zones can

be negligible.
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In our models we use real-time information about crops and environment (tem-

perature, moisture level, solar radiation, wind, phenological stage of crops, etc.), and

they are solved optimally in less than a second with low computational requirements.

Experimental results show that the new methodology is efficient and practical

for used in a decision support system to improve agricultural planning processes.
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2.3 A Hierarchical Planning Scheme Based on

Precision Agriculture
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Abstract

The process for agriculture planning starts by delineating the field into site-specific

rectangular management zones to face within-field variability. We propose a bi-

objective model that minimizes the number of these zones and maximizes their

homogeneity with respect to a soil property. Then we use a method to assign the

crops to the different plots to obtain the best profit at the end of the production cycle

subject to water forecasts for the period, humidity sensors, and the chemical and

physical properties of the zones within the plot. With this crop planning model we

can identify the best management zones of the previous bi-objective model. Finally,

we show an efficient approach that at each irrigation turn decides how much and

which plots must be watered such to maximize the total final yields. This is a critical

decision in countries where water shortages are frequent. In this study we integrate

these stages in a hierarchical process for the agriculture planning and empirically

prove its efficiency.

56
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2.3.1 Introduction

Precision agriculture has modified the decision making tools used by the farmers in

order to plan their production cycle as well as their daily operation. Investing in

precision agriculture goods such as humidity sensors or soil samples is interesting

when farmers get not only tools for monitoring their fields but get a powerful hierar-

chical system that optimizes the benefits of the yields as the one we present in this

study.

One of the main aspects of precision agriculture is to provide farming manage-

ment methods to respond to within-field variability. Precision agriculture permits

the application in a site-specific manner of agronomic practices such as fertilization,

weed and pest control, as a function of the information compiled from collected field

data.

Physical and chemical soil properties make the soil suitable for agricultural

practices. Texture, structure, and porosity influence the movement and retention

of water, air and solutes in the soil, which subsequently affect plant growth and

organism activity. Chemical soil properties affect nutrient availability and growing

conditions (McCauley et al., 2005). All this properties may be altered by manage-

ment practices that are usually expensive so it is imperative to determine which

zones of the plots need theses practices.

The first problem farmers face (see Figure 2.11) is how to delineate management

zones within the plots before planting the crops to improve the overall yield. More

precisely, a management zone is a sub-region of a plot that is relative homogeneous

with respect to soil parameters, and for which a specific rate of agricultural inputs

is needed (Roudier et al., 2008). For this, soil samples are taken and then analyzed.

One of the main contributions of this work is a model that takes as input the soil

samples and delineates the minimum number of rectangular management zones such

that the homogeneity within the obtained zones is maximized. Indeed, tiny man-

agement zones even if they are rectangular are difficult to operate by agriculture
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machinery. Therefore, a main issue that is solved in this work is to have the largest

management zones that are the most homogeneous possible. We name our method-

ology as Minimization of Rectangular and Homogeneous Management Zones

(R&H-MZ). Two types of management zones are obtained depending of the soil

property used during the delineation method: physical and chemical management

zones.

Irrigation Planning

Irrigation Period 1Irrigation Period 2Irrigation Period 3

Parcels
Crop

Planning

Physical R&H-MZ

Chemical R&H-MZ

Plots
Crop 

Planning

Real-Time Irrigation 

Irrigation Period 3 Irrigation Period 2 Irrigation Period 1

Physical R&H-MZ

Chemical R&H-MZ

Figure 2.11: Hierarchical agriculture planning method HAP.

The second problem encountered by farmers is to select the crops that they

are going to sow into their plots considering the previously delineated management

zones. For example, if a plot has several management zones with high amount of

phosphorus and nitrogen then probably it would be better to plant tomatoes or

maize because they would save in fertilizers. This problem is known as the Crop

Planning Problem (CPP). It becomes quickly a hard problem since there are

many parameters to take into account.

Once the CPP problem has been solved and the selected crops are already

planted, the decisions the farmers must take are mainly about the optimal amount of
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water that has to be irrigated to the plots at each irrigation period (see Figure 2.11).

This is another hard problem, named as the Real-Time Irrigation Problem

(RTIP), and it considers the phenological stages of the crops, the soil properties of

the management zones, the data from the humidity sensors, the evapotranspiration

factors, and the previous irrigation decisions. When a drought arises and the total

amount of water is not sufficient to irrigate all the crops to optimality the RTIP

decides which crops must be under deficit irrigation or even without irrigation in

order to maximize the total final benefits at the end of the production cycle.

In this work we propose an approach we name as Hierarchical Agriculture

Planning (HAP) for helping the decision makers (the farmers) to plan and operate

their plots avoiding wastage and maximizing their benefits. The importance of an

hierarchical approach resides on the fact that one stage needs as input the results of

the previous one.

HAP is composed by a new bi-objective mathematical model that improves the

method proposed by Cid-Garcia et al. (2013) to solve R&H-MZ methodology since

it considers both the minimum number of management zones and the maximum

homogeneity within these zones. One of the contributions of this work is to use the

CPP methodology of Cid-Garcia et al. (2014) as a criterion to help the farmer chose

between the set of proposals that arise from R&H-MZ. As mentioned, with CPP

the farmer obtains an optimal crop pattern. After the crops have been planted on

the parcels, HAP takes hand of the real-time irrigation method proposed RTIP by

Cid-Garcia et al. (2014) (see Figure 2.11).

As mentioned by Bitran y Hax (1977), to provide effective managerial support

for decisions related to production planning, it is useful to partition the set of de-

cisions into a hierarchical framework as we propose in the HAP. Indeed, strategical

higher level decisions (management zones) impose constraints on tactic lower level

actions (crop planning and real-time irrigation), and lower level decisions provide

the necessary feed-back to evaluate higher level actions for future production cycles.
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The rest of the work is organized as follows. Section 2.3.1 is devoted to related

scientific literature. In Section 2.3.2 we present the R&H-MZ methodology. In Sec-

tion 2.3.3 we present the Crop Planning Problem and how to use it as a discriminator

between the set of solutions given by R&H-MZ. In Section 2.3.4 is summarized the

Real-Time Irrigation Problem. In Section 2.3.5 we empirically test the R&H-MZ

methodology together with the HAP approach on a real instance. Finally, Section

2.3.6 concludes the study.

Literature Review and Terminology

Most of the approaches in literature for determining management zones are based

on clustering algorithms. Many of them are based on soil samples information like

in our case. For example, Fraisse et al. (2001) and Schepers et al. (2004) use soil and

relief information, Carr et al. (1991) base their zoning on topographic maps while

methods of Bhatti et al. (1991), Mortensen et al. (2003), or Mulla (1991) need soil

sampling. Other approaches are based on yield maps, combining data from several

seasons like in Blackmore (2000), Diker et al. (2004), and Pedroso et al. (2010). Some

other clustering methods combine soil samples and yield maps: Franzen y Nanna

(2003), Hornung et al. (2006), Hornung et al. (2003), and Whelan et al. (2003). In

Roudier et al. (2008) they use a watershed segmentation algorithm where the user

can introduce morphologies of the desired zones.

Usually, K-means or Fuzzy K-means methods are used for the classification

like in Jiang et al. (2011), Li et al. (2005), and Ortega et al. (2002), or principal

component analysis with a cluster method (Ortega y Flores, 1999). Nevertheless,

the choice of the data layers processed by the clustering is an issue as mentioned by

Jaynes et al. (2005). Moreover, the resulting fragmentation of the oval shaped zones

due to clustering methods is not an appealing solution for farmers as pointed out by

Frogbrook y Oliver (2007), Li et al. (2005), and Simbahan y Dobermann (2006).

Indeed, to the best of our knowledge, Cid-Garcia et al. (2013) are the first
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to propose a management zone delineation method that directly gives rectangular

shape zones. This is important since most of the fertilizing agricultural machinery

is towed by tractors. Moreover, most of the irrigation systems are designed in a

rectangular pattern. In this work, we improve the results of Cid-Garcia et al. (2013)

since instead of minimize the variance between the fields, we minimize the number

of zones. Additionally, we maximize the homogeneity within the management zones.

This gives a bi-objective model that offers more practical solutions for the farmers.

In terms of crop planning, Sarker et al. (1997) propose a linear programming

model considering land type, alternative crops, crop patterns, input requirement,

investment, and output. Nevertheless, they do not take into account that the water

is a restriction as we do in this work. Later, Sarker y Ray (2009) formulate a crop

planning problem as a multiobjective optimization model. Mainuddin et al. (1997)

propose a crop planning model for an existing groundwater irrigation. Nevertheless,

they do not consider the use of humidity sensors as we do in this work. Adeyemo

y Otieno (2010) present evolutionary algorithm to solve the multiobjective crop

planning model: minimize the total irrigation water, to maximize both the total net

income from farming and the total agricultural output. Contrary to our research,

water availability is not a restriction.

Ortega Álvarez et al. (2004) propose a non-linear model solved by genetic

algorithms to identify production plans, and water irrigation management strategies.

They estimate crop yield, production and gross margin as a function of the irrigation

depth. In our work, the yields also depend of the irrigation depth but we manage

to have linear restrictions. Moreover, we use real time data for the irrigation stage.

Sahoo et al. (2006) propose some fuzzy multiobjective linear programming models for

land-water-crop system planning. Reddy y Kumar (2008) present a multiobjective

approach for the optimal cropping pattern and operation policies for a multi-crop

irrigation reservoir system. These authors do not consider water shortages since they

try to maximize the yields and to minimize the water.

In Casadesús et al. (2012), Hassanli et al. (2009), Hedley y Yule (2009), and Xu
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et al. (2011) authors propose schedule irrigation plans according to weather condi-

tions, crop development, and other factors. In this work we propose a mathematical

model instead of heuristics. In Alminana et al. (2010) they present models and algo-

rithms to determine water irrigation scheduling by taking into account the irrigation

network topology, the water volume, technical conditions, and the logistical opera-

tions. Their models do not use the real time information of humidity sensors like we

do in this research.

We use the term field for the whole of land that can be irrigated by a water

well or a dam. This field is made up of different plots. In each plot a single crop is to

be planted. Each plot is subdivided into physical and chemical management zones

(see Figure 2.12). Notice that all the management zones of a plot must be planted

with the same crop.

Field

Parcel Management 
zone

Field

Plot
Management

zone

Figure 2.12: Terms used in this article: field, plot, and management zone.

2.3.2 Rectangular and Homogeneous Management Zones

At the begin of the production cycle two delineations of rectangular and homoge-

neous management zones are made for each one of the plots. The first one uses

chemical soil properties and the second one physical soil properties.
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The delineation with chemical soil properties is used to determine the expected

amount of nutrients (fertilizers, pesticides, etc.) that the crops require in the whole

production cycle, while the delineation with physical soil properties is used to deter-

mine the expected amount of water required by the crops in the whole production

cycle and the amount of water required by the crops during each irrigation period,

respectively.

The R&H-MZ methodology proposed in this work improves the one of Cid-

Garcia et al. (2013) since we present a bi-objective problem where the number of

rectangular management zones is minimized and the homogeneity within the zones

is maximized. R&H-MZ methodology consists of two main stages:

a) Instance generation. In this stage, we process the information from the soil

samples that have been taken from the field. These soil samples are approx-

imately equidistant in the field (a GPS detects their position). Then, they

are labeled and their positions are translated into the first quadrant of the

Cartesian map. Next, the information about each soil property is registered

(pH, organic matter rate (OM), amount of phosphorus (P), sand, field capac-

ity, permanent wilting point, etc.). Soil texture is considered among the most

important physical properties and it corresponds to the proportion of three

mineral particles (sand, silt, and clay). Then, all the quarters (or potential

zones) are computed together with their variances (more details about this

stage are given below).

b) Mathematical model. With the input of stage a), we propose a bi-objective

Integer Linear Programming (BILP) (see Section A.6). The aim of the BILP

is to find the minimum set of rectangular management zones such that they

cover the whole field and at the same time this set is the one that maximizes

the homogeneity within the selected management zones. BILP has a set of

optimal solutions that are a trade-off between the two objectives. This set (or

Pareto front) is exactly obtained by an ε-constraint algorithm.
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We now describe these two stages in more details. Soil diversity in the field

can be observed from a thematic map of a certain property (here we use MapInfo

with the default grid and the inverse distance weighting interpolator).

In Figure 2.13 is presented the thematic map of a real plot using phosphorus

as chemical soil property and the label of each soil sample (in this case we have 40

soil samples). In the thematic map we can see the regions at optimal level.

Organic Matter (OM) Phosphorus (P)

34.80% above
optimal level.
3.97% above.
optimal level

Optimal level.

3.97% below

6.06% below
optimal level.

optimal level.

27.31% above
optimal level.
10.34% above
optimal level.

Optimal level.

13.79% below

48.27% below
optimal level.

optimal level.

Phosphorus (P)

27.31% above 
optimal level.

10.34% above 
optimal level.

Optimal level.

13.79% below 
optimal level.

48.27% below 
optimal level.

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40

Figure 2.13: Thematic map of phosphorus of a real plot. The numbers indicate the

label of each soil sample.

The thematic map help us to determine the smaller management zone allowed,

MinWidthQ×MinLengthQ, where MinWitdthQ is the number of samples in the

width of the smaller zone and MinLengthQ is the number of samples in its length.

If the diversity of the soil property is high then the zones should be relatively small

(one sample width by one sample length in the worst case).

Once the minimum size of a zone is set, we enumerate all the possible man-

agement zones (or quarters) that could be created in this plot. Notice that the soil

samples included inside of each potential zone is know. The search of potential zones

can be done in Ω(WidthF × LengthF ) where WidthF is the number of samples in

the width of the field while LengthF is the number of samples in its length.

An illustration is given in Figure 2.14. The left hand side of this figure shows
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a plot with nine samples (each one with its label). On the right side, all potential

zones are labeled. For this example, we have a total of 36 rectangular quarters

(generated by Algorithm 2 presented below). Each quarter shows which samples are

included on it, e.g. quarter 1 include only the sample 1 but quarter 30 include the

samples 4 to 9.
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Figure 2.14: The 36 potential management zones or quarters of a plot.

The soil samples are almost equidistant, in our example four soil samples (two

width for two long) are needed to cover an ha but this number can change accord-

ing to the farmer’s requirements. The total number of potential zones |Z| can be

computed by the following formula:

|Z| =
(
WidthF−MinWidthQ+1∑

i=1

i

)(
LengthF−MinLengthQ+1∑

j=1

j

)
.

The determination of all possible management zones is implemented by Algo-

rithm 2 from Cid-Garcia et al. (2013). The input of this algorithm is the soil samples

data, the number of samples in the width of the plot (WidthF ), the number of sam-
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ples in the length of the plot (LengthF ), the minimum quantity of samples the width

of a quarter must contain (MinWidthQ), and the minimum quantity of samples the

length of a quarter must contain (MinLengthQ). The algorithm starts creating the

smallest quarters width wise. Then it checks if there is still some width to cover.

After, it checks the length.

Algorithm 2 Quarters generation of a plot.

1: INPUT: WidthF , LengthF , MinWidthQ, MinLengthQ, soil samples

2: for j = MinWidthQ To WidthF do

3: for l = 0 To (WidthF − 1) do

4: if (j + l) ≤ WidthF then

5: for i = MinLengthQ To LengthF do

6: for k = 0 To (LengthF − 1) do

7: if (k + i) ≤ LengthF then

8: creation of a new quarter

9: end if

10: end for

11: end for

12: end if

13: end for

14: end for

The result of Algorithm 2 is a correspondence matrix C = {czs}, where czs = 1

if quarter with label z covers sample point with label s, czs = 0 otherwise. Once all

the potential quarters are determined, we compute the variance of a particular soil

property for the set of the samples included in each potential quarter. For example,

a quarter that only covers a soil sample would have a variance of 0. A quarter

that covers three soil samples would have the variance computed from these three

samples. Also, there would be a quarter that covers all soil samples (i.e., there is

only one zone that is equal to the plot).

For an example about this instance generation stage see Section 2.3.5. Next
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stage is the mathematical model that requires the correspondence matrix of the

potential quarters together with their variances. For this purpose, let Z be the set

of potential quarters and S the set of soil samples of the field (|S| = N). Each

quarter z has nz soil sample points. Farmers do not wish to have tiny management

zones because of their machinery, so let LS be the maximum number of zones in the

field while LI is the minimum one.

The set of decision variables of the BILP model is:

qz =





1 if quarter with label z is chosen,

0 otherwise.

The main idea is to cover the plot by a set of non overlapping quarters. To guarantee

a homogeneous zoning delineation we use the relative variance since it has been

proved to be a high quality criterion to measure the efficiency of a zoning method

(Ortega y Santibáñez, 2007; Cid-Garcia et al., 2013). Suppose a set of quarters

Q ⊂ Z is already selected, then the relative variance of Q is RV (Q) = 1−
∑

z∈Q σ
2
wz

σ2
T

,

where σ2
T is the total variance of all the field and sum of the σ2

wz
is the variance within

each z ∈ Q defined as follows:

∑

z∈Q

σ2
wz

=

∑
z∈Q(nz − 1)σ2

z

N − |Q| . (2.23)

Numerator in (2.23) considers the number of samples nz in quarter z (minus one

degree of freedom) as a weight and the denominator takes into account the number

of selected quarters (total number N minus the number of quarters |Q|). Therefore,

we have the following equation where variable α ∈ [0, 1] must be maximized to have

the highest homogeneity within the management zones:
(

1−
∑

z∈Z(nz − 1)σ2
zqz

σ2
T

[
N −∑z∈Z qz

]
)
≥ α. (2.24)

The BILP model to determine the best management zones for a plot is as

follows:
{

min
∑

z∈Z

qz,maxα

}
(2.25)
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s.t.
∑

z∈Z

czsqz = 1 ∀s ∈ S (2.26)

∑

z∈Z

qz ≤ LS (2.27)

∑

z∈Z

qz ≥ LI (2.28)

(
1−

∑
z∈Z(nz − 1)σ2

zqz

σ2
T

[
N −∑z∈Z qz

]
)

≥ α (2.29)

α ∈ [0, 1], qz ∈ {0, 1} ∀i ∈ I

Bi-objective function (2.25) minimizes the sum of the chosen zones (or potential

management zones) and maximizes the homogeneity within each management zones

(value of α). Restrictions (2.26) ensure that every point sample s is covered by only

one zone, i.e., the whole filed is partitioned into non overlapping zones. Constraints

(2.27) and (2.28) limit the number of zones in which the plot will be partitioned.

Restriction (2.29), which can be easily linearized, corresponds to the relative vari-

ance.

In Section 2.3.5 we prove that the objective functions considered by BILP

are conflicting. For the kind of bi-objective problems as BILP, there are many

solution that optimize both objectives. The set of non-dominated solutions (for non-

dominated solution there are not other solutions that improve an objective without

worsening the other one) represents the trade-off set satisfying both objectives. This

trade-off curve is known as the Pareto front and we compute it using the ε-constraint

method (Marler y Arora, 2004a; Ehrgott, 2005). This ε-constraint method optimizes

one of the objective functions using the other one as constraint of the model. In our

case we have if we apply the ε-constraint method we get the following problem for

an α that is fixed and not anymore a decision variable.

min
∑

z∈Z qz

subject to: (2.26)− (2.28) (2.30)(
1−

∑
z∈Z(nz−1)σ2

zqz

σ2
T [N−

∑
z∈Z qz]

)
≥ α

qz ∈ {0, 1} ∀i ∈ I
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By using a parametrical variation of the values of α the efficient solutions of the

problem can be obtained. Indeed, in our case α acts as the ε of the method.

Once that we have the Pareto front, the next step is to choose a solution from

it that satisfies the farmer’s requirements and that guarantees the wished homogene-

ity within each zone. Experimental results of this bi-objective model in HAP are

presented in Section 2.3.5.

2.3.3 Crop Planning Problem and Selection of the Best

Management Zones

We first summarize the CPP problem presented in Cid-Garcia et al. (2014) and then,

in Section 2.3.3, we show how to use it in order to select the best solution among

the Pareto front obtained by R&H-MZ.

Crop Planning Problem

After the chemical and physical management zones have been obtained by R&H-

MZ, the second decision in HAP is which crops i to plant in the different plots j

by taking into account the soil properties of the physical and chemical management

zones that were previously delineated. In this section we present a mixed integer

linear programming (MIP) to solve CPP (see Section A.4) which improves the model

presented in Cid-Garcia et al. (2014) since it introduces the chemical and physical

management zones of the plots.

Let I be the set of the different crops a farmer could plant, J the set of plots of

the farmer’s field, ZPh(j) the set of physical management zones within plot j while

ZCh(j) the set of chemical management zones of j. The data set we use for the MIP

mathematical model is described in the following list.

• Gi is the expected benefit of selling a ton (tn) of crop i at the end of the

production cycle.
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• Cirrjz is the cost of irrigating one cubic meter (m3) of water in plot j and

physical zone z ∈ ZPh(j).

• Cseedi is the cost of buying a kilogram (kg) of seed of crop i.

• Cplantijz is the cost of planting an hectare (ha) of crop i in plot j, and chemical

management zone z ∈ ZCh(j).

• haj is the number of ha of plot j.

• hacjz corresponds to the number of ha in chemical management zone z ∈
ZCh(j) of plot j.

• hapjz corresponds to the number of ha in physical management zone z ∈
ZPh(j) of plot j.

• Iseedi is the quantity of seeds in kg of crop i in the farmer’s stock.

• Seedi is the quantity of seeds in kg needed to plant a ha of crop i.

• Yi is the expected yield in tn by ha of crop i at the end of the production cycle.

• Di is the demand in tn of crop i ∈ Ī ( I where Ī is a subset of the crop set I.

This is to model situations where a farmer is payed in advance for some yields

of a specific crop.

• W is the expected total amount of water in m3 for all the production cycle.

• Wijz is the expected amount of water in m3 needed for irrigating a ha planted

with crop i in plot j in physical management zone z ∈ ZPh(j).

Parameter Wijz can be obtained either by historic data or by deriving it from the

Penman-Monteith equation (Allen et al., 2006):

ETcvij = ETov ·Kcvij (2.31)

where ETcvij is the crop evapotranspiration that represents the amount of water (in

mm) required by crop i at phenological stage v for plot j, ETov is the reference
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crop evapotranspiration that expresses the evaporating power of the atmosphere (in

mm) during phenological stage v. The crop coefficient Kcvij values change from crop

to crop, phenological stage of the crop v, and geographic location j. Then, total

expected amount of water consumed by crop i planted in plot j and situated in

physical management zone z ∈ ZPh(j) throughout the production cycle (Wijz) is

the sum of all the expected amount of water required by crop i planted in plot j for

each vegetative stage v (ETcvij) minus the sum of all the stored water in plot j in

physical management zone z ∈ ZPh(j) at each vegetative stage v (SW v
jz):

Wijz =

(
10
∑

v

ETcvij

)
−
∑

v

SW v
jz. (2.32)

The assignment variables for the CPP integer linear programming model are:

xij =





1 if crop i is planted in plot j,

0 otherwise.

Finally, variables si correspond to the amount of seeds the farmer must buy of crop i

in kg, i ∈ I.

max
∑
i∈I

∑
j∈J

[
xij ·Gi · Yi · haj − xij

∑
z∈ZCh(j)

Cplantijz · hacjz

−xij

∑
z∈ZPh(j)

Cirrjz ·Wijz · hapjz
]
−∑

i∈I
si · Cseedi (2.33)

subject to:
∑
i∈I

xij ≤ 1 j ∈ J (2.34)

∑
j∈J

∑
z∈ZCh(j)

Yi · hacjz · xij ≥ Di i ∈ Ī (2.35)

∑
j∈J

∑
z∈ZCh(j)

Seedi · hacjz · xij ≤ Iseedi + si i ∈ I (2.36)

∑
i∈I

∑
j∈J

[
∑

z∈ZPh(j)

Wijz · hapjz
]
xij ≤ W (2.37)

si ≥ 0,xij ∈ {0, 1} i ∈ I, j ∈ J

Objective function (2.33) maximizes the total expected benefits: first term represents

the benefits of selling the expected yields of each crop planted in each plot, second

one corresponds to the cost of planting the crops in each one of the plots (it includes
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fertilizers and pesticides that each chemical management zone would require), third

term is about the irrigation costs per plot and per physical management zone, finally,

we have the cost of buying seeds.

Restrictions (2.34) guarantee unique assignment of a crop i to each plot j.

Restrictions (2.35) specify that there are some crops i that must be planted in order

to satisfy a certain demand Di but only for crops in Ī ⊂ I. Restrictions (2.36)

determine the amount of seeds needed and also the amount of seeds that must be

bought. Restrictions (2.37) establish that the expected amount of water needed to

irrigate the crops must be sufficient for the whole production cycle.

Notice that we are supposing that any crop i can be planted on any plot j. In

the case where some crops could not be planted in a specific plot (due to soil cycles,

or experience) we could easily introduce the notation J(i) corresponding to the set

of plots where i can be planted and analogously, I(j) would be the set of crops that

can be planted on plot j.

The CPP is a NP-hard problem which has a MIP that is elegant enough to

optimally solve real size instances by a branch-and-bound algorithm in less than one

second as it can be seen in Section 2.3.5.

Selection of the Best Management Zones

After the Pareto front has been obtained by R&H-MZ, the next step is to select

the best delineation of chemical and physical management zones in each plot of the

farmer’s field, that is, the delineation that gives the best profit at the end of the

production cycle.

It is difficult for the farmer to establish a criterion to chose between a delin-

eation with α = 0.7 or α = 0.5 (Ehrgott, 2005). Therefore, we execute CPP for each

solution of the Pareto front of R&H-MZ and selected the management zones that

gives the best farmer profit.
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Figure 2.15 shows an example about this procedure. We show the delineation

resulting of R&H-MZ for a plot using α values of 0.5, 0.7, and 0.9. After executing

CPP, we obtain that the best delineation is obtained with alpha value of 0.5. This

manner, the farmer does not have to specify a way of discriminating the solutions

in the Pareto front, the HAP procedure does it for the farmer.

Plot Soil diversity

Management zones

Organic Matter (OM) Phosphorus (P)

34.80% above
optimal level.
3.97% above.
optimal level

Optimal level.

3.97% below

6.06% below
optimal level.

optimal level.

27.31% above
optimal level.
10.34% above
optimal level.

Optimal level.

13.79% below

48.27% below
optimal level.

optimal level.

α = 0.5 α = 0.7 α = 0.9

α = 0.5 α = 0.7 α = 0.9

α = 0.5 α = 0.7 α = 0.9

α = 0.5 α = 0.7 α = 0.9Best 
Management zone

! = 0.5

! = 0.7

! = 0.9

! = 0.5

Figure 2.15: Selection of the best management zone.

2.3.4 Real-Time Irrigation Problem

Suppose that a drought arises once the crops have already been planted in the plots.

How to choose the crops that need to be irrigated to optimality, the crops that would

be in deficit irrigation, and the crops that would not be irrigated at all (until the

point to let a crop die) in order to maximize the benefits at the end of the production

cycle?

The production cycle of each crop is divided in different irrigation periods, then,

at the beginning of each irrigation period the farmer must decide how much water

must be assigned to each plot according to their water requirements in real time, to
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maintain the maximum crop yield at the end of the production cycle. For this, we

use the information of water sensors placed in each one of the physical management

zones of the plots. Notice that the aim is to have the maximum possible yields at

the end of the production cycle considering that each crop has different vegetative

cycles and different needs of water. If there are no water shortages, the crops must

be irrigated to optimality. If there are water shortages, then the farmer needs to

decide which crops is better to put under deficit irrigation.

The crop water production function (Doorenbos et al., 1979) is given by

Y apij
Y mp

ij

= 1−Kypi


1−

∑

z∈ZPh(J)

ETapijz
ETcpijz


 (2.38)

where the only unknown parameter is Y apij that corresponds to the real yields of

crop i planted in plot j at period p. Y mp
ij is the maximum yield reached by crop i

in parcel j at last irrigation period p. When p is the first irrigation period Y mp
ij is

the harvested yield of crop i under an optimal growing environment, i.e., the yield

of the crop is not limited by water, nutrients, pests, nor diseases.

ETcpijz represents the maximum water requirements of crop i in plot j and

physical management zone z ∈ ZPh(j) at period p. This is expressed by the sum

of all the rates of evapotranspiration in mm per phenological stage v since the

last irrigation period minus the sum of all the amount of stored water in plot j

in physical management zone z ∈ ZPh(j)of each vegetative stage v since the last

irrigation period p (Allen et al., 2006). This value can be computed by equation

(2.31) presented in Section 2.3.3. Based on equation (2.32), the amount of water in

m3/ha needed by crop i planted in physical management zone z ∈ ZPh(j) of plot j

for irrigation period p is

ETcpijz =


10

∑

v(p)

ETcvij


−

∑

v(p)

SW v
jz. (2.39)

where v(p) represents all the vegetative stages in irrigation period p.

ETapijz represents the amount of stored water in the soil of plot j in physical

management zone z ∈ ZPh(j) at current irrigation period p plus the amount of
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water supplied at current irrigation period. The water level stored in each one of the

physical management zones of the plots, before the current irrigation, is determined

by a moisture sensor in real time.

Response factor Kypi represents the relationship between water and yield for

crop i. These values are crop specific and have different values at each irrigation

period p.

At the beginning of each irrigation period, the farmer knows the volume of

available water. This volume may not be the expected one, therefore some crops are

not going to be optimally irrigated. For each irrigation period p a Linear Program-

ming (LP) must be solved to obtain the amount of water to be irrigated in each

physical management zone to maximize the expected total benefit (see Section A.2).

The parameters needed to formulate the LP model for RTIP are listed below:

• Gp
i expected benefit of selling a tn of crop i at the end of the production cycle

given that we are at period p. Indeed, this value is known at the beginning of

each irrigation period p but it can vary from period to period.

• γ(j) = i is a function that indicates that crop i is sown in plot j (this is

obtained from the solution of CPP).

• ETcpijz corresponds to the real amount of water in m3/ha that crop i needs

in physical management zone z ∈ ZPh(j) of plot j at period p. It is easy to

compute which vegetative stages v corresponds to crop i at period p, so we

omit cumbersome notation.

• hapjz is the number of hectares in physical management zone z ∈ ZPh(j) of

plot j.

• SW p
jz is the amount of water that already exists in physical management zone

z ∈ ZPh(j) of plot j at the beginning of irrigation period p. This information

is retrieved from the humidity sensors in m3/ha.

• W p represents the amount of available water for irrigation period p.
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• Kypi is the yield response factor of crop i corresponding at period p.

• Yp−1jz is the maximum crop yield in tn/ha in physical management zone z ∈
ZPh(j) of plot j reached at previous irrigation period p.

The variables used in the formulation of the RTIP model are listed below:

• wp
jz is a variable representing the amount in m3 of irrigated water in physical

management zone z ∈ ZPh(j) of plot j at period p.

• Yp
jz represents the current total crop yield in tn/ha reached in physical man-

agement zone z ∈ ZPh(j) of plot j computed after current irrigation period p.

The LP for RTIP is as follows:

max
∑
i∈I
Gp
i

(
∑

{j|γ(j)=i}

∑
z∈ZPh(j)

hapjz ·Yp
jz

)
(2.40)

subject to: Yp
jz = Yp−1jz

(
1−Kypγ(j)

(
1−

wp
jz + (SW p

jz · hapjz)
ETcpijz · hapjz

))

i ∈ I, {j | γ(j) = i}, z ∈ ZPh(j) (2.41)

∑
j∈J

∑
z∈ZPh(j)

wp
jz ≤ W p (2.42)

wp
jz + (SW p

jz · hapjz) ≤ ETcpijz · hapjz
i ∈ I, {j | γ(j) = i}, z ∈ ZPh(j) (2.43)

∑
{j|γ(j)=i}

∑
z∈ZPh(j)

Yp
jz · happjz ≥ Di i ∈ Ī (2.44)

wp
jz,Y

p
jz ≥ 0 j ∈ J, z ∈ ZPh(j)

Objective function (2.40) maximizes the expected total yield revenues: the price per

tn times the total number of ha times the current crop yield (tn/ha), for all crops

planted in the different plots of the field.

Restrictions (2.41) corresponds to the current yield reached after irrigation

period p. It is based on the crop water production function (2.38) where term ETapijz

is equal to wp
jz + (SW p

jz · hapjz), i.e., the amount of water irrigated at period p plus

the already existing water that is indicated by the humidity sensor. By equation
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(2.39), the maximum water requirements are ETcpijz · hajz. Restriction (2.42) is

about the available water the farmer can use for the irrigation of its plots during

period p. Restrictions (2.43) indicate that the real amount of water ETapijz can

not exceed the maximum (or optimal) amount of water ETcpijz required by crop i

in plot j in physical zone z ∈ ZPh(j) at irrigation period p. Restrictions (2.44)

determine that current yield reached by the crop i ∈ I0 at period p must satisfy the

demand negotiated beforehand by the farmer.

RTIP is a linear programming that can be solved in an efficient way as we show

in Section 2.3.5.

2.3.5 Experimental Results

In this section we empirically show that the HAP methodology is valid and efficient

for a real size instance. For R&H-MZ we use the data from a plot called “Quilaco”

presented by Cid-Garcia et al. (2013). CPP and RTIP use crops data from Cid-

Garcia et al. (2014) where we use an instance of a field constituted by a set J of 10

plots and a set I of 19 possible crops to be sowed.

The HAP was executed on a Virtual machine with Windows 7 fitted with

1 GB of RAM and a processor Intel Core 2 Duo of 3.06 GHz running on a IMAC

equipped with the same processor and 4 GB of RAM. For R&H-MZ and CPP we

used the linear integer branch-and-bound algorithm of GAMS/CPLEX 12.2 using

default options, except for the optimal criterion fixed at 0. For RTIP we use the

linear programming solver of GAMS/CPLEX 12.2 with default parameters. Specific

parameters for each stage of the HAP methodology are presented in the following.

Rectangular & Homogeneous Management Zones

In this section two delineations of rectangular and homogeneous management zones

are made for each one of the plots. The delineation with chemical soil properties is

used in CPP to determine the expected amount of nutrients (fertilizers, pesticides,
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etc.) that the crops require in the whole production cycle, while the delineation with

physical soil properties is used in CPP and RTIP to determine the expected amount

of water required by the crops in the whole production cycle and the amount of

water required by the crops during each irrigation period, respectively.

The procedure performed in the delineation of management zones is similar for

both physical and chemical soil properties. Then, we only present an example for

“Quilaco” using as specific chemical soil property the organic matter (OM).

Table 2.13: Coordinates and values of the soil properties for each sample of

“Quilaco”. OM is in %, P in mg kg−1 and SB in Cmol(+) kg−1.

Sample
Coordinates Soil properties

Sample
Coordinates Soil properties

(x, y) pH OM P SB (x, y) pH OM P SB

1 0.00, 9.14 5.2 11.8 8.0 5.89 21 297.68, 166.36 5.6 10.4 4.0 8.26

2 48.97, 8.46 5.5 12.8 4.0 7.97 22 253.87, 160.20 5.4 18.7 11.0 8.88

3 97.52, 5.57 5.2 14.9 10.0 7.63 23 206.99, 157.26 5.6 10.5 11.0 6.03

4 150.52, 9.42 5.4 14.0 7.0 11.44 24 158.29, 155.16 5.5 16.8 3.0 9.48

5 201.07, 8.25 5.5 11.2 4.0 6.36 25 105.27, 153.53 5.4 14.8 5.0 7.85

6 250.24, 0.00 5.4 14.7 4.0 9.31 26 56.47, 156.87 5.5 12.6 5.0 5.38

7 298.57, 84.00 5.6 12.5 6.0 10.03 27 6.15, 151.48 5.4 15.1 7.0 6.50

8 249.94, 78.89 5.6 9.6 4.0 7.99 28 6.33, 204.03 5.4 11.7 5.0 5.88

9 208.71, 73.33 5.5 14.3 6.0 8.20 29 58.83, 205.57 5.5 16.0 4.0 8.09

10 160.73, 66.20 5.5 15.0 6.0 9.23 30 108.59, 207.64 5.4 13.8 4.0 8.18

11 102.69, 59.51 5.4 14.5 5.0 6.64 31 159.65, 203.22 5.6 12.6 3.0 7.95

12 53.66, 58.30 5.4 11.1 6.0 6.00 32 206.04, 199.18 5.4 14.4 6.0 7.50

13 2.81, 52.71 5.3 14.1 5.0 5.67 33 255.23, 205.16 5.4 15.4 5.0 8.23

14 6.93, 101.13 5.3 16.3 6.0 5.51 34 303.14, 212.73 5.7 11.2 5.0 9.51

15 58.25, 105.04 5.4 12.7 7.0 6.36 35 278.06, 242.75 5.2 16.6 22.0 7.30

16 104.05, 107.24 5.4 14.2 6.0 7.80 36 208.60, 243.31 5.5 15.6 8.0 9.21

17 156.53, 111.44 5.5 11.4 5.0 6.72 37 158.68, 247.47 5.5 16.1 5.0 9.51

18 204.49, 114.91 5.5 11.5 8.0 6.11 38 108.00, 249.65 5.4 13.9 6.0 6.90

19 250.37, 119.77 5.4 16.7 6.0 8.75 39 58.16, 253.69 5.5 15.4 5.0 9.69

20 296.17, 124.74 5.5 13.5 5.0 7.81 40 12.72, 254.37 5.4 10.7 4.0 7.71

Table 2.13 shows the soil samples of “Quilaco”. This field has 256 meters width
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and 305.6 meters long (around 7.82 ha). There have been taken 40 soil samples that

are approximately spaced by 50 meters one from each other, so four soil samples are

needed to cover an ha. Each soil sample is labeled (first and fourth column of the

table) and their positions are translated into a Cartesian map, coordinates (x, y),

(second and fifth column of the table). Finally, the information about each chemical

soil property is presented: pH, organic matter (OM), phosphorus (P), and sum of

bases (SB) determined by the CH3COONH4 method of INIA (2006). A similar

table could be presented for the physical soil properties such as field capacity, water

holding capacity, and permanent wilting point.

From the thematic map for “Quilaco” of the OM property we determine that

the minimum size of a quarter contains a single sample width (MinWidthQ = 1)

per one sample of length (MinLengthQ = 1) since there is a lot of diversity.

After, the possible quarters are generated and labeled by Algorithm 2, in this

case we have 588 quarters. Then, Table 2.14 allows to see the structure of the

correspondence matrix of “Quilaco” for organic matter, except by the last column

that corresponds to the variance of the different soil samples that are contained in

quarter with label z.

Most of the fields are not initially rectangular, so the R&H-MZ method inserts

dummy soil samples to fill a rectangle where the field can be contained. This is the

reason why Table 2.14 is composed of 42 samples. The dummy samples are also

equidistant with respect to the others. Nevertheless, their data about the properties

is very high with respect to the real samples. This manner, the mathematical model

puts these dummy soil samples alone in a zone or with other dummy samples which

facilitates their elimination afterwards.
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Table 2.14: Correspondence matrix of “Quilaco” for organic matter soil property

with the variance of each quarter z.

Sample point s
σ2
z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 42
P

ot
en

ti
al

q
u

ar
te

r
z

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0.00

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0.00

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0.00

4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0.00

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 . . . 0 0.00

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 . . . 0 0.00

7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 . . . 0 0.00

8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 11.04

9 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 1.12

10 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 . . . 0 2.42

11 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 . . . 0 0.12

12 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 . . . 0 0.50

13 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 . . . 0 0.00

14 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 5.76

15 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 . . . 0 4.61
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588 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . 1 2.07

Table 2.15 presents the experimental results of ε-constraint method applied to

the R&H-MZ for the “Quilaco” instance. First column is the alpha parameter (ε

value) that determines the homogeneity level in each selected quarter. The higher

the α the more homogeneous the management zones. Second column is the number

of quarters (zones) used to partitioning the plot (we want to minimize the number

of management zones). Last column is the solution time in seconds required by the

solver to obtain the optimal solution computed by the branch-and-bound algorithm

of GAMS/CPLEX 12.2.
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Table 2.15: Experimental results for R&H-MZ.

α Quarters Time

0 1 0.296

0.1 3 0.227

0.2 5 0.237

0.3 6 0.291

0.4 7 0.229

0.5 9 0.211

0.6 11 0.241

0.7 14 0.251

0.8 17 0.241

0.9 20 0.231

1 40 0.225

With Table 2.15 we empirically prove that minimizing the number of man-

agement zones and maximizing the homogeneity within each zone are conflicting

objectives. We can also notice that the computing times are negligible. This implies

that we can compute the exact Pareto front in an efficient way which is a remarkable

characteristic.
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Figure 2.16: Pareto front for “Quilaco” using organic matter (OM) as chemical soil

property.
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Figure 2.16 shows the exact Pareto front for “Quilaco” using organic matter

as chemical soil property. On the x-axis is represented the value of α while on the

y-axis corresponds to the number of zones used to partitioning the plot. Here we

partition the α rank [0, 1] in subintervals of 0.1. We could easily do a more dense

partition.

Once that we have the Pareto front, the next step is to choose the solution

from this front that satisfies the farmer’s requirements and guarantees homogeneity

in each selected quarter. In this case, only solutions with α greater or equal than 0.5

guarantee homogeneity in the selected zones (this value is given by an agricultural

expert). In Figure 2.17 is presented the chemical management zones resulting after

partitioning the field “Quilaco” using organic matter as soil property and α values

of 0.5, 0.7 and 0.9 (left to right maps). We can observe that if α increases then the

number of quarters increases too.

α = 0.5 α = 0.7 α = 0.9

Figure 2.17: Management zones for “Quilaco” using organic matter as chemical soil

property and alpha values of 0.5, 0.7, and 0.9.

With R&H-MZ method we have the chemical and physical management zones

of all the plots of the field. Then, with this information, HAP decides which crops

to plant in each one of the plots.
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Crop Planning Problem

In this section we first selected the best delineation of chemical and physical manage-

ment zones, in each plot of the farmer’s field, executing CPP model in each solution

of the Pareto front given by R&H-MZ (see Figure 2.16). Once we have the best

chemical and physical management zones CPP uses this delineation to generate the

optimal crop pattern that maximizes the farmer’s profit at the end of the produc-

tion cycle. In this stage, we use the same crops than Cid-Garcia et al. (2014) and 10

plots with their respective best physical and chemical management zones obtained

by R&H-MZ.

The total number of ha is 81 and the total expected amount of available water

for the whole production cycle is 486,000 m3 (we assume that we have the maximum

limit of water per ha, established by CONAGUA11: 6,000 m3 per ha.) The irrigation

costs Cirrjz for each one of the plots j is chosen at random between 1.8 and 2.2 per

m3 (these parameters are based on real data).

General information of plots and the number of their physical and chemical

management zones is showed in Table 2.16. First column is the label of the plot,

Table 2.16: General information of plots.

Plot ZPh(j) ZCh(j) haj

1 2 4 10

2 4 3 17

3 2 2 4

4 4 1 7

5 1 2 3

6 2 4 9

7 1 2 6

8 2 3 11

9 2 1 4

10 2 4 10

11The Mexican national water commission.
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second and third column is the number of physical and chemical management zones

in each plot and last column is the total number of ha in each plot.

Table 2.17: Crop data from spring-summer cycle in the state of Michoacán, Mexico.

The 19 crops and their related information were obtained from SAGARPA for the

year 2008.

Expected Seed Sowing Seed Expected

ID Crop i Yield Amount Cost Cost Benefit

Yi Seedi Cplantijz Cseedi Gi

1 Sesame TCS 0.60 4 2,318.00 10.00 13,681.80

2 Sesame TMF 0.50 4 8,117.91 10.00 13,681.80

3 Onion BMF 40.60 12,500 69,251.08 0.15 3,381.17

4 Green pepper BMF 24.70 12,500 106,121.91 0.15 4,923.99

5 Strawberry BMF 20.40 85,228 74,543.27 0.11 3,943.97

6 Strawberry GMF 20.40 85,228 48,533.07 0.11 3,493.97

7 Corn grain BCF 4.85 25 10,273.02 17.10 4,373.49

8 Corn grain BMF 5.38 25 10,013.49 17.10 4,373.49

9 Corn grain GCF 4.85 25 9,693.02 17.10 4,373.49

10 Corn grain GMF 5.38 25 10,668.41 17.10 4,373.49

11 Corn grain TCF 2.41 25 10,512.40 17.10 4,373.49

12 Sorghum grain BMF 8.31 324 12,022.65 1.50 3,491.25

13 Sorghum grain GMF 8.31 324 7,891.88 1.50 3,491.25

14 Sorghum grain TMF 4.71 324 6,674.43 1.50 3,491.25

15 Red Tomato BMF 38.10 12,500 75,259.74 0.56 2,171.99

16 Red Tomato GMF 38.10 12,500 74,440.68 0.56 2,171.99

17 Green Tomato BCF 16.20 12,300 50,574.63 0.15 3,416.17

18 Green Tomato BMF 17.80 12,300 41,867.90 0.15 3,416.17

19 Green Tomato TCF 2.70 12,300 34,056.14 0.15 3,416.17

In Table 2.17 are presented the crops used in the instance. They correspond

to the crops that can be sown in Michoacán, Mexico, during the production cycle

of spring-summer (data of 2008 from SAGARPA12). First and second columns are

12Mexican ministry of agriculture, livestock, rural development, fisheries, and food.



Chapter 2. Agricultural Planning 85

the identification number (ID) and name of the crop i. Third column shows the

expected yield Yi of the crop i in tn/ha at the end of the production cycle. Fourth

column is the amount of seeds Seedi in unit/ha needed to sown crop i. The term unit

represents kg, plants or packages. Sowing costs Cplantijz in plot j within chemical

management zone z ∈ ZCh(j) in $/ha and seed costs Cseedi in $/unit of crop i are

presented in the fifth and sixth column, respectively. The expected benefit Gi of

selling a tn of crop i at the end of the production cycle is showed in last column.

We assume that the demands that should be satisfied by the farmer of onion BMF,

green pepper BMF, corn grain BCF, and red tomato GMF (crops 1, 4, 7, and 16)

are all equal to 30. Finally, the stock of seeds Iseedi for all crops is equal to zero.

When HAP has previous information about the sowing costs Cplantijz of each

crop i then this costs is specific for each chemical zone z ∈ ZCh(j) of each plot j.

In this research we take the same sowing costs of crops i for all the chemical zones

z ∈ ZCh(j) of all the plots j.

To calculate the total expected amount of water supplied Wijz to crop i in each

plot j in each physical management zone z ∈ ZPh(j) during the whole production

cycle we use equations (2.31) and (2.32). The parameters to compute these equations

were obtained from FAO and INIFAP13. Crop coefficient valuesKcvij of crop i in plot j

for phenological stage v at irrigation period p and the duration of the vegetative cycle

of the crops were collected from FAO (Allen et al., 2006). Values for crop reference

evapotranspiration ETov at phenological stage v and for the amount of water stored

SW v
jz in plot j in physical management zone z ∈ ZPh(j) at phenological stage v

were obtained from INIFAP located in Zacatecas, Mexico. These values correspond

to averages of previous years.

Table 2.18 shows the total expected amount of water Wijz needed by crop i

in each physical management zone z ∈ ZPh(j) of plot j after computing equations

13The Mexican national institute for forestry, agriculture and livestock. There is a research

center INIFAP at every state therefore, producers can get specific information depending on the

geographic location of their fields.
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(2.31) and (2.32) (data of ETov and SW v
jz are averages of the last five years). In

this table we only present the first ten crops of Table 2.17 related to two plots with

four physical management zones each one. First column is the plot j and second

column is the physical management zone z ∈ ZPh(j). The surface hapjz in ha of

each physical management zone z ∈ ZPh(j) is showed in the third column. The

total expected amount of water Wijz in needed by crop i during its production cycle

in the plot j in each physical management zone z ∈ ZPh(j) is presented in the

rest of the columns. The instances are generated such that each crop i consumes

the same amount of water in the physical management zones z ∈ ZPh(j) with the

same ID. For example, crop number 3 (onion) consumes 3,418 m3 in the physical

management zone 1 of plots 1 and 2, while the same crop consumes 4,081 m3 in the

physical management zone 4 of plots 1 and 2.

Table 2.18: Total expected amount of water in m3 supplied by the first 10 crops in

each management zone of two plots.

Plot Zone hapjz
Crop (ID)

j z 1 2 3 4 5 6 7 8 9 10

1 1 4 3,845 3,845 3,418 7,372 7,050 7,050 7,418 7,418 7,418 7,418

1 2 5 3,819 3,819 3,871 7,448 6,710 6,710 8,100 8,100 8,100 8,100

1 3 3 2,389 2,389 3,664 5,190 5,232 5,232 5,200 5,200 5,200 5,200

1 4 3 4,220 4,220 4,081 8,136 7,597 7,597 8,442 8,442 8,442 8,442

2 1 1 3,845 3,845 3,418 7,372 7,050 7,050 7,418 7,418 7,418 7,418

2 2 6 3,819 3,819 3,871 7,448 6,710 6,710 8,100 8,100 8,100 8,100

2 3 6 2,389 2,389 3,664 5,190 5,232 5,232 5,200 5,200 5,200 5,200

2 4 5 4,220 4,220 4,081 8,136 7,597 7,597 8,442 8,442 8,442 8,442

The result of CPP for this instance is an expected income of $877,690.90 at

the end of the production cycle. The crops that should be sown in each plot are

presented in Table 2.19. First column indicates the plot while second column the

crop sown on it. Notice that all the zones of each plot are planted with the same

crop but the decision about which crop to plant strongly depends on the chemical

and physical characteristics of the zones of the plots.
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Table 2.19: Results of CPP. This output is used as input for RTIP.

Plot Crop

1 Sesame TCS

2 Onion TMF

3 Sesame TCS

4 Corn grain BCF

5 Red Tomato GMF

6 Sesame TCS

7 Sesame TCS

8 Sesame TCS

9 Green pepper BMF

10 Sesame TCS

Recall that CPP is used as a method to chose between the different manage-

ment zones delineations proposed by R&H-MZ. Here we have shown the CPP with

the best management zones, that is, the one that gives the best profits in CPP. With

this result, we now consider the operational plan of the irrigation decisions.

Real-Time Irrigation Problem

In this stage it is already known which crops i have been sown in each one of plots j

(Table 2.19). The RTIP step of HAP decides the amount of water to be supplied on

each plot j during each irrigation period p to maintain the yields as high as possible

at the end of the production cycle.

Table 2.20 presents the parameters needed for RTIP at irrigation period p = 1.

First and second columns correspond to the plot j and the physical management

zone z ∈ ZPh(j). Third column is the yield response factor Kypγ(j) of crop i sown

in plot j at irrigation period p (plots with the same crops and planted at the same

time have the same factor), this parameter is obtained from FAO. Fourth column

is the amount of stored water SW p
jz in m3/ha in each physical management zone

z ∈ ZPh(j) of plot j before irrigating at period p. This information is given by the

humidity sensors (in this research we used WATERMARK 200SS-V sensors). Fifth
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column is the amount of water ETcpijz in m3/ha needed by crop i in each physical

management zone z ∈ ZPh(j) of plot j at current irrigation period p. This data

is calculated with equations (2.31) and (2.32) using information from INIFAP. Last

column is the maximum yield Yp−1jz in tn/ha reached in each physical management

zone z ∈ ZPh(j) of plot j in the previous irrigation period p − 1. When p is equal

to zero, Yp−1jz takes the value of the expected harvest yield of crop under an optimal

growing environment (this value is given by INIFAP or FAO).

Table 2.20: Parameters of RTIP at irrigation period 1.

Yield response Stored Required Maximum

Plot Zone factor Water Water Yield

j z Kypγ(j) SW p
jz ETcpijz Yp−1jz

1 1 0.3 100 393.4 0.6

1 2 0.3 100 424.9 0.6

2 1 0.45 100 1040.2 40.6

2 2 0.45 100 1123.5 40.6

2 3 0.45 100 1010.8 40.6

2 4 0.45 100 1250.2 40.6

3 1 0.3 100 393.4 0.6

3 2 0.3 100 424.9 0.6

4 1 0.4 100 786.8 4.85

4 2 0.4 100 849.8 4.85

4 3 0.4 100 884.1 4.85

4 4 0.4 100 972.5 4.85

5 1 0.4 100 1219.2 38.1

6 1 0.3 100 393.4 0.6

6 2 0.3 100 424.9 0.6

7 1 0.3 100 393.4 0.6

8 1 0.3 100 393.4 0.6

8 2 0.3 100 424.9 0.6

9 1 1.1 100 706.4 24.7

9 2 1.1 100 789.9 24.7

10 1 0.3 100 393.4 0.6

10 2 0.3 100 424.9 0.6
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We consider six irrigation periods for our experimental instance. Table 2.21

shows the experimental results for RTIP at period p = 1 with available water of

81,000 m3 which corresponds to a sixth of the total expected amount of water by

the production cycle (486,000 m3). First and second columns represent the plot and

the physical management zone. Third column is the amount of water supplied to the

crop in m3 at current irrigation period. Fourth column indicates whether the crop

was irrigated at optimal level or not. Finally, last column is the current expected

Table 2.21: Experimental results of RTIP at irrigation period 1.

Plot Zone
Supplied Irrigation Current

Water Level Yield

j z wp
jz Yp

jz

1 1 880.20 Optimal 0.60

1 2 2274.30 Optimal 0.60

2 1 3760.80 Optimal 40.60

2 2 40940 Optimal 40.60

2 3 6375.60 Optimal 40.60

2 4 2300.40 Optimal 40.60

3 1 586.80 Optimal 0.60

3 2 649.80 Optimal 0.60

4 1 686.80 Optimal 4.85

4 2 749.80 Optimal 4.85

4 3 3136.40 Optimal 4.85

4 4 872.50 Optimal 4.85

5 1 3357.60 Optimal 38.10

6 1 1760.40 Optimal 0.60

6 2 974.70 Optimal 0.60

7 1 1760.40 Optimal 0.60

8 1 14670 Optimal 0.60

8 2 1949.40 Optimal 0.60

9 1 1819.20 Optimal 24.70

9 2 689.90 Optimal 24.70

10 1 1173.60 Optimal 0.60

10 2 1949.00 Optimal 0.60
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yield in tn/ha reached after irrigating the plot. Optimal solutions were computed

in less than 1 second.

At this period, the total amount of water is enough for irrigating all the crops

at optimal level. The total amount of water supplied to irrigate all the crops is only

43,268.6 m3 which corresponds to 53.4% of the total available water of the period.

Therefore, savings on water are made.

Table 2.22 presents the experimental results of the RTIP throughout the whole

production cycle. First column indicates the plot j and the second column the

physical management zone z ∈ ZPh(j). Third column is the expected harvest yield

of crop i planted in plot j under a growing environment, this is the parameter of

maximum yield by crop i of plot j only for the first period (Y m1
γ(j)). Fourth column

indicates if the irrigation level at period 1 (IL1) was optimal or not (“–” means

that the crop was not irrigated to optimal level). Fifth column shows the current

yield of crop i of plot j (Y a1γ(j)) reached after irrigate at period 1, Y a1γ(j) is the

parameter Y m2
γ(j) for the second period. Columns 6 and 7 are the same as above

but for period 2, and so on until period 6. At periods 1 and 2 the crops are in their

initial phenological stages so they do not consume too much water. All the crops

are irrigated at optimal level and reach their maximum expected yield at the end of

these periods. At period 3 there is not enough water to irrigate all crops to optimum

level and the current expected yield of plot 2 in zones 2, 3, and 4, together with the

current yield of plot 4 in zone 4, decrease considerably with respect to the maximum

yield.

Since there is not enough water to irrigate the crops to optimal level on their

flowering and yield formation stages, the current expected yield of plot 2 in zones 2,

3, and 4 decrease again at period 4 with respect to maximum yield of period 3. At

period 5, the current yield of plot 2 in zones 2, 3 and 4, the current yield of plot 5

in zone 1, and the current yield of plot 9 in zones 1 and 2 decrease considerably. At

period 6 the crops are in their final phenological stage so they do not consume too

much water and all of them are irrigated again to optimal level.
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Table 2.22: Experimental results of RTIP for the six irrigation periods of the pro-

duction cycle.

Plot Zone Y m1
γ(j)

p1 p2 p3 p4 p5 p6

j z IL1 Y a1γ(j) IL2 Y a2γ(j) IL3 Y a3γ(j) IL4 Y a4γ(j) IL5 Y a5γ(j) IL6 Y a6γ(j)

1 1 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

1 2 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

2 1 40.6 Opt 40.6 Opt 40.6 Opt 40.6 Opt 40.6 Opt 40.6 Opt 40.6

2 2 40.6 Opt 40.6 Opt 40.6 – 25.3 – 14.21 – 9.86 Opt 9.86

2 3 40.6 Opt 40.6 Opt 40.6 – 22.33 – 12.28 – 10.23 Opt 10.23

2 4 40.6 Opt 40.6 Opt 40.6 – 22.33 – 12.28 – 9.08 Opt 9.08

3 1 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

3 2 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

4 1 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85

4 2 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85

4 3 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85 Opt 4.85

4 4 4.85 Opt 4.85 Opt 4.85 – 0.9 Opt 0.9 Opt 0.9 Opt 0.9

5 1 38.1 Opt 38.1 Opt 38.1 Opt 38.1 Opt 38.1 – 13.88 Opt 13.88

6 1 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

6 2 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

7 1 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

8 1 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

8 2 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

9 1 24.7 Opt 24.7 Opt 24.7 Opt 24.7 Opt 24.7 – 6.512 Opt 6.512

9 2 24.7 Opt 24.7 Opt 24.7 Opt 24.7 Opt 24.7 – 16.854 Opt 16.854

10 1 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

10 2 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6 Opt 0.6

The model must comply with the established demand in the CPP (sesame,

green pepper, corn grain and red tomato), so these crops have priority over the

others. The model can let die crops that do not have a fixed demand even if those

crops would generate more profit for the farmer. Table 2.23 shows the final yield

reached by each crop after each irrigation period. It is verified that the demand

established in the CPP is satisfied for each crop at the end of the production cycle

(last irrigation period).
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Table 2.23: Final total yield reached by the crops after each irrigation period.

Irrigation
Final Yield (tn)

Period
Sesame Green Corn Red Onion

TCS pepper BMF grain BCF Tomato GMF TMF

1 30 98.80 33.95 114.30 690.20

2 30 98.80 33.95 114.30 690.20

3 30 98.80 30.00 114.30 464.60

4 30 98.80 30.00 114.30 329.80

5 30 36.39 30.00 41.65 291.52

6 30 36.39 30.00 41.65 291.52

Finally, in Table 2.24 is presented the expected profit achieved by the farmer at

each irrigation period after watering the crops (notice that the sowing costs are not

considered here). First column indicates the irrigation period. Second column is the

amount of available water in m3 for irrigating crops (AW), and third column is the

real amount of irrigated water in m3 on crops (IW). Fourth column is the percentage

(%) of irrigated water (IW) with respect to the total available, and the last column

is the expected profit in $ achieved in the period. In the first two periods the crops

were irrigated at optimal level therefore the farmer’s expected profit remained at

100%. However, in periods 3, 4 and 5, there is a greater need of water with respect

to the total amount of available water in each irrigation period.

Table 2.24: Final expected profit reached by the farmer at each irrigation period.

Period AW (m3) IW (m3) IW (%) Profit ($)

1 81,000 43,269 53.4 3,627,366.19

2 81,000 43,269 53.4 3,627,366.19

3 81,000 81,000 100 2,847,269.31

4 81,000 81,000 100 2,391,531.03

5 81,000 81,000 100 1,796,976.97

6 81,000 49,449 61.1 1,796,976.97

Water needed by the crops was not 100% satisfied causing a decrease of 50.46%

in the farmer’s profit that would never be recovered in despite that in the period 6
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all crops were irrigated at 100% (see Figure 2.18). So, at the end of the production

cycle the profit is only 49.54% with respect to the total expected profit at the begin

of the production cycle.
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Figure 2.18: Percentage of farmer’s profit after each irrigation period.

In Figure 2.19 is showed the yield reached in each physical management zone

z ∈ ZPh(j) of plot j after each irrigation period p (periods 1, 3, 4 and 6).
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Figure 2.19: Yield reached in each plot after each irrigation period (periods 1, 3, 4

and 6).
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RTIP guarantees to supply only the amount of water needed to satisfy the

water requirements of crops and avoid wastage. Thus, water can be stored to future

irrigation periods. Moreover, the farmer now has a decision tool that is relevant

when water shortages arise.

2.3.6 Conclusions of Section

Physical and chemical soil properties existing in agricultural production plots are

an important characteristic that should be considered in the agricultural planning

process. Chemical soil properties affect on the application of inputs (fertilizers,

pesticides, etc.), while physical soil properties are related to the water use.

In this work we propose a new approach we name as Hierarchical Agriculture

Planning (HAP) for helping the decision makers (the farmers) to plan and operate

their plots in order to avoid wastage and to maximize their benefits considering the

soil diversity. In this hierarchical approach the farmers start by delineating the field

into rectangular and homogeneous site-specific chemical and physical management

zones to face within-field variability. Then the farmers assign a crop to the different

plots to obtain the best profit at the end of the production cycle (CPP). Finally, in

each irrigation period the farmer must decide how much and which plots must be

watered such to maximize the total final yields (RTIP).

Experimental results show that the new hierarchical approach is efficient and

practical since optimal solutions are obtained in seconds.
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Chapter 3

Two-Dimensional Packing

Problems

3.1 Positions and Covering: A New Two-stage

Methodology to Obtain Exact Solutions for

the 2D-Bin Packing Problem

This research produced the article: Cid-Garcia, N. M., & Rios-Solis, Y. A. (2015).

Positions and Covering: A two-stage methodology to obtain exact solutions for the

2d-bin packing problem, working paper.

Abstract

In this section is presented an exact methodology to solve the two-dimensional bin

packing problem. In this classical combinatorial NP-hard problem, a given set of

small rectangular items has to be packed into a set of rectangular bins with the objec-

tive of minimizing the number of bins used to pack all the items. The methodology

is based on a two-stage procedure where, first is generated in a pseudo-polynomial

way a set of valid positions in which each item can be packed into a bin. Then, is

used a set-covering formulation to select the optimal non-overlapping configuration

of items for each bin. The best algorithms in the literature are heuristic, thus the

importance of this research.

95
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3.1.1 Introduction

The two-dimensional bin packing problem (2D-BPP) consists in packing, without

overlapping, a set of two-dimensional rectangular items into the minimum number

of two-dimensional rectangular bins (Gonçalves y Resende, 2011, 2013; Lodi et al.,

2002a). All the bins are identical with width W and height H, and each item i has

its specific width wi, height hi, and demand di for i = 1, . . . , n. We assume that all

input data are positive integers and that wi ≤ W and hi ≤ H for i = 1, . . . , n.

Figure 3.1 shows the optimal configuration of two bins for an instance from

Martello y Vigo (1998), with more than 50 items that had to be packed. The white

spaces are lefts-overs.

Figure 3.1: Example of two bins with more than 50 items. Instance from Martello

y Vigo (1998).

The 2D-BPP is strongly NP-hard since it generalizes the one-dimensional bin

packing problem (Lodi et al., 2002a; Martello y Vigo, 1998), and according to the

typology for cutting and packing problems proposed by Wäscher et al. (2007), it

belongs to the class of 2D-Single Bin-Size Bin Packing Problems.

This problem has great significance for many industrial applications, where

rectangular figures are cut from larger rectangular sheets of textiles, glass, steel,

wood, or paper (Hopper y Turton, 2001b; Lodi et al., 2002a). Moreover, recent
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applications in the delineation of rectangular management zones in agricultural fields

have led to some of the preliminary ideas of the methodology presented here (Cid-

Garcia et al., 2013; Albornoz et al., 2015).

Bin packing problems are similar to cutting stock problems (Haessler y

Sweeney, 1991). Indeed, in bin packing problems the item set is strongly hetero-

geneous, that is, there are many types of items with small demands. In the worst

case, all the items are different and their demand is equal to one. In cutting stock

problems, the item set is weakly heterogeneous, that is, there are a few types of

items and their demands are larger (Wäscher et al., 2007; Silva et al., 2010). Excel-

lent surveys of packing and cutting problems are presented by Haessler y Sweeney

(1991); Dowsland y Dowsland (1992); Lodi et al. (2002a), and Lodi et al. (2002b).

Most of the literature refers to the case where the items have an orientation

constraint, so that one is not allowed to rotate them. However, the more general case

where 90◦ rotations are allowed has not been broadly studied (Gonçalves y Resende,

2013; Boschetti y Mingozzi, 2003b). In the present paper, we consider both cases.

Our two-stage methodology for solving the 2D-BPP is called Positions and

Covering (P&C for short). Given an instance of 2D-BPP, we establish all possible

positions where each item could be placed into a bin. This preprocessing is the key

point of the P&C. Then, the total number of bins K is fixed to a lower bound and

P&C solves a set-covering model to solve a decision version of the 2D-BPP: is there

a non-overlapping packing of the n items into the K bins? If there is a feasible

solution, then K is the optimal value of 2D-BPP, otherwise, K is increased by one

and P&C iterates.

There are some studies that seek optimal solutions as we do. Christofides y

Whitlock (1977) propose a Lagrangian relaxation to solve an integer linear program-

ming model based on a discrete representation of the geometric space. Martello

y Vigo (1998) introduce combinatorial lower bounds and present an exact branch-

and-bound approach. In Fekete y Schepers (1997, 2004); Fekete et al. (2007), there
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is defined a graph describing the overlaps of the items in the container from the

projection of the items on each orthogonal axis.

Another paper that is close to ours is from Beasley (1985b) where the author

develops a Lagrangian relaxation of a binary integer programming formulation to

obtain an exact solution for the two-dimensional non-guillotine cutting problem. A

guillotine cut splits a block into two smaller blocks, where the slice plane is parallel

to one side of the initial block. In this paper we do not consider the guillotine cut

constraint. In Beasley (1985a), the author presents different algorithms based on

dynamic programming for unconstrained two-dimensional guillotine cutting.

The best algorithms in the literature are heuristic, thus the importance of

our work consists in validating that the best solutions found by these approaches,

for some classes of the instance benchmarks in the literature, are indeed optimal.

In Monaci y Toth (2006), the authors present a two-stage heuristic method where

column generation and Lagrangian methods for a set-covering model are used. A

Guided Local Search (GLS) is proposed by Faroe et al. (2003). It starts with a

greedy heuristic to obtain an upper bound on the number of bins. Then, the al-

gorithm iteratively decreases the number of bins, each time searching for a feasible

packing of the boxes using GLS. Boschetti y Mingozzi (2003a,b) propose a heuris-

tic procedure to obtain new lower and upper bounds for the 2D-BPP. Lodi et al.

(2004) implement a Tabu Search proposed by Lodi et al. (1999a,b,c) for general

multi-dimensional bin packing problems. Parreño et al. (2010) developed a Greedy

Randomized Adaptive Search Procedure. Gonçalves y Resende (2011, 2013) have

developed genetic algorithms for the 2D-BPP. To the best of our knowledge these

algorithms yield the best results so far in terms of quality.

The rest of this paper is organized as follows. In Section 3.1.2 we present our

two-stage methodology P&C to give exact solutions for the 2D-BPP. In Section 3.1.3

we validate that the grid used by P&C yields indeed the optimal solution. In Sec-

tion 3.1.4 we extend the P&C methodology for the case where 90◦ rotation of the

items is allowed. In Section 3.1.5 we experimentally validate the P&C methodology
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on a set of instances that has been broadly used in the literature so we are able to

compare P&C with the best algorithms known so far. Finally, in Section 3.1.6 we

make some concluding remarks.

3.1.2 Materials and Methods

The Positions and Covering Methodology for the 2D-BPP

2D-BPP 
instance Positions

Covering ILP  
D-2D-BPP(K)

Unfeasible

Feasible

K = K+1

K optimal 
for 2D-BPP

K =

⇠Pn
i=1 wihi

WH

⇡

Figure 3.2: Scheme of the P&C methodology for the 2D-BPP.

Figure 3.2 schemes the P&C methodology. Given an instance of the 2D-BPP,

the P&C establishes all the possible positions where each item could be placed into

a bin (more details in Section 3.1.2, where we will prove that the total number of

positions is of pseudo-polynomial size). Then, the total number of bins K is fixed:

K =

⌈∑n
i=1wihi
WH

⌉
,

that corresponds to the total area of the items divided by the area of a bin, that is,

we assume that the items are perfectly packed (although the best lower bound for

each instance can be used). The P&C considers the decision version of the 2D-BPP,

that we name as D-2D-BPP(K): is there a non-overlapping packing of the n items

into K bins? The P&C exactly solves a covering integer linear programming for D-

2D-BPP(K) (see Section 3.1.2). If D-2D-BPP(K) is feasible, then K is the optimal

value for 2D-BPP. Otherwise K is increased by one and we solve the covering model
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again. Notice that K ≤ n, since in the worst case we need n bins to pack all the

items.

Naturally, better bounds and other ways of exploring the feasible set of the

number of bins could improve the number of iterations of P&C. Some papers related

to this task are Lodi et al. (1999a); Boschetti y Mingozzi (2003a,b). In the rest of

this section we describe in detail the different stages of the P&C methodology for

the 2D-BPP.

The Position stage of P&C

The main idea of the Positions stage is to generate the dominant set of valid positions

where an item can be placed into a bin. Indeed, from the infinite set of all the

positions that an item can take in a bin, we only construct a finite set that guarantees

the optimality of the solution. Notice that we are not enumerating or forming the

different patterns of the bins.

…

…

…

… … …

…

s1,1 s1,2 s1,W

s2,1 s2,2 s2,W

···

s3,Ws3,2s3,1

sH,1 sH,2 sH,W

�(i1,1) = {s1,1, s1,2, s2,1, s2,2, s3,1, s3,2}

Figure 3.3: Item i of size 2×3 in position i1,1.

Let us consider for the moment a single H×W bin. The first step in Positions

is to delineate a Cartesian grid inside the bin, that is, a regular tessellation of

the 2-dimensional Euclidean space by congruent unit squares whose coordinates are

integer. The ordered pair (1,1) describes a unit square placed at the top left corner

of the bin. For each l = 1, . . . , H and p = 1, . . . ,W , sl,p is the unit square placed at
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(l, p) (see Figure 3.3). Moreover, let ih,w be the position of item i when placed with

its top left corner on the unit square sh,w, and let γ(ih,w) indicate the unit squares

of the grid covered by ih,w, that is, γ(ih,w) = {sl,p|l = h, · · · , h + hi − 1 and p =

w, · · · , w+wi − 1}, for h ≤ H − hi + 1 and w ≤ W −wi + 1. In Figure 3.3 we have

in red the item i of size 2×3 placed on s1,1, so γ(i1,1) = {s1,1, s1,2, s2,1, s2,2, s3,1, s3,2}.

In Section 3.1.3 we show that the set of valid positions determined by the

unitary grid delineated on a bin is sufficient to obtain the optimal solution.

With Positions(i) shown in Algorithm 3, we determine all the different valid

positions where a specific item i could be placed in the bin and the unit squares of

the bin’s grid it covers. We start by positioning the top left corner of item i on the

unit square s1,1. In step 3 we set the number of unit squares that are covered by

this item in the current position. Let C be a correspondence matrix with its rows

representing the unit squares sl,p for l = 1, · · · , H, p = 1, · · · ,W and its columns

being the valid positions iw,h for every i, h ≤ H − hi + 1, and w ≤ W − wi + 1. An

entry of C, cih,w(sl,p) = 1 if item i in position ih,w covers the unit square sl,p. It is 0

otherwise. Then, we shift the item to the next sh,w and analyze its position.

Algorithm 3 Positions(i)

1: for h ≤ H − hi + 1 do

2: for w ≤ W − wi + 1 do

3: compute γ(ih,w) for item i in position ih,w

4: for all unit square sl,p do

5: if sl,p ∈ γ(ih,w) then

6: cih,w(sl,p) = 1

7: else

8: cih,w(sl,p) = 0

9: end if

10: end for

11: end for

12: end for
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In this manner, we obtain a set of valid positions that an item i can take in a

bin, as shown in Figure 3.4 for a bin of size 5× 4 and an item of size 3× 2.
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Figure 3.4: All the different positions that an item of size 3×2 can take in a bin of

size 5×4.

In Table 3.1 we show the correspondence matrix C related to Figure 3.4. Notice

that i1,4 is not a valid position for an item of size 3×2 because it would exceed the

edge of the bin if it is placed with its left top corner on unit square s1,4. Thus,

column i1,4 is not part of C for this item.

Table 3.1: Correspondence matrix C: columns are the unit squares sl,p and rows are

the valid positions iw,h. An entry cih,w(sl,p) = 1 if item i in valid position ih,w covers

unit square sl,p, 0 otherwise.
s1,1 s1,2 s1,3 s1,4 s2,1 s2,2 s2,3 s2,4 s3,1 s3,2 s3,3 s3,4 s4,1 s4,2 s4,3 s4,4 s5,1 s5,2 s5,3 s5,4

i1,1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

i1,2 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

i1,3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

i2,1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

i2,2 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0

i2,3 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0

i3,1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

i3,2 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0

i3,3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
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The next theorem shows that the number of valid positions of the items in a

bin is a pseudo-polynomial number.

Theorem 1. The number of different valid positions that all the items can take in

the Cartesian grid of a bin with size H ×W is bounded by

W (W + 1)H(H + 1)

2
.

Proof. Recall that all input data is integer. Since there are n different items, we

have that the number of different positions in a bin is

n∑

i=1

(W − wi + 1)(H − hi + 1).

In the worst case, we have all possible different sizes of widths and heights, that is,

W∑

w=1

H∑

h=1

H(W − w + 1)(H − h+ 1)

= (W 2 − W (W+1)
2

+W )(H2 − H(H+1)
2

+H)

=
(
W (W+1)

2

)(
H(H+1)

2

)
.

Note that we use the partial sum of the first integers given by the triangular number.

The Position stage must be only computed once in the P&C methodology.

The Covering stage of P&C

Now that we have the correspondence matrix C obtained by the Positions stage, we

aim to find a feasible covering of the bins with the different positions that the items

can take in the K bins, that is, we aim to solve the decision problem D-2D-BPP(K).

Lets now consider a fixed number K of bins. Since all the bins are equal, then

we have a unit square sl,p in each bin k, for k = 1, · · · , K, and every item i has the

same set of specific positions in each bin k since all the bins have the same size.
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We state the following decision variables:

xi,kh,w =





1 if item i in valid position ih,w is placed on bin k,

0 otherwise.

The following covering problem solves the decision problem D-2D-BPP(K):

n∑

i=1

H−hi+1∑

h=1

W−wi+1∑

w=1

xi,kh,wc
i
h,w(sl,p) ≤ 1 ∀l = 1, . . . , H, ∀p = 1, . . . ,W,

∀k = 1, . . . , K (3.1)
K∑

k=1

H−hi+1∑

h=1

W−wi+1∑

w=1

xi,kh,w ≥ di ∀i = 1, . . . , n (3.2)

xi,kh,w ∈ {0, 1} ∀h = 1, . . . , H, ∀w = 1, . . . ,W,

∀k = 1, . . . , K,∀i = 1, . . . , n.

Notice we do not force any objective function: indeed, any feasible solution

that places all n items in the K bins is desirable. The restrictions (3.1) ensure that

each unit square of each bin is covered by only one item. In this way, overlapping of

the items is avoided. The constraints (3.2) ensure that the demand for every item i

is satisfied.

If there is no feasible solution for the previous covering model, the P&C

methodology increases K by one and iterates again until a feasible solution is found,

that is, until all items can be placed in the bins, which corresponds to the optimal

solution.

3.1.3 Could a denser grid yield a better solution?

An important question arises: could a better solution be found if the grid delineation

in the bins is denser? Indeed, an item could not only be placed with its top corner

on the integer points of the Cartesian grid, as we have proposed. By Theorem 2

and Corollary 1 hereafter there is no other grid that could yield a better solution to

the 2D-BPP since the packing in this non-Cartesian grid can be transformed into a
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packing in a bin with a Cartesian grid. In the right bin of Figure 3.5 we have the

packing with the Cartesian grid obtained from the one in the left that has a grid of

half unit squares.

Theorem 2. Any packing of the items in a bin can be transformed into a packing

where all vertices of the items coincide with the Cartesian grid delineated in the bin.

s 1
2 , 1

2
s 1

2 ,1s 1
2 , 3

2

s1, 1
2
s1,1

s 3
2 , 1

2

Figure 3.5: Left bin has a half unit square grid where five items are packed. The

right bin has the same items but they are now placed on the Cartesian grid with the

help of Algorithm 4.

Proof. Recall that W , H, wi, and hi for all items i are integer numbers. Let ItemList

be a non-decreasing ordered list of the items with respect to their position, so items

il,p are first arranged with respect to l and then to p. In Figure 3.5 we can see on

the left side a grid that is not a Cartesian one and the items placed on the grid:

P (purple), G (green), Y (yellow), R (red), and B (blue). Therefore, ItemList =

{P 1
2
,1, G 1

2
,3, Y2,2, R 5

2
,1, B3,2}.

With Algorithm 4, we can transform a packing in a bin with a non-Cartesian

grid to a packing in the same bin but with a Cartesian grid. In steps 2 and 5,

first(ItemList) represents the first item of the ordered list and last(ItemList) its

last one. In step 3, each element of ItemList is moved until it reaches the top of
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the bin or until it is next to another item. Finally, in step 6, each item is moved to

the left of the bin up to the edge or next to another item.

Algorithm 4 Packing on the Cartesian grid

1: INPUT: Ordered list ItemList

2: for all i = first(ItemList) to n = last(ItemList) do

3: Move i vertically to the upper border of the bin or to the bottom of an item

4: end for

5: for all i = first(ItemList) to n = last(ItemList) do

6: Move i horizontally to the left border of the bin or to the right side of an item

7: end for

Algorithm 4 is clearly finite and its correctness is based on the fact that all

the widths and highs of the items are integers, as are the dimension of the bins as

well.

Corollary 1. The number of bins needed to pack all the items obtained by P&C is

the optimal one.

Proof. By Theorem 2, any configuration that does not use a Cartesian grid can

be transformed into one that does. So, if there is a solution that has fewer bins

than P&C, it is because it uses a different grid for the bins and this leads to a

contradiction.

3.1.4 2D-BPP with possible rotation of the items by 90

In the 2D-BPP, the items cannot be rotated, that is, an item of size 3×5 is different

from one of 5 × 3. Nevertheless, in many applications these two items would be

exactly the same. The P&C methodology can be adapted to the case when rotations

of the items by 90o is allowed.

First, the Positions stage of P&C must be extended. Recall that ih,w is the

valid position of item i when placed with its top left corner on unit square sh,w.
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Now, ih,w will indicate the valid position of the item i rotated by 90o with its top

left corner on unit square sh,w. In this way, Algorithm 3, which enumerates all the

positions of i, can be easily adapted. Notice that the incidence matrix C can almost

double the number of its columns. Let cih,w correspond to the new columns of matrix

C related to position ih,w of item i. Figure 3.6 shows the extended positions for an

item of size 3×2 in a bin of size 5×4 when rotation is allowed.

                        

                        

                    

i1,1 i1,2 i1,3 i2,1 i2,2 i2,3

i3,1 i3,2 i3,3 i1,1 i1,2 i2,1

i2,2 i3,1 i3,2 i4,1 i4,2

Figure 3.6: All the different positions that an item of size 3×2 can take in a bin of

size 5×4 when rotation is allowed.

The Set-Covering formulation must also be adapted for the case of rotations.

To this end, we must add the following variables:

yi,kh,w =





1 if item i in valid position ih,w is placed on bin k,

0 otherwise.

The following covering problem solves the decision problem D-2D-BPP(K) when

rotation of the items is allowed:

n∑

i=1

[
H−hi+1∑

h=1

W−wi+1∑

w=1

xi,kh,wc
i
h,w(sl,p) +

H−wi+1∑

h=1

W−hi+1∑

w=1

yi,kh,wc
i
h,w(sl,p)

]
≤ 1

∀l = 1, . . . , H, ∀p = 1, . . . ,W, ∀k = 1, . . . , K (3.3)
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K∑

k=1

[
H−hi+1∑

h=1

W−wi+1∑

w=1

xi,kh,w +

H−wi+1∑

h=1

W−hi+1∑

w=1

yi,kh,w

]
≥ di ∀i = 1, . . . , n (3.4)

xi,kh,w, y
i,k
h,w ∈ {0, 1} ∀h = 1, . . . , H, ∀w = 1, . . . ,W,

∀k = 1, . . . , K,∀i = 1, . . . , n.

The restrictions (3.3) ensure that each unit square of each bin is covered by

only one item, whether rotated or not. The constraints (3.4) ensure that the demand

of every item i is satisfied by the rotated and non-rotated items taken together.

