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Problem Description: When a traffic accident occurs in cities with a large

traffic flow the roads surrounding the crash site are affected by traffic congestion.

In some countries, such as Mexico, even small accidents are troublesome due to the

fact that a claim adjuster from the car insurance company must arrive to the site

and document the accident before the vehicle may be removed as required by law.

Thus, in this particular setting, the location of the adjusters becomes a key factor

in providing timely service.

Objectives and method of study: The propouses of this thesis is to

• Provide quantitative tools for scientific support for the optimal location of car

wreck adjusters.

• Develop adequate mathematical models for representing some of the impor-
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tant company concerns. Design and develop efficient solution techniques for

handling real-world instances of the problem.

• Assess the quality and value of the proposed techniques based on an appropri-

ate experimental design.

Contributions and Conclusions: The most important contributions of this

work are listed below:

• With the aim of minimizing average response time, two integer programming

models are introduced.

• The second model make special considerations to reduce the number of vari-

ables.

• An scatter search heuristic was designed, built and tested over a wide set of

instances with very good results.

Firma del asesor:

Dr. Roger Z. Ŕıos Mercado



Chapter 1

Introduction

The main idea behind this thesis is to develop mathematical models to improve the

service offered by car insurance agents. The goal is to determine the number of

adjusters required to perform the service, within the desired locations, to help them

arrive to accident sites sooner.

1.1 Problem Statement

Car insurance companies in countries such as Mexico faces the daily issue of how to

locate their insurance agents (adjusters), in such a way that they provide the best

possible service to their customers. Typically the quality of service is measured by

how quickly the adjusters arrive to the places where an incident has occurred.

This problem can be seen as an emergency location system, in which it is

desired to “cover” the territory under study (city intersections) by a fixed number

of adjusters so as to reduce the average time of arrival to accidents. An issue that

makes the problem even more complex is the fact that accidents occur randomly and

decisions on where to place the adjusters must be made before accidents occur.

1
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1.2 Background

The problem of locating car insurance agents is a practical problem that has not

been studied before to the best of our knowledge. This comes from the fact that in

other countries, when an accident occurs cars drivers are allowed to move their cars

from the accident site if this obstructs traffic. Unfortunately, in many developing

countries, insurance agencies ask their insurees not to move the car until an adjuster

has arrived.

Nonetheless, there are many related location problems that look at similar

problems. For example the case of ambulance location problems, for instance, where

emergency services (ambulances) must be located in such a way that ambulances

arrive promptly at the site of the accident. A main difference between our problem

and the one of an emergency service location is that in those problems time is a

matter of life-or-death, and in the case of adjusters location it is not necessarily so.

This resulting models look then at different objective function and constraints. In

Chapter 2, related problems are discussed.

1.3 Motivation

When a car accident occurs, traffic congestion starts to pile up. This is because

customers are not allowed to move their vehicles until the adjuster arrives. The

adjuster must record and determine the causes of the accident in order to move the

car from the accident area and restore the flow. Needless to say, an early arrival

means everything to everyone. Customers wait less, and traffic jams are cleared

faster when adjuster arrive promptly.

Given that accidents occur randomly, the idea of this research is to use stochas-

tic location models to derive efficient policies based on historical data that can be

implemented by car insurance companies
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1.4 Objectives

The main objective of this research are:

• Provide quantitative tools for scientific support for optimal location of car

wreck adjusters.

• Develop or use adequate mathematical models for representing some of the

important company concerns.

• Design and develop efficient solution techniques for handling real-world in-

stances of the problem.

• Assess the quality and value of the proposed techniques based on an appropri-

ate experimental design.

1.5 Organization

This thesis is organized as follows: Chapter 2 presents a brief literature review of

divers approaches of Emergency Service Systems (ESS), starting with the simple

deterministic models and ending with the hypercube model and simulation mod-

els. The problem statement and two proposed models are presented in Chapter 3.

Chapter 4 describes the heuristic method proposed and their components. Chap-

ter 5 contains the experiments made to the models, and to the heuristics to tune

them. Conclusions, contributions, and directions for future research are highlighted

in Chapter 6. Additionally, Appendix A contains a summary of how to approximate

the hypercube results, and together with Appendix B completes the explanation of

how to estimate the response times of a solution.



Chapter 2

Related Work

Work in emergency vehicle base location has generally involved the use of three

approaches: queueing, mathematical programming, and simulation.

In this chapter, we review the most relevant works in each of these approaches.

2.1 Mathematical Programming

Location models are classified in two main categories, deterministic and probabilistic.

Deterministic models are typically used at the planning stage and ignore stochastic

considerations regarding the availability of servers or the distribution of the demand.

Probabilistic models reflect the fact that vehicles operate as servers in a queuing

system and are not always available to answer a call; this models permit a more

accurate planning of Emergency Service Systems (ESSs) at the strategic level. They

were initially developed based on the assumptions that servers are independent and

do not cooperate, which is not realistic in practice.

The location literature is very extense, therefore we focus the discussion in

this chapter on models that are more typically used in the location of emergency

services. As stated before, no previous work on location of car wreck adjusters exist

to the best of my knowledge; however, there are many common elements between

4
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our problem and the problem of location of emergency services.

2.1.1 P-Median Models

The first approaches incorporate median type objectives, the aim of this problem is

Examples of such models are the deterministic p-median of Hakimi [11], the stochas-

tic p-median and the vector assignment p-median of Church and Weaver [22, 23] and

the capacitated p-median of Schilling and Pirkul [17]

The strength of these models is that optimal solution procedures have been

developed and can accommodate practical problems. Weaknesses include assump-

tions such as noncooperation between vehicles, the probability of each system state

is known and the fraction of call served by the closest, second closest, etc. is known

for each zone.

2.1.2 Covering models

In the location set covering model (LSCM) introduced Toregas et al. [21] the aim

is to minimize the number of ambulances needed to cover all demand points. This

model ignores several aspects of real-life problems, the most important probably

being that once an ambulance is dispatched, some demand points are no longer

covered. However, the authors provide a lower bound on the number of ambulances

required to ensure full coverage.

The maximal covering location problem (MCLP) originally proposed by Church

and ReVelle [5] is an alternative approach proposed to overcome some of the short-

comings of the LSCM. In the MCLP the objective is to maximize population coverage

subject to limited ambulance availability.

A limitation of the deterministic models is that they assume that servers are
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available when requested, which is not always true in practical situations. Congestion

in emergency services, which may cause the unavailability of servers located within

the critical distance when a call is placed, leads to the development of a second

generation of location covering models focused on additional coverage.

The definition of probabilistic location models for planning these systems is a

natural extension of their deterministic equivalents, the location models with cover-

ing constraints. The notion of coverage implies the definition of a service distance

(time), which is the critical distance (time) beyond which a demand area is consid-

ered not covered. A demand area is therefore considered covered if it is within a

predefined critical distance (say D) from at least one of the existing facilities.

The Maximum Expected Covering Location Problem (MEXCLP) defined by

Daskin [6] whose objective is to maximize the expected coverage of all demand areas

under consideration, assume that servers operate independently and that all servers

have the same busy probability (workload) ρ, allowings that more than one server

be situated in any given location. Daskin et al. [7], assume that travel times are

deterministic and coverage is an “all-or-nothing” property.

ReVelle et al. [18] proposes two variations for the Maximum Availability Loca-

tion Problem (MALP) locate p servers in suchs a way as to minimize the population

which will find a server available within α reliability the firstone assume, like Daskin,

that each server has the same busy probability, and predetermine the number of times

a demand point needs to be covered. The other, allow busy fractions to be different

in the various sections of a region under consideration (but not for each server to be

located)

These models emphasize the importance of additional coverage for the demand

areas, given the possibility that in congested systems the first server, possibly the

only server in a particular coverage area, might not be available when requested.

Gendreau et al. [8] proposes a model with double coverage, uses two radious r1, and

r2 (r2 > r1), to locate p ambulances, such that all the demand must be covered by an
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ambulance located within r2 time units, and, a proportion α of the demand must also

be within r1 units of an ambulance, which may or may not be the same ambulance

that covers this customer within r2 time units. Note that a feasible solution may

not exist if the parameters r1, r2 and α are too restrictive.

2.2 Queueing Models

The hypercube model (denoted Hypercube) and the hypercube approximation (de-

noted A-Hypercube). developed by Larson [15, 16] are the most well known queueing

approaches. These are not an optimization models; they are only a descriptive mod-

els that permits the analysis of scenarios. Both models estimate system operating

characteristics that are used to evaluate a series of objectives. They can evaluate

cooperation between vehicles, their weaknesses, include

• Assumptions of an exponentially distributed service time.

• Computational difficulties for problems with many vehicles.

• Require that service time be solely vehicle-dependent rather than call location-

dependent.

The computational problems are remediated in the A-Hypercube by approx-

imating the vehicle busy probabilities by solving a system of nonlinear equations

whose size depends on the number of vehicles.

Optimization models for locating Emergency Medical Services (EMS) that

use Hypercube or A-Hypercube as a function evaluation subroutine include Jarvis’

location-allocation problem [13], Berman and Larson’s congested median problem

[4], Benviniste’s location-allocation problem [1]. and Berman, Larson and Parkan’s

stochastic queue p-median problem [3]. These methods are heuristic local improve-

ment approaches that assume it is possible to locate a vehicle in every zone.
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2.2.1 Mean Service Calibration

Call location-dependent service time can be modeled using the Mean Service Cali-

bration method (denoted MSC). As in cases of Jarvis [13] and Halpern [12] where

mean service time, as opposed to the distribution of service time, and show that is

sufficient to obtain accurate estimates of system performance. The major shortcom-

ing of MSC is that either Hypercube or A-Hypercube is evaluated in each iteration;

it can thus be a computationally expensive approach.

To eliminate the computational inefficiency of the MSC method, Jarvis [14]

developed an approximation model for spatially distributed queueing systems 1. The

model assumes that call service time is call location-dependent, where all vehicles

have the same service rate and utilization while service is exponentially distributed.

2.2.2 Calibration Process

In certain EMSs and other emergency systems, travel times may represent a consid-

erable part of service times. In such cases, it may be advisable to adjust the service

times by means of a calibration process, which can be performed using a simple

iterative procedure that is proposed by Berman et al. [3]. Basically, the procedure

consists of verifying if there are significant differences among the input mean service

times and the output mean service times (computed by the hypercube model). In

this case, the hypercube is solved using the computed mean service times as inputs,

until the differences among input and output values are sufficiently small. This

procedure is called a calibration process. Note that it takes into account that the

mean travel time depends on the location of the user and the identity of the server.

Empirical experiments show that this procedure usually converges in two or three

iterations, for a reasonably accurate estimation of the mean service times, although

1See Appendix A for more infomation
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a formal proof of the convergence of the method is apparently not available in the

literature.

2.3 Simulation Models

Simulation models can be formulated with great detail and hence can be validated.

Simulation is used for evaluating EMS system performance in numerous papers

as in Savas [19], Berlin and Liebman [2], and Swoveland et al. [20],

In general, simulation models provide several measurement outputs, a draw-

back is that they are rarely used because of high runtime and data collection costs.

These models have some questionable assumptions, but successful applications do

exist in the literature.



Chapter 3

Framework

3.1 Problem Statement

The location and dispatching policies used by insurance agencies should aim to arrive

to the accident areas as early as possible, due to several reasons such as:

1. providing a timely service to their customers

2. helping clear out the accident area

3. keeping the workloads of its adjusters as balanced as possible

The location policies should be optimized for service time but they should also

consider cooperation based on adjuster workload. However, current insurance agency

policies are empirical, and do not consider cooperation. By neglecting this, adjusters

tend to take more time to arrive at the accident site, making the insurance agency

less competitive, and generating more traffic congestion.

The financial costs of applying an empirical policies instead of optimum policies

is difficult to measure. However the costs include more use of fuel, more use of

vehicles that implies more maintenance costs, and the opportunity cost of losing a

customer for low quality-of-service. The use of quantitative models may also help in

10
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what-if analysis to assess the overall service rate if more adjusters are placed. The

use of mathematical models to determine better location policies based on scenarios,

and the use of real data to simulate and evaluate new scenarios versus the current

policy is one of the main contribution on this work.

The benefit of this framework is that several policies can be evaluated for

different scenarios (for instance high level of congestion in rainy days), and the best

policy for each scenario can be determined.

In summary the location of adjusters could be improved with the use of math-

ematical models and simulation, and obtain several benefits.

The problem studied in this thesis consist of given a number of adjusters, a

set of potential site for place them (basis), and a set of demand points, we have to

determine where to place the adjusters, so as to minimize the average response time,

assuming that calls arrive with a Poisson distribution and with an own arrival rate

for each demand point.

3.2 Mathematical Framework

Two mathematical models are proposed, the first model (model A) was created base

on the one proposed by Goldberg [10] for which we made some relaxations instead

for obtaining a linear model.

The second model (model B) has additional simplification, considering that

it is unlikely to assign an adjuster to a demand point covered previously by more

adjusters, omitting allocation variables and adding restrictions to guarantee the

correct order of allocation is introduced.
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3.3 Model A

This model is based on the model proposed by Goldberg [10], and it contains as-

signment variables for all possible orders.

The following assumptions are considered in the model:

• The probability that an adjuster is busy is ρ and is unaffected by the state of

the system.

• There is a strict ordering of the basis preferred for each zone that does not

depend on the current state of the system.

• All calls are answered by an adjuster originating from its base, not in route

back to the base.

• The arrival of calls to the system follows a stationary distribution.

• The model is presented using a 0-queue assumption.

Sets and indexes:

• n number of demand points

• m number of potential sites to locate adjusters/facilities

• p number of available adjusters

• i index for demand points; i ∈ V = {1, 2, . . . , n}

• j index for potential site for adjusters/facilities j ∈ W = {1, 2, . . . ,m}

• k index for possible order; k ∈ K = {1, 2 . . . , p}

• Sij = {r ∈ W | site r is preferred by proximity before site j for demand point i}
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Parameters:

• λi arrival rate of calls for demand point i

• ρ is the utilization of each adjuster, the value is between 0 and 1, where 0

means that the server is always idle. To obtain an approximate value for ρ we

use the formula proposed by Berman et al. [4] ρ =
∑n

i=0
λi

mp

• tij is the expected travel time between demand point i and potential site j.

• hk
ij is the probability that adjuster j serves point i given that it is the k-th

preferred. It is calculated using the following formula: hk
ij = (1− ρ)ρk−1

Variables:

• xj =











1 if an adjuster is placed at potential site j

0 otherwise

• ykij =











1 if the adjuster at site j, is the k-th to cover demand point i

0 otherwise

Model

min

m
∑

j=1

p
∑

k=1

n
∑

i=1

hkijtijy
k
ij (3.1)

Minimize the average expected response time subject to

∑

j∈W

xj = p (3.2)

Only locate p adjusters

∑

j∈W

ykij = 1 i ∈ V, k ∈ K (3.3)

Each demand point i is covered by an adjuster on each order k

ykij ≤ xj i ∈ V, j ∈ W, k ∈ K (3.4)
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Relationship between variables x and y

p
∑

k=1

ykij ≤ xj i ∈ V, j ∈ W (3.5)

For each located adjuster, there can only be a maximum of one ordered assignment.

ykij ≤
∑

r∈Sij

yk−1

ir i ∈ V, j ∈ W, k ∈ K \ {1} (3.6)

Assign j to cover i in order k only if the assignment of order k − 1 was made for

some r ∈ Sij

xj ∈ {0, 1} j ∈ W

ykij ∈ {0, 1} i ∈ V, j ∈ W, k ∈ K

Observe that we do not need to add a constraint to ensure the counterpart

of (3.5) because (3.2) and (3.4) ensure that each adjuster must cover each demand

point for some order, therefore if an adjuster located at j does not cover demand

point i at order k (indicated by the maximum covering order in Sij) there will be at

least one adjuster that does not cover demand point i at any order resulting in an

infeasible solution.

3.4 Model B

This model was developed with the idea that it is unlikely that the farthest adjusters

serve demand points on cases where the system does not become congested. In these

cases we can make the assumption that the probability of being served by the ℓ-th

adjuster is almost zero, where ℓ is large enough but less than p.

Parameters:

• M is a large integer

• ℓ the number of allowed adjusters per demand point
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• aik the k-th preferred location server regarding the point i.

Variables:

• zj the number of adjusters placed at site j

• ykij if adjuster in j, is the k-th to cover demand point i

The objective, and constraints (3.2)-(3.5) are practically the same as in model

A, with the difference that binary variables xj from Model A are replaced by integer

variables zj inspired by the results of Berman [3], and the addition of the following

binary variables

• uij =











1 if the number of adjusters between i and j, inclusive, is less than ℓ

0 otherwise

• vij =











1 if the number of adjusters between i and j, is less than ℓ− 1

0 otherwise

Model

min
m
∑

j=1

ℓ
∑

k=1

n
∑

i=1

hk
ijtijy

k
ij (3.7)

Minimize the average expected response time

∑

j∈W

zj = p (3.8)

Only locate p adjusters

∑

j∈W

ykij = 1 i ∈ V, k ∈ {1, . . . , ℓ} (3.9)

Each demand point i is covered by an adjuster on each order until ℓ

ykij ≤ zj i ∈ V, j ∈ W, k ∈ {1, . . . , ℓ} (3.10)
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Relationship between variables z and y

∑

r∈Sij∪{j}

zr + (p− ℓ)uij ≤ p i ∈ V,j ∈ W (3.11)

∑

r∈Sij∪{j}

zr +Muij ≥ ℓ+ 1 i ∈ V,j ∈ W (3.12)

These two constraints set the relationship between the z and u variables. If u =

1 (3.12) become redundant, and contraint (3.11) guarantees that the number of

adjusters between i and j is less or equal than ℓ, otherwise if u = 0 the equation (3.11)

become redundant, and equation (3.12) guarantees that the number of adjusters

between i and j is more than ℓ.

ℓ
∑

k=1

ykij +M(1− uij) ≥ zj i ∈ V,j ∈ W (3.13)

Assign zj times j to i if uij = 1, otherwise if becomes redunant.

∑

r∈Sij

zr + (p− (ℓ− 1))vij ≤ p i ∈ V,j ∈ W (3.14)

∑

r∈Sij

zr +Mvij ≥ ℓ i ∈ V,j ∈ W (3.15)

Analogus to constraints (3.11)-(3.12) these constraints set the relationship between

the z and v variables.

ℓ
∑

k=1

ykij +M(1− vij + uij) ≥ ℓ−
∑

r∈Sij

zr i ∈ V, j ∈ W (3.16)

ℓ
∑

k=1

ykij −M(1− vij + uij) ≤ ℓ−
∑

r∈Sij

zr i ∈ V,j ∈ W (3.17)

Assign j to i the times remaining to complete ℓ assignments

ykij ≤ uij + vij i ∈ V,j ∈ W (3.18)

Assign j to i only if it is in the first ℓ adjusters near i

zj ∈ {0, 1, . . . , p} j ∈ V

ykij ∈ {0, 1} i ∈ V, j ∈ W, k ∈ I

uij, vij ∈ {0, 1} i ∈ V, j ∈ W
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3.5 Comparison

As can be seen, model A has a considerable amount of binary variables, therefore

model B was formulated. However, due the lack of allocation variables we need to

add more variables and constraints to ensure a similar behavior.

The size of the models as a function of N, M, p and ℓ is shown in table 3.5

Model A Model B

variables m(np+ 1) m(n(ℓ+ 2) + 1)

constraints n(2mp+ p) + 1 n((l + 8)m+ 1) + 1

Table 3.1: Models size

Since ℓ < p − 2 it can noticed that model B has lees variables than model A,

and when ℓ < 2p− 8 model B has less constrains too.
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Heuristic Procedures

Because the problem stochasticity can not evaluate solutions accurately, so the Hy-

percube model is used in conjunction with the service mean time calibration process

(see Berman et al. [3]) to obtain the main parameters.

4.1 Proposed Metaheuristic

A Scatter-Search with a dynamic reference set was implemented, and a path relinking

method is used as combination method. We used a dynamic reference set given that

the number of solutions generated in each combination is large. To enhanced the

solutions two improvement methods are included, one proposed by Berman [3], and

a proposed Local Search.

In Algorithm 1 (see below) a Reference Set is created, consisting in the bests b

solutions, and the most diverse b solutions. To measure the diversity of a solution,

the minimum cost perfect matching with each of the solutions of the Reference Set.

In Algorithm 2 (see bellow), each pair of solutions is combined using path

relinking. However, since the Reference Set is dynamic some solutions are displaced

before been combined.

18
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Algorithm 1 Scatter Search

procedure Initial Phase

Sols← SeedSolutions()

repeat

DiversificationGenerator(Sols)

Improvement(Sols)

ReferenceSet(Sols)

until HasNotChanged(Sols) or MaxIterations

end procedure

Algorithm 2 Scatter Search

procedure Scatter Search Phase(RefSet)

repeat

GX ← SubsetGeneration(RefSet)

for all X ∈ GX do

CX = SolutionCombination(X)

for all Sol ∈ CX do

Improvement(Sol)

Update(RefSet, Sol)

end for

end for

until HasNotChanged(RefSet) or MaxIterations

end procedure
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4.2 Description of Components

The components of Scatter Search template [9] consist of specific subroutines of the

following types:

• A Diversification Generator

• An Improvement Method

• A Reference Set Update Method

• A Subset Generation Method

We described below each of the components.

4.2.1 A Diversification Generator

To generate a collection of diverse trial solutions, using an arbitrary trial solution

(or seed solution) as an input. In our case, the generator was a multi-start consisting

of a GRASP

4.2.1.1 GRASP

We choose GRASP because in the proposed problem any allocation of sites for

adjusters is a feasible solution, so it was decided to give some intelligence to this

simple allocation instead of choose random points. We start with a partial solution

(location of a smaller number of adjusters) with only one adjuster allocated, evaluate

each site with the greedy function, and choose one from the best α evaluations, until

each adjuster was locate. Several functions were evaluated for constructive algorithm

but because presented cooperativeness it is difficult to approximate the final results
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Algorithm 3 Path Relinking Initial Phase

procedure PathRelinking(Instance)

EliteSols←MultiStart(Instance)

repeat

MiscSols← GenerateMiscSols(Instance, EliteSols)

for all x ∈MiscSols do

ImprovementMethod(x)

EliteSols.Update(x)

end for

until PerfectMatchingCost(MiscSols, EliteSols) < ǫ

SubsetControl(EliteSols)

end procedure

in a partial solution with a greedy function. We use three greedy functions to test

the construction. The first function, was the p-mean or the sum the distances of

each allocation from each located adjuster with their nearest demand points.

m
∑

j=1

n
∑

i=1

tijy
1

ij (4.1)

For the second function, we try to incorporate cooperatively, including in the eval-

uation the distance of allocations from each located adjuster, with their k nearest

demand points plus idle probability given that is allocated to their k − 1 nearest

demand points.
m
∑

j=1

p
∑

k=1

n
∑

i=1

hk
ijtijy

k
ij (4.2)

The third function, consist in use the Mean Service Time (MST) calibration method

proposed by Jarvis [14], to obtain more accuracy values of the current mean response

time.
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4.2.2 An Improvement Method

To transform a trial solution into one or more enhanced trial solutions. ( If no

improvement of the input trial solution results, the “enhanced” solution is considered

to be the same as the input solution.)

We have two improvement methods, the first an adaptation of the proposed

method by Berman et al. [3] and the second, a Local Search described in the next

section.

4.2.2.1 Local Search

Due to the cost of assessing each of the different solutions, it was decided to design a

local search to only evaluate a small neighborhood. The movement consist in remove

the server with less workload, and place it near the server with more workload.

Looking for a better balance workloads.

4.2.3 A Reference Set Update Method

To build and maintain a Reference Set consisting of the b best solutions found

(where the value of b is typically small, e.g., between 20 and 40), organized to

provide efficient accessing by other parts of the method.

We choose a two tier Reference Set to maintain a part of diverse solutions, this

because the combination method generates similar solutions to input. And we opt

for be dynamic since the number of generated solutions is big (proportional to p).

Whenever the Reference Set is update it is try to incorporate the solutions

generated in a combination, because the Reference Set is divided in two parts, first

try to accommodate each solution by quality criteria. If a solutions enters the
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Reference Set, degrades solutions lower quality to it, removing the worst solution of

the Reference Set.

After trying to accommodate solutions for quality criterion, solutions that do

not enter the Reference Set and those that are removed, they are try to enter with

diversity criterion. reassessing the diverse solutions, since they evaluation depends

on the quality members.

4.2.4 A Subset Generation Method

To operate on the Reference Set, to produce a subset of its solutions as a basis

for creating combined solutions. We only look for subsets of size two i.e. pairs of

solutions, because our Reference Set is dynamic, to identify the new solutions, we

label solutions as new and old at the start of each iteration. We combine first the

new solutions between them, next the new solutions with the old, the new solutions

that enters in the Reference Set as a combined solutions, is not part of the subsets

until the next iteration. Each solution generated and did not enter in the Reference

Set, displaced by a better solution, or actually a member of the diverse part of the

Reference Set is evaluated to be in the Reference Set as a diverse solution.

4.2.5 A Solution Combination Method

To transform a given subset of solutions produced by the Subset Generation Method

into one or more combined solution vectors.

We choose a path relinking as a combination method consisting of determine

a match between servers, this match can be

• Perfect Matching: minimizing the distance between paired servers
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Algorithm 4 Subsets Generator

procedure GenerateSubsets(RefSet,NowTime)

NewSols← SolutionsSince(RefSet,NowTime)

for all (Solx, Soly) ∈ NewSols do

if Solx ∈ RefSet and Soly ∈ RefSet then

CombinedSols← PathRelinkingCombination(Solx, Soly)

Update(RefSet, CombinedSols)

end if

end for

UpdateDiversity(RefSet)

if NumberOfOldSols(RefSet,NowTime) > 0 then

OldSols← SolutionsUntil(RefSet,NowTime)

for all Solx ∈ NewSols do

for all Soly ∈ OldSols do

if Solx ∈ RefSet and Soly ∈ RefSet then

CombinedSols← PathRelinkingCombination(Solx, Soly)

Update(RefSet, CombinedSols)

end if

end for

UpdateDiversity(RefSet)

end for

end if

end procedure
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• Workload Matching: sorting the servers of both solutions according to the

workloads, and match them according these sorted lists.

• Random Matching

once we have the matching we proceed from one solution to interchange each server

(one by step) until end in the other solution, in each interchange we have a new

solution. To make the interchanges we have three options

• Nearest First

• Farthest First

• Random

Algorithm 5 Path Relinking Combination Method

procedure PahtRelinkingCombination(Solx, Soly)

CombinedSols← EmptyList()

match←Matching(Solx, Soly) ⊲ perfect,workload,random

order ← ProcessOrder(Solx,match, Soly) ⊲ nearest/farthest first,random

for i← 1, p do

j ← order[i]

if Solx.ServerLocation(j)! = Soly.ServerLocation(match[j]) then

Solx.SetServerLocation(j, Soly.ServerLocation(match[j]))

CombinedSols.insert(Solx)

end if

end for

end procedure
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Computational Experiments

In this chapter computational experimentation occurs held to validate model results,

and adjust the parameters of the proposed heuristic.

5.1 Models

These test were evaluated in a Lanix Spine BW Processor Intel Xenon, CPU E5-

2867W, 3.10 GHz. With operative system Ubuntu 14.04.3 LTS The models were

solved with CPLEX 12.6.0.0, and they were coded in C++.

Different random instances were generated to validate the proposed formula-

tions. For n = 100 we created 8 instances with m = 20, 30, . . . , 100, and they were

tested with different values of p from 5 to m
2
, shown in the following table 5.1.

Model A was solved to optimality only when p < 25, in an average time of 217

seconds. for the rest of the values of p, no factible solution was found for 65% of the

test cases in less than 20 minutes, for the rest test cases, an average gap of 27% was

obtained.

Model B was evaluated with the same combinations of n,m, p and ℓ from

1, . . . , p. For almost all cases, model B was solved to optimality in less than a

26
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n m p

100 20 5-10

100 30 5-15

100 40 5-20

100 50 5-25

100 60 5-30

100 70 5-35

100 80 5-40

100 90 5-45

100 100 5-50

Table 5.1: Instances to test models

minute for each case.

Figure 5.1: Solution times versus ℓ between p

When the value of ℓ is close to p model resolution takes longer and in some
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cases optimal is not achieved.

Figure 5.2: Solution times versus ℓ between p

However, it can be seen that for different values of ℓ the solutions obtained are

the same.

5.2 GRASP

The purpose of this experiment is to assess the behavior of the three greedy functions

used by the greedy randomized construction of the diversificatione genrator method,

as well as the α parameter,
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To this end we run the heuristic consiting of the construction phase only (that

is ousidide of the Scatter Search - Path Relinking method). The results are shown

in table ??.

Several instances were tested with different α values (from 0 to 1 in steps of

0.05) to determine the value of α to use. The value of α = 0 means that the procedure

becomes completely greedy, and a value of α = 1 means that the procedure becomes

completely random.

The test suggest that with a more random version there are more different

solutions and a wide range of objective values achieving better solutions.

5.3 Path Relinking

As we mentioned before, the path relinking algorithm consist of two key components

the match method and the processing method.

This experiment aims to determine which methods are best suited. Measuring

the relative improvements achieved regarding the best solution obtained with the

multi-start.
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M 50 100 150

match order 30 50 75 30 50 75 30 50 75

perfect

farthest first 5.18 10.99 15.94 6.26 10.11 11.55 5.14 7.93 10.56

nearest first 5.22 11.30 14.43 5.61 9.15 10.70 5.26 6.73 10.01

random 5.58 9.45 12.08 5.23 7.61 10.65 4.02 6.13 8.14

random

farthest first first 9.96 12.04 4.63 8.14 10.72 3.33 6.59 8.60

nearest first 6.90 11.36 16.02 6.13 10.16 12.95 5.82 9.43 10.42

random 5.20 9.73 13.97 4.68 7.70 10.24 4.24 7.18 9.20

workload

farthest first 5.06 7.31 9.68 4.43 5.73 7.13 4.59 5.86 7.01

nearest first 5.17 10.93 13.67 4.87 9.43 11.02 5.04 7.96 9.07

random 4.58 7.81 10.11 3.34 6.39 6.89 3.48 6.16 6.61

Table 5.2: Path Relinking Results

5.4 Scatter Search

For this case we are interested in knowing as the heuristic contributes to improve-

ment, at par, we want to know how much time is spent calling the Hypercube.

The improvement is obtained between the value of the best solution generated

on the multi-start, and the best solution after the SS-PR without improvement

methods.

To evaluate this heuristic several instances was tested and a design of exper-

iment was made to determine the match method and the processing order method

that produce better results.
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Chapter 6

Conclusions

• Two different models (Model A and Model B) for the car wreck adjusters

location have been proposed. The models can be seen as linear approximations

to the SQpM.

• We observed that Model A has difficult solving medium size instances.

• For small enough values of ℓ, Model B can be solved relatively quick for in-

stances of medium size.

• The solutions obtained from the Model B for small values of ℓ approximates

well the solutions of Model A, as well as self solutions for large values of ℓ

6.1 Future Work

Due to policy changes of the insurance agency that collaboration had, It was not

possible to obtain information to create real instances, and measure the benefits of

the methods here proposed, against the policies currently used.

Some tests are pending to be done

• Extend the testing of models

32
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• Comparison between simulation results and Mean Service Time Calibration

Process for diverse solutions.



Appendix A

Approximating the Equilibrium

Behavior of MSLS

In Jarvis [14] a procedure is given for approximating the equilibrium behavior of

multi-server loss systems having distinguishable servers and multiple customers types

under light to moderate traffic intensity.

A.1 Introduction

In an emergency service such as fire or police, the servers are fire fighting units or

patrol cars and the customers are calls for service. The simple Erlang loss system is

inadequate in two aspects for a detailed system analysis.

• one often wishes to preserve the identity of service units (distinguishable servers).

• because of the geographic nature of these systems, the service time depend on

both the server and the customer at least through the travel time between the

pair.

34
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A.2 Model assumptions, Notation, and

Terminology

Consider a system in which:

• Exactly one server is assigned to each customer unless all servers are busy, in

which case the customer is irrevocably lost from the system

• Servers are assigned to customers according to a fixed preference assignment

rule

• No preemption of service is allowed

• Assignments are made immediately upon customer arrival

and we have the following parameters

• N distinguishable servers

• C types of customers

• Customers of type m arrive according to a Poisson process with rate λm

• λ total arrival rate

• amk be the kth preferred server for customers of type m

• τim the expected service time for server i and customer of type m

The performance measures for the system include

• ρi the workload of server i

• fim the probability a random customer of type m is assigned to server i

• PN the probability all servers are busy
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A.3 Approximation Procedure

The procedure described below is based on that given by Larson [16], for approxi-

mating performance measures for the Hypercube model assuming exponential service

times. Larson developed an approximation for fim as

fim ≃ Q(N, p, k − 1)(1− ρi)
k−1
∏

l=1

ρaml
(A.1)

where

Q(N, p, k) =
N−1
∑

j=k

(N − j)(N j)(ρj−k)P0(N − k − 1)!

(j − k)!(1− PN)kN !(1− ρ(1− PN))
fork = 0, 1, . . . , N − 1 (A.2)

Let Bi denote the event that server i is busy; and let Bim denote the event

that server i is busy serving a customer of type m, then

ρi = Pr [Bi] =
C
∑

m=1

Pr [Bim] =
C
∑

m=1

λmfimτim (A.3)

combine equations (A.1) and (A.3) and solve for ρi to obtain the approximation

iteration

ρi(new) =
Vi

(1 + Vi)
(A.4)

where Vi is given by

Vi =
N
∑

k=1

∑

m:amk=i

λmτimQ(N, ρ, k − 1)
k−1
∏

l=1

ρaml
(A.5)

When there is a common mean service time, the estimates for ρi can be nor-

malized using
N
∑

i=1

ρi = Nρ(1− PN) (A.6)

In the generalized procedure, τ can be approximated at the end of each iteration

by

τ =
C
∑

m=1

(

λm

λ

) N
∑

i=1

τimfim
(1− PN)

(A.7)
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Approximation Algorithm

Given:

λm, τim, amk for m = 1, . . . , C; i = 1, . . . , N ; k = 1, . . . , N

Initialize:

ρi =
∑

m:am1=i

λmτim; τ =

C
∑

m=1

(λm/λ)τam1,m

Iteration:

(1) Compute Q(N, ρ, k) for k = 1, . . . , N − 1 where ρ = λτ/N using equation (A.2).

(2) For i = 1, . . . , N , the new ρi is Vi/(1 + Vi), where Vi is given by equation (A.5).

(3) Stop if max change in ρi is less than convergence criterion.

(4) Else compute PN by equation (A.6), τ by equation (A.7), and fim by equation (A.1).

(5) Return to step 1.

No analytic bounds on the accuracy or convergence properties of the approxi-

mation procedure have been developed to the best of my knowledge.

In regards to convergence properties, the numerical iteration has proved to be

very stable and converges in a small number of iterations under relatively stringent

conditions, with 4 to 6 iterations being typical for 10-servers systems.

In comparing the accuracy of this approximation to results of the exact Hy-

percube model, Larson has found errors in server workloads to be less than 1 to 2

percent.
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Berman Heuristic

This problem is presented by Berman et al. [3] and describes a similar situation

to our case, with the difference that the location of servers is in all the network,

including the edges.

Also present two easily programmable heuristics to solve the proposed problem.

And uses theMean Service Time Calibration Process to evaluate the solutions.

B.1 The Stochastic Queue p-Median Problem

To define the problem the following definitions are made

• G(N,L) the transportation network

• N the set of demand centers, with |N | = n

• L the set of all transportation arteries, the links

• hj the fraction of service calls associated with each node j

• d(X, Y ) is the shortest path between any two points X, Y ∈ G

• p number of response units

38
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• X̄ the home locations of the service units while available

• λ mean rate per unit of time within service calls are generated in Poisson

manner

Given the arrival of a call for service, exactly one of the servers is dispatched

to it assuming that at least one server is available.

The service time for any service unit i is the sum of two components:

• The non-travel time component, which is the sum of on-scene and off-scene

service time.

• Travel time component, which is the sum of travel time to the location of the

call and travel time back to the home location.

The mean service time for a service unit located at X̄ i is denoted S(X̄ i),

S(X̄ i) =
n

∑

j=1

hi
j

(

W̄ij +
βi

vi
d(X̄ i, j)

)

i = 1, . . . , p (B.1)

• W̄ij is the mean of the non-travel time component Wij

• vi is the travel speed of unit i to the scene of the call which is assumed

constant

• βi is a constant that allows different travel speeds to and from the scene of the

call

• hi
j is the probability that server i is dispatched to node j given that server i is

dispatched to a call for service.

Whenever a call for service arrives while at least one of the servers is free at

its home location, the closest available server to the call will be dispatched. Calls

that find all servers busy enter a queue. The queue discipline is assumed to be
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First-Come-First-Served. The expected response time to a random call denoted by

T̄R(X) is the sum of two components

T̄R(X̄) = W̄q(X̄) + t̄(X̄)

• W̄q(X̄) is the expected waiting time in the queue

• t̄(X̄) is the expected travel time to the call.

The objective is to find a set of p locations X̄∗ on the network such that

T̄R(X̄
∗) ≤ T̄R(X̄) ∀X̄ ∈ G

X̄∗ is called the stochastic queue p-median.

B.2 Mean Service Time Calibration Process

In this emergency system, travel times may represent a considerable part of service

times. It may be advisable to adjust the service times by means of a calibration

process, which can be performed using a simple iterative procedure.

The procedure consists of verifying if there are significant differences among

the input mean service times and the output mean service times (computed by the

hypercube model). In this case, the hypercube is solved using the computed mean

service times as inputs, until the differences among input and output values are

sufficiently small.

The mean service time calibration method

Step 0. The mean service time of unit i, 1/µi = 1/µi
NT , i = 1, . . . , p (1/µi

NT =
∑n

j=1
hjW̄ij is the mean of non-travel time component of the service time).

Step 1. Run the Hypercube Model (using µi) to obtain fij, i = 1, . . . , p, j = 1, . . . , n.

Step 2. 1/µ̂i =
∑n

k=1
hi
k(W̄ik + (βi/vi)dik) where hi

k = fik/
∑n

j=1
fij
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Step 3. If |1/µ̂i − 1/µi| > ǫ for at least one i, i = 1, . . . , p, set 1/µi ≡ 1/µ̂i and go

back to Step 1. Otherwise stop.
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