
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

OPTIMAL LOCATION OF CAR WRECK
ADJUSTERS

POR

LUIS ALBERTO MALTOS ORTEGA

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE
MAESTRÍA EN CIENCIAS EN INGENIERÍA DE SISTEMAS

JUNIO, 2016

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

SUBDIRECCIÓN DE ESTUDIOS DE POSGRADO

OPTIMAL LOCATION OF CAR WRECK
ADJUSTERS

POR

LUIS ALBERTO MALTOS ORTEGA

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE
MAESTRÍA EN CIENCIAS EN INGENIERÍA DE SISTEMAS

JUNIO, 2016

To my wife Alejandra

to my children who are the reason to beat.

Table of contents

Acknowledgments XI

Abstract XII

1. Introduction 1

1.1. Problem Statement . 1

1.2. Background . 2

1.3. Motivation . 2

1.4. Objectives . 3

1.5. Organization . 3

2. Related Work 4

2.1. Mathematical Programming . 4

2.1.1. p-Median Models . 5

2.1.2. Covering models . 5

2.2. Queueing Models . 7

2.2.1. Mean Service Calibration . 8

v

Table of contents vi

2.2.2. Calibration Process . 8

2.3. Simulation Models . 9

3. Framework 10

3.1. Problem Statement . 10

3.2. Mathematical Framework . 11

3.2.1. Model A . 12

3.2.2. Model B . 14

3.3. Comparison between models . 17

4. Heuristic Procedures 18

4.1. Proposed Metaheuristic . 19

4.2. Description of Components . 22

4.2.1. A Diversification Generator Method 22

4.2.2. An Improvement Method . 24

4.2.3. A Reference Set Update Method 24

4.2.4. A Subset Generation Method 27

4.2.5. A Solution Combination Method 27

5. Computational Experiments 31

5.1. Assessing the Models . 31

5.2. GRASP Evaluation . 41

Table of contents vii

5.3. Path Relinking . 42

5.4. Scatter Search . 43

6. Conclusions and Future Work 46

6.1. Main Conclusions . 46

6.2. Future Work . 47

A. Approximating the Equilibrium Behavior of MSLS 49

A.1. Motivation . 49

A.2. Model Assumptions, Notation, and Terminology 50

A.3. Approximation Procedure . 51

B. Berman Heuristic 53

B.1. The Stochastic Queue p-Median Problem 53

B.2. Mean Service Time Calibration Process 55

Vita 60

List of figures

4.1. General scheme of scatter search. 19

5.1. Solution times versus `-to-p ratio (for p = 7, . . . , 12). 39

5.2. Solution times versus `-to-p ratio (for p = 12, . . . , 24). 39

5.3. Objective function value versus `-to-p ratio. 40

5.4. Objective value versus ↵ for first greedy function. 41

viii

List of tables

3.1. Model size. 17

5.1. Model A results for instances with n = 50. 32

5.2. Model A results for instances with n = 100 and m = 20. 33

5.3. Model A results for instances with n = 100 and m = 30. 34

5.4. Model B results for instances with n = 50. 35

5.5. Model B results for instances with n = 100 and m = 20. 36

5.6. Model B results for instances with n = 100 and m = 30. 37

5.7. Model B results for instances with n = 100 and m = 30. 38

5.8. Path relinking improvement over multi-start solution. 43

5.9. Scatter Search . 44

ix

List of Algorithms

1. Scatter Search – Initial Phase . 20

2. Scatter Search – Second Phase . 21

3. Reference Set Update Method . 25

4. Reference Set Update Diversity Method 26

5. Subset Generation Method . 28

6. Path Relinking Combination Method 29

x

Acknowledgments

I want to specially thank Professor Roger Ŕıos for giving me the opportunity to

work with him and being my advisor, for guiding me in my academic development,

and for the effort and support he gave me. I also would like to thank him for his

patience. Without his support this work would have not been possible

Special thanks to my thesis committee, Professor Angélica Salazar and Profes-

sor Lupita Villareal, for their help, comments and suggestions made throughout this

work, and for helping me complete this work

To all Faculty of the Graduate Program in Systems Engineering in Facultad de

Ingenieŕıa Mecánica y Eléctrica (FIME) for their courses so complete and enriching.

To FIME and UANL, for their financial support through waivers of tuition and

fees, respectively.

To Consejo Nacional de Ciencia y Tecnoloǵıa (CONACyT) for their financial

support through a Graduate Fellowship and the research project grant CB2011-1-

166397, that made both my full time studies and my attendance to professional

meetings presenting part of this work possible.

xi

Abstract

Luis Alberto Maltos Ortega.

Candidato para obtener el grado de Maestŕıa en Ciencias en Ingenieŕıa de Sistemas.

Universidad Autónoma de Nuevo León.

Facultad de Ingenieŕıa Mecánica y Eléctrica.

T́ıtulo del estudio: Optimal Location of Car Wreck Adjusters.

Número de páginas: 59.

Problem Description: When a traffic accident occurs in cities with a large

traffic flow the roads surrounding the crash site are affected by traffic congestions.

In some countries, such as Mexico, even small accidents are troublesome due to the

fact that a claim adjuster from the car insurance company must arrive to the site

and document the accident before the vehicle may be moved as required by law.

Thus, in this particular setting, the location of adjusters becomes a key factor in

providing timely service.

Objectives and method of study: The purpose of this thesis is to

Provide quantitative tools with scientific support for the optimal location of

car wreck adjusters.

Develop adequate mathematical models for representing some of the important

xii

Chapter 1

Introduction

The main idea behind this thesis is to develop mathematical models to improve

the service offered by car insurance agents. The goal is to determine, given a set of

potential location sites, the best location of the adjusters to perform the service,

with the aim to help them arrive to accident sites sooner.

1.1 Problem Statement

Car insurance companies, in countries such as Mexico, face the daily issue of

where to locate their insurance agents (adjusters) in such a way that they provide the

best possible service to their customers. Typically the quality of service is measured

by how quickly the adjusters arrive to the places where an incident has occurred.

This problem can be seen as an emergency location system, in which it is

desired to “cover” the territory under study (city intersections) by a fixed number

of adjusters so as to reduce the average arrival time to accidents. An issue that

makes the problem even more complex is the fact that accidents occur randomly

and decisions on where to place the adjusters must be made before accidents occur.

1

Chapter 1. Introduction 2

1.2 Background

The problem of locating car insurance agents is a practical problem that, to

the best of our knowledge, has not been studied before. This comes from the fact

that in other countries, when an accident occurs car drivers are allowed to move

their cars from the accident site if this obstructs traffic flow. Unfortunately, in many

developing countries, insurance agencies ask their insurees not to move the car until

an adjuster arrives.

Nonetheless, there are many related location problems that look at similar

problems. For example, the case of ambulance location problems, where emergency

services (ambulances) must be located in such a way that ambulances arrive prom-

ptly at the site of the accident. A main difference between our problem and the one

of an emergency service location is that in those problems time is a matter of life or

death, and in the case of adjusters’ location is not necessarily so. This resulting mo-

del looks then at different objective functions and constraints. In Chapter 2, related

problems are discussed.

1.3 Motivation

When a car accident occurs, traffic congestion starts to pile up. This is because

customers are not allowed to move their vehicles until the adjuster arrives. The

adjuster must determine and record the causes of the accident in order to move the

car from the accident area and restore the flow. Needless to say, an early arrival of

the adjuster means everything to everyone. Customers wait less, and traffic jams are

cleared faster when the adjusters arrive promptly.

Given that accidents occur randomly, the idea of this research is to use sto-

chastic location models to derive efficient policies, based on historical data that can

be implemented by car insurance companies.

Chapter 1. Introduction 3

1.4 Objectives

The main objectives of this research are the following:

Providing quantitative tools with scientific support for optimal location of car

wreck adjusters.

Developing or using adequate mathematical models for representing some of

the important company concerns.

Designing and developing efficient solution techniques for handling real-world

instances of the problem.

Assessing the performance of the proposed techniques based on an appropriate

experimental design.

1.5 Organization

This thesis is organized as follows: Chapter 2 presents a brief literature review

of diverse approaches of Emergency Service Systems (ESS), starting with the simple

deterministic models and ending with the hypercube and simulation models. The

problem statement and two proposed models are presented in Chapter 3. Chapter 4

describes the proposed heuristic and its components. Chapter 5 contains the experi-

menal work, including a description of the instance database and the experiments for

assessing the models and the proposed heuristics. Conclusions, contributions, and

directions for future research are highlighted in Chapter 6. Additionally, Appendix

A contains a summary of how to approximate the hypercube results, and together

with Appendix B completes the explanation of how to estimate the response times

of a solution.

Chapter 2

Related Work

Work in emergency vehicle based location has generally involved the use of

three approaches: mathematical programming, queueing, and simulation. In this

chapter, we review the most relevant works in each of these approaches.

2.1 Mathematical Programming

Location models are classified in two main categories, deterministic and pro-

babilistic. Deterministic models are typically used at the planning stage and ignore

stochastic considerations regarding the availability of servers or the demand distri-

bution. Probabilistic models reflect the fact that vehicles operate as servers in a

queuing system and are not always available to answer a call; these models allow a

more accurate planning of Emergency Service Systems (ESSs) at the strategic level.

They were initially developed based on the assumptions that servers are independent

and do not cooperate, which is not realistic in practice.

The location literature is very extense, therefore we focus the discussion in this

chapter on models that are typically used in the location of emergency services. As

stated before, no previous work on location of car wreck adjusters exists, to the best

of my knowledge, however, there are many common elements between our problem

4

Chapter 2. Related Work 5

and the problem of location of emergency services.

2.1.1 p-Median Models

The first approaches incorporate median type objectives. The aim of these

problems is to minimize the sum of distances between each demand point and its

server. Examples of such models are the deterministic p-median model of Hakimi

[14], the stochastic p-median and the vector assignment p-median models of Weaver

and Church [29, 30], and the capacitated p-median model of Pirkul and Schilling [22]

The strength of these models is that optimal solution procedures that can

accommodate practical problems have been developed. Weaknesses include assum-

ptions such as noncooperation between vehicles, the probability of each system state

must be known, and the fraction of call served by the closest, second closest, and so

on, must be known for each zone.

2.1.2 Covering models

In the location set covering model (LSCM) introduced by Toregas et al. [28],

the aim is to minimize the number of ambulances needed to cover all demand points.

This model ignores several aspects of real-life problems, the most important probably

being that once an ambulance is dispatched, some demand points are no longer

covered. However, the authors provide a lower bound on the number of ambulances

required to ensure full coverage.

The maximal covering location problem (MCLP) originally proposed by Church

and ReVelle [5] is an alternative approach proposed to overcome some of the shortco-

mings of the LSCM. In the MCLP the objective is to maximize population coverage

subject to limited ambulance availability.

Chapter 2. Related Work 6

A limitation of the deterministic models is that they assume that servers are

available when requested, which is not always true in practical situations. Congestion

in emergency services, which may cause the unavailability of servers located within

the critical distance when a call is placed, leads to the development of a second

generation of location covering models focused on additional coverage.

The definition of probabilistic location models for planning these systems is a

natural extension of their deterministic equivalents, the location models with cove-

ring constraints. The notion of coverage implies the definition of a service distance

(time), which is the critical distance (time) beyond which a demand area is conside-

red not covered. A demand area is therefore considered as covered if it is within a

predefined critical distance (say D) from at least one of the existing facilities.

The Maximum Expected Covering Location Problem (MEXCLP) defined by

Daskin [6], whose objective is to maximize the expected coverage of all demand areas

under consideration, assumes that servers operate independently and that all servers

have the same busy probability (workload) ⇢, allowing that more than one server

be situated in any given location. Daskin and Stern [7] assume that travel times are

deterministic and coverage is an “all-or-nothing” property.

ReVelle and Hogan [24] propose two variations of the Maximum Availability

Location Problem (MALP), which locates p servers in such a way so as to maximize

the population that will find a server available within a given reliability value of

↵. The first model assumes, such as Daskin, that each server has the same busy

probability, and predetermines the number of times a demand point needs to be

covered. The second model allows busy fractions to be different in the various sections

of the region under consideration (but not for each server to be located.)

These models emphasize the importance of additional coverage for the demand

areas, given the possibility that in congested systems the first server, possibly the

only server in a particular coverage area, might not be available when requested.

Gendreau, Laporte, and Semet [9] propose a model with double coverage, using two

Chapter 2. Related Work 7

radious values r1, and r2 (r2 > r1), to locate p ambulances, such that all the demand

must be covered by an ambulance located within r2 time units, and, a proportion ↵

of the demand must also be within r1 units of an ambulance, which may or may not

be the same ambulance that covers this customer within r2 time units. Note that a

feasible solution may not exist if the parameters r1, r2, and ↵ are too restrictive.

2.2 Queueing Models

The hypercube model (denoted Hypercube) and the hypercube approxima-

tion (denoted A-Hypercube), developed by Larson [18, 19], are the most well known

queueing approaches. for addressing busy-server type of models. These are not opti-

mization models, but descriptive models that permit the analysis of scenarios. Both

models estimate system operating characteristics that are used to evaluate a series of

objectives. They can evaluate cooperation between vehicles. Some of their limitations

are:

assumptions of an exponentially distributed service time,

computational difficulties for problems with many vehicles,

requirement that service time be only vehicle-dependent rather than call location-

dependent.

The computational issues present in the Hypercube are addressed in the A-

Hypercube. The vehicle busy probabilities are dealt with by solving a system of

nonlinear equations whose size depends on the number of vehicles.

Optimization models for locating Emergency Medical Services (EMS) that

use Hypercube or A-Hypercube as a function evaluation subroutine include Jarvis’

location-allocation problem [16], Berman and Larson’s congested median problem

[3], Benveniste’s location-allocation problem [1], and Berman, Larson and Parkan’s

Chapter 2. Related Work 8

stochastic queue p-median problem [4]. These methods are heuristic local improve-

ment approaches that assume it is possible to locate a vehicle in every zone.

2.2.1 Mean Service Calibration

Call location-dependent service time can be modeled using the Mean Service

Calibration method (denoted MSC). As in Jarvis [16] and Halpern [15] where mean

service time is sufficient for obtaining accurate estimates of system performance. The

major shortcoming of MSC is that either Hypercube or A-Hypercube is evaluated

in each iteration; can thus be a computationally expensive approach.

To eliminate the computational inefficiency of the MSC method, Jarvis [17]

developed an approximation model for spatially distributed queueing systems (see

Appendix A). The model assumes that call service time is call location-dependent,

where all vehicles have the same service rate and utilization while service is expo-

nentially distributed.

2.2.2 Calibration Process

In certain EMSs and other emergency systems, travel times may represent a

considerable part of service times. In such cases, it may be advisable to adjust the

service times by means of a calibration process, which can be performed using a

simple iterative procedure such as the one proposed by Berman, Larson, and Parkan

[4]. Basically, the procedure consists of verifying if there are significant differences

among the input mean service times and the output mean service times (computed

by the hypercube model). In this case, the hypercube is solved using the computed

mean service times as inputs, until the differences among input and output values

are sufficiently small. This procedure is called a calibration process. Note that this

procedure takes into account that the mean travel time depends on the location

Chapter 2. Related Work 9

of the user and the identity of the server. Empirical experiments show that this

procedure usually converges in two or three iterations, for a reasonably accurate

estimation of the mean service times, although a formal proof of the convergence of

the method is apparently not available in the literature.

2.3 Simulation Models

Simulation models can be formulated with great detail, and have been used for

evaluating EMS system performance in numerous papers such as Savas [26], Berlin

and Liebman [2], and Swoveland et al. [27]. These simulation approaches provide in

general a wealth of output measures. Their main drawback is that they are rarely

used because of high run times and data collection costs. These models have some

questionable assumptions, but successful applications do exist in the literature.

Chapter 3

Framework

3.1 Problem Statement

The location and dispatching policies used by insurance agencies should aim

at arriving to accident areas as early as possible, due to several reasons such as:

1. providing a timely service to their customers,

2. helping clear out the accident area, and

3. keeping the workloads of its adjusters as balanced as possible.

The location policies should be optimized for service time but they should also

consider cooperation based on adjuster workload. However, for the car insurance

agency that assist in explaning operation criteria current policies are empirical, and

do not consider cooperation. By neglecting this, adjusters tend to take more time

to arrive at the accident site, making the insurance agency less competitive, and

generating more traffic congestion.

The financial costs of applying empirical policies instead of optimum policies

is difficult to measure. However, the costs includes more use of fuel, more use of

vehicles (that implies more maintenance costs), and the opportunity cost of losing

10

Chapter 3. Framework 11

a customer for low service quality. The use of quantitative models may also help in

what-if analysis to assess the overall service rate if more adjusters are placed. The

use of mathematical models to determine better location policies based on scenarios,

and the use of real data to simulate and evaluate new scenarios versus the current

policy are two of the main contributions on this work.

The benefit of this framework is that several policies can be evaluated for

different scenarios (for instance high level of congestion in rainy days), and the best

policy for each scenario can be determined. In summary, the location of adjusters

could be improved with the use of mathematical models and simulation.

The problem studied in this thesis consists may be stated as, given a number

of adjusters, a set of potential sites for placing them, and a set of demand points,

determine where to place the adjusters, so as to minimize the average response time,

assuming that calls arrive with a Poisson distribution and with an own arrival rate

for each demand point.

3.2 Mathematical Framework

Two mathematical models are proposed, the first model (model A) was created

based on the one proposed by Goldberg et al. [13] for which we made some relaxations

to obtain a linear model.

The second model (model B) has additional simplifications, considering that

it is unlikely to assign an adjuster to a demand point covered previously by more

adjusters, omitting allocation variables, and adding constraints to guarantee the

correct order of allocation.

Chapter 3. Framework 12

3.2.1 Model A

This model is based on the model proposed by Goldberg et al. [13], and it

contains assignment variables for all possible orders.

The following assumptions are considered in the model:

The probability that an adjuster is busy is ⇢ and it is independent of the state

of the system.

There is a strict ordering of the basis preferred for each zone that does not

depend on the current state of the system.

All calls are answered by an adjuster originating from its base, not in route

back to the base.

The arrival of calls to the system follows a stationary distribution.

The model is presented using a 0-queue assumption.

Sets and indexes:

n number of demand points

m number of potential sites to locate adjusters/facilities

p number of available adjusters

i index for demand points; i 2 V = {1, 2, . . . , n}

j index for potential sites for adjusters/facilities j 2 W = {1, 2, . . . ,m}

k index for possible order; k 2 K = {1, 2 . . . , p}

Sij = {r 2 W | site r is preferred by proximity before site j for demand point i}

Parameters:

Chapter 3. Framework 13

λi arrival rate of calls from demand point i

⇢ is the utilization of each adjuster, the value is between 0 and 1, where 0

means that the server is always idle. To obtain an approximate value of ⇢ we

use the formula proposed by Berman and Larson [3]

⇢ =

Pn

i=0 λi

mp
(3.1)

tij is the expected travel time between demand point i and potential site j.

hk
ij is the probability that adjuster j serves point i given that it is the k-th

preferred. It is calculated using the following formula:

hk
ij = (1− ⇢)⇢k−1 (3.2)

Variables:

xj =

8

>

<

>

:

1 if an adjuster is placed at potential site j

0 otherwise.

ykij =

8

>

<

>

:

1 if the adjuster at site j is the k-th to cover demand point i

0 otherwise.

Model A:

Objetive – Minimize the average expected response time:

mı́n
m
X

j=1

p
X

k=1

n
X

i=1

hk
ijtijy

k
ij (3.3)

Subject to location of only p adjusters:

X

j∈W

xj = p (3.4)

Chapter 3. Framework 14

Each demand point i is covered by an adjuster on each order k:

X

j∈W

ykij = 1 i 2 V, k 2 K (3.5)

Relationship between variables x and y :

ykij  xj i 2 V, j 2 W, k 2 K (3.6)

For each located adjuster, there can only be a maximum of one ordered assign-

ment:
p

X

k=1

ykij  xj i 2 V, j 2 W (3.7)

Assign j to cover i in order k only if the assignment of order k − 1 was made

for some r 2 Sij:

ykij 
X

r∈Sij

yk−1
ir i 2 V, j 2 W, k 2 K \ {1} (3.8)

Nature of decision variables:

xj 2 {0, 1} j 2 W

ykij 2 {0, 1} i 2 V, j 2 W, k 2 K

Observe that we do not need to add a constraint to ensure the counterpart

of (3.7) because (3.4) and (3.6) ensure that each adjuster must cover each demand

point for some order, therefore if an adjuster located at j does not cover demand

point i at order k (indicated by the maximum covering order in Sij) there will be at

least one adjuster that does not cover demand point i at any order resulting in an

infeasible solution.

3.2.2 Model B

This model was developed with the idea that it is unlikely that the farthest

adjusters serve demand points on cases where the system does not become congested.

Chapter 3. Framework 15

In these cases we can make the assumption that the probability of being served by

the `-th adjuster is almost zero, where ` is large enough but less than p.

Parameters:

M is a large integer

` is the number of allowed adjusters per demand point

aik contains the k-th preferred location server regarding the point i.

Variables:

zj represents the number of adjusters placed at site j

ykij =

8

>

<

>

:

1 if the adjuster at site j is the k-th to cover demand point i

0 otherwise.

The objective, and constraints (3.4)-(3.7) are practically the same as in model

A, with the difference that binary variables xj from Model A are replaced by integer

variables zj inspired by the results of Berman, Larson, and Parkan [4], and the

addition of the following binary variables

uij =

8

>

<

>

:

1 if the number of adjusters between i and j, inclusive, is less than `

0 otherwise.

vij =

8

>

<

>

:

1 if the number of adjusters between i and j, is less than `− 1

0 otherwise.

Model B:

Objective – Minimize the average expected response time:

mı́n
m
X

j=1

X̀

k=1

n
X

i=1

hk
ijtijy

k
ij (3.9)

Chapter 3. Framework 16

Subject to the location of only p adjusters:

X

j∈W

zj = p (3.10)

Each demand point i is covered by an adjuster in each order from 1 up to `:

X

j∈W

ykij = 1 i 2 V, k 2 {1, . . . , `} (3.11)

Relationship between variables z and y :

ykij  zj i 2 V, j 2 W, k 2 {1, . . . , `} (3.12)

These two constraints set the relationship between the z and u variables. If

u = 1, constraints (3.14) become redundant, and contraints (3.13) guarantee

that the number of adjusters between i and j is less or equal than `; otherwise if

u = 0, constraints (3.13) become redundant, and constraints (3.14) guarantee

that the number of adjusters between i and j is more than `.

X

r∈Sij∪{j}

zr + (p− `)uij  p i 2 V,j 2 W (3.13)

X

r∈Sij∪{j}

zr +Muij ≥ `+ 1 i 2 V,j 2 W (3.14)

Assign zj times j to i if uij = 1; otherwise it becomes redundant:

X̀

k=1

ykij +M(1− uij) ≥ zj i 2 V,j 2 W (3.15)

Similar to constraints (3.13)-(3.14) these constraints set the relationship bet-

ween the z and v variables.

X

r∈Sij

zr + (p− (`− 1))vij  p i 2 V,j 2 W (3.16)

X

r∈Sij

zr +Mvij ≥ ` i 2 V,j 2 W (3.17)

Chapter 3. Framework 17

Assign j to i the remaining times to complete ` assignments:

X̀

k=1

ykij +M(1− vij + uij) ≥ `−
X

r∈Sij

zr i 2 V, j 2 W (3.18)

X̀

k=1

ykij −M(1− vij + uij)  `−
X

r∈Sij

zr i 2 V,j 2 W (3.19)

Assign j to i only if j is one of the first ` adjusters near i:

ykij  uij + vij i 2 V,j 2 W (3.20)

Nature of decision variables:

zj 2 {0, 1, . . . , p} j 2 V

ykij 2 {0, 1} i 2 V, j 2 W, k 2 I

uij, vij 2 {0, 1} i 2 V, j 2 W

3.3 Comparison between models

As can be seen, model A has a considerable amount of binary variables. This

is why model B was introduced; however, due the lack of allocation variables we

needed to add more variables and constraints to ensure a similar behavior.

The size of models as function of n, m, p, and ` as shown in Table 3.1.

Table 3.1: Model size.

Model A Model B

variables m(np+ 1) m(n(`+ 2) + 1)

constraints n(2mp+ p) + 1 n((l + 8)m+ 1) + 1

Since ` < p− 2, it can be seen that model B has fewer binary variables. When

` < 2p− 8 model B has less constraints than model A.

Chapter 4

Heuristic Procedures

The problem addressed in this thesis has several stochastic properties, limiting

the applicability of linear models to specific cases where certain assumptions are

required. As it was assumed in the previous chapter, each adjuster has the same busy

probability. In other words, we deal with a congested system. Congestion happens

when a service center (adjuster) is not able to deal, simultaneously, with all the

service requests that are made to it. The traditional models that deal with congestion

include a capacity constraint, which forces the demand for service, normally constant

in time and equal to an average, to be smaller than the maximum capacity of the

center all the time. This is a deterministic approach to the problem, not considering

the dynamic nature of the congestion. Depending on how the capacity constraint is

developed, this means that the solution model produces idle servers, or results in a

system that is not able to deal with all the demand [20, 21].

Given the limitation of integer programming models, the use of heuristic met-

hods to solve this type of problems is a very powerful technique. In this chapter, a

metaheuristic based on scatter search is proposed for tackling the problem studied

in this thesis. Each component is described in detail.

18

Chapter 4. Heuristic Procedures 19

Diversification

generation

Reference set update

Improvement

Is there a

new

solution?

Stop

Solution combination Subset generation

no

yes

Figure 4.1: General scheme of scatter search.

4.1 Proposed Metaheuristic

Scatter Search (SS) is a population-based metaheuristic whose original ideas

are due to Glover [10] as a metaheuristic for integer programming. It is based on

diversifying the search through the solution space. It operates on a set of solutions,

named the Reference Set, formed by good and diverse solutions of the main popu-

lation. These solutions are combined with the aim of generating new solutions with

better fitness, while maintaining diversity. The general scheme of a SS method is

depicted in Figure 4.1.

More specifically, a scatter search metaheuristic with a dynamic reference set

and path relinking as a combination method is proposed and implemented. We op-

ted for a dynamic reference set because the number of solutions generated in each

combination is very large. To enhance solution quality, two improvement methods

Chapter 4. Heuristic Procedures 20

are included, one is based on an idea proposed by Berman, Larson, and Parkan [4],

and the other is a local search method proposed in this research.