As before, if there is no feasible solution for the previous covering model, the

P&C methodology increases K by one and iterates again until a feasible solution is

found and it will correspond to the optimal solution.

3.1.5 Experimental Results

In this section, we present the experimental results to validate our P&C methodology

by testing the classical benchmark instances for 2D-BPP (Gonçalves y Resende,

2013), which are as follows:

bwmv: instances of Berkey y Wang (1987) and Martello y Vigo (1998)1. These

instances are divided into classes: each class comprises 50 instances, 10 for

each value of n ∈ {20, 40, 60, 80, 100}.

cgcut: instances proposed by Christofides y Whitlock (1977)2.

ngcut: 12 instances proposed by Beasley (1985b)2.

beng: 10 instances generated by Bengtsson (1982)3.

1All instances, and the corresponding averages of the best known values, are available at http:

//www.or.deis.unibo.it/research_pages/ORinstances/2BP.html.
2Available from the OR-library: http://people.brunel.ac.uk/~mastjjb/jeb/info.html
3Available from PackLib2 (Fekete et al., 2007), http://www.ibr.cs.tu-bs.de/alg/packlib/

index.shtml

http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://www.ibr.cs.tu-bs.de/alg/packlib/index.shtml
http://www.ibr.cs.tu-bs.de/alg/packlib/index.shtml


Chapter 3. Two-Dimensional Packing Problems 109

The cgcut, gcut, and ngcut instances are test problems for two-dimensional cut-

ting problems, which were transformed to 2D-bin packing instances accordingly to

Martello y Vigo (1998). There is another set of instances known as gcut, proposed

by Beasley (1985a)2. We did not include these instances in our comparative bench-

marks since they are large in terms of their size, so our exact methodology is not

able to solve them in a reasonable time.

We compare the P&C methodology with six approaches that have proved to

be the most effective in the literature:

TS3: Tabu search based on the constructive procedures of Lodi et al. (1999a).

HBP: A constructive heuristic that assigns a score to each item (Boschetti y

Mingozzi, 2003b).

GLS: A Guided Local Search heuristic based on the iterative solution of constraint

satisfaction problems (Faroe et al., 2003).

SCH: The set-covering-based heuristic approach of Monaci y Toth (2006).

GVND: The hybrid GRASP/VND algorithm of Parreño et al. (2010).

BRKGA: The Biased Random Key Genetic Algorithm of Gonçalves y Resende

(2013). Only this algorithm allows 90◦ rotation of the items.

Notice that all these algorithms are heuristic, so most of the best solutions obtained

so far are not guaranteed to be optimal. Since P&C is an exact solution method, it

verifies whether the best solutions obtained by these algorithms are optimal.

For the P&C algorithm, the Positions stage was coded in C++ and executed

on a MAC Pro equipped with an Intel Core 2 Duo processor of 3.06 GHz, and 4GB

of RAM. For the set-covering model, we used the integer linear solver (B&B) of

CPLEX 12.6 with its default options except for the gap, which was set to 0, and

the time limit, which was fixed at 24 hours. The B&B was executed on a MAC

Pro equipped with two processors: Quad-Core Intel Xeon of 2.4 GHz, and 20GB of



Chapter 3. Two-Dimensional Packing Problems 110

RAM. To reduce the number of indices in the mathematical models, we have merged

h and w into a single label.

Table 3.2 presents the results for the bwmv instances for the 2D-BPP without

rotation of the items. The first column indicates the instance class of the bwmv

group. The second column indicates the bin size W×H. The third column indicates

the number of items that should be packed into the bins. The fourth column indicates

the lower bound reported by Monaci y Toth (2006), computed by applying all the

lower-bounding procedures from the literature and an exact algorithm for a long

computing time. The fifth column indicates the optimal number of bins obtained by

P&C. Entries with “T.O.” mean that P&C could not find a feasible solution within

the time limit. The rest of the columns indicate the results of the other approaches:

BRKGA, GVND, SCH, GLS, TS3, and HBP. Each row indicates the average values

for the 10 instances of each class-size. The entries in bold are the best results.

Table 3.2: Experimental results for bwmv instances without rotation of the items.

Class W ×H n LB∗ P&C BRKGA GVND SCH GLS TS3 HBP

1 10×10 20 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1

40 13.4 13.4 13.4 13.4 13.4 13.4 13.5 13.4

60 19.7 20 20 20 20 20.1 20.1 20.1

80 27.4 27.5 27.5 27.5 27.5 27.5 28.2 27.5

100 31.7 31.7 31.7 31.7 31.7 32.1 32.6 31.8

2 30×30 20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40 1.9 1.9 1.9 1.9 1.9 1.9 2.0 1.9

60 2.5 2.5 2.5 2.5 2.5 2.5 2.7 2.5

80 3.1 3.1 3.1 3.1 3.1 3.1 3.3 3.1

100 3.9 3.9 3.9 3.9 3.9 3.9 4.0 3.9

3 40×40 20 5.1 5.1 5.1 5.1 5.1 5.1 5.5 5.1

40 9.2 9/10 9.4 9.4 9.4 9.4 9.7 9.5

60 13.6 1/10 13.9 13.9 13.9 14.0 14.0 14.0

80 18.7 T.O. 18.9 18.9 18.9 19.1 19.8 19.1

100 22.1 T.O. 22.3 22.3 22.3 22.6 23.6 22.6



Chapter 3. Two-Dimensional Packing Problems 111

P&C is able to obtain the exact solutions for instances of class 3 with 20 items.

For class 3 with 40 items, P&C solved 9 instances out of 10, and for 60 items, P&C

solved 1 instance out of 10. We cannot compare ourselves with the literature in

this specific type of instances since we only have their average of bins of the 10

instances. The P&C has a particular behavior in its set-covering phase since the

B&B cannot easily find dual relaxations. Therefore, most of the time, the B&B

evolves without a relative gap and suddenly, either the optimum is found or the

infeasibility of the instance is exhibited. In the cases where the optimum was not

found, the relative gap is more than 100%. Recall that P&C starts with a fixed

number K of bins, and if there is no a possible packing in these bins, then K is

augmented and another iteration is executed until there is a feasible solution which

corresponds to the optimal one.

The P&C certifies the optimality of the value of the instances of 10× 10 with

60 and 80 items. In the other cases, the lower bound was equal to the best solution

values, so the optimum was only corroborated by the P&C.

Table 3.3 shows the results for the instance set bwmv when rotations of the

items are allowed. The structure of the table is similar to that of Table 3.2 but we

only compare ourselves to the BRKGA of Gonçalves y Resende (2013) since they

are the only ones that present solutions when the items can be rotated by 90o.

After the results of Table 3.3, we can say that whenever rotation is allowed, it

should be used since it yields fewer bins for the packing than in the case without ro-

tations (compared with the results of Table 3.2). The P&C could solve the instances

up to class 3 with 20 items. For class 3 with 40 items, P&C solved 9 instances out

of 10. Recall that the number of positions of the items and therefore the number of

variables in the P&C set-covering formulation can almost double when rotation is

allowed. Thus, these instances are harder to solve by our exact methodology.
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Table 3.3: Experimental results for bwmv instances with rotation of the items.

Class W ×H n P&C BRKGA

1 10×10 20 6.6 6.6

40 12.8 12.8

60 19.5 19.5

80 27 27

100 31.3 31.3

2 30×30 20 1.0 1.0

40 1.9 1.9

60 2.5 2.5

80 3.1 3.1

100 3.9 3.9

3 40×40 20 4.7 4.7

40 9/10 9.2

60 T.O. 13.4

80 T.O. 18.2

100 T.O. 22

The experimental results for the instances cgcut, ngcut, and beng are shown

in Table 3.4 when rotations are not allowed. The first column indicates the class

of instances, the second one indicates the number of items that should be packed

into the bins. The third column indicates the number of instances contained in each

class. The fourth column indicates the best known average lower bound. The rest

of the columns indicate the average number of bins obtained by P&C, BRKGA,

GVND, SCH, GLS, and TS3.

P&C could find optimal solutions for instances that could not be dealt with

metaheuristics like the SCH, GLS or TS3. The BRKGA and the GVND already

were at the optimum value since they matched the lower bound. Nevertheless, the

P&C shows a good performance for these instances.
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Table 3.4: Experimental results for the instances cgcut, ngcut, and beng when rota-

tions are not allowed.

Class n # inst LB∗ P&C BRKGA GVND SCH GLS TS3

cgcut 16-62 3 9 9 9 9 9 9 9

ngcut 7-22 12 2.67 2.67 2.67 2.67 2.67 2.67 3

beng 1-8 20-120 8 6.75 6.75 6.75 6.75 6.88

beng 9-10 160-200 2 6.5 6.5 6.5 6.5

Table 3.5 is similar to the previous table and shows the experimental results

for cgcut, ngcut, and beng instances when rotations are allowed. Again, we only

compare P&C to the BRKGA. For class beng1-8, P&C only solved 7 instances out

of 8.

Table 3.5: Experimental results for cgcut, ngcut, and beng instances when rotations

are allowed.

Class n # inst P&C BRKGA

cgcut 16-62 3 7.67 7.67

ngcut 7-22 12 2.5 2.5

beng 1-8 20-120 8 7/8 6.75

beng 9-10 160-200 6.5 6.5 6.5

We can again verify that allowing the items to rotate decreases the number

of bins needed to pack all the items. The P&C methodology shows its value by

obtaining the optimal solutions for almost all these instances.

Normally, one does not have the LB∗ value at hand since it is the best lower

bound of many procedures from the literature and an exact algorithm for a long

computing time. So the P&C methodology is very valuable for guaranteeing the

optimal values.
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3.1.6 Conclusions

In this study, we present a new two-stage methodology, called Positions and Covering

(P&C), to obtain exact solutions for the two-dimensional bin packing problem (2D-

BPP). The key point of this work is the first stage where P&C generates, in a

pseudo-polynomial way, all the positions in which each item can be packed into the

bin. In the second stage, a set-covering model is solved to select the optimal packing

in each bin. The P&C iteratively increases the number of bins needed to pack the

items.

The P&C methodology was tested using the literature benchmark for the 2D-

BPP. Due to the combinatorial complexity of the problem it was expected that P&C

could not solve large instances. Nevertheless, for the small and medium instances,

we were able to verify that the solutions proposed by other approaches were indeed

the optimal.

We generalize the P&C to consider the case where the items can be rotated of

90◦. The set-covering integer linear programming related to this case can have almost

the double of variables. In the experimental setting we observed that these instances

take longer to solve than the ones that do not allow the rotation. Nevertheless, the

generalized P&C is one of the few exacts algorithms to solve the 2D-bin packing

with rotation.

A natural research line is to develop a decomposition method for P&C like a

column generation or branch-and-price. This will allow to consider larger instances

and to reduce the computational times. We observed that the set-covering model of

the P&C has poor quality lower bounds. It can be worth to investigate either new

formulations, lower bounds, or cuts to strengthener the model. Finally, it will be

interesting to consider the 3D-bin packing problem.
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Two-Dimensional Packing

Problems

3.2 Positions and Covering (P&C), an adaptive

approach to obtain optimal solutions for the

2D-Strip Packing Problem

Abstract

We present an adaptation of the Positions and Covering (P&C) methodology to ob-

tain exact solutions for the two-dimensional, non-guillotine restricted, strip packing

problem (2SP). In this problem, a given set of rectangular items has to be packed

into a strip of fixed weight and infinite height. The objective is minimizing the height

of the strip used to pack all the items. P&C is based on a two-stage procedure where

first is generated in a pseudo polynomial way, a set of valid positions in which an

item can be packed into the strip. Then, is solved a Set-Covering formulation to

select the best configuration of items into the strip. Experimental results, based in

the literature benchmark, validate the quality of the solutions and the effectiveness

of the method.
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3.2.1 Introduction

The Two-Dimensional Strip Packing Problem (2SP) is composed by a given set of n

rectangular items, each one with specific width wi and height hi for all i = 1, . . . , n,

and a strip of width W and infinite height. The aim is to orthogonally place all the

items into the strip, without overlapping, to minimizing the overall height of the

strip (Martello et al., 2003; Lesh et al., 2004). We assume that all input data wi, hi,

and W are positive integers and that wi ≤ W for all items i = 1, . . . , n. We consider

the case when the items have a fixed orientation and the guillotine cut constraint is

not restricted.

The 2SP is NP-hard in the strong sense since it can be reduced to the one-

dimensional bin-packing problem (Baker et al., 1980; Hochbaum y Maass, 1985;

Martello et al., 2003) and, according to the typology proposed by Wäscher et al.

(2007), the 2SP belongs to the class of cutting and packing problems and is classified

as two-dimensional, open dimension problem (2D-ODP).

Figure 3.7 shows the optimal configuration for an instance proposed by Jakobs

(1996) with 50 items, and a strip of width W = 40. In this case, there is no wasted

parts of the strip, that is, we have a perfect packing.

Figure 3.7: The optimal configuration of an instance proposed by Jakobs (1996)

with 50 items, and a strip of width W = 40.

Many real-world applications of this problem can be found in the paper, tex-

tile, glass, steel, and wood industries, where rectangular items are cut from large
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rectangular sheets of material, which can be considered of infinite height (Gilmore y

Gomory, 1965; Hopper y Turton, 2001b). 2SP also appears in scheduling problems

in which tasks require a contiguous subset of identical resources (Augustine et al.,

2006).

The 2SP is closely related to the two dimensional bin packing (2D-BPP) prob-

lem where a set of items with specific width and height must be placed without

overlapping into the minimum number of bins of given size. The main difference

is that for 2SP we must determine the size of the strip while in the 2D-BPP we

must determine the number of bins. This difference impede us to use the same

exact methodology developed for the 2D-BPP, named P&C, (Cid-Garcia y Rios-

Solis, 2015) which is the best method to find optimal solutions, in the best of our

knowledge.

The main contribution of this work is to revisit the P&C methodology for the

2D-BPP and propose some structural modifications that allow us to use it for the

2SP. Thus, the obtained methodology is able to solve instances from the classical

benchmarks, in particular, P&C solved to optimality the instances dagli-01 and

dagli-03 proposed by Dagli y Poshyanonda (1997) where the optimal solutions were

not known before of this research.

Due to the combinatorial complexity of the 2SP, the attempts to solve it can

be roughly divided into exact and metaheuristics methods. In terms of exact meth-

ods, there have been recent combinatorial branch-and-bound (B&B) algorithms that

build solutions by packing items one at a time in the strip like the ones of Martello

et al. (2003), Alvarez-Valdés et al. (2009), Lesh et al. (2004), Kenmochi et al. (2009),

Boschetti y Montaletti (2010), and Arahori et al. (2012).

Two exact algorithms and an approximate algorithm have been proposed by

Hifi (1998) to solve a variant of the strip cutting problem. The algorithms are based

upon branch-and-bound and dynamic programming procedures.

In Martello et al. (2003) is introduced a new relaxation that produces good
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lower bounds and gives information to obtain effective heuristic algorithms. Then,

these results were used in a branch-and-bound algorithm, which was able to solve

test instances from the literature. The most important contribution is the way to

compute the lower bound for the branch and bound procedure.

A branch and bound algorithm is showed in Lesh et al. (2004) to solve 2D

rectangular packing problems. A special case of the 2D strip packing problem. The

branch-and-bound algorithm is enhanced with a dynamic programming mechanism

for determining if gaps can be filled that proves surprisingly effective on benchmark

problems.

Kenmochi et al. (2009) proposed two algorithms for the 2SP with and without

90 degrees rotations. These algorithms are called STAIRCASE and G-STAIRCASE

algorithms. The firs one uses branching operations based on the staircase placement,

and the second one uses branching operations based on the generalized staircase

placement.

Inside of the heuristics and metaheuristics methods to solve the 2SP, we can

found the work proposed by Baker et al. (1980), where is introduced the bottom-left

(BL) heuristic. Another work which improved the previous one was proposed by

Chazelle (1983). Some approaches which used some variants or implementations of

the bottom-left strategy to solve packing problems are: Jakobs (1996); Liu y Teng

(1999); Hopper y Turton (2001a); Lesh et al. (2005); Gonçalves y Resende (2013).

Another works which implemented metaheuristics methods as tabu search,

simulated annealing, and genetic algorithms are the following: Iori et al. (2003);

Bortfeldt (2006); Alvarez-Valdés et al. (2008). In many of the previous studies, was

used a version of the BL algorithm and modified the order of the rectangles.

Reviews about some methodologies for the 2SP are presented in Hopper y

Turton (2001b); Ntene y van Vuuren (2009). A revision of approaches for strip

packing problems are showed in Riff et al. (2009), and some surveys for packing and

cutting problems are presented in Haessler y Sweeney (1991); Dowsland y Dowsland
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(1992); Lodi et al. (2002a,b).

In this study, we propose an adaptation of the “Positions and Covering (P&C)”

methodology, used by Cid-Garcia y Rios-Solis (2015) to obtain optimal solutions

for the two-dimensional bin packing problem, to solve the 2SP. P&C was originally

designed as a zoning method to delineate rectangular and homogeneous management

zones in agricultural fields (see Cid-Garcia et al. (2013); Albornoz et al. (2015)) but,

according to its characteristics, it has been modified to solve packing problems. More

details in Section 3.2.2.

The results presented in this paper are referred as exact solutions for the 2SP

considering the case when items have a fixed orientation. In this case, we are not

considering the guillotine cut constraint. We use instances from the literature bench-

mark to validate the solution quality and method effectiveness.

The rest of paper is organized as follows. In Section 3.2.2 we describe the

methodology proposed, we present briefly the Positions and Covering methodology,

and we show the adaptation of Positions and Covering for the 2SP. Section 3.2.3

shows the experimental results based on literature benchmark. Finally, in Section

3.2.4 we make some concluding remarks.

3.2.2 Materials and methods

The P&C methodology consist on a two-stage procedure where in the first stage

is generated a set of valid positions for each item into the strip. Then, in the

second stage, is solved to optimality a Set-Covering formulation based on an integer

programming model. A brief description of P&C and its adaptation to 2SP is given

next.
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“Positions and Covering” methodology

Figure 3.8 shows the P&C methodology used to solve the 2D-BPP. Given an instance

of the 2D-BPP, the first step is to generate, for each item, a set of valid positions

where each item can be placed in the bin. Then, it is computed the number of K

bins used to pack all the items, in this case the number of bins is fixed assuming

that exists a perfect packing (the sum of the total area of items divided by the area

of bin). Although, this value can be fixed used the best lower bound known in the

literature.

2D-BPP 
instance Positions

Covering ILP  
D-2D-BPP(K)

Unfeasible

Feasible

K = K+1

K optimal 
for 2D-BPP

K =

⇠Pn
i=1 wihi

WH

⇡

Figure 3.8: Scheme of the P&C methodology for the 2D-BPP.

The next step is to solve a covering model where is taken the decision version

of the 2D-BPP (D-2D-BPP(K)). If the covering model is feasible then the optimal

solution for the 2D-BPP is obtained, else, the number of bins is increased by one

and the covering model is solved again. The procedure ends when a feasible solution

for the D-2D-BPP(K) is founded.

Adaptation of “Positions and Covering” to 2SP

To implement the P&C methodology in the strip packing problem it is necessary to

make some modifications on it. This modifications are showed in the Figure 3.9.
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2SP 
instance

Positions

Covering ILP  
D-2SP(H)

Unfeasible

Feasible

H = H+1

H optimal 
for 2SP

H =

⇠Pn
i=1 wihi

W

⇡

Figure 3.9: Scheme of the P&C methodology for the 2SP.

Given an instance of the 2SP the first step is to compute the height of the

strip (H) assuming that exists a perfect packing. Then, the set of valid positions for

each item inside of the strip is generated, and a covering model, using the decision

version of the 2SP (D-2SP(H)), is solved. If the covering model is feasible then the

optimal solution for the 2SP is founded, else, the H-value is increased by one, the

new positions for the items are generated, and the covering model is solved again.

The procedure ends when a feasible solution for the D-2SP(H) is founded.

Positions Stage

The objective of this stage is to generate, for each item, a set of valid positions

where the item can be placed into the strip. As the 2D-BPP, in this stage we are

not generating patterns. We are giving a set of valid positions for each item where

the Set-Covering formulation will choose the optimal configuration for the strip.

