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Abstract 

Structural characteristics of combustion synthesized, calcined and densified pure and doped 

nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray 

diffraction (XRD) and  high resolution transmission electron microscopy (HRTEM).  The 

results showed that the as-synthesized and calcined nanopowders were mesoporous and 

calculated lattice parameters were close to theoretical ion-packing model. The effect of 

dopants on elastic modulus, microhardness and fracture toughness of sintered pure and 

doped ceria were investigated. It was observed that tri-valent cation dopants increased the 

hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.      

 

Keywords:   Combustion synthesis; doped ceria; mesoporous; mechanical properties.  
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Introduction 

There is a wide range of applications for pure and doped ceria (CeO2) such as electrolyte 

and barrier layers for solid oxide fuel cells (SOFCs) [1,2], catalysts for the treatment of 

automotive exhaust gases, petroleum cracking catalyst and gas sensor [3,4], polishing 

materials [5], oxygen pumps, ampere metric oxygen monitors [6,7] and optical films [8] 

because of their remarkable properties such as high oxygen storage capability[9,10] and 

ionic conductivity[11].  Besides these physical properties, their mechanical 

characterizations are also important in design and fabrication especially for mobile and 

portable devices.  

Mechanical properties of ceria doped with different dopants mainly rare earth tri-valent 

cations prepared by different synthesis processes have been studied by various researchers.  

For instance, Fu et al. [12] reported microhardness in the range of 6.045–7.378 GPa and 

fracture toughness in the range of 6.393–7.003 MPa m1/2 for Ce0.8M0.2O2-δ (M=Y, Gd, Sm, 

Nd, La) produced by a coprecipitation method. Sameshima et al. [13] reported 158-178 

GPa of Young's modulus and 53-81 MPa of strength for Ce0.8R0.2O1.9 (R=Sm and La) 

prepared by oxalate coprecipitation method. Morales et al. [14] obtained the Young’s 

modulus in the range of 186-239 GPa, hardness in the range of 10.5-16.9 GPa and fracture 

toughness in the range of 1.27-1.47 MPa m1/2 for various compositions of  GdxCe1-xO2-x/2 

produced by the sol–gel method. There are more reports for mechanical properties of ceria 

doped with gadolinium and samarium [15-19] in literature due to having higher ionic 

conductivity which make them potential candidates for electrolyte materials for SOFCs at 

low operation temperatures.  As it can be seen from aforementioned data and as 

demonstrated by Wachtel and Lubomirsk [20] who reviewed and analyzed the elastic 

modulus of pure and doped ceria measured by various methods, mechanical properties of 

ceria are function of chemical composition, the history of the samples and the measurement 

techniques. Based on our knowledge, there is no report on effect of Er3+ on mechanical 

properties of ceria. 

In this investigation, we prepared CeO2 and Ce0.9M0.1O1.95 (M= Er, Y, Gd, Sm and Nd) 

nanopowders by combustion technique and studied to compare their structural and 

mechanical characterizations. 
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 Experimental 

CeO2 and Ce0.9M0.1O1.95 (M= Er, Y, Gd, Sm and Nd) nanopowders were synthesized 

through the nitrate-fuel combustion method by using citric acid as an organic fuel. High 

purity (>99.9%) Ce(NO3)3·6H2O, Er(NO3)3·6H2O, Y(NO3)3·6H2O, Gd(NO3)3·6H2O, 

Sm(NO3)3·6H2O and Nd(NO3)3·6H2O, from Sigma-Aldrich, were used as precursor 

reagents. The details of the synthesis have been reported elsewhere [17, 21, 22]. The as-

synthesized powders were calcined at 700°C for 2h.  

The calcined powders were uni-axially pressed (90 MPa) to fabricate discs with 25mm in 

diameter and 3mm in thickness and were sintered at 1400°C for 2h. Structural 

characterizations of as-synthesized and calcined powders and sintered discs were 

characterized by X-ray diffraction (XRD, Bruker D8) using TOPAS software. The 

microstructural features of the nanopowders were analyzed using a high resolution 

transmission electron microscope (HRTEM, FEI TITAN G2 80-300) operated at 300 kV 

and scanning transmission electron microscopy high-angle annular dark field (STEM-

HAADF). 