Algorithm 1 Scatter Search – Initial Phase

Input: An instance of the problem; MaxIter := maximum number of iterations;

MaxIterUnchanged := maximum number of iterations with no change in the

reference set

Output: RefSet := A reference set of cardinality 2b

procedure SS-Phase1

Iteration 0

IterationsUnchanged 0

RefSet ;

repeat

Sols DiversificationGenerator()

for S 2 Sols do

S Improvement(S) . either of the two methods proposed

end for

RefSet.Update(Sols)

Iteration Iteration+ 1

IterationsUnchanged IterationsUnchanged+ 1

if HasNewSolutions(RefSet) then

IterationsUnchanged 0

end if

until IterationsUnchanged ≥MaxIterUnchanged or Iteration ≥MaxIter

return RefSet

end procedure

Our proposed method is comprised of two phases. In the first phase, starting

from scratch, an initial population is generated and stored in the Reference Set. This

phase is depicted in Algorithm 1. The cardinality of the reference set is 2b (for a

given b), consisting of the best b solutions by objective function value and the b most

diverse solutions. To measure the “distance” between any two solutions, we used the

Chapter 4. Heuristic Procedures 21

value of the minimum perfect matching between the corresponding center sets of the

two solutions. Clearly, a high value of this minimum perfect matching among centers

indicates the solutions are far apart.

Once the initial reference set has been obtained, the second phase consists of

the actual application of the SS methodology as depicted in Algorithm 2. Each pair

of solutions is combined using a path relinking procedure. Because the Reference Set

is dynamic some pairs are not combined. This is due the fact that some solutions

are removed from the set before trying to combine them.

Algorithm 2 Scatter Search – Second Phase

Input: RefSet := A reference set of cardinality 2b

Output: A feasible solution for the problem

procedure SS-Phase2(RefSet)

repeat

GX SubsetGenerator(RefSet)

for all X 2 GX do

if X ⇢ RefSet then . Some element of X may have been removed

CX = Combination(X)

for all Sol 2 CX do

Sol Improvement(Sol)

end for

RefSet.Update(CX)

end if

end for

until NoNewSolutions(RefSet)

return RefSet.TopSolution()

end procedure

In the following subsection, each componens of the SS is described in detail.

Chapter 4. Heuristic Procedures 22

4.2 Description of Components

The components of the scatter search metaheuristic [11] consists of the follo-

wing problem-specific methods:

A Diversification Generator method

An Improvement method

A Solution Combination method

A Reference Set Update method

A Subset Generation method

We described below each of the components.

4.2.1 A Diversification Generator Method

This component is used to generate a collection of diverse trial solutions. In

this research we develop a Greedy Randomized Adaptive Search Procedure (GRASP)

as a diversification generator. GRASP [8] is a multi-start procedure that combines

the power of greedy heuristics and randomization. GRASP typically consists of two

phases: a greedy randomized construction phase and an improvement phase. In this

case, our proposed GRASP consists only of the construction phase because the

improvement phase is applied in other parts of the scatter search algorithm.

We chose GRASP because in the proposed problem any allocation of sites for

adjusters is a feasible solution. Thus it was decided to give some intelligence to this

simple allocation instead of choosing random points. In a given iteration of GRASP,

we have a partial solution X (set of adjuster location sites) where some adjusters

have already been located. The algorithm has now to decide where to place the

Chapter 4. Heuristic Procedures 23

next adjuster. To this end, a greedy function is evaluated for each potential site,

and, following the GRASP philosophy, a restricted candidate list (RCL) is formed

with all the candidate sites whose greedy function value falls within ↵% of the best

possible value. The parameter ↵ is known as the GRASP quality function threshold

parameter. Then an element from the RCL is randomly chosen and the adjuster is

located at this site. The procedure iteratively proceeds until p adjusters have been

located.

Three greedy functions were evaluated for the constructive algorithm The first

function, was the p-means metric consisting on the sum of the distances between

each demand point and its nearest adjuster.

f1(r) =
X

j∈X

X

i∈R1(j,X∪{r})

tij +
X

i∈R1(r,X)

tir (4.1)

where Rk(j 2 W,Y ⇢ W) = {i 2 V | |Sij \Y | = k− 1}, and can be described as the

subset of demand points for which the server in site j, would be the k-th in subset

Y .

For the second function, we compute the distances from each demand point to

their ` nearest adjusters, weighted by the idle probability of being allocated in the

k-th position.

f2(r) =
X̀

k=1

X

j∈X

X

i∈Rk(j,X∪{r})

hk
ijtij +

X̀

k=1

X

i∈Rk(r,X)

hk
irtir (4.2)

The third function uses the Mean Service Time (MST) calibration method

proposed by Jarvis [17], to obtain more accuracy values of the current mean response

time. This is done by iterativelys electing each potential site, placing a facility there

and then running the MST calibration algorithm (described in Appendix B) for

computing the MST of the given solution. We do this for each possible value and

compute the greedy function from the found values.

f3(r) = value of MST after the calibration method has been applied

to solution X [{r}. (4.3)

Chapter 4. Heuristic Procedures 24

4.2.2 An Improvement Method

The main role of the improvement method is to attempt to improve the quality

of a given feasible solution. Two improvement methods are developed. The first is

an adaptation of the method proposed by Berman, Larson, and Parkan [4] (see

Appendix B for mode details) and the second is a local search procedure described

below.

Proposed Local Search: The move considered is to relocate an agent from its

current position to a different position. The entire neighborhood consist of all pos-

sible moves that can take place from a given solution. However, due to the high

computational cost of assessing the entire neighborhood, a reduced neighborhood is

considered. Therefore, instead of considering all possible moves, the procedure focu-

ses on relocating the adjuster with the smallest workload to a place around or near

the adjuster with the largest workload.

4.2.3 A Reference Set Update Method

A two-tier Reference Set is designed to maintain both a pool of good quality

solutions and a pool of diverse solutions. Each tier has size b, where b is typically

between 20 and 40. In addition, since the number of generated solutions is relatively

large, the Reference Set is dynamically updated.

The Reference Set is updated by trying to incorporate new solutions generated

by the combination method. Because the Reference Set is divided in two parts, a

new trial solution is first tested by the quality criterion. If this trial solution is better

than any of the solutions in the quality tier subset of the Reference Set, the new

solution enters the Reference Set and the worst solution is removed from it. These

steps are shown in Algorithm 3.

If the new solution does not enter the Reference Set by quality or if a solution

Chapter 4. Heuristic Procedures 25

Algorithm 3 Reference Set Update Method

Input: SolutionSet : set of solutions to be tried for the Reference Set.

procedure RefSet.Update(SolutionSet)

Bin PublicBin()

for Sol 2 SolutionSet do

if Sol.Quality > RefSet.LowestQuality then

DegradedSol RefSet.LowestQualitySol()

RefSet.Remove(DegragedSol)

RefSet.InsertByQuality(Sol)

Bin.Add(DegradedSol)

else

Bin.Add(Sol)

end if

end for

RefSet.UpdateDiversity()

end procedure

Chapter 4. Heuristic Procedures 26

is removed from the quality-tier subset, then this solution is tested based on the

diversity criterion. If this trial solution has a better diversity value than any of the

solutions in the diversity-tier subset, it enters the subset and the worst solution

(from the diversity standpoint) is removed from the subset. Note that every time

the quality-tier subset is re-evaluated since the value of the diversity-based solutions

depends on the quality-set subset. This is shown in Algorithm 4.

Algorithm 4 Reference Set Update Diversity Method

procedure RefSet.UpdateDiversity()

Bin PublicBin()

Bin Bin [RefSet.DiversitySols()

RefSet.Remove(RefSet.DiversitySols())

for Sol 2 Bin do

Sol.DiversityV alue MinCostPerfectMatching(RefSet, Sol)

end for

repeat

DiverseSol MostDiverse(Bin)

Bin.Remove(DiverseSol)

RefSet.InsertByDiversity(DiverseSol)

for Sol 2 Bin do

Sol.UpdateDiversityV alue(DiverseSol)

end for

until Count(RefSet.DiversitySols()) = b or Count(Bin) = 0

end procedure

Chapter 4. Heuristic Procedures 27

4.2.4 A Subset Generation Method

The subset generation method operates on the Reference Set and its main role

is to create subsets of solutions to be combined later by the Combination method. In

this particular case, we only consider subsets of size two, that is, pairs of solutions,

because our Reference Set is dynamic. To identify the new solutions, we label the

solutions as new and old at the start of each iteration. We combine first the new

solutions between them, next the new solutions with the old. The new solutions that

enter the Reference Set as a combined solution are not part of the generated subsets

until the next iteration. Each solution generated that did not enter the Reference

Set, displaced by a better solution, or actually a member of the diverse part of the

Refence Set, is evaluated for membership in the Reference Set as a diverse solution.

4.2.5 A Solution Combination Method

The main goal of the combination method, in general, is to transform a given

subset of solutions produced by the subset generation method into one or more com-

bined solutions. In this particular case, the proposed combination method takes two

differently solutions, say X1 and X2 as input and apply a path relinking procedure

between these two solutions to generate a path of different solutions between X1 and

X2. Path relinking [12] has been very successful in many combinatorial optimization

problems including some location related problems such as the p-median problem

[23] and commercial districting [25], to name a few.

Since each solution is in fact driven or represented by the location of the ad-

justers (or servers), to do the path relinking between any two solutions we must

first find a match between servers form one solution to servers of the other solution.

According to these, we test the following three different strategies for finding this

matching.

Chapter 4. Heuristic Procedures 28

Algorithm 5 Subset Generation Method

Input: RefSet : Reference set for chosing the solutions to be combined.

Output: Set : Set of the solutions to be combined.

procedure SubsetGeneration(RefSet)

NewSols RefSet.SolutionsSince(NowTime)

for all (Solx, Soly) 2 NewSols do

if Solx 2 RefSet and Soly 2 RefSet then

CombinedSols Combination(Solx, Soly)

RefSet.Update(CombinedSols)

end if

end for

RefSet.UpdateDiversity()

if RefSet.NumberOfOldSols(NowTime) > 0 then

OldSols RefSet.SolutionsUntil(NowTime)

for all Solx 2 NewSols do

for all Soly 2 OldSols do

if Solx 2 RefSet and Soly 2 RefSet then

CombinedSols Combination(Solx, Soly)

RefSet.Update(CombinedSols)

end if

end for

RefSet.UpdateDiversity()

end for

end if

return RefSet

end procedure

Chapter 4. Heuristic Procedures 29

Perfect matching: Pair the servers by the corresponding perfect matching pro-

blem, that is, by minimizing the distance between paired servers.

Workload matching: The servers in each solution are sorted according to their

workloads (from highest to lowest), and then match them according to these

sorted lists (e.g., server with highest workload in solution 1 with server with

highest load in solution 2 and so on).

Random matching: Pair the serveres in a totally random fashion.

Algorithm 6 Path Relinking Combination Method

Input: Solx, Soly: A pair of solutions to be combined.

Output: CombinedSols : A trajectory of solutions generated in the path relinking

between Solx and Soly.

procedure Combination(Solx, Soly)

CombinedSols EmptyList()

match Matching(Solx, Soly) . perfect,workload,random

order ProcessOrder(Solx,match, Soly) . nearest/farthest first,random

for i 1, p do

j order[i]

if Solx.ServerLocation(j)! = Soly.ServerLocation(match[j]) then

Solx.SetServerLocation(j, Soly.ServerLocation(match[j]))

CombinedSols.insert(Solx)

end if

end for

return CombinedSols

end procedure

Once the server matching is found, we proceed to generate the path from one

solution to the other by exchanging one server at a time. Each move generates one

new solution in the path. There are different criteria for choosing the order of the

exchanges. The following three strategies are tested.

Chapter 4. Heuristic Procedures 30

Nearest First: Perform the exchange from nearest to farthest, that is, start

exchanging the servers whose paired distance is the lowest.

Farthest First: Perform the exchange from farthest to nearest, that is, exchan-

ging the servers whose paired distance is the highest.

Random: Perform the exchange in random order of servers.

The combination method is depicted in in Algorithm 6.

Chapter 5

Computational Experiments

In this chapter the computational experimentation is described. The experi-

ments are carried out to validate the mathematical models, fine-tune the algorithmic

parameters of the scatter search, and assess the individual components of the pro-

posed heuristic.

These tests were evaluated in a Lanix Spine BW Processor Intel Xenon, CPU

E5-2867W at 3.10 GHz under Ubuntu 14.04.3 LTS operating system. The models

were solved with CPLEX 12.6 callable libraries, coded in C++. The g++ compiler

version 7.2 from GNU was used.

5.1 Assessing the Models

Different random instances were generated to validate the proposed formula-

tions. In each of the experiments, the size of the instances testes is specified. Unless

otherwise noted, in all the experiments we use µ = 72 and λ = 0.006.

The results when solving model A for the instances with n = 50 are shown

in Table 5.1. The first three columns show the size of the instance solved in terms

of n, m, and p. The last two columns indicate the results obtained. Time is shown

in seconds. The relative optimality gap is 0.0 when an optimal solution was found,

31

Chapter 5. Computational Experiments 32

Table 5.1: Model A results for instances with n = 50.

n m p time gap (%)

50 10 5 2.0 0.0

50 10 6 2.9 0.0

50 10 7 1.5 0.0

50 10 8 0.8 0.0

50 20 7 62.2 0.0

50 20 8 113.7 0.0

50 20 9 140.2 0.0

50 20 10 187.4 0.0

50 20 11 209.4 0.0

50 20 12 191.8 0.0

50 20 13 109.2 0.0

50 20 14 28.3 0.0

50 20 15 54.1 0.0

50 30 9 1200.0 2.6

50 30 11 1200.0 1.9

and strictly greater than 0.0 when the algorithm stops by time limit. As we can see,

all instances with m < 20 were optimally solved in less than four minutes. The two

instances with m = 30 were not solved in the alloted time of 20 minutes.

The results when solving model A for instances with n = 100 are shown in

Tables 5.2 and 5.3. As we can see, all instances with m = 20 were optimally solved

in less than thirteen minutes. However, once we jump tom = 30 the problem becomes

more difficult finding optimal solutions in only two out of eighteen instances.

We also attempted to solve 10 instances with n = 150 and m = 30 (for p =

5, 7, 9, . . . , 23) but no optimal solutions were found in a time limit of 20 minutes.

The worst relative optimality gap was 5.1%.

Chapter 5. Computational Experiments 33

Table 5.2: Model A results for instances with n = 100 and m = 20.

n m p time gap (%)

100 20 5 51.0 0.0

100 20 6 150.4 0.0

100 20 7 450.2 0.0

100 20 8 503.4 0.0

100 20 9 623.7 0.0

100 20 10 861.6 0.0

100 20 11 744.6 0.0

100 20 12 620.0 0.0

100 20 13 559.3 0.0

100 20 14 393.6 0.0

100 20 15 287.7 0.0

100 20 16 161.9 0.0

100 20 17 21.7 0.0

100 20 18 7.2 0.0

Chapter 5. Computational Experiments 34

Table 5.3: Model A results for instances with n = 100 and m = 30.

n m p time gap (%)

100 30 7 3600.0 1.0

100 30 8 3600.0 1.8

100 30 9 3600.0 1.6

100 30 10 3600.0 1.9

100 30 11 3600.0 1.3

100 30 12 3600.0 1.3

100 30 13 3600.0 1.1

100 30 14 3600.0 0.8

100 30 15 3600.0 1.8

100 30 16 3600.0 1.1

100 30 17 3600.0 0.7

100 30 18 3600.0 0.5

100 30 19 3600.0 0.4

100 30 20 3600.0 0.2

100 30 21 3600.0 0.3

100 30 22 3600.0 0.2

100 30 23 1443.7 0.0

100 30 24 744.4 0.0

Chapter 5. Computational Experiments 35

In the following experiments we solve Model B under different combinations of

n, m, p, and ` varying from 1 to p.

Table 5.4: Model B results for instances with n = 50.

n m p ` NI OPT AvGap (%) AvTime

50 20 7 1, . . . , 7 7 7 0.0 993.0

50 20 8 1, . . . , 8 8 8 0.0 1124.1

50 20 9 1, . . . , 9 9 8 0.2 1552.9

50 20 10 1, . . . , 10 10 7 0.1 2187.0

50 20 11 1, . . . , 11 11 6 0.1 2166.5

50 20 12 1, . . . , 12 12 7 0.5 2137.5

50 20 13 1, . . . , 13 13 6 1.2 2360.3

50 20 14 1, . . . , 14 14 6 4.5 2428.1

50 20 15 1, . . . , 15 15 6 3.4 2486.9

50 30 9 1, . . . , 9 9 2 1.8 2975.1

50 30 10 1, . . . , 10 10 2 6.1 3012.7

The average results when solving model B for the instances with n = 50 are

shown in Table 5.4. In each row, the first three columns show the size of the instance

solved in terms of n, m, and p. The fourth column represents the different values

of ` tried which is consistent with the fifth column indicating the total number of

instances solved per row. The last three columns indicate the results obtained in

terms of total number of instances solved optimally, the average relative optimality

gap and average running time for that specific group of instances. The time limit was

set to 3600.0 seconds (1 hour). It was observed that the model was easier to solve for

small values of `. As the rate `/p gets closer to 1, the model becomes more difficult.

Overall, 65 out of 118 instances were optimally solved. The average relative gaps are

relatively good, finding near optimal solutions in almost all instances tested.

The results when solving model B for the instances with n = 100 are shown in

Tables 5.5 and 5.6. As we can see, all instances with m = 20 were optimally solved

in less than 9.0 second on average. However, once we jump to m = 30 the problem

Chapter 5. Computational Experiments 36

becomes more difficult. Nevertheless 259 optimal solutions were found out of 304

instances. The non-optimal solutions observed relatively low optimality gaps.

Table 5.5: Model B results for instances with n = 100 and m = 20.

n m p ` NI OPT AvGap (%) AvTime

100 20 5 1, . . . , 5 5 5 0.0 3.7

100 20 6 1, . . . , 6 6 6 0.0 3.8

100 20 7 1, . . . , 7 7 7 0.0 3.9

100 20 8 1, . . . , 8 8 8 0.0 3.7

100 20 9 1, . . . , 9 9 9 0.0 4.5

100 20 10 1, . . . , 10 10 10 0.0 5.1

100 20 11 1, . . . , 11 11 11 0.0 5.3

100 20 12 1, . . . , 12 12 12 0.0 5.6

100 20 13 1, . . . , 13 13 13 0.0 5.8

100 20 14 1, . . . , 14 14 14 0.0 6.6

100 20 15 1, . . . , 15 15 15 0.0 7.0

100 20 16 1, . . . , 16 16 16 0.0 7.7

100 20 17 1, . . . , 17 17 17 0.0 8.2

100 20 18 1, . . . , 18 18 18 0.0 9.0

Chapter 5. Computational Experiments 37

Table 5.6: Model B results for instances with n = 100 and m = 30.

n m p ` NI OPT AvGap (%) AvTime

100 30 7 1, . . . , 7 7 7 0.0 6.8

100 30 8 1, . . . , 8 8 8 0.0 6.8

100 30 9 1, . . . , 9 9 9 0.0 8.3

100 30 10 1, . . . , 10 10 10 0.0 8.9

100 30 11 1, . . . , 11 11 11 0.0 9.1

100 30 12 1, . . . , 12 12 12 0.0 10.7

100 30 13 1, . . . , 13 13 13 0.0 10.8

100 30 14 1, . . . , 14 14 14 0.0 12.1

100 30 15 1, . . . , 15 15 15 0.0 13.0

100 30 16 1, . . . , 16 16 16 0.0 13.6

100 30 17 1, . . . , 17 17 17 0.0 14.9

100 30 18 1, . . . , 18 18 18 0.0 52.9

100 30 19 1, . . . , 19 19 17 0.3 628.4

100 30 20 1, . . . , 20 20 16 0.4 733.6

100 30 21 1, . . . , 21 21 16 0.6 1032.8

100 30 22 1, . . . , 22 22 15 0.7 1155.9

100 30 23 1, . . . , 23 23 16 0.7 1291.6

100 30 24 1, . . . , 24 24 14 0.9 1607.2

100 30 25 1, . . . , 25 25 15 1.1 1580.8

Chapter 5. Computational Experiments 38

The results when solving model B for the instances with n = 150 are shown in

Table 5.7. Time limit was set to 1200.0 seconds. As we can see, these instances were

even harder to solve as only a very few were optimally solved.

Table 5.7: Model B results for instances with n = 100 and m = 30.

n m p ` NI OPT AvGap (%) AvTime

150 30 7 1, 3, 5, 7 4 0 12.4 1200.0

150 30 8 1, 3, 5, 7 4 0 24.4 1200.0

150 30 9 1, 3, . . . , p 5 0 21.6 1200.0

150 30 10 1, 3, . . . , p 5 0 23.5 1200.0

150 30 11 1, 3, . . . , p 6 1 36.6 1181.1

150 30 12 1, 3, . . . , p 6 1 41.3 1108.6

150 30 13 1, 3, . . . , p 7 1 46.7 1164.2

150 30 14 1, 3, . . . , p 7 1 49.2 1045.3

150 30 15 1, 3, . . . , p 8 1 54.8 1072.9

150 30 16 1, 3, . . . , p 8 1 56.3 1054.7

In our next experiment, an assessment of both solution quality and running

time as a function of the ratio `/p is carried out. To this end, we select the instance

with n = 100 and m = 30 and solve model B for different values of p = 7, 8, . . . , 24.

For each fixed value of p, we solved p instances by fixing ` = 1, . . . , p.

Figures 5.1 and 5.2 displays the results in terms of the running times. The

first figure correspond to value of p = 7, . . . , 12 and the second corresponds to the

remaining values of p. In this second figure, note that the right-hand side plot is a

larger zoom of the left-hand side plot by scaling the vertical axis. Figure 5.3 displays

the results in terms of the objective function value.

As can bee seen, when the value of ` is close to p model resolution tends to

take longer and in some cases optimality is not achieved. However, it can also be

seen that optimal solutions do not change much when the ratio is between 0.2 and

0.6.

Chapter 5. Computational Experiments 39

Figure 5.1: Solution times versus `-to-p ratio (for p = 7, . . . , 12).

Figure 5.2: Solution times versus `-to-p ratio (for p = 12, . . . , 24).

Chapter 5. Computational Experiments 40

Figure 5.3: Objective function value versus `-to-p ratio.

Chapter 5. Computational Experiments 41

5.2 GRASP Evaluation

The purpose of this experiment is to assess the behavior of the GRASP heuris-

tic, in particular, as a function of the GRASP threshold quality parameter ↵. To this

end we ran the heuristic consisting of the construction phase only, that is ignoring

the local search phase.

Figure 5.4: Objective value versus ↵ for first greedy function.

We present the results obtained when the heuristic was applied to an instance

of size n = 30, m = 30 and p = 5 with different ↵ values (from 0 to 1 in steps of

0.05) and iteration limit set to 100. Figure 5.2 displays the results. In this case, we

used the first greedy function (vertical axis). For each particualr value of ↵, we plot

the best, average, and worst values obtained over the 100 iterations. Clearly, the

solution delivered by GRASP at the end of the 100 iterations is the best solution

Chapter 5. Computational Experiments 42

found (red line).

The most interesting observation is that the variation of ↵ does not have a

significant effect on solution quality. In other words, a random solution is as good as

a solution found by other smaller values of ↵. Similar results were observed for the

other two greedy functions. This is not a common behavior observed by GRASP.

Typically, when an appropriate greedy function is assessed one can observe that best

solutions are obtained for small values of ↵. In our particular case, as we can learn

from the figure, this unusual behavior may be attributed to the high interaction

among servers making the proposed greedy function be not too representative of the

final cost in the objective function. As a conclusion, we decide to use ↵ = 1 for the

remaining experiments.

5.3 Path Relinking

As mentioned before, the path relinking (PR) algorithm consists of two key

strategies: the matching method and the processing method.

This experiment aims at assessing the effect of each of these strategies in the

solution qualty within the path relinking component. The experiment is carried out

as follows. We first apply the randomized multi-start method with 100 iterations to

build en elite set of size 10. The best solution obtained is stored. Then we apply the

path relinking to each pair in the elite set and report the best solution found by the

path relinking. That is, the PR is not tested within the scatter search metaheuristic.

We used the mean service time (MST) objective function (Appendix B) as fitness

function.

Several instances of different sizes are tested. Results are shown in Table 5.8

for the different values of m and n tested and the different PR strategies. For each

m ⇥ n combination, for different values of p are tested (p = 7, 10, 15, 20), and for

each of this, five replicates are solved. Therefore we have 180 instances in total. The

Chapter 5. Computational Experiments 43

arrival rate (λ) and the service rate (µ) remain constant. The value shown in each

cell indicates the average relative improvement obtained by the PR over the best

solution found by the multi-start heuristic, thus the higher the value the better the

improvement by the PR. The first column indicates the matching strategy and the

second column indicates the processing ordering (FF for farthest first, NF for nearest

first, and R for random order).

Table 5.8: Path relinking improvement over multi-start solution.

n = 50 n = 100 n = 150

match order m = 30 50 75 30 50 75 30 50 75

perfect

FF 5.18 10.99 15.94 6.26 10.11 11.55 5.14 7.93 10.56

NF 5.22 11.30 14.43 5.61 9.15 10.70 5.26 6.73 10.01

R 5.58 9.45 12.08 5.23 7.61 10.65 4.02 6.13 8.14

random

FF 5.46 9.96 12.04 4.63 8.14 10.72 3.33 6.59 8.60

NF 6.90 11.36 16.02 6.13 10.16 12.95 5.82 9.43 10.42

R 5.20 9.73 13.97 4.68 7.70 10.24 4.24 7.18 9.20

workload

FF 5.06 7.31 9.68 4.43 5.73 7.13 4.59 5.86 7.01

NF 5.17 10.93 13.67 4.87 9.43 11.02 5.04 7.96 9.07

R 4.58 7.81 10.11 3.34 6.39 6.89 3.48 6.16 6.61

The results clearly indicate a considerale benefit of the PR method. As we can

observed the combination that consistently offers better results is the random mat-

ching with nearest first ordering. This may be due to the fact that greater diversity

is generated by having a random matching. For the remaining experiments the PR is

applied under these strategies, that is, random matching with nearest first ordering.

5.4 Scatter Search

Finally, in our last experiment, we evaluate the scatter search metaheuristic

proposed in this thesis. We run the same set of instances as in the previous expe-

riment applying the scatter search metaheuristic with no improvement phase. Since

Chapter 5. Computational Experiments 44

part of the objective function evaluation (MST) involves solving the Hypercube mo-

del, we are also interested in investigating how much effort is spend in this evaluation.

Table 5.9 shows the results of the experiment for the differnt values of m, n,

and p tested. Recall that we have 5 replicates for each combination, thus the results

shown in the table represent average statistics. The improvement columns (IMP)

indicate the average relative improvement on solution quality of the scatter search

with respect to the mult-start heuristic solution. The total average running time and

average runing time spent on evaluating the MST are measured in seconds

Table 5.9: Scatter search evaluation.

n = 50 n = 100

m p IMP (%) Time MST IMP (%) Time MST

30

7 6.97 1.64 1.55 6.70 4.33 4.10

10 9.62 5.20 4.57 5.74 9.97 9.65

15 6.95 8.55 6.49 3.38 14.90 13.46

20 3.67 13.79 8.80 2.80 28.30 24.01

50

7 9.76 2.47 2.41 7.68 4.23 4.46

10 12.20 7.09 6.15 8.09 11.01 10.59

15 9.75 11.35 8.51 9.55 25.72 22.36

20 10.63 30.22 19.38 9.51 61.22 49.41

75

7 11.64 2.43 2.37 7.70 4.55 4.76

10 14.50 6.16 5.35 11.46 10.17 9.82

15 18.26 19.44 14.08 11.95 36.70 31.19

20 13.59 44.19 28.05

Averages 10.63 12.71 8.98 7.69 19.17 16.73

As can be seen, the scatter search delivers significant improvements (up to

18.26%) to the solution found by the multi-start method in relatively small com-

puting times. Recall that models A and B are pactically intractable for large size

instances by conventional branch-and-bound methods. It can also be observed that

time spent on solving the MST is about the same order of that of the scatter search.

Chapter 5. Computational Experiments 45

In any event, running times are relatively small.

Chapter 6

Conclusions and Future Work

6.1 Main Conclusions

The following conclusions are drwan from the present work:

Two different models (Model A and Model B) for the car wreck adjuster lo-

cation are proposed. The models can be seen as linear approximations to the

Stochastic Queue p-Median Problem.

We observed that Model A is very difficult to solve for the medium-size ins-

tances of around m = 30 or larger.

For small enough values of `, Model B can be solved relatively quickly for

instances of medium size.

The solutions obtained from Model B for small values of ` approximates well

the solutions of Model A, as well as self solutions for large values of `

A scatter search metaheuristic is proposed for the problem under study. Within

the heuristic, several components are developed and evaluated.

The multi-start randomized construction algorithm was assessed within a GRASP

framework. The method was tested for different values of the quality threshold

46

Chapter 6. Conclusions and Future Work 47

parameter. No significant effect was observed on this parameter. Therefore, it

was concluded that a totally randomized algorithm is sufficient.

A path relinking (PR) method was proposed and implemented as a combi-

nation method within the scatter search. This PR uses several strategies for

deciding the trajetory between two given solutions. These strategies were eva-

luated finding that the random matching with nearest first ordering as the best

among all.

The scatter search was evaluated on a large set of instances finding very good

results with respect to the solution found by the multi-start heuristic.

6.2 Future Work

There are several areas of opportunity for further work in this area. First, the

empirical tests were done for a relatively small number of instances. Generating more

instances for each given size would allow a more sound study with a corresponding

statistical analysis.

Another task is to test the solution methodology in real-world problems. This

wolud of course involve a considerable amount of work particulary when considering

the potential accident sites in large cities.

From the heuristic perspective, we must point out that the proposed scatter

search was evaluated with no improvement method. Therefore, it is evident that a

natural extension to this work is the computational implementation of the improve-

ment method discussed in Section 4.2.2 and a complete empirical evaluation of these

procedures within the scatter search algorithm.

Advanced strategies such as memory adaptive programming for exploring dif-

ferent local search neighborhoods may be worthwhile investigating as well.

Chapter 6. Conclusions and Future Work 48

The methods developed in this thesis provide a recommendation as to where the

adjusters should be located. Since the problem is subject to the random occurance of

the accidents, performance indicators based on simulation models must be calculated

and compared with current industry policies.

Appendix A

Approximating the Equilibrium

Behavior of MSLS

In Jarvis [17] a procedure is given for approximating the equilibrium behavior

of multi-server loss systems having distinguishable servers and multiple customers

types under light to moderate traffic intensity.

A.1 Motivation

In an emergency service such as fire or police, the servers are fire fighting units

or patrol cars and the customers are calls for service. The simple Erlang loss system

is inadequate in two aspects for a detailed system analysis.

one often wishes to preserve the identity of service units (distinguishable ser-

vers).

because of the geographic nature of these systems, the service time depend on

both the server and the customer at least through the travel time between the

pair.

49

Appendix A. Approximating the Equilibrium Behavior of MSLS 50

A.2 Model Assumptions, Notation, and

Terminology

Consider a system in which:

Exactly one server is assigned to each customer unless all servers are busy, in

which case the customer is irrevocably lost from the system.

Servers are assigned to customers according to a fixed preference assignment

rule.

No preemption of service is allowed.

Assignments are made immediately upon customer arrival.

with the following parameters:

N := the distinguishable number of servers,

C := types of customers,

Customers of type m, arrive according to a Poisson process with rate λm,

λ := total arrival rate,

amk := the k-th preferred server for customers of type m,

⌧im the expected service time for server i and customer of type m.

The performance measures for the system include:

⇢i := the workload of server i,

fim := the probability a random customer of type m is assigned to server i,

PN := the probability all servers are busy.

Appendix A. Approximating the Equilibrium Behavior of MSLS 51

A.3 Approximation Procedure

The procedure described below is based on that given by Larson [19], for ap-

proximating performance measures for the Hypercube model assuming exponential

service times. Larson developed an approximation for fim as

fim ' Q(N, p, k − 1)(1− ⇢i)
k−1
Y

l=1

⇢aml
(A.1)

where

Q(N, p, k) =
N−1
X

j=k

(N − j)(N j)(⇢j−k)P0(N − k − 1)!

(j − k)!(1− PN)kN !(1− ⇢(1− PN))
fork = 0, 1, . . . , N − 1 (A.2)

Let Bi denote the event that server i is busy; and let Bim denote the event

that server i is busy serving a customer of type m, then

⇢i = Pr [Bi] =
C
X

m=1

Pr [Bim] =
C
X

m=1

λmfim⌧im (A.3)

combine equations (A.1) and (A.3) and solve for ⇢i to obtain the approximation

iteration

⇢i(new) =
Vi

(1 + Vi)
(A.4)

where Vi is given by

Vi =
N
X

k=1

X

m:amk=i

λm⌧imQ(N, ⇢, k − 1)
k−1
Y

l=1

⇢aml
(A.5)

When there is a common mean service time, the estimates for ⇢i can be nor-

malized using
N
X

i=1

⇢i = N⇢(1− PN) (A.6)

In the generalized procedure, ⌧ can be approximated at the end of each iteration

by

⌧ =
C
X

m=1

✓

λm

λ

◆ N
X

i=1

⌧imfim
(1− PN)

(A.7)

Appendix A. Approximating the Equilibrium Behavior of MSLS 52

Approximation Algorithm

Given:

λm, τim, amk for m = 1, . . . , C; i = 1, . . . , N ; k = 1, . . . , N

Initialize:

ρi =
X

m:am1=i

λmτim; τ =
C
X

m=1

(λm/λ)τam1,m

Iteration:

(1) Compute Q(N, ρ, k) for k = 1, . . . , N − 1 where ρ = λτ/N using equation (A.2).

(2) For i = 1, . . . , N , the new ρi is Vi/(1 + Vi), where Vi is given by equation (A.5).

(3) Stop if max change in ρi is less than convergence criterion.

(4) Else compute PN by equation (A.6), τ by equation (A.7), and fim by equation (A.1).

(5) Return to step 1.

No analytic bounds on the accuracy or convergence properties of the approxi-

mation procedure have been developed to the best of my knowledge.

In regards to convergence properties, the numerical iteration has proved to be

very stable and converges in a small number of iterations under relatively stringent

conditions, with 4 to 6 iterations being typical for 10-server systems.

In comparing the accuracy of this approximation to results from the exact

Hypercube model, Larson has found errors in server workloads to be less than 1 to

2 percent.

Appendix B

Berman Heuristic

The stochastic queue p-median (SQM) problem is studied by berman, Larson,

and Parkan [4]. This problem is very similar to our case since it consists of locating

p mobile service units on a network in the presence of queueing-like congestion.

The main difference is that they allow the location of the servers in all the network

including edges.

Nevertheless, the heuristics are quite applicable to our case. They present two

similar heuristics for the problem. Here we use and described heuristic 2 of that

paper. The main idea is as follows. Given the location of p servers, heuristic 2 uses the

hypercube model to provide for each one of the servers information on the fraction of

dispatches to each possible call for service. This information is then used to improve

the location of each of the servers by solving the corresponding SQM. Such process

continues until no further improvement is possible.

TheMean Service Time Calibration Process is used for evaluating the

solutions.

B.1 The Stochastic Queue p-Median Problem

To define the problem the following parameters are defined:

53

Appendix B. Berman Heuristic 54

G(N,L) := the transportation network,

N := the set of demand centers, with |N | = n,

L := the set of all transportation arteries, the links or edges,

hj := the fraction of service calls associated with each node j,

d(X, Y) := the shortest path distance between any two points X, Y 2 G,

p := number of response units,

X̄ := the home locations of the service units while available,

λ := mean rate per unit of time within service calls generated by a Poisson

distribution.

Given the arrival of a call for service, exactly one of the servers is dispatched

to it assuming that at least one server is available.

The service time for any service unit i is the sum of two components:

The non-travel time component, which is the sum of on-scene and off-scene

service time.

Travel time component, which is the sum of travel time to the location of the

call and travel time back to the home location.

The mean service time for a service unit located at X̄ i is denoted S(X̄ i),

S(X̄ i) =
n

X

j=1

hi
j

✓

W̄ij +
βi

vi
d(X̄ i, j)

◆

i = 1, . . . , p (B.1)

W̄ij is the mean of the non-travel time component Wij, that is, the on-site

service time.

vi is the travel speed of unit i to the scene of the call which is assumed constant

Appendix B. Berman Heuristic 55

βi is a constant that allows different travel speeds to and from the scene of the

call

hi
j is the probability that server i is dispatched to node j given that server i is

dispatched to a call for service.

Whenever a call for service arrives while at least one of the servers is free at

its home location, the closest available server to the call will be dispatched. Calls

that find all servers busy enter a queue. The queue discipline is assumed to be First-

Come-First-Served. The expected response time to a random call denoted by T̄R(X)

is the sum of two components

T̄R(X̄) = W̄q(X̄) + t̄(X̄)

W̄q(X̄) is the expected waiting time in the queue

t̄(X̄) is the expected travel time to the call.

The objective is to find a set of p locations X̄∗ on the network such that

T̄R(X̄
∗)  T̄R(X̄) 8X̄ 2 G

X̄∗ is called the stochastic queue p-median.

B.2 Mean Service Time Calibration Process

In this emergency system, travel times may represent a considerable part of ser-

vice times. It may be advisable to adjust the service times by means of a calibration

process, which can be performed using a simple iterative procedure.

The procedure consists of verifying if there are significant differences among

the input mean service times and the output mean service times (computed by the

hypercube model). In this case, the hypercube is solved using the computed mean

Appendix B. Berman Heuristic 56

service times as inputs, until the differences among input and output values are

sufficiently small.

The mean service time calibration method

Step 0. The mean service time of unit i, 1/µi = 1/µi
NT , i = 1, . . . , p (1/µi

NT =
Pn

j=1 hjW̄ij is the mean of non-travel time component of the service time).

Step 1. Run the Hypercube Model (using µi) to obtain fij, i = 1, . . . , p, j = 1, . . . , n.

Step 2. 1/µ̂i =
Pn

k=1 h
i
k(W̄ik + (βi/vi)dik) where hi

k = fik/
Pn

j=1 fij

Step 3. If |1/µ̂i − 1/µi| > ✏ for at least one i, i = 1, . . . , p, set 1/µi ⌘ 1/µ̂i and go

back to Step 1. Otherwise stop.

Bibliography

[1] R. Benveniste. Solving the combined zoning and location problem for several

emergency units. Journal of the Operational Research Society, 36(5):433–450,

1985.

[2] G. N. Berlin and J. C. Liebman. Mathematical analysis of emergency ambulance

location. Socio-Economic Planning Sciences, 8(6):323–328, 1974.

[3] O. Berman and R. C. Larson. The median problem with congestion. Computers

& Operations Research, 9(2):119–126, 1982.

[4] O. Berman, R. C. Larson, and C. Parkan. The stochastic queue p-median

problem. Transportation Science, 21(3):207–216, 1987.

[5] R. Church and C. ReVelle. The maximal covering location problem. Papers in

Regional Science, 32(1):101–118, 1974.

[6] M. S. Daskin. A maximum expected covering location model: Formulation,

properties and heuristic solution. Transportation Science, 17(1):48–70, 1983.

[7] M. S. Daskin and E. H. Stern. A hierarchical objective set covering model

for emergency medical service vehicle deployment. Transportation Science,

15(2):137–152, 1981.

[8] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedu-

res. Journal of Global Optimization, 6(2):109–133, 1995.

57

Bibliography 58

[9] M. Gendreau, G. Laporte, and F. Semet. Solving an ambulance location model

by tabu search. Location Science, 5(2):75–88, 1997.

[10] F. Glover. Heuristics for integer programming using surrogate constraints. De-

cision Sciences, 8(1):156–166, 1977.

[11] F. Glover. A template for scatter search and path relinking. In J.-K. Hao,

E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evolu-

tion, volume 1363 of Lecture Notes in Computer Science, pages 1–51. Springer,

Berlin, Germany, 2005.

[12] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path

relinking. Control and Cybernetics, 29(3):653–684, 2000.

[13] J. Goldberg, R. Dietrich, J. M. Chen, M. G. Mitwasi, T. Valenzuela, and

E. Criss. Validating and applying a model for locating emergency medical vehi-

cles in Tuczon, AZ. European Journal of Operational Research, 49(3):308–324,

1990.

[14] S. L. Hakimi. Optimum locations of switching centers and the absolute centers

and medians of a graph. Operations Research, 12(3):450–459, 1964.

[15] J. Halpern. The accuracy of estimates for the performance criteria in certain

emergency service queueing systems. Transportation Science, 11(3):223–242,

1977.

[16] J. P. Jarvis. Optimization in Stochastic Service Systems with Distinguishable

Servers. PhD thesis, Massachusetts Institute of Technology, Cambridge, USA,

1975.

[17] J. P. Jarvis. Approximating the equilibrium behavior of multi-server loss sys-

tems. Management Science, 31(2):235–239, 1985.

[18] R. C. Larson. A hypercube queuing model for facility location and redistricting

in urban emergency services. Computers & Operations Research, 1(1):67–95,

1974.

Bibliography 59

[19] R. C. Larson. Approximating the performance of urban emergency service

systems. Operations Research, 23(5):845–868, 1975.

[20] V. Marianov and D. Serra. Probabilistic maximal covering location-allocation

models for congested systems. Journal of Regional Science, 38(3):401–424, 1998.

[21] V. Marianov and D. Serra. Hierarchical location-allocation models for congested

system. European Journal of Operational Research, 135(1):195–208, 2001.

[22] H. Pirkul and D. A. Schilling. The siting of emergency service facilities with

workload capacities and backup service. Management Science, 34(7):896–908,

1988.

[23] M. G. C. Resende and R. F. Werneck. A hybrid heuristic for the p-median

problem. Journal of Heuristics, 10(1):59–88, 2004.

[24] C. ReVelle and K. Hogan. The maximum availability location problem. Trans-

portation Science, 23(3):192–200, 1989.

[25] R. Z. Ŕıos-Mercado and H. J. Escalante. GRASP with path relinking for com-

mercial districting. Expert Systems with Applications, 44:102–113, 2016.

[26] E. S. Savas. Simulation and cost-effectiveness analysis of New York’s emergency

ambulance service. Management Science, 15(12):B608–B627, 1969.

[27] C. Swoveland, D. Uyeno, I. Vertinsky, and R. Vickson. A simulation-based

methodology for optimization of ambulance service policies. Socio-Economic

Planning Sciences, 7(6):697–703, 1973.

[28] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The location of emergency

service facilities. Operations Research, 19(6):1363–1373, 1971.

[29] J. R. Weaver and R. L. Church. Computational procedures for location problems

on stochastic networks. Transportation Science, 17(2):168–180, 1983.

[30] J. R. Weaver and R. L. Church. A median location model with nonclosest

facility service. Transportation Science, 19(1):58–74, 1985.

Vita

Luis was born in San Nicolás de los Garza, Nuevo León, México on November

25, 1989, the fourth of five sons of Luis Alberto Maltos Muzquiz and Ruth Ortega

Pecina. He received a bachelor degree in mathematics from Universidad Autónoma

de Nuevo León (UANL) in 2011. After that, he worked as a consultant, until 2014,

analyzing mathematical models and solution methods for multiobjective problems

related to industrial, commercial and service sectors. At the beginning of the same

year he began to study a Master of Science in Systems Engineering at the Graduate

Program in Systems Engineering at UANL.

60

	tesis_B-firmas
	tesis_C
	tesis_D-firmaRZ
	tesis_E