Let us to consider a single strip with known width W and unknown height H,

and a set of n items i = 1, . . . , n, each one with specific width wi and height hi. The

first step is to compute the height of the strip assuming that exist a perfect packing:

H =

⌈∑n
i=1wihi
W

⌉
,

that corresponds to the total area of the items, divided by the width of the strip
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(see Figure 3.10).

Figure 3.10: Determination of the height of the strip.

Once it is defined the height of the strip, the next step is to generate a grid

inside of the strip, that is, a regular tessellation of the 2-dimensional Euclidean space

by congruent unit squares, where each square has a particular Id. The enumeration

start at the top left corner square and, end at the bottom right square (see Figure

3.11).

Figure 3.11: Grid inside of the strip.

For each item, a valid position is going to be created if its top left corner is

placed in the square with ID=Id and its dimensions of width and height do not
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exceed the dimensions of the strip. Also, the valid position must be labeled to

differentiate one with each other. In Figure 3.11 is showed the valid position for an

item of dimensions 2×3 with top left corner at square 1. Notice that the position

with start point at square 1×W is not a valid position for this item.

The set of valid positions for all the items is pseudo-polynomial and it can

be generated using the Algorithm 5 proposed by Cid-Garcia et al. (2013). Some

variations of the original algorithm were made to adapt it to 2SP. The input of the

Algorithm 5 is the number of points into the strip, the number of points in the width

of the strip (WidthS), the number of points in the length of the strip (LengthS),

the number of points in the width of each item (WidthI), and the number of points

in the length of each item (LengthI). The algorithm starts creating the positions

width wise. Then it checks if there is still some width to cover. After, it checks the

length. The Algorithm 5 is executed for each item.

Algorithm 5 Generation of possible positions of a item into the strip.

1: INPUT: WidthS, LengthS, WidthI, LengthI, strip points

2: for j = WidthI To WidthS do

3: for l = 0 To (WidthS − 1) do

4: if (j + l) ≤ WidthS then

5: for i = LengthI To LengthS do

6: for k = 0 To (LengthS − 1) do

7: if (k + i) ≤ LengthS then

8: creation of a valid position

9: end if

10: end for

11: end for

12: end if

13: end for

14: end for
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In Figure 3.12 is showed the set of valid positions for an item of 2×3 and an

item of 5×3 in a strip with dimensions 6×4. In this case only 14 valid positions are

generated. The set of positions since 1 to 10 is for the first item while the set since

11 to 14 is for the second item.

Figure 3.12: Valid positions for an item of 2×3 in a strip of 6×4.

Each valid position obtained by Algorithm 5 is unique, therefore, it has a

specific label and an unrepeatable set of points. For example, the position 1 contains

the points: 1, 2, 3, 5, 6, 7 while, the position 9 contains the points: 17, 18, 19, 21,

22, and 23.

The result of Algorithm 5 is a correspondence matrix C = {cjp} where rows

represents the valid positions for all the items, and columns are the number of points

into the strip. C = {cjp} is composed of 1’s and 0’s, where cjp = 1 if valid position j

covers point p, cjp = 0 otherwise. The correspondence matrix of Figure 3.12 appears

in Table 3.6.
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Table 3.6: Correspondence matrix C for Figure 3.12.

Points of strip p

1 2 3 4 5 6 7 8 . . . 24

P
ot

en
ti

al
p

os
it

io
n
j

1 1 1 1 0 1 1 1 0 . . . 0

2 0 1 1 1 0 1 1 1 . . . 0

3 0 0 0 0 1 1 1 0 . . . 0

4 0 0 0 0 0 1 1 1 . . . 0

5 0 0 0 0 0 0 0 0 . . . 0

6 0 0 0 0 0 0 0 0 . . . 0

7 0 0 0 0 0 0 0 0 . . . 0

8 0 0 0 0 0 0 0 0 . . . 0

9 0 0 0 0 0 0 0 0 . . . 0

10 0 0 0 0 0 0 0 0 . . . 1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

14 0 0 0 0 0 1 1 1 . . . 1

Each row in the correspondence matrix is the respective labeled position of

Figure 3.12, i.e., the row 1 of matrix have ones in points 1, 2, 3, 5, 6, and 7. If

you check the figure, you can verify that inside the position 1 only points 1, 2, 3, 5,

6, and 7 are covered. This can be made for each row of matrix with its respective

position.

If the model is feasible using this set of valid positions then the procedure ends,

else, the height of the strip is increased by one (or using the best lower bound, if

this exist), and the new set of valid positions is generated for each item.

Set-Covering formulation

After we have the set of valid positions transformed into a correspondence matrix,

we proceed to execute a Set-Covering formulation based in an integer linear pro-
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gramming model. This model solve the decision problem D-2SP(H)

A particular characteristic of the model is that the initial height of the strip

(H) is fixed. If the model is feasible then the optimal solution is founded else we

increase the height of the strip by one, the new positions for the items are generated

and the model is solved again. The process ends when the model is feasible.

Next, the parameters used for the model are given:

• I: set of items.

• J : set of valid positions.

• T (i): subset of valid positions for item i where T (i) ∈ J .

• P : set of points inside of the strip.

The decision variables of the model:

xj =





1 if position with label j is chosen,

0 otherwise.

The Set-Covering formulation to solve the decision problem D-2SP(H) is as follows:

∑

j

cjpxj ≤ 1 ∀p ∈ P (3.5)

∑

j∈T (i)

xj ≥ di ∀i ∈ I (3.6)

xj ∈ {0, 1} ∀j ∈ J (3.7)

In the previous mathematical formulation do not exist an objective function,

this means we are only searching feasibility in the model. Restrictions (3.5) ensure

that each point p ∈ P of the strip is covered by only one item. With this, the

overlapping is avoided. Constraints (3.6) ensure that demand of item i ∈ I be

satisfied. Notice that the demand of each item i is satisfied taking into account only

the corresponding valid positions for each item. The nature of variables is declared

in 3.7.
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3.2.3 Experimental Results

In this section, we present the experimental results to validate the P&C methodology

using the classical benchmark instances for 2SP.

Test problem instances

The P&C methodology was tested using the original benchmark for the strip packing

and the benchmark for other two-dimensional cutting problems. The description of

each group of instances is given next:

Original instances for the strip packing

This set of instances refers to the original instances of the strip packing prob-

lem.

• 2 instances proposed by Jakobs (1996) and known as jack01-jack02 instances.

• 4 instances proposed by Dagli y Poshyanonda (1997); Ratanapan y Dagli (1997,

1998); and known as dagli01-dagli04 instances. The optimum for instances

01, 03 and, 04 is not known.

• 25 instances proposed by Hifi (1998) and known as hifi01-hifi25 instances.

• 12 instances proposed by Hopper y Turton (2001a) and known as ht01-ht18

instances.

Instances for other two-dimensional cutting problems

This set of instances was originally introduced for other two-dimensional cut-

ting problems, and were transformed into strip packing instances by using the item

sizes and bin width.

• 3 instances proposed by Christofides y Whitlock (1977), and known as cgcut

instances.
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• 12 instances proposed by Beasley (1985b), and known as ngcut instances. The

cgcut, and ngcut instances are test problems for 2D cutting problems, which

were transformed to 2D bin packing instances according to Martello y Vigo

(1998). This instances are available from the ORLIB library.

• 10 instances generated by Bengtsson (1982). Available in PackLib2 (Fekete et

al. (2007)), http://www.ibr.cs.tu-bs.de/alg/packlib/index.shtml.

• 3 instances proposed by Burke et al. (2004) and known as N1–N3 instances.

Computational results

To solve the instances we use the branch & bound algorithm (B&B) of CPLEX 12.6

using default options. It was executed on a MAC Pro equipped with two processors

Quad-Core Intel Xeon with 8 cores and, running at 2.4 GHz. The RAM was fitted

with 20 GB. The limit time for CPLEX execution in each instance was fixed to one

day.

The computational results for the original instances for the strip packing are

shown in Tables 3.7–3.10. Table 3.7 shows the experimental results for the instances

from Jakobs (1996). The first three columns describe the instance. The fourth

column is the optimum value known for each instance. The fifth column is the

result of P&C, numbers in bold represent the optimal solution. From sixth to tenth

columns are showed the results for other approaches: Jakobs (1996), Liu y Teng

(1999), Mumford-Valenzuela et al. (2004) and, Bortfeldt (2006), respectively. P&C

is the only approach with optimal solutions for both instances.

Table 3.7: Results for instances proposed by Jakobs (1996).

Instance Problem size Opt P&C Jakobs Liu and Mumford– Bortfeldt

W n Teng Valenzuela Average Best

01 40 25 15 15 17 16 16 16 16

02 40 50 15 15 17 16 16 15 15

http://www.ibr.cs.tu-bs.de/alg/packlib/index.shtml
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Table 3.8 shows the experimental results for the instances proposed by Dagli

y Poshyanonda (1997). The first three columns describe the instance. The fourth

column is the best lower bound known for each instance. The fifth column is the

result of P&C, numbers in bold represent the optimal solution. From sixth to tenth

columns are showed the results for other approaches: Ratanapan y Dagli (1997,

1998), Dagli y Poshyanonda (1997), Poshyanonda y Dagli (2004) and, Bortfeldt

(2006), respectively. In this case, P&C was able to solve 3 of 4 instances to optimality.

In the fourth instance we cannot guarantee the optimality because P&C cannot solve

it with value of 208 and we cannot determine if the optimal value is 208 or 209.

Table 3.8: Results for instances proposed by Dagli y Poshyanonda (1997).

Instance Problem size LB P&C Ratanapan Dagli and Poshyanonda Bortfeldt

W n and Dagli Poshyanonda and Dagli Average Best

01 60 31 45 46 91.88 – – 93.9 95.67

02 60 21 40 40 92.50 – – 96.6 97.56

03 30 37 112 126 94.41 – 96.03 98.5 98.58

04 20 37 161 209 – 97.15 – 97.6 97.62

Table 3.9 shows the experimental results for the instances from Hifi (1998).

The first three columns describe the characteristics of each instance. The fourth

column is the best lower bound known for each instance. The fifth column is the

result of P&C. The sixth column shows the results of Hifi (1998). For this instances

set, P&C was able to solve all the instances to optimality.

In Table 3.10 are presented the results for 12 of 21 instances proposed by

Hopper y Turton (2001a). The first four columns describe the characteristics of each

instance. The fifth column is the optimal value known for each instance. The result

of P&C is showed in the sixth column, MO means the computer memory was not

enough to solve the instance. The optimal solutions were reached only for the first 9

instances. For the other instances P&C cannot obtain the optimal solutions due to

the size of the correspondence matrix was too large and the memory of the computer

was not enough to solve them. The column 7 corresponds to the solutions obtained
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by the hybrid algorithm by Iori et al. (2003). The columns 8–11 show the results

obtained by the best-fit algorithm from Burke et al. (2004) and its enhancements

adding tabu search (TS), simulated annealing (SA) and a genetic algorithm (GA)

from Burke et al. (2006). In columns 12 and 13 is presented the average and best

solutions obtained by Bortfeldt (2006). Finally, the last two columns show the

average and best results obtained by the GRASP proposed by Alvarez-Valdés et al.

(2008).

To make a comparison of our methodology with respect to other approaches,

we use the average percentages from optimum proposed by Alvarez-Valdés et al.

(2008). This averages is calculated as (sol–opt)/opt. Table 3.10 shows that our

algorithm obtains the best results for the first 3 class, obtaining 9 of 9 optimal

solutions, improving the best results of the GRASP proposed by Alvarez-Valdés et

al. (2008). However, for the other instances of classes 4 to 7, P&C cannot obtain

the optimal solutions due to the size of the instance.

From Tables 3.7 and 3.9 we can see that all the instances proposed by Jakobs

(1996), Dagli y Poshyanonda (1997); Ratanapan y Dagli (1997, 1998), and Hifi (1998)

were solved using the P&C methodology. For the instances proposed by Hopper y

Turton (2001a) P&C only solved 9 of 12 instances. This is due to the size of the

items and of the height of the strip. The set of valid positions is too large, and the

memory is not enough to solve this problems.

It is important to make a special emphasis in the instances proposed by Dagli y

Poshyanonda (1997); Ratanapan y Dagli (1997, 1998) because, the optimal solution

for the instances dagli-01, dagli-03 and, dagli-04 it was not known before of

this study. With this study we can guarantee the optimal solutions for the instances

dagli-01 and dagli-03.
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Table 3.9: Results for instances proposed by Hifi (1998).

Instance Problem size LB P&C Hifi

W n

01 5 10 13 13 13

02 4 11 40 40 40

03 6 15 14 14 14

04 6 11 19 20 20

05 20 8 20 20 20

06 30 7 38 38 38

07 15 8 14 14 14

08 15 12 17 17 17

09 27 12 68 68 68

10 50 8 80 80 80

11 27 10 48 48 48

12 81 18 34 34 34

13 70 7 50 50 50

14 100 10 60 69 69

15 45 14 34 34 34

16 6 14 32 33 33

17 42 9 34 34 39

18 70 10 89 100 101

19 5 12 25 25 26

20 15 10 19 20 21

21 30 11 140 140 145

22 90 22 34 34 34

23 15 12 34 34 35

24 50 10 103 109 114

25 25 15 35 35 36
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Table 3.10: Experimental results for instances proposed by Hopper y Turton (2001a).

Class Instance Problem size Opt P&C Iori Bestfit Burke Bortfeldt GRASP

W n BF+TS BF+SA BF+GA Average Best Average Best

C1 01 20 16 20 20 20 21 20 20 20 20 20

02 20 17 20 20 21 22 21 20 21 20 20

03 20 16 20 20 20 24 20 20 20 20 20

Average percentage deviation from optimum 0 1.59 10.17 1.59 0 1.59 1.59 1.59 0 0

C2 04 40 25 15 15 15 16 16 16 16 15 15

05 40 25 15 15 16 16 16 16 16 15 15

06 40 25 15 15 15 16 16 16 16 15 15

Average percentage deviation from optimum 0 2.08 6.25 6.25 6.25 6.25 3.33 2.08 0 0

C3 07 60 28 30 30 31 32 31 31 31 30 30

08 60 29 30 30 31 34 32 31 32 31 31

09 60 28 30 30 30 33 31 31 31 30 30

Average percentage deviation from optimum 0 2.15 9.04 4.23 3.23 4.23 3.16 3.16 1.08 1.08

C4 10 60 49 60 MO 64 63 62 61 62 61 61

11 60 49 60 MO 63 62 62 61 62 61 61

12 60 49 60 MO 62 62 61 61 62 61 61

Average percentage deviation from optimum – 4.75 3.74 2.70 1.64 3.23 3.52 2.70 1.64 1.64

Number of optimal solutions 9/12 5/12 0/12 2/12 3/12 2/12 8/12 8/12
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Tables 3.11 and 3.12 show the experimental results for instances of other two-

dimensional cutting problems. In Table 3.11 are presented the results of Burke et

al. (2004), the first three columns describe the characteristics of each instance. The

fourth column is the optimal value known for each instance. The result of P&C is

showed in the fifth column. The optimal solutions (numbers in bold) were reached

only for the first 3 instances, for other instances P&C cannot obtain the optimal

solutions due to the size of the instance. The columns 6–9 show the results obtained

by the best-fit algorithm from Burke et al. (2004) and its enhancements adding tabu

search (TS), simulated annealing (SA) and a genetic algorithm (GA) from Burke et

al. (2006). Finally, the last two columns show the average and best results obtained

for the GRASP proposed by Alvarez-Valdés et al. (2008).

Table 3.11: Results for instances proposed by Burke et al. (2004)

Instance Problem size Opt P&C Best-fit Burke solutions GRASP solutions

W n BF+TS BF+SA BF+GA Average Best

N1 40 10 40 40 45 40 40 40 40 40

N2 30 20 50 50 53 50 50 50 50 50

N3 30 30 50 50 52 51 51 52 51 51

Table 3.12 shows the instances proposed by Beasley (1985b), Bengtsson (1982)

and, Christofides y Whitlock (1977). The first column represents the source of the

problem. Columns 2–4 describe the characteristics of each instance. The fifth column

is the best known lower bound. Column 6 is the optimal value obtained for P&C,

MO means that the computer memory was not enough to solve the instance. The

seventh column is the result of Iori et al. (2003). The last two columns show the

average and best results obtained for the GRASP proposed by Alvarez-Valdés et al.

(2008).
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Table 3.12: Results for instances of other two-dimensional cutting problems

Source of problem Instance Problem size LB P&C Iori GRASP

W n Average Best

Beasley ngcut 01 10 10 23 23 23 23 23

02 10 17 30 30 30 30 30

03 10 21 28 28 28 28 28

04 10 7 20 20 20 20 20

05 10 14 36 36 36 36 36

06 10 15 29 31 31 31 31

07 20 8 20 20 20 20 20

08 20 13 32 33 33 33 33

09 20 18 49 50 50 50 50

10 30 13 80 80 80 80 80

11 30 15 50 52 52 52 52

12 30 22 87 87 87 87 87

Bengtsson beng 01 25 20 30 30 31 30 30

02 25 40 57 57 58 57 57

03 25 60 84 84 86 84 84

04 25 80 107 107 110 107 107

05 25 100 134 MO 136 134 134

06 40 40 36 36 37 36 36

07 40 80 67 67 69 67 67

08 40 120 101 MO – 101 101

09 40 160 126 MO – 126 126

10 40 200 156 MO – 156 156

Christofides cgcut 1 10 16 23 23 23 23 23

2 70 23 63 MO 65 65 65

3 70 62 636 MO 676 661 661

Number of proven optimal solutions (P&C & matching LB) 19/25 13/25 23/25 23/25

From Table 3.12 we can see that the best results were obtained for the GRAPS

of Alvarez-Valdés et al. (2008). However, our contribution here, is that we have

increased the number of optimal solutions obtained for the GRASP from 19/25 to

23/25.



Chapter 3. Two-Dimensional Packing Problems 136

From Tables 3.7 and 3.9 we can see that all the instances proposed by Jakobs

(1996), Dagli y Poshyanonda (1997); Ratanapan y Dagli (1997, 1998), and Hifi (1998)

were solved to optimality using the P&C methodology. From the instances proposed

by Hopper y Turton (2001a) P&C only solved 9/12 instances. This is due to the size

of the items and of the height of the strip. The set of valid positions is too large,

and the memory it was not sufficient to solve this problems.

We make a special emphasis in the instances proposed by Dagli y Poshyanonda

(1997); Ratanapan y Dagli (1997, 1998) because, the optimal solutions for the in-

stances dagli-01 and dagli-03, it was not known before of this study.

Big instances could not be solved using P&C methodology due to the combina-

torial complexity of the problem. In this case we propose to apply alternative exact

methodologies, as columns generation, to give solutions to this kind of instances.

With respect to the computational times, this are not showed because we can-

not make comparisons between an exact method and a heuristic method. Beside, the

instances were implemented and tested on computers with different characteristics.

Also, the main purpose of this study is to give optimal solutions for instances of 2SP

and, not the quick solution of them.

3.2.4 Conclusions

In this study, we present an adaptation of the “Positions and Covering (P&C)”

methodology to obtain exact solutions for the two-dimensional strip packing problem

(2SP). The methodology is based on a two-stage procedure where first is generated

in a pseudo-polynomial way a set of valid positions where each item can be allocated

inside of the strip. The height of the strip is computed assuming that exist a perfect

packing. Then, a set covering formulation, based on integer linear programming, is

solved to determine if the height of the strip is optimal or not. The configuration of

the strip is also given by the set covering formulation.

The P&C methodology was tested using the benchmark for 2SP, but P&C only



Chapter 3. Two-Dimensional Packing Problems 137

was able of solving small and medium instances, where we were able to verify that

the solutions proposed by other approaches were the optimal solutions.

A main contribution of this study is that we have optimal solutions for instances

proposed by Dagli y Poshyanonda (1997); Ratanapan y Dagli (1997, 1998), where

the optimum for instances dagli-01 and dagli-03 it was not known before of this

study.

According to the combinatorial complexity of the problem, a decomposition ap-

proach is necessary to complement P&C to give optiml solutions for large instances.



Chapter 4

Conclusions

In the present dissertation we propose a new methodology to obtain exact solutions

for the agricultural planning, and for two packing problems.

The first part of this dissertation, focuses on the agricultural planning prob-

lems, shows a new methodology based on Precision Agriculture and mathematical

models of linear programming for helping the decision makers (the farmers) to plan

and operate their plots in order to avoid resources wastage and to maximize their

profits.

An important characteristic of this study is that we have considered the soil

variability existing in the agricultural plot, that is, the physical and chemical soil

properties of the field. The chemical soil properties affect on the application of

inputs (fertilizers, pesticides, etc.), while the physical soil properties are related to

the water use.

Our methodology starts by delineating the field into rectangular and homo-

geneous site-specific chemical and physical management zones to face within-field

variability. Then the farmers assign a crop to the different plots to obtain the best

profit at the end of the production cycle. Finally, during each irrigation period, the

farmer must decide how much and which plots must be watered such to maximize

the total final yields.

In the models we use real-time information about crops and environment (tem-

perature, moisture level, solar radiation, wind, phenological stage of crops, etc.), and

138
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they are solved optimally in reasonable time with low computational requirements.

Experimental results show that the methodology is efficient and practical to be used

in a decision support system to improve agricultural planning processes.

The second part of this dissertation is related to the Two-Dimensional Packing

problems. In this case we are considering the Bin and Strip Packing problems.

In the Two-Dimensional Bin Packing Problem we have an unlimited number

of identical rectangular bins with fixed width and height, and a set of rectangular

items each one with specific width and height. The objective of this problem is to

allocate the set of rectangular items using the minimum number of bins.

For the Two-Dimensional Strip Packing Problem we have a rectangular strip

with fixed width but infinite height, and a set of rectangular items each one with

specific width and height. In this case, the objective consist in allocate all the set of

rectangular items into the strip using the minimum height of the strip.

Both problems, Strip and Bin Packing, are NP-Hard in the strong sense, since a

reduction of these problems can be easily made for the one-dimensional bin packing

problem which is strongly NP-Hard. Due to the combinatorial complexity of the

problem, many studies have been focused to implement heuristics and metaheuristics

methods to solve these problems, and just a few approaches have been focused in

exact methods to give a solution for these problems.

In this study, we show a new methodology called Positions and Covering (P&C)

to obtain exact solutions for the Two-Dimensional Bin and Strip Packing Problems.

The methodology is based on a two-stage procedure where is solved a Set-Covering

formulation of integer linear programming. The P&C methodology was tested using

the literature benchmark for Bin and Strip Packing problems. P&C was able to

solve small and medium instances, but for large instances P&C cannot solve them.
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4.1 Conclusions

4.1.1 Agricultural Planning

It has been showed that a great amount of resources (seeds, costs, profits, water,

etc.) affects directly in the agricultural production planning. Therefore, it is very

important to analyze the amount of available resources during the whole production

cycle to take a good decision, which maximizes the farmer’s profit and minimizes

the production cost at the end of the production cycle.

To delineate the field in management zones is one of the most important char-

acteristics to improve the agricultural planning process and the efficient water man-

agement. A bad delineation of the agricultural field can imply several consequences

as:

• The bad selection of the crop pattern, although the mathematical model is

solved to optimality.

• The production cost can increase considerably because the amount of inputs

supplied into the plots is greater than the necessary.

• The solution obtained by the crop planning and the real-time irrigation models

is no the best option to maximize the farmer’s profit.

• An unnecessary use of natural resources such as the water. This is an important

characteristic because the water must to take special care in the production

planning process.

For the crop planning problem we have considered the information of previous

production cycles and different regions to execute the mathematical models. This

is a big problem because the crops have different behavior according to the weather

conditions of each region. It is not the same behavior when a crop is planted in a
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warm weather than in a cold weather, the weather conditions are different for each

region and therefore they have different impact on each crop.

Unfortunately, almost all the farmers in Mexico do not have a database or

a data record that show the performance, profit, production costs, or crop yield,

just to name a few, of last seasons to execute the mathematical models. Instead of

that, the information used in this research was taken from different research centers

(as INIFAP and SGARPA) to make the experimentation and the analysis of the

models. But, we think that if we use local information, specific for each region,

then the selection of the crop pattern can be different and more adjusted to the real

requirements of the farmer. In this sense, the information does not have a strong

impact in the mathematical models performance, but in the selection of the crop

pattern.

With respect to the irrigation problem, it is very important to consider the

crop requirements in real time to select the optimal amount of water to be supplied

in each crop. This is a very hard task due to not all the farmers have the appropriate

technology to obtain the information required to calculate this value.

Inside of this technology we can find moisture sensors and weather stations

which are used to obtain information such as: the solar radiation, the evapotran-

spiration level of the crop, the speed of wind, the crop coefficient, and the humidity

level of the crop, just to name a few. With this information we can calculate the

exact amount of water to be irrigated to the crop attending its real-time water

requirements.

As in the crop planning problem, if this model is applied using information of

other regions, then the results cannot be the appropriate for the crop and the yield

can be affected considerably. Therefore, to apply this model, it is necessary to invest

in technology to obtain the information locally.

With respect to the mathematical models, we conclude that these can be used

as make-decision tools in the agricultural planning process because they work effi-
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ciently given exact solutions to the problem. Also, it is considered that the tools

showed in this study can replace the traditional techniques, where it is used the

improvisation and the inappropriate study of the soil properties, to improve the

agricultural planning process.

4.1.2 Two-Dimensional Packing Problems

The P&C methodology showed good results for small and medium instances, however

for large instances P&C cannot guarantee a good performance. This is due to the

combinatorial complexity of the problems.

The pre-processing stage is a key point for the methodology. But, if we want

to solve more instances (large and huge instances, mainly) then it is needed to make

some modifications in this step and do not generate all the set of valid positions.

Instead of generate all the set of valid positions, we propose to study each

instance in a particular way to generate just a small set of valid positions that

guarantee the optimality of the solution.

It is interesting to analyze the particular elements of each instance such as the

size of the small item, the demand for each item, the number of items to be packed

and, the size of the bin/strip. All these elements determine the set of valid positions

used in the set-covering formulation to solve the problem.

If the set of valid positions is huge, then it is very probably that the solver can-

not obtain the optimal solution in a reasonable time; even the solver cannot obtain

the solution. Therefore, the key point in the P&C methodology is the generation of

the set of valid positions of each item. Thus, many efforts must be addressed to the

intelligent creation of this kind of information.

Therefore, of this research we can conclude that we have develop a new method-

ology called Positions and Covering (P&C) that optimally solve small and medium

instances of the bin and strip packing problems, however, to solve large instances
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using this methodology it is necessary to make some modifications on it taking into

account all the previous considerations.

4.2 Future Work

4.2.1 Agricultural planning

There exists a lot of work to do in the agricultural planning process. It is true

that this problem has been tackled since several years ago, however, in the best of

our knowledge, just a few amount of studies take into account the real-time crop

requirements.

Currently, there exist many technological tools, like Precision Agriculture,

which proportionate a lot of information that can be used to make a better agri-

cultural production planning. The mathematical models developed in this research

show some benefits of use this kind of information.

Next, we give a list about of new topics that can be used to improve the

agricultural planning process.

• First, it is necessary to implement all the mathematical models using the in-

formation of a specific location. This is very complicated, because not all

the farmers have the data of their crops, plots, cost, profits, and resources,

just to name a few. Therefore, the first part is to make a compilation of the

information where these tools are going to be used.

• Another important point is to define some strategies to improve the water

use, i.e., it is necessary to assess the existing of this vital resource for future

generations. Therefore, it is very important to decide if the production plan-

ning is going to be made using all the available resources (including the water)

or, if this planning must be done considering a limiting amount of resources,

specially the water. This last consideration can help to guarantee the saving
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water and make the agriculture planning a more sustainable practice.

• With respect to the mathematical models, the crop planning problem has been

addressed using a deterministic approach. However, there are some parame-

ters such as costs, profits, water, that have a stochastic nature. Therefore,

a possible extension of this problem is considering the stochastic approach of

this problem.

• For the delineation of rectangular and homogeneous management zones prob-

lem, it is required to make a delineation using several soil properties such

as Nitrogenous (N), Phosphorous (P), Potassium (K), or another, to analyze

which chemical soil property has more impact in the crop planning selection.

The same procedure must be done for the physical soil properties.

• Another important think to do is the supply chain in the farming sector. This

is very interesting because almost all the farmers have animals in their farms.

Therefore, a very attractive extension of this work can be the incorporation of

the livestock sector in the agricultural production planning.

More specifically, to determine the number of animals in the farms (cows,

horses, pigs, chickens); to determine the space and food for each specie; to

define the crop pattern to satisfy the farm requirements; to decide when to

sell/buy an animal; to satisfy the demand for each crop (if this exist); just

to name some activities inside of this new project. All the previous activities

must be done using the new technologies as Precision Agriculture in joint with

optimization techniques.

4.2.2 Two-dimensional packing problems

For the classical two-dimensional bin and strip packing problems, there exists a lot

of work to do yet. These problems have been tackled since several years ago using

mainly heuristics or metaheuristics methods. But, in the best of our knowledge, just

a few amount of works used the exact method to solve these problems.
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With respect to our methodology and, according to the experimental results

obtained by P&C, we have a lot of work to do. Also, we think this procedure can be

implemented to solve another kind of problems. Next, we give a list of new topics

where the P&C methodology can be implemented.

• To make some variants in the P&C methodology to try of solving large in-

stances for the two-dimensional bin and strip packing problems using this pro-

cedure. The variants we propose are referred mainly to do not generate all the

set of valid positions for each item. Instead of that, we propose make a special

analysis of each instance and then generate a small set of valid positions, which

guarantee the optimality of the solution.

• To implement a “Branch and Price” approach to obtain optimal solutions for

large instances of the bin and strip packing problems. The main idea of this

approach is to generate just a small set of valid positions and then, the model

is going to decide if new positions for each item are required. In affirmative

case, a sub-problem model generates the new positions and the process ends

when no more positions are required or no more positions can be generated.

Some advances of this research are presented in Appendix B

• Another possible extension is to implement the P&C methodology in the fol-

lowing problems:

– 2D-BPP for irregular pieces. This problem is similar to the classical 2D-

BPP just that in this case the shape of the items to be packed is irregular.

For this future research, we want to consider the case when the items have

“L” and “T” shapes.

– 2D-BPP for heterogeneous bins. As the previous problem, this is similar

to the classical 2D-BPP just that in this case it is considered that we have

bins with different size. Due to this particular characteristic, the problem

complexity increases considerably.
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– Heuristics for 2D-BPP. Another research line is the implementation of

metaheuristics to solve the 2D-BPP. The metaheuristics that we want

propose are going to be based using the P&C methodology but using

a “divide and conquer” approach, and a pre-classification of the items

searching an incompatibility between them.

– Packing 3D. A more complicated but very exciting research line is the

extension of the P&C methodology to solve 3D packing problems. This

problem is similar to the 2D-BPP just that in this case are considered

three-dimensional rectangular bins, which makes the problem strongly

NP-Hard and extremely difficult to solve in practice.

– Constraint Programming for packing problems. The constraint program-

ming paradigm is another strategy that can be used to solve the 2D pack-

ing problems. This approach has been implemented for solving several

combinatorial search problems that draws on a wide range of techniques

from artificial intelligence, computer science, databases, programming

languages, and operations research. Constraint programming is currently

applied with success to many domains, such as scheduling, planning, vehi-

cle routing, configuration, networks, and bioinformatics. Therefore, con-

straint programming is another interesting research line to solve this kind

of problems.
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Optimization Concepts

In this appendix are present some basic concepts related to the optimization area,

a short history about the operations research, and a brief description of some terms

used in this Ph.D. dissertation.

A.1 General concepts

In Sarker y Newton (2007) the concept of “Optimization” is related to find the

best solution (point or alternative) for a given problem. To find this solution, it is

necessary to examine a set of alternatives and prove that the selected solution is the

best. This best solution is known as the “optimal solution”.

Conejo et al. (2006) refers to the optimization as “the science of the best”

in the sense that it helps us to make not just a reasonable decision, but the best

decision subject to observing certain constraints describing the domain within which

the decision has to be made.

The optimization activities have been available for more than a century, but

at the beginning, differential calculus was the basic tool applied for finding maxima

or minima functions.

Around of 1942, during the World War II, when the British government intro-

duced scientific groups to support the making decisions of military operations about

logic, strategic and tactic problems. The objective of the scientists was maximizing

147
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the war effort using the limited amount of resources. The British community called

this activity as Operational Research. Simultaneously, scientists of the United Sates

of American did some similar activities for air military operations but they referred

this activity as Operations Research. After the second worldwide war many people

saw the results of these techniques in military operations and they applied them in

the industrial planning as a making-decisions tool.

Currently, the optimization techniques have several applications in real-world

problems. Some of these areas are: transportation and logistics, airline, rail indus-

tries, forestry industries, manufacturing planning and control, energy, telecommu-

nications networks, molecular biology, water reservoir systems, agriculture, just to

name a few (Pardalos y Resende, 2001; Ŕıos-Mercado, 2002).

Optimization also pertains to everyday decision making. For example, we try

to buy the best car provided our budget is sufficient, and we look for the best college

education for our children provided we can afford it. It also concerns minor decisions

such as buying the best cup of coffee at a reasonable price. Therefore, optimization

is part of our everyday activities.

To get a solution for an optimization problem it is required to solve a scientific

model, typically a mathematical programming model, which is a representation of

the problem. A solution that satisfies all the constraints of the model is known as

a feasible solution, but if this solution also gives the best value for the objective

function then this solution is the optimal solution (Bazaraa et al., 2004; Sarker y

Newton, 2007).

When the mathematical model is closer to the reality then the problem can

be much harder to solve and the complexity to obtain the optimal solution can

increase considerably (Taha, 2004; Winston et al., 2005; Dantzig y Thapa, 1997;

Hillier Frederick y Lieberman Gerald, 2010).

A mathematical model is composed by four elements: parameters, decision

variables, constraints, and objective function, which are briefly defined next:
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• The parameters are all the information known about of the problem. This

information is constant during the model execution.

• The decision variables, as it is indicated by their name, are all the decisions

that the optimizer wants to take for the problem. We can specify continuous,

integer or binary variables.

• The constraints indicate the limits of the problem. They have tree components:

a function that determine the amount of resources required to do an activity,

process or service; a constant which represents the total amount of available

resource; and an equality or inequality sign, to determine the function limits.

• The objective function represents the objective or goal of the mathematical

model. According to the problem, the objective function can be maximized or

minimized, and it is influenced directly by the constraints of the problem.

Basically, a mathematical model is represented as in Figure A.1.

Maximize or minimize the Objective Function

Subject to:

Constraints

Figure A.1: Structure of a mathematical model (Taha, 2004).

In mathematical terms, Figure A.1 can be represented as follows:

Maximize f(x) (A.1)

Subject to:

gi(x) ≤ bi (A.2)

x ≥ 0 (A.3)
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where the Equation A.1 is the objective function of the problem (in this case, max-

imized). The Equation A.2 represents the linear constraints of the problem. The

Equation A.3 is the declaration of the variables (in this case, continuous variables).

An optimization problem can be classified according to: objective, kind of

problem, kind of variables, or kind of objective function (see Figure A.2).

Problem

Mono-Objective Multi-Objective

Non restrictedRestricted

MixtContinuous Integer, Discret

Differentiable 
or  

Non differentiable

Linear  
or  

Non linear

Convex 
or  

Non convex

Level 5 
Classification by: 
objective function

Level 4 
Classification by: 

variable

Level 3 
Classification by: 

problem

Level 2 
Classification by: 

objective

Level 1 
General Problem

Figure A.2: Classification of a mathematical model (Sarker y Newton, 2007).

According to the variable, the mathematical models can be: Linear Program-

ming (LP), Integer Programming (IP), Binary Integer Programming (BIP), and

Mixed Integer Programming (MIP) (Chvatal, 1983).

In this dissertation, we present mono-objective models of: Linear Program-

ming, Binary Integer Programming, and Mixed Integer Programming. A multi-

objective model of Binary Integer Programming is showed too. A short description

of these models is given in the following sections.
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A.2 Linear Programming Model

In a linear programming model or linear program (LP) the objective function and

the constraints are developing as linear functions. Also, the decision variables take

continuous values greater than or equal to zero (Wolsey, 1998; Williams, 1999). The

linear programming model can be represented as:

Maximize cx

Ax ≤ b

x ≥ 0

where A is a matrix of m by n, c is a row vector of n dimensions, b is a column

vector of m dimensions, and x is a vector of variables of n dimensions.

The “Simplex” algorithm proposed by Dantzig is the most used algorithm to

solve this kind of problems (Dantzig y Thapa, 1997; Dantzig, 1998; Hillier Frederick

y Lieberman Gerald, 2010). Although there exist another methods as the ellipsoid

method proposed by (Khachiyan, 1980) and the interior-point method proposed by

Karmarkar (1984) to solve linear optimization models.

A.3 Integer Programming Model

An integer programming model (IP) is an extension of the LP model just that in

this case, the decision variables can take only integer values (Wolsey, 1998; Williams,

1999).

Maximize cx

Ax ≤ b

x ≥ 0 and integer

These models are very used in real-world applications where fractional values

of the decision variables cannot be implemented. For example, you cannot buy the
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half of a car, or the half of a cow, this is illogical and impractical. The complexity

of this kind of models is NP-Hard.

A.4 Binary Integer Programming Model

As the previous model, a binary integer programming model (BIP) is a variant of

the LP model. In this case, the decision variables can take only binary values (0 or

1) (Wolsey, 1998; Williams, 1999).

Maximize cx

Ax ≤ b

x ∈ {0, 1}n

These models are used in problems where the decisions variables only can take

one of two possible values as “Yes” or “No”. For example: if a product is elaborated

or not, if a service is realized or nor, or if a center is opened or not, just to name a

few. The complexity of this kind of models is NP-Hard.

A.5 Mixed Integer Programming Model

In a mixed integer program model (MIP) we can find a mix of variables: continuous,

binaries or integer variables. This kind of problems is the most commonly used

in real-life applications because, although it is necessary to take some decision, in

many cases it is required to assign some amount of resources to products or activities

(Wolsey, 1998; Williams, 1999).

Maximize cx+ hy

Ax+Gy ≤ b

x ≥ 0, y ≥ 0 and integer

The MIP models are classified as NP-Hard problems, but there exist a set of
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exhaustive algorithms, as the Branch and Bound algorithm, which can proportionate

a solution for the problem in considerable times periods.

A.6 Multi-objective Optimization

The purpose of the Multi-objective Optimization Problems (MOOPs) is solving prob-

lems that involve the simultaneous optimization of several objectives. Generally,

these objectives are in conflict one with each other (Coello et al., 2002; Figueira et

al., 2005; Ehrgott, 2006; Jaimes et al., 2009).

For example, while a consumer wants to buy a house with low cost and high

comfort, the seller wants to send the house with low cost or high comfort (see Figure

A.3). Clearly, there exist a conflict of preferences between the consumer and the

seller, and the consumer only can take one of these two preferences: low cost or high

comfort, but not both (Burke y Kendall, 2005; Zopounidis y Pardalos, 2010).

Cost

C
om
fo
rt

A

B

C

D

E

10k 100k

30%

90%

Figure A.3: Trade-off solutions for a house-buying decision making problem.
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Jaimes et al. (2009) formally define a MOOP as:

Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]T

subject to:

x ∈ X

where x ∈ Rn is a vector of n decisions variables representing the quantities for which

values are to be chosen in the optimization problem. The vector function f : Rn →
Rk is composed by k scalar objective functions fi : Rn → R(i = 1, . . . , k; k ≥ 2). The

sets Rn and Rk are known as decision variable space and objective function space,

respectively. X ⊆ Rn is the feasible set that is determined by a set of equality and

inequality constraints.

In multi-objective optimization we do not have a single solution as in the mono-

objective optimization problems, instead of that we have a set of solutions, which

represents the different trade-off among the objectives, see Figure A.3. In the figure,

two houses are presented, the first one with a cost about of 10,000 dollars (option

A) and the second house costing about of 100,000 dollars (option E).

If only one objective is considered, for example comfort, then, the optimal

solution will be the option E. The figure shows that a cheaper house has a lower

level of comfort. This is a two-objective optimization problem and the results are

two extreme solutions. Between these two extreme solutions, there exist many other

solutions, where a trade-off between cost and comfort exists. A number of such

solutions (solutions B, C and D) with differing costs and comfort levels are also

shown in the figure. Thus, between any two such solutions, one is better in terms of

one objective, but this betterment comes only from a sacrifice on the other objective.

In this sense, all such trade-off solutions are optimal solutions to a MOOP. Often,

such trade-off solutions provide a clear front on an objective space plotted with the

objective values. This front is called the Pareto-optimal front and all such trade-off

solutions are called Pareto-optimal solutions. Mathematically, Pareto optimality can

be defined as (Marler y Arora, 2004b; Chinchuluun y Pardalos, 2007):
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Pareto Optimality : A point x∗ ∈ X with f(x∗) is called (globally) Pareto

optimal (or efficient or non-dominated, or non-inferior), if and only if there exists

no point x ∈ X such that fi(x) ≤ fi(x
∗) for all i = 1, 2, . . . , k and fj(x) < fj(x

∗) for

at least one index j ∈ 1, 2, . . . , k.

Local Pareto Optimality : A point x∗ ∈ X with f(x∗) is called locally Pareto

optimal, if and only if there exists δ > 0 such that x∗ is Pareto optimal in S ∩
B(x∗, δ). Here, B(x∗, δ) is the open ball of radius δ centered at point x∗ ∈ X, that

is, B(x∗, δ) = {x ∈ Rn| ‖x − x∗‖ < δ}. Note that every globally Pareto optimal

solution is a locally Pareto optimal solution. However, the converse is not always

true unless there are some assumptions in the problem.

Weak Pareto Optimality : A point x∗ ∈ X with f(x∗) is called weakly Pareto

optimal, if and only if there exists no point x∗ ∈ X such that fi(x) < fi(x
∗) for all

i = 1, 2, . . . , k. It is easy to see that every Pareto optimal solution is weakly Pareto

optimal.

For multi-objective discrete optimization, the concept of Pareto optimality can

be stated in the similar way as we defined in continuous optimization. Finding all

Pareto optimal solutions is often computationally problematic since there are usually

exponentially (or infinite) large Pareto optimal solutions. Furthermore, for even the

simplest problems and even for two objectives, determining whether a point belongs

to the Pareto optimal set is NP-hard (Papadimitriou y Yannakakis, 2000). One way

to handle those problems is to introduce approximate Pareto solutions.

ε-Approximate Pareto Optimality : Given a scalar ε > 0, an ε-approximate

Pareto optimal set, denoted by Pε, is a subset of X such that there is no other

solution y such that (1 + ε)fi(y) ≥ fi(x) for all x ∈ Pε and for some i.

This definition says that every other solution is almost dominated by some solution

in Pε , i.e. there is a solution in Pε that is within a factor of ε in all objectives.

There exist several techniques to solve multi-objective optimization problems

as the scalarization technique, the ε-constraint method, goal programming, multi-
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level programming, just to name a few (Marler y Arora, 2004b; Chinchuluun y

Pardalos, 2007; Jaimes et al., 2009). Next, it is presented a short description of the

ε-constraint method, because it was the method used to solve the bi-objective model

of the Section 2.3.

The ε-constraint method was proposed by Vira y Haimes (1983). This method

takes only one of the k objectives to be minimized (or maximized). The other

objectives are used as constraints to be less than or equal to a given target values.

In mathematical terms, if the first objective has been selected to be minimized we

have:

Minimize f1(x)

subject to:

fi(x) ≤ εi ∀i ∈ {1, . . . , k} \ {2}

x ∈ X

One advantage of the ε-constraint method is that it is able to achieve efficient

points in a non-convex Pareto curve. For instance, assume we have two objective

functions and the objective function f1(x) is chosen to be minimized, i.e., then the

problem is:

Minimize f1(x)

subject to:

f2(x) ≤ ε2

x ∈ X

The decision maker can vary the upper bounds εi to obtain weak Pareto optima.

Clearly, this is also a drawback of this method, i.e., the decision maker has to choose

appropriate upper bounds for the constraints, i.e., the εi values. Moreover, the

method is not particularly efficient if the number of the objective functions is greater

than two.
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A Branch & Price Approach to

Obtain Optimal Solutions for

the 2D Bin Packing Problem

A branch and price approach is used for solving large-scale IPs. This method ba-

sically consists in a branch and bound method in which at each node of the search

tree, several columns may be added to the LP relaxation.

At the start of the algorithm, sets of columns are excluded from the LP re-

laxation in order to reduce the computational and memory requirements and then

columns are added back to the LP relaxation as needed.

The algorithm typically begins by using a reformulation, such as Dantzig-Wolfe

decomposition, to form what is known as the Master Problem. The decomposition

is performed to obtain a problem formulation that gives better bounds when the

relaxation is solved than when the relaxation of the original formulation is solved.

The decomposition usually contains many variables and a modified version,

called the Restricted Master Problem, that only considers a subset of columns.

Then, to check for optimality, a subproblem called the Pricing Problem is

solved to find columns that can be added to the basis and reduce the objective

function (for a minimization problem). This involves finding a column that has a

negative reduced cost (see Figure B.1).
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Solve subproblem to find column with 
negative reduce cost. Column found?

Original Problem Formulation

Master Problem

Restricted Master Problem

Solve Relaxation of RMP

Solution Integral?

Branch

Add such column 
to RMP

Done

Yes

Yes
No

No

Figure B.1: A branch and price approach.

The implementation of the branch and price approach using the P & C method-

ology is given next.

B.1 Grid-based reformulation for the

D-2D-BPP

B.1.1 Notations

Let I be the set of rectangular items to be packed, S be the set of points inside of

the bins and K be the set of bins (unchanged).

Let L be the set of all positions for all items. It is possible to define constant
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parameters ail,∀i ∈ I and bsl ,∀s ∈ S, that verify:

ail =





1 if position l belongs to item i, and

0 otherwise

bsl =





1 if point s belongs to position l, and

0 otherwise

B.1.2 Potential reformulation

The proposed reformulation requires the following decision variables:

xski =





1 if item i is placed on point s, and

0 otherwise

ylk =





1 if position l is used in bin k, and

0 otherwise

tsk: continuous variable, to determine the number of items in point s of bin k.

The resulting model is:

(EF) min
∑

s

∑

k

tsk (B.1)

subject to:

∑

k∈K

∑

l∈L

ailylk ≥ di, ∀i ∈ I (B.2)

tsk = 1−
∑

l∈L

bsl ylk, ∀s ∈ S,∀k ∈ K (B.3)

xs,ki =
∑

l∈L

ailb
s
l ylk, ∀i ∈ I,∀s ∈ S,∀k ∈ K (B.4)

xs,ki ∈ {0, 1}, ∀i ∈ I,∀s ∈ S,∀k ∈ K

ylk ∈ {0, 1}, ∀l ∈ L,∀k ∈ K

tsk ∈≥ 0, ∀s ∈ S,∀k ∈ K
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Objective (B.1) minimize the number of items in each point of each bin (min-

imizing the overlapping). Constraints (B.2) ensure that the demand of each item is

satisfied. Constraints (B.3) establish the link between tsk and ylk variables. Finally,

constraint (B.4) establish the link between xs,ki and ylk variables.

To allow the location of more than one item in each point of each bin (over-

lapping), Constraints (B.3) are changed to

tsk +
∑

l∈L

bsl ylk ≥ 1, ∀s ∈ S,∀k ∈ K (B.5)

B.1.3 Relaxing ylk without losing optimality

Let (EF’) be the problem obtained by replacing in (EF) the domain of variables ylk

with R+.

Theorem: (EF’) and (EF) are equivalent.

Proof: It is based on the fact that any optimal solution of (EF’) will be feasible

for (EF).

B.2 Resulting Dantzig-Wolfe decomposition

B.2.1 Master Problem

The master problem is equivalent to (EF’).

Restricted master problem: Primal linear relaxation

The restricted master problem (RMP) is obtained by replacing L with a subset

L ⊂ L of the position sets of (EF’). Its linear relaxation (LRMP) is:

(LRMP) min
∑

s

∑

k

tsk (B.6)
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subject to:

∑

k∈K

∑

l∈L

ailylk ≥ di, ∀i ∈ I (B.7)

tsk +
∑

l∈L

bsl ylk ≥ 1, ∀s ∈ S,∀k ∈ K (B.8)

xs,ki −
∑

l∈L

ailb
s
l ylk = 0, ∀i ∈ I,∀s ∈ S,∀k ∈ K (B.9)

−xs,ki ≥ −1, ∀i ∈ I,∀s ∈ S,∀k ∈ K (B.10)

xs,ki ≥ 0, ∀i ∈ I,∀s ∈ S,∀k ∈ K

ylk ≥ 0, ∀l ∈ L,∀k ∈ K

tsk ≥ 0, ∀s ∈ S,∀k ∈ K

Objective (B.6) minimize the number of items in each point of each bin. Con-

straints (B.7) ensure that the number demand for each item is ensured. Constraint

(B.8) state that most one position set can be active on each point in each bin. Con-

straints (B.9) establish the link between xs,ki and ylt variables. Constraints (B.10)

are required because variables xit were binary before the linear relaxation.

Restricted master problem: Dual of the linear relaxation (V-2)

The dual of the linear relaxation of the restricted master problem (DLRMP) requires

the following decision dual variables:

• ui: dual variables of constraints (B.7)

• vsk: dual variables of constraints (B.8)

• wski : dual variables of constraints (B.9)

• zski : dual variables of constraints (B.10)

The resulting dual is :

(DLMRP ) max
∑

i∈I

diui +
∑

s∈S

∑

k∈K

vsk −
∑

i∈I

∑

s∈S

∑

k∈K

zski (B.11)
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subject to:

∑

i∈I

ailui +
∑

s∈S

bsl vsk −
∑

i∈I

∑

s∈S

ailb
s
lw

i
sk ≤ 0, ∀l ∈ L,∀k ∈ K (B.12)

wisk − zsk ≤ 0, ∀i ∈ I,∀s ∈ S,∀k ∈ K (B.13)
∑

s∈S

∑

k∈K

vsk ≤ 1, (B.14)

ui ≥ 0, ∀i ∈ I (B.15)

vsk ≥ 0, ∀s ∈ S,∀k ∈ K (B.16)

wisk ∈ R, ∀i ∈ I,∀s ∈ S,∀k ∈ K (B.17)

zski ≥ 0, ∀i ∈ I,∀s ∈ S,∀k ∈ K (B.18)

Objective (B.11) is obtained from the right-hand-side of constraints (B.7)-

(B.10). Constraints (B.12) correspond to the primal decision variable ylk. Con-

straints (B.13) correspond to the primal decision variable xski . Constraints (B.15),

(B.16) and (B.18) state that variables ui, vsk and zsk are positive because their re-

lated primal constraints (B.7), (B.8) and (B.10) are of type “≥”. Constraints (B.17)

state that variable wski is R because the related primal constraint (B.9) is of type

“=”.

B.2.2 Subproblems

Finding a variable of negative reduced cost for a given (LRMP) is equivalent to

finding the missing violated constraint in the associated (DLRMP). Therefore, the

goal of the subproblem is to identify the position l′ ∈ L that maximizes the violation

of constraint (B.12).

Procedure to generate positions of negative reduced cost

The idea is that for a predefined bin k and a predefined item i, finding a position l

that maximizes the left-hand-side of constraint (B.12) consists in finding the feasible

position that minimizes
∑

s∈S b
s
l vsk −

∑
i∈I
∑

s∈S a
i
lb
s
lw

sk
i , since

∑
i∈I ui is constant.
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As a consequence, each point s is assigned a weight “vsk − wski ’. The goal is

to identify the position that minimizes the sum of weight of points covered. The

constraint to enforce, to ensure feasibility of the resulting position, is that the shape

of the item must be respected.

Note: In the case where there are no rotation allowed, it is enough to identify the

corner left of the object, or one predefined extremity, the rest of it can be deduced.

Subproblem using an exact formulation

Let Ps be the weight of each point s and, let τ(s) be the set of all point such that if

the left corner of item i is at there point, then s will be covered. Ps = “vsk − wski ”.

The decision variables of subproblem are:

αs =





1 if point s is the corner left, and

0 otherwise
βs =





1 if point s is covered, and

0 otherwise

.

The resulting subproblem is:

(SDLMRP ) min
∑

s∈s

Psβs (B.19)

subject to:

∑

s∈S

αs = 1, (B.20)

βs =
∑

j∈τ(s)

αj, ∀s ∈ S (B.21)

αs ∈ {0, 1}, ∀s ∈ S (B.22)

βs ∈ R, ∀s ∈ S (B.23)

Objective (B.19) consist in minimizing the weight of all points corresponding

to best position of item in bin. Constraint (B.20) select the point ”s for the upper-

left corner of the item. Constraints (B.21) activate all the points corresponding to

position.
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B.3 Experimental Results

Table B.1 shows the preliminary results for the 2D-BPP using the “Branch & Price”

approach for the instances of Martello y Vigo (1998). The first column is the class

of the instance. The second column is the bin size. The third column represents the

number of items to be packed in each instance. The fourth column is the best lower

bound known. The fifth column represents the results of the P&C mehtodology.

The last column shows the the results of the P&C mehtodology using the “Branch

and Price” approach.

Table B.1: Experimental results for the 2D-BPP using the “Branch & Price” ap-

proach.

Class Bin size n LB∗ P&C P&C 2

1 10×10 20 7.1 7.1 7.1

40 13.4 13.4 13.4

60 19.7 20 20

80 27.4 27.5 27.5

100 31.7 31.7 31.7

2 30×30 20 1.0 1.0 1.0

40 1.9 1.9 1.9

60 2.5 2.5 2.5

80 3.1 3.1 3.1

100 3.9 3.9 3.9

3 40×40 20 5.1 5.1 5.1

40 9.2 9/10 9.4

60 13.6 1/10 Exe

80 18.7 T.O. Exe

100 22.1 T.O. Exe

From Table B.1 in Class 3 we can see that the “Branch & Price” approach have

best results than the simple P&C. However, it is necessary to finish the experimental

results stage to give final conclusions of the research.
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Summary of Notation for CPP

• I set of the different crops a farmer could plant, J is the set of parcels in the

farmer’s field, ZCh(j) is the set of chemical management zones within parcel j

and ZPh(j) is the set of physical management zones within parcel j.

• Gi is the expected benefit of selling a tn of crop i at the end of the production

cycle.

• Cirrjz is the cost of irrigating a m3 of water in parcel j and physical zone

z ∈ ZPh(j).

• Cseedi is the cost of buying a kg of seeds of crop i.

• haj is the number of ha of parcel j.

• hacjz is the number of ha in chemical management zone z ∈ ZCh(j) of parcel j.

• hapjz is the number of ha in physical management zone z ∈ ZPh(j) of parcel j.

• Iseedi is the quantity of seeds in kg of crop i in the farmer’s stock.

• Seedi is the quantity of seeds in kg needed to plant a ha of crop i.

• Yi is the expected yield in tn by ha of crop i at the end of the production cycle.

• Di is the demand in tn of crop i ∈ I0 ( I where I0 is a subset of the crop set I.

• W is the expected total amount of water in m3 for the whole planning cycle.
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• ETcvij is the crop evapotranspiration that represents the amount of water in

mm required by crop i at a specific time v for parcel j.

• ETov is the reference crop evapotranspiration in mm at a specific time v.

• Kcvij is the crop coefficient at phenological stage v, and geographic location j.

• SW p
jz is the expected amount of stored water in m3 in parcel j and physical

management zone z ∈ ZPh(j) at period p.

• Wijz is the expected amount of water in m3 needed for irrigation a ha planted

with crop i in parcel j and physical management zone z ∈ ZPh(j).

• xij is a binary variable, which is equal to 1 if crop i is planted in parcel j, and

0 otherwise.

• si is a variable representing the kg of seeds the farmer could buy of crop i ∈ I.
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Summary of Notation for RTIP

• Y ap
ijz is a variable of the expected yield of crop i in parcel j and physical

management zone z ∈ ZPh(j) at period p.

• Y ap−1ijz is the maximum yield of a crop i in parcel j and physical management

zone z ∈ ZPh(j) at period p− 1.

• SW p
jz is the amount of stored water in m3 in parcel j and physical management

zone z ∈ ZPh(j) at period p.

• W p
ijz is the current amount of water in m3/ha that crop i needs in parcel j and

physical management zone z ∈ ZPh(j) at period p.

• hapjz is the number of ha in physical management zone z ∈ ZPh(j) of parcel j.

• ETapijz represents the amount of water supplied to crop i of parcel j and zone

z during the current irrigation period p.

• Kypi is the response factor of crop i at period p.

• Gp
i is the expected benefit of selling a tonne of crop i at the end of the pro-

duction cycle given that we are at period p.

• γ(j) = i is a function that indicates that crop i is sown in parcel j (this is

obtained from the solution of CPP).

• W p represents the amount of water available at irrigation period p.
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• wp
jz is a variable representing the amount of irrigated water in m3/ha in phys-

ical management zone z ∈ ZPh(j) of parcel j at period p.
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129–162.

Allen, R., L. Pereira, D. Raes y M. Smith (2006), Evapotranspiración del
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págs. 180–189.

Baker, B. S., E. G. Coffman, Jr y R. L. Rivest (1980), �Orthogonal packings

in two dimensions�, SIAM Journal on Computing, 9(4), págs. 846–855.
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144–156.

Fekete, S. P. y J. Schepers (2004), �A combinatorial characterization of higher-

dimensional orthogonal packing�, Mathematics of Operations Research, 29(2),
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Moore, S. H. y M. C. Wolcott (2000), �Using yield maps to create management

zones in field crops�, Louisiana Agriculture, 43(3), págs. 12–13.
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Reddy, M. y D. Kumar (2008), �Evolving strategies for crop planning and op-

eration of irrigation reservoir system using multi-objective differential evolution�,

Irrigation Science, 26(2), págs. 177–190.
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21(10), págs. 621 – 632.

Schepers, J. S., A. Luchiari, S. H. Johnson, M. A. Liebig, J. F. Shanahan

y A. R. Schepers (2004), �Appropriateness of management zones for character-

izing spatial variability of soil properties and irrigated corn yields across years�,

Agronomy Journal, 96(1), págs. 195–203.
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136(3), págs. 504–523.

Smith, R. J., S. R. Raine, A. C. McCarthy y N. H. Hancock (2009), �Man-

aging Spatial and Temporal Variability in Irrigated Agriculture through Adaptive

Control�, Australian Journal of Multi-disciplinary Engineering, 7(1), págs. 79–90.
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Juárez, Mexico; and, three conferences of the ENOAN at Cuernavaca, Tabasco and

Saltillo, Mexico.


	Dedicatory
	Acknowledgments
	Abstract
	Introduction
	Agricultural Planning
	Problem statement
	Objectives
	Hypothesis
	Scientific methodology

	Two-Dimensional Packing Problems
	Problem statement
	Objective
	Hypothesis
	Scientific methodology

	Dissertation structure

	Agricultural Planning
	Delineation of Rectangular and Homogeneous Management Zones
	Introduction
	Materials and Methods
	Experimental Results
	Conclusions of Section

	A Crop Planning and Real Time Irrigation Method Based on Site-specific Management Zones and Linear Programming
	Introduction
	Materials and Methods
	Experimental Results
	Conclusions of Section
	Acknowledgements

	A Hierarchical Planning Scheme Based on Precision Agriculture
	Introduction
	Rectangular and Homogeneous Management Zones
	Crop Planning Problem and Selection of the Best Management Zones
	Real-Time Irrigation Problem
	Experimental Results
	Conclusions of Section
	Acknowledgements


	Two-Dimensional Packing Problems
	Positions and Covering: A New Two-stage Methodology to Obtain Exact Solutions for the 2D-Bin Packing Problem
	Introduction
	Materials and Methods
	Could a denser grid yield a better solution?
	2D-BPP with possible rotation of the items by 90
	Experimental Results
	Conclusions
	Acknowledgments

	Positions and Covering (P&C), an adaptive approach to obtain optimal solutions for the 2D-Strip Packing Problem
	Introduction
	Materials and methods
	Experimental Results
	Conclusions


	Conclusions
	Conclusions
	Agricultural Planning
	Two-Dimensional Packing Problems

	Future Work
	Agricultural planning
	Two-dimensional packing problems


	Optimization Concepts
	General concepts
	Linear Programming Model
	Integer Programming Model
	Binary Integer Programming Model
	Mixed Integer Programming Model
	Multi-objective Optimization

	A Branch and Price Approach for the 2D-BPP
	Grid-based reformulation for the D-2D-BPP
	Notations
	Potential reformulation
	Relaxing ylk without losing optimality

	Resulting Dantzig-Wolfe decomposition
	Master Problem
	Subproblems

	Experimental Results

	Summary of Notation for CPP
	Summary of Notation for RTIP
	Bibliography