The discs were suspended by soft springs to simulate a “free-free” boundary condition and 

were excited by an impact hammer. The vibration of the discs is captured by a microphone 

which was connected to a data acquisition system. A signal processing software computed 

the frequency content of the measured signals from which the experimental resonant 

frequencies were identified. This procedure is illustrated in Fig. 1. Once the experimental 

resonant frequencies were identified, the elastic modulus was computed using the following 

relationship [23]: 

��� = 0.2458ℎ�� 
 ��(1 − ��) , ��� = 1.682��� (1) 

where ʋ=0.3 is poisson´s ratio, h and r are thickness and radius of disc, respectively. The 

variables f20 and f01 correspond to the first two resonant frequencies of the disc. Fig. 2 

presents a scheme of the first two vibration modes, the region in black indicate no 

displacement whereas the white colour indicates region of maximum displacement. The 

discs must be excited at a point of large displacement for the mode of interest. Therefore, 

https://www.researchgate.net/publication/243730720_Analytical_Methods_in_Vibration?el=1_x_8&enrichId=rgreq-302a9b78eb482d50c52e05f7a36be27e-XXX&enrichSource=Y292ZXJQYWdlOzI4MjY2MjgwMztBUzoyODI0MjQ2NzMwOTU2ODFAMTQ0NDM0NjY5NzcwMQ==
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mode (2,0) was excited with an impact near the edge of the disc while the mode (0,1) was 

excited with an impact in the middle of the disc. 

The Vickers microhardness of the sintered discs was measured using Struers microhardness 

tester under ambient conditions. The hardness was determined by the ratio of the applied 

load via a geometrically defined indenter to the projected area of the resultant impression 

using relationship: 

2
4.1854

a

P

v
H =  (2) 

where P is the applied load and a is the indentation diagonal length. In a typical indentation 

test, load was varied from 5 to 20N for a dwelling time of 15s.  At least ten indentations 

were made for each load on all the samples. The fracture toughness was calculated by the 

indentation technique using the same instrument.  Both diagonal lengths of the indentation 

images and crack lengths were measured by scanning electron microscopy (SEM) and the 

fracture toughness (KIC) values were calculated by the method of Palmqvist cracks. 

 

Results and discussion 

The X-ray diffraction patterns of as-synthesized, calcined powders and sintered discs 

showed fluorite structure with structural characteristics summarized in Tables 1, 2 and 3, 

respectively. Fig. 3 shows the obtained lattice parameters by Rietveld refinement versus 

dopant cation radius compared with calculated lattice parameter based on the ion-packing 

model [24].  As it can be seen, the lattice parameters become close to the theoretical values, 

decrease in lattice strains and increase in crystallite sizes were observed for both 

calcinedpowders and sintered discs.  Change in the lattice parameter after calcination has 

been reported for Fe doped ceria, where it was attributed to the reduction of Ce4+ to Ce3+ 

due to calcination in hydrogen gas [25].  Based on our results, it seems that it can be related 

to structural defects reduction during thermal treatment. As examples shown in Figs. 4 and 

5, morphology and structure of synthesized and calcined powders studied by using HRTEM 

and HAADF, which show high crystallinity containing mesopores where structural 

distortion and dislocations exist. As we reported elsewhere [26], these structural defects are 

reduced by thermal processing, which confirmed the XRD results. 
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To determine the elastic properties of pure and doped ceria, impulse excitation technique as 

high precision dynamic method [27] was applied. Fig. 6 depicts the experimental power 

spectral densities of the discs showing two vibration modes. The first and second resonant 

frequencies of each disc were identified by measuring the response of the discs to an impact 

in the edge or the middle of the discs, respectively. These frequencies were used along with 

bulk densities measured by geometrical method in equation 1 to calculate Young’s modulus 

(Table 4). Elastic modulus of oxygen ion conductors such as doped ceria is a function of 

temperature, porosity, chemical composition and oxygen vacancy concentration which can 

be expressed as:  

 

)5.4exp(0 PEE −=                                                                                                        (3) 

 

where E0 is the elastic modulus at zero porosity (P=0). This is an empirical relationship 

employed by Selcuk and Atkinson [28] and widely used to determine the change of elastic 

modulus as a function of porosity [15]. As it can be seen in Table 4, E0 of all samples were 

calculated to avoid the effect of porosity. Elastic modulus of pure ceria is higher than doped 

ceria samples, which confirmed the previous reports on Y-, Sm- and Gd-doped ceria [29]. 

Substituting Ce4+ by trivalent dopants creates oxygen vacancies to achieve the electrical 

neutrality and it has been accepted that the elastic modulus decreases noticeably with 

increase in the concentration of oxygen vacancy [20]. Among doped ceria samples, EDC 

samples showed the highest elastic modulus. Sato et al. [30] reported effect of dopant 

concentration on elastic modulus in which the change is due to the variation of the distance 

between the cations and bonding forces. Although there is no significant relationship 

between obtained elastic moduli and bonding energies of different dopants, the higher 

elastic modulus of EDC can be related to the negative association energy of erbium.  As 

discussed by Shehata et al. [31], all trivalent dopants increase the conversion of cerium 

from Ce4+ to Ce3+ or increase the oxygen vacancy concentration. However, lanthanide 

elements with negative association energies like erbium reduce the percentage of cerium 

that exists in the Ce3+ ionization states and scavenge oxygen vacancies in the synthesized 

ceria nanoparticles.     
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As a property that indirectly reveals the bulk mechanical strength of the sintered ceramics, 

microhardness of pure and doped ceria samples were measured and compared as shown in 

Fig. 7.  All doped ceria samples showed higher hardness than pure ceria, which is in 

agreement with the reported results in literature [29]. EDC sample demonstrated the highest 

hardness that could be related to improving the atomic bonds by doping ceria with Er as it 

was seen in elastic modulus measurement earlier and YDC samples has the lowest hardness 

among doped ceria samples, which could attributed to lower density due to having high 

porosity [15,19].  

As an example, Fig. 8 shows the indentation mark observed on the samples. The cracks 

observed near the indentation zones were used to calculate the indentation fracture 

toughness. As reported by Ponton and Rawlings [32], there are many equations with some 

conditions and limitations proposed for measuring indentation fracture toughness. For 

comparison purpose, fracture toughness was determined by Niihara´s[33], Laugier´s[34], 

Anstis´s [35]and Evan´s [36] equations. As graphed in Fig. 9, doping ceria with trivalent 

cations decreased its fracture toughness. Maschio et al. [37] reported KIC of CeO2 measured 

by the notch-beam technique, which is close to the fracture toughness obtained by Evan´s 

equation. As suggested by Morales et al. [14] and Sato et al. [29] who reported the effect of 

dopant content on fracture toughness of doped ceria, decrease in the fracture toughness of 

doped ceria can be due to an increased oxygen vacancy density generated by the dopants. 

 

Conclusion 

Pure and Er, Y, Gd, Sm and Nd doped ceria nanopowders synthesized by citrate-nitrate 

auto-combustion route were calcined and densified to discs. Structural characteristics of 

nanopowders showed that they were mesoporous which were decreased by calcination. The 

results of elastic modulus and microhardness measurement showed that doping with erbium 

enhanced the mechanical properties of ceria than other dopants. Nevertheless, all dopants 

decreased fracture toughness of ceria.  
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Tables and figures Captions 

Table 1. The structural parameters of synthesized pure and RE-doped ceria.  

Table 2. The structural parameters of calcined pure and RE-doped ceria at 700°C/2h 

Table 3. The structural parameters of sintered pure and RE-doped ceria discs at 1400°C/4h  

Table 4. Physical properties of pure and RE-doped ceria discs sintered at 1400°C/4h 

 

Fig. 1. Experimental setup of impulse tests on discs. 

Fig. 2. First two discs vibration modes. 

Fig. 3.  Measured lattice parameter of synthesized, calcined powders and sintered discs of 
pure and doped ceria versus doped cation radius. 

Fig. 4. HRTEM images of synthesized and  calcined SDC nanopowders. 

Fig. 5.  (a) HRTEM Images of Nd Doped CeO2, the squares indicate the porous inside of 
the nanocrsytals, (b) SAED indexed pattern, (c) HRTEM Images of Nd Doped CeO2, (111) 
with 3.19 Å and DDP insert of the nanoparticles in the image indexed to the [011] zone axis 
of the fluorite structure and with shown Miller indices, (d) High magnification image of 
HAADF-STEM showing NDC nanoparticles. 

Fig. 6. Power spectral density showing two vibration modes of sintered disc samples. 

Fig. 7. Microhardness of sintered discs as a function of load. 

Fig. 8. Vickers indentation mark on EDC sintered disc.  

Fig. 9. Fracture toughness measured with Niihara, Laugier, Anistis and Evan´s Eqs  

At 10N applied load for sintered discs. 

  



10 

 

Table 1. 

 

Table 2.  

 

Table 3. 

 
Table 4. 

 a (nm) D (nm) Strain ρ (gcm-3) Rexp (%) Rwp (%) Rp (%) GOF 
Ceria 5.4158 17.1 0.2405 7.197 2.03 2.44 1.89 1.20 
EDC 5.4030 39.8 0.1307 7.248 11.25 12.18 8.53 1.08 
YDC 5.4062 14.2 0.3690 7.235 12.38 14.21 10.32 1.15 

GDC 5.4147 15.8 0.4334 7.201 10.96 11.91 8.35 1.09 

SDC 5.4278 9.7 0.8440 7.149 11.30 11.91 8.90 1.05 
NDC 5.4277 16.3 0.4747 7.149 11.45 12.29 8.97 1.07 

 a (nm) D (nm) Strain ρ (gcm-3) Rexp (%) Rwp (%) Rp (%) GOF 
Ceria 5.4129 32.1 0.0705 7.208 2.12 3.47 2.74 1.64 
EDC 5.4035 38.7 0.1066 7.246 13.11 13.07 9.53 1.14 

YDC 5.4049 37.5 0.1044 7.240 12.39 14.00 9.88    1.13 
GDC 5.4123 49.6 0.0901 7.211 11.98 13.65 9.63 1.14 

SDC 5.4260 50.7 0.1305 7.156 11.65 11.98 7.77 1.03 

NDC 5.4251 36.5 0.1584 7.160 12.21    13.66    9.64    1.12 

 a (nm) D (nm) Strain ρ (gcm-3) Rexp (%) Rwp (%) Rp (%) GOF 
Ceria 5.4121 59.4 0.0558 7.211 2.70 11.24 7.93 4.16 
EDC 5.4078 53.2 0.0701 7.229 5.42 12.17 9.09 2.25 

YDC 5.4084 52.0 0.0000 7.226 5.63 12.66 9.56 2.25 
GDC 5.4200 51.6 0.0839 7.173 5.21 10.15 7.55 1.95 

SDC 5.4216 60.1 0.0000 7.174 5.34 11.71 8.81 2.20 

NDC 5.4301 67.6 0.0000 7.140 5.52 13.95 10.48 2.53 

 f20 ×104  
(Hz) 

f01×104  
(Hz) 

Measured 
density (gcm-3) 

Relative density 
(%) 

E  
(GPa) 

E0  
(GPa) 

Ceria 1,59 2,69 7.022 97.4 210.3 236.7 
EDC 1,57 2,66 7.057 97.7 201.4 224.2 

YDC 2,674 4,54 6.806 94.2 165.9 215.4 

GDC 2,24 3,78 7.169 99.9 199.7 200.2 

SDC 2,27 3,82 7.105 99.1 198.6 207.4 

NDC 1,74 2,94 6.903 96.7 195.3 226.8 
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  Fig. 4. 

 

 

 



14 

 

     

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  

 

 

 

 

 

 

 

 

 

5 nm5 nm5 nm5 nm

2 nm2 nm2 nm2 nm

(a) 



15 

 

 

 

 

Fi g. 6.  

 



16 

 

 

Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  
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Fig. 9. 
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