UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS QUÍMICAS

SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA Y ANTICANCERÍGENA DE β-HIDROXIACETAMIDAS

POR

ANNEL CRUZ IZTETZI

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE MAESTRÍA EN CIENCIAS CON ORIENTACIÓN EN FARMACIA

DICIEMBRE, 2016

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS QUÍMICAS

SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA Y ANTICANCERÍGENA DE β-HIDROXIACETAMIDAS

POR

I.Q. ANNEL CRUZ IZTETZI

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE MAESTRÍA EN CIENCIAS CON ORIENTACIÓN EN FARMACIA

DICIEMBRE, 2016

SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA Y ANTICANCERÍGENA DE β-HIDROXIACETAMIDAS

Aprobación de tesis:

Dr. Eugenio Hernández Fernández. Presidente.

Dra. Lucía Guadalupe Cantú Cárdenas. Secretario.

Dra. Ma. Elena Cantú Cárdenas. Vocal.

Dra. Ma. Araceli Hernández Ramírez. Subdirectora de Estudios de Posgrado.

i

SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA Y ANTICANCERÍGENA DE β-HIDROXIACETAMIDAS

Revisión de tesis:

Dr. Eugenio Hernández Fernández. Director de Tesis.

Dra. Mónica Azucena Ramírez Cabrera. Co-Director de Tesis.

Dra. Lucía Guadalupe Cantú Cárdenas. Comité Tutorial.

Dra. Ma. Elena Cantú Cárdenas. Comité Tutorial.

Dra. Susana Thelma López Cortina. Comité Tutorial.

Dra. Ma. Araceli Hernández Ramírez. Subdirectora de Estudios de Posgrado.

RESUMEN

Nombre: Annel Cruz Iztetzi.

Fecha de Graduación: Diciembre, 2016.

Universidad Autónoma de Nuevo León.

Facultad de Ciencias Químicas.

Título del Estudio: SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA

Y ANTICANCERÍGENA DE β -HIDROXIACETAMIDAS.

Número de páginas: 129

Candidato para el grado de Maestría en

Ciencias con orientación en Farmacia.

Área del Estudio: Síntesis de moléculas con actividad biológica.

- **Propósito y Método del Estudio**: El cáncer es una de las principales causas de muerte a nivel mundial, según la Organización Mundial de la Salud (OMS), en 2012 se presentaron 8.2 millones de defunciones debido a este padecimiento. Existen diferentes alternativas para el tratamiento de esta enfermedad de entre las cuales destaca la quimioterapia, que suele ser la primera opción y en el cual se emplean sustancias químicas para destruir a las células cancerosas. Por lo que el objetivo principal de este trabajo fue realizar la síntesis de nuevas β-hidroxiacetamidas partiendo de la síntesis de ésteres derivados de diferentes heterociclos (pirazol, imidazol, bencimidazol y benzotriazol) vía ultrasonido, que posteriormente se hicieron reaccionar con diversos aminoalcoholes [etanolamina, (S)-alaninol, (S)-valinol, (S)-leucinol y (S)-fenilalaninol] vía microondas. La purificación de los compuestos se llevó a cabo mediante cromatografía en columna con gel de sílice; la caracterización por Resonancia Magnética Nuclear de ¹H y ¹³C y Espectrometría de Masas de Baja y Alta Resolución. Para determinar su citotoxicidad se evaluaron en líneas celulares SiHa (cáncer de cérvix), HT-29 (cáncer de colon) y células de hígado de Chang utilizando la técnica de WST-1.
- **Contribuciones y Conclusiones:** Se sintetizaron 5 ésteres de derivados de heterociclos, y 25 βhidroxiacetamidas, todos estos compuestos caracterizados por las técnicas antes mencionadas. Se evaluó la actividad de 5 compuestos (**HA6-HA10**) en tres líneas celulares: SiHa (cáncer de cérvix), HT-29 (cáncer de colon) y células de hígado de Chang, donde las moléculas HA6, HA8 y HA9 fueron las que mostraron actividad en células HT-29, así como una baja citotoxicidad.

FIRMA DEL ASESOR: _____

SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA Y ANTICANCERÍGENA DE β-HIDROXIACETAMIDAS

Presentado por:

I.Q. Annel Cruz Iztetzi

El presente trabajo de investigación se realizó en el Laboratorio de Química Industrial del Centro de Laboratorios Especializados (CELAES) de la Facultad de Ciencias Químicas de la Universidad Autónoma de Nuevo León, bajo la dirección del Dr. Eugenio Hernández Fernández, y en el Laboratorio de Ingeniería Genética de la misma facultad con la asesoría de la Dra. Mónica Ramírez. Gracias a los recursos proporcionados por los proyectos CB-101898 del Consejo Nacional de Ciencia y Tecnología (CONACYT) y CN367-15 del Programa de Apoyo a la Investigación Científica y Tecnológica (PAICYT-UANL-2015) y por la beca otorgada 334890 de CONACYT

TABLA DE CONTENIDO

CAPÍTULO	PÁGINA
CAPÍTULO I	1
1. INTRODUCCÍON	1
1.1 Cáncer	1
1.2 Causas	3
1.3 Tipos	4
1.4 Tratamientos	6
1.5 Fármacos antineoplásicos	8
CAPÍTULO II	13
2. ANTECEDENTES	13
2.1 Imidazol	14
2.2 Benzotriazol	16
2.3 Benzimidazol	18
2.4 Pirazol	22
2.5 Acetamidas	
CAPÍTULO III	28
3.1 Hipótesis	28
3.2 Objetivo general	28
3.3 Objetivos específicos	28
CAPÍTULO IV	30
4. METODOLOGÍA EXPERIMENTAL	30
4.1 Información general	30
4.1.1 Métodos sintéticos	30
4.1.2 Métodos biológicos	31
4.2 Métodos sintéticos	33
4.2.1 Procedimiento general para la preparación de ésteres E1-E3	33
4.2.1.1 Preparación del compuesto E1	34
4.2.1.2 Preparación del compuesto E2	
4.2.1.3 Preparación del compuesto E3	35
4.2.2 Procedimiento para los derivados de benzotriazol	35
4.2.3 Procedimiento general para la preparación de hidroxiacetamidas	36

4.2.3.1 Preparación del compuesto HA1
4.2.3.2 Preparación del compuesto HA2
4.2.3.3 Preparación del compuesto HA3
4.2.3.4 Preparación del compuesto HA4
4.2.3.5 Preparación del compuesto HA5
4.2.3.6 Preparación del compuesto HA6
4.2.3.7 Preparación del compuesto HA7
4.2.3.8 Preparación del compuesto HA8
4.2.3.9 Preparación del compuesto HA9
4.2.3.10 Preparación del compuesto HA10
4.2.3.11 Preparación del compuesto HA11
4.2.3.12 Preparación del compuesto HA12 40
4.2.3.13 Preparación del compuesto HA13
4.2.3.14 Preparación del compuesto HA14
4.2.3.15 Preparación del compuesto HA15
4.2.3.16 Preparación del compuesto HA16
4.2.3.17 Preparación del compuesto HA17 42
4.2.3.18 Preparación del compuesto HA18
4.2.3.19 Preparación del compuesto HA19 43
4.2.3.20 Preparación del compuesto HA20
4.2.3.21 Preparación del compuesto HA2143
4.2.3.22 Preparación del compuesto HA22
4.2.3.23 Preparación del compuesto HA23
4.2.3.24 Preparación del compuesto HA24
4.2.3.25 Preparación del compuesto HA25 45
4.3 Pruebas de actividad citotóxica y anticancerígena
4.3.1 Preparación de los compuestos evaluados 46
4.3.2 Selección de líneas celulares y métodos de análisis
4.3.3 Proliferación celular y cultivo en placa de 96 pocillos
4.3.4 Exposición de los compuestos sobre las líneas celulares
4.3.5 Técnica WST-1 48
4.3.6 Cálculo del porcentaje de viabilidad 49
4.4 Seguridad en el laboratorio y disposición de residuos

CAPÍTULO V
5. RESULTADOS Y DISCUSIÓN
5.1 Síntesis orgánica 51
5.1.1 Síntesis de azolil-aœtato de etilo E1-E3 52
5.1.2 Síntesis y caracterización de los derivados de benzotriazol
5.1.3 Síntesis y caracterización de las hidroxiaœtamidas67
5.1.3.1 Síntesis y caracterización de las pirazolil-hidroxiacetamidas67
5.1.3.2 Síntesis y caracterización de las imidazolil-hidroxiaœtamidas 73
5.1.3.3 Síntesis y caracterización de las benzimidazolil-
hidroxiacetamidas79
5.1.3.4 Síntesis y caracterización de las 1 <i>H</i> -benzotriazol-
hidroxiacetamidas85
5.1.3.5 Síntesis y caracterización de las 2H-benzotriazolil-
hidroxiacetamidas91
5.2 Pruebas de actividad biológica97
5.2.1 Evaluación de la actividad anticancerígena
5.2.2 Evaluación de la actividad citotóxica102
CAPÍTULO VI
6. CONCLUSIONES
REFERENCIAS
ANEXOS

LISTA DE TABLAS

Tabla	Página
1. Tipos de cáncer con mayor incidencia.	2
2. Ejemplos de agentes externos	3
3. Valores de IC ₅₀ para los compuestos 1-6	15
4. Actividad antiproliferativa del compuesto 11	17
5. Sustituyentes de los derivados de benzimidazol tipo II	19
6. Actividad anticancerigena de los derivados de pirazol	24
7. Disposición de residuos	50
8. Resultados de la síntesis de ésteres E1-3	53
9. Desplazamientos químicos en RMN ¹ H de E2	53
10. Desplazamientos químicos en RMN ¹³ C de E2	55
11. Desplazamientos químicos en RMN ¹ H de E4	59
12. Desplazamientos químicos en RMN ¹³ C de E4	61
13. Desplazamientos químicos en RMN ¹ H de E5	63
14. Desplazamientos químicos en RMN ¹³ C de E5	65
15. Resultados de la síntesis de pirazolil-hidroxiacetamidas	69
16. Desplazamientos químicos en RMN ¹ H de HA1	69
17. Desplazamientos químicos en RMN ¹³ C de HA1	71
18. Resultados de la síntesis de imidazolil-hidroxiacetamidas	74
19. Desplazamientos químicos en RMN ¹ H de HA7	75
20. Desplazamientos químicos en RMN ¹³ C de HA7	77
21. Resultados de la síntesis de benzimidazolil-hidroxiacetamidas	80
22. Desplazamientos químicos en RMN ¹ H de HA12	81
23. Desplazamientos químicos en RMN ¹³ C de HA12	83
24. Resultados de la síntesis de 1H-benzotriazolil-hidroxiacetamidas	86
25. Desplazamientos químicos en RMN ¹ H de HA16	87
26. Desplazamientos químicos en RMN ¹³ C de HA16	89
27. Resultados de la síntesis de 2H-benzotrizolil-hidroxiacetamidas	92
28. Desplazamientos químicos en RMN ¹ H de HA23	93
29. Desplazamientos químicos en RMN ¹³ C de HA23	95
30. Porcentajes de viabilidad en células SiHa	98
31. Porcentajes de viabilidad en células HT-29	100
32. Porcentajes de viabilidad en células de hígado de Chang	102
33. Resultados de los compuestos HA6 y HA7	

LISTA DE FIGURAS

Figura P	ágina
1. Clasificación histológica del cáncer	6
2. Clasificación de algunos fármacos antineoplásicos	8
3. Estructura de los principales compuestos alquilantes	9
4. Ejemplo de agentes antimetabolitos	10
5. Ejemplo de antibióticos antitumorales	10
6. Estructura del compuesto 1	14
7. Estructuras de los compuestos 2, 3, 4, 5 y 6	15
8. Estructura del compuesto 11	17
9. Estructura del DRB y diseño de los derivados	19
10. Estructura del compuesto 15	20
11. Estructura de derivados tipo II con diferentes grupos R	21
12. Compuesto V	23
13. Estructura de los hibridos de pirazol	23
14. Estructura de las moléculas evaluadas	45
15. Modelo para los ensayos de biológicos	47
16. Reducción del WST-1	49
17. Espectro de RMN ¹ H del compuesto E2	54
18. Espectro de RMN ¹³ C del compuesto E2	56
19. Cromatografía en capa fina de los compuestos E4 y E5	58
20. Espectro de RMN ¹ H del compuesto E4	60
21. Espectro de RMN ¹³ C del compuesto E4	62
22. Espectro de RMN ¹ H del compuesto E5	64
23. Espectro de RMN ¹³ C del compuesto E5	66
24. Espectro de RMN ¹ H del compuesto HA1	70
25. Espectro de RMN ¹³ C del compuesto HA1	72
26. Espectro de RMN ¹ H del compuesto HA7	76
27. Espectro de RMN ¹³ C del compuesto HA7	78
28. Espectro de RMN ¹ H del compuesto HA12	82
29. Espectro de RMN ¹³ C del compuesto HA12	84
30. Espectro de RMN ¹ H del compuesto HA16	88
31. Espectro de RMN ¹³ C del compuesto HA16	90
32. Espectro de RMN ¹ H del compuesto HA23	94
33. Espectro de RMN ¹³ C del compuesto HA23	96
34. Estrutura de los compuestos evaluados y la doxorrubicina	97
35. Efecto de las hidroxiacetamidas sobre céluas SiHa a 24 horas de exposición	99

36. Estructura de los compuestos HA8-HA10	99
37. Efecto de las hidroxiacetamidas sobre células HT-29 a 24 horas de exposic	ión101
38. Estructura de los compuestos HA6, HA8 y HA9	101
39. Efecto de las hidroxiacetamidas sobre células Chang a 24 horas de exposic	ción 103
40. Comparación estructural entre los compuestos HA6, HA8 y HA9 vs los con	npuestos
5 у 6	104
41. Estructura del compuesto TX-2036	106

LISTA DE ESQUEMAS

Esquema

Página

1. Ruta de síntesis para la obtención de acetamidas	25
2. Análisis retrosintético para la obtención de hidroxiacetamidas	26
3. Síntesis de β -hidroxiacetamidas vía microondas	26
4. Síntesis de derivados de benzotriazol	27
5. Síntesis de ésteres	33
6. Síntesis de ésteres derivados de benzotriazol	35
7. Preparación de β -hidroxiacetamidas	36
8. Metodología para la evaluación de la actividad biológica	48
9. Análisis retrosintético para la obtención de azolil-hidroxiacetamidas	51
10. Síntesis de ésteres E1-3	52
11. Síntesis de derivados de benzotriazol	57
12. Formas tautoméricas del benzotriazol	58
13. Condiciones de reacción para la obtencion de las hidroxiacetamidas	67
14. Preparación de las pirazolil-hidroxiacetamidas	68
15. Síntesis de las imidazolil-hidroxiacetamidas	73
16. Preparación de las benzimidazolil-hidroxiacetamidas	79
17. Síntesis de las 1 <i>H</i> -benzotriazolil-hidroxiacetamidas	85
18. Síntesis de las 2 <i>H</i> -benzotriazolil-hidroxiacetamidas	91

ABREVIATURAS

AcOEt	Acetato de Etilo	
ADN	Ácido desoxirribonucleico	
ARN	Ácido ribonucleico	
A549	Carcinoma de pulmón	
CCRF-CCM	Células de leucemia linfoblástica aguda	
CCR FSB	Células de leucemia linfoblástica aguda B	
CC ₅₀	Concentración citotóxica media	
CDCl₃	Cloroformo deuterado	
CD3OD	Metanol Deuterado	
CH ₂ Cl ₂	Diclorometano	
CH₃CN	Acetonitrilo	
CO ₂	Dióxido de carbono	
DGAT1	Diacilglicerol O-aciltransferasa 1	
DMSO	Dimetilsulfóxido	
DMF	N,N-dimetilformamida	
DU145	Carcinoma de próstata	
DRB	5,6-dicloro-1-β-D-ribofurasil	

EtOH	Etanol	
EMAR	Espectrometría de Masas de Alta Resolución	
Eq	Equivalentes	
g	Gramos	
h	Horas	
HCT-116	Carcinoma colorrectal	
HeLa	Células de cáncer cérvico-uterino	
Hex	Hexano	
HepG2	Carcinoma hepatocelular	
HT-29	Células de carcinoma de colon	
Hz	Hertz	
<i>i</i> -bu	isobutilo	
IC ₅₀	Concentración de inhibición media	
IG 50	Concentración del 50% de inhibición máxima de la proliferación	
INCan	Instituto Nacional de Cancerología	
INEGI	Instituto Nacional de Estadística y Geografía	
<i>i</i> -pr	isopropilo	
J	Constante de acoplamiento	

K2CO3	Carbonato de potasio
т	meta
Me	Metilo
MEM	Medio Esencial Mínimo
MeOH	Metanol
min	Minutos
mL	Mililitros
mmol	Milimol
MTT	Bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio
MCF-7	Células de cáncer de mama
MW	Microondas
NaBH₄	Boro hidruro de sodio
Na ₂ SO ₄	Sulfato de sodio
nm	Nanómetros
0	orto
OMS	Organización Mundial de la Salud
p	para
PhMe	Tolueno

- p.f. Punto de fusión
- ppm Partes por millón
- RMN ¹³C Resonancia Magnética Nuclear de Carbono 13
- RMN¹H Resonancia Magnética Nuclear de Hidrógeno
- rpm Revoluciones por minuto
- SiHa Células de cáncer de cérvix
- SKMEL28 Células de melanoma de piel humana
- SKMES-1 Carcinoma escamoso de pulmón
- SMMC-7721 Cáncer de colon
- THF Tetrahidrofurano
- TMS Tetrametilsilano
- WIL-2NS Células linfoblastoides B
- WST-1 2-(4-iodofenil)-3-(4-nitrofenil)-5-(2,4-disulfofenil)-2H-tetrazolio
- β Beta
- °C Grados celsius
- d Desplazamiento químico
- μL Microlitros
- μg Microgramos

- μM Micromolar
- 6MP 6-mercaptopurina

LISTA DE ESTRUCTURAS

OEt

2-(1*H*-pirazol-1-il) acetato de etilo (**E1**)

OEt

2-(1*H*-imidazol-1-il) acetato de etilo (**E2**)

DEt

2-(1*H*-benzo[*d*]imidazol-1-il) acetato de etilo (**E3**)

2-(1*H*-benzo[*d*][1,2,3]triazol-1-il) acetato de etilo (**E4**)

∩Ft

2-(2*H*-benzo[*d*][1,2,3]triazol-2-il) acetato de etilo (**E5**)

ÓН

N-(2-hidroxietil)-2-(1*H*-pirazol-1-il) acetamida (**HA1**)

ÓН

(S)-N-(1-hidroxipropan-2-il)-2 -(1*H*-pirazol-1-il) acetamida (**HA2**)

ÔН

(*S*)-*N*-(1-hidroxi-3-metilbutan-2-il)-2-(1*H*-pirazol-1-il) acetamida (**HA3**)

H ÓН

(S)-N-(1-hidroxi-4-metilpentan-2-il)-2-(1H-pirazol-1-il) acetamida (HA4)

(S)-N-(1-hidroxi-3-fenilpropan-2-il)-2-(1H-pirazol-1-il) acetamida (**HA5**)

N-(2-hidroxietil)-2-(1*H*-imidazol-1-il) acetamida (**HA6**)

ÓН

(S)-N-(1-hidroxipropan-2-il)-2-(1H-imidazol-1-il) acetamida (HA7)

ÓН

(S)-N-(1-hidroxi-3-metilbutan-2-il)-2-(1H-imidazol-1-il) acetamida (HA8)

(S)-N-(1-hidroxi-4-metilpentan-2-il)-2-(1*H*-imidazol-1-il) acetamida (**HA9**)

(S)-N-(1-hidroxi-3-fenilpropan-2-il)-2-(1*H*-imidazol-1-il) acetamida (**HA10**)

ÓН

2-(1*H*-benzo[*d*]imidazol-1-il) -*N*-(2-hidroxietil) acetamida (**HA11**)

ÓН

(S)-2-(1*H*-benzo[*d*]imidazol-1-il)-*N*-(1-hidroxipropan-2-il) acetamida (**HA12**)

ÓН

(S)-2-(1*H*-benzo[*d*]imidazol-1-il)-*N*-(1-hidroxi-3-metilbutan-2-il) acetamida (**HA13**)

(S)-2-(1*H*-benzo[*d*]imidazol-1-il)-*N*-(1-hidroxi-4-metilpentan-2-il) acetamida (**HA14**)

ÓН

(S)-2-(1*H*-benzo[*d*]imidazol-1-il)-*N*-(1-hidroxi-3-fenilpropan-2-il) acetamida (**HA15**)

ÓН

2-(1*H*-benzo[*d*][1,2,3]triazol-1-il) -*N*-(2-hidroxietil) acetamida (**HA16**)

ÓН

(S)-2-(1*H*-benzo[*d*][1,2,3]triazol-1-il)-*N*-(1-hidroxipropan-2-il) acetamida (**HA17**)

ÓН

(S)-2-(1*H*-benzo[*d*][1,2,3]triazol-1-il)-*N*-(1-hidroxi-3-metilbutan-2-il) acetamida (**HA18**)

н ÓН

(S)-2-(1*H*-benzo[*d*][1,2,3]triazol-1il)-*N*-(1-hidroxi-4-metilpentan-2-il) acetamida (**HA19**)

 $\begin{array}{l} (S)-2-(1H-\text{benzo}[d][1,2,3]\text{triazol-1-il})-\\ N-(1-\text{hidroxi-3-fenilpropan-2-il}) \end{array}$ acetamida (HA20)

2-(2*H*-benzo[*d*][1,2,3]triazol-2-il)-*N*-(2-hidroxieti) acetamida (HA21)

(S)-2-(2H-benzo[d][1,2,3]triazol-2-il)-N-(1-hidroxipropan-2-il) acetamida (HA22)

ÓН

(S)-2-(2H-benzo[d][1,2,3]triazol-2-il)-N-(1-hidroxi-3-metilbutan-2 -il) acetamida (HA23)

OН

:N ÓН

(S)-2-(2H-benzo[d][1,2,3]triazol-2-il)-(S)-2-(2H-benzo[d][1,2,3]triazol-2-il)-N-N-(1-hidroxi-4-metilpentan-2-(1-hidroxi-3-fenilpropan-il) acetamida2-il) acetamida(HA24)(HA25)

CAPÍTULO I

INTRODUCCIÓN

1.1 Cáncer

De acuerdo a la Organización Mundial de la Salud (OMS) el cáncer es un término genérico que se designa a un amplio grupo de enfermedades que pueden afectar a cualquier parte del organismo¹, y se caracteriza por la interacción recíproca de oncogenes y genes supresores de tumores, y que conduce a un crecimiento incontrolado de las células cancerosas y a su propagación.

Existen muchos tipos de cáncer, pero todos se originan debido al crecimiento sin control de células anormales o cancerosas, este tipo de células comparten dos propiedades fundamentales:

- 1. Un crecimiento y división anormales (proliferación celular)
- Anormalidades en las restricciones normales que evitan que las células se propaguen e invadan otras partes del cuerpo (metástasis)

En las células normales, estas funciones están fuertemente controladas por genes que se expresan en el momento y lugar adecuado. En las células cancerosas, estos genes están mutados o se expresan de manera inadecuada.²

Son estas propiedades de las células cancerosas junto con su tendencia a diseminarse a sitios distantes del cuerpo, lo que las convierte en una amenaza tan grande para el bienestar de todo el organismo.³ De acuerdo con datos reportados por la OMS, en 2012 se presentaron 56 millones de defunciones, de las cuales 8.2 millones se debieron al cáncer, lo cual constituyó una de las principales causas de muerte a nivel mundial, siendo las de mayor incidencia las que se muestran en la tabla 1.¹

Tipos de cáncer	Número de defunciones
Pulmón	1 590 000
Hepático	745 000
Gastrointestinal	723 000
Colorrectal	694 000
Mama	521 000
Esófago	400 000

 Tabla 1. Tipos de cáncer con mayor incidencia (OMS 2012).

De acuerdo con estimaciones de la OMS, para 2030, el número de muertes aumentará a 13.1 millones. En México, según la Unión Internacional Contra el Cáncer (UICC), este padecimiento es la tercera causa de muerte, solo después de la diabetes y de las enfermedades cardiovasculares y se estima que cada año se detectan 128 mil casos nuevos. El departamento de Vinculación Institucional del Instituto Nacional de Cancerología (INCan), reportó que el 60% de los casos son detectados en etapas avanzadas. Entre los tipos de cáncer más comunes en México destacan: cáncer de próstata, mama, cervicouterino, pulmón y estómago.⁴

Datos de mortalidad del Instituto Nacional de Estadística y Geografía (INEGI), reportaron que el número de defunciones por cáncer incrementó, entre los años 2004 y 2013, en casi 20% al haber pasado de 64 333 en el primer año

de referencia, a una suma de 78 582 en año 2013, en el que se llegó al récord histórico en el número de defunciones anuales por tumores (neoplasias).⁵

1.2 Causas

El cáncer comienza con la transformación de una célula normal en tumoral mediante un proceso multifásico y suele consistir en la progresión de una lesión en el material genético hasta generar un tumor maligno. Estas alteraciones son el resultado de la interacción entre factores genéticos y agentes externos, estos últimos pueden ser: físicos, químicos o biológicos, algunos de estos factores se muestran en la tabla 2.^{1, 6}

Agentes externos	Ejemplo
Físicos	Radiación ultravioleta, radiación ionizante
Químicos	Asbestos, humo de tabaco, aflatoxinas o arsénico
Biológicos	Infecciones causadas por virus, bacterias o parásitos

 Tabla 2. Ejemplos de agentes externos.

Además de los agentes mencionados anteriormente, el envejecimiento es otro factor en la aparición del cáncer, ya que la incidencia aumenta con la edad, probablemente debido a la acumulación de factores de riesgo de determinados tipos de cáncer; esto se combina con la tendencia que tienen los mecanismos de reparación celular a perder eficiencia con la edad. Otros factores de riesgo son el consumo de tabaco y alcohol, falta de actividad física y una mala dieta. Algunas infecciones constituyen factores de riesgo, principalmente en países con ingresos económicos medios y bajos.¹

1.3 Tipos de cáncer

Los tipos de cáncer se clasifican de dos maneras: por el tipo de tejido en el que se origina (tipo histológico) y según el lugar primario, o ubicación en el cuerpo dónde se desarrolló por primera vez. A continuación, hablaremos de la primera que es la de tipo histológico, según la Clasificación Internacional de Enfermedades para Oncología en su tercera edición (ICD-O-3), que es el estándar internacional para la clasificación y nomenclatura de histologías, hay cientos de tipos de cáncer, que se agrupan en seis categorías principales (Figura 1):

Carcinoma: el carcinoma se refiere a un tumor maligno de origen epitelial o cáncer del revestimiento interno o externo del cuerpo. Es el tipo de cáncer más común, se divide en dos subtipos principales: adenocarcinoma, que se desarrolla en un órgano o glándula, y carcinoma de células escamosas, que se origina en el epitelio escamoso.

Sarcoma: se refiere al cáncer que se origina en los tejidos conectivos y de apoyo, tales como los huesos, tendones, cartílago, músculo y grasa. Generalmente ocurre en adultos jóvenes, el sarcoma más común a menudo se desarrolla como una masa dolorosa en el hueso.

Leucemia: el cáncer "Líquido" o "cáncer de la sangre" son el cáncer de la médula ósea (el sitio de producción de células sanguíneas). La palabra leucemia significa "sangre blanca" en griego. La enfermedad se asocia a menudo con la sobreproducción de glóbulos blancos inmaduros. Estos glóbulos blancos inmaduros no funcionan tan bien como deberían, por lo tanto, el paciente es a menudo propenso a la infección. La leucemia también afecta a los glóbulos rojos de la sangre y puede causar una mala coagulación y la fatiga debido a la anemia.

Linfoma: Los linfomas se desarrollan en las glándulas o ganglios del sistema linfático, la red de vasos linfáticos, y algunos órganos (en concreto, el bazo, las amígdalas, y el timo) que purifican fluidos corporales y producen glóbulos blancos que combaten las infecciones. A diferencia de las leucemias que a veces son llamadas "cánceres líquidos", los linfomas son "cánceres sólidos." Los linfomas también pueden ocurrir en determinados órganos como el estómago, mama o cerebro. Estos linfomas se denominan linfomas extraganglionares. Los linfomas se subclasifican en dos categorías: linfoma de Hodgkin y linfoma no Hodgkin.

Mieloma: cáncer que empieza en las células plasmáticas, otro tipo de células del sistema inmunitario. Las células plasmáticas producen algunas de las proteínas que se encuentran en la sangre.

Tipos mixtos: los componentes de este tipo de cáncer pueden estar dentro de una o de diferentes categorías que ya se han mencionado.⁷

Figura 1. Clasificación histológica del cáncer.

1.4 Tratamientos

El tratamiento puede ser muy variable y depende de varios factores incluyendo el tipo, la localización del cáncer, así como las condiciones del paciente y cuál sea el objetivo.⁸

Dependiendo de todos estos factores, el paciente puede recibir uno o varios de los tratamientos siguientes:

 Cirugía: primer tratamiento para tumores sólidos. Esta puede ser suficiente en casos donde el cáncer es detectado en una etapa temprana, para remover las células cancerosas. La cirugía puede usarse para eliminar una parte del tumor, para dar mayor efectividad a la quimioterapia o la radioterapia.^{8, 9}

- Radioterapia: utiliza partículas u ondas de alta energía, para eliminar o dañar las células cancerosas, es uno de los tratamientos más comunes contra el cáncer. La radiación puede ser administrada por si sola o junto con otros tratamientos, como la cirugía o la quimioterapia.¹⁰
- Terapia fotodinámica: tratamiento que requiere un medicamento (fotosensibilizador), oxígeno molecular y un tipo particular de luz. Cuando los fotosensibilizadores son expuestos a una longitud de onda de luz específica en presencia de oxígeno molecular, se producen especies reactivas de oxígeno que pueden eliminar las células cercanas.¹¹
- Inmunoterapia: tratamiento que moviliza el sistema inmunitario del cuerpo para combatir el cáncer. Consiste principalmente en estimular al sistema inmunitario para ayudarlo a funcionar de manera eficaz. Hay varios tipos de inmunoterapia, incluidos los anticuerpos monoclonales, las inmunoterapias no específicas y las vacunas contra el cáncer.
- Quimioterapia: empleo de una gran variedad de medicamentos usados para destruir células cancerosas, al detener su capacidad de crecer y dividirse. Estos medicamentos circulan en el torrente sanguíneo y dañan directamente las células que están creciendo en forma activa. Debido a que, por lo general, las células cancerosas crecen y se dividen más rápidamente que las células normales, son más susceptibles a la acción de estos fármacos.⁸

La quimioterapia es considerada una de las principales alternativas para el tratamiento de las enfermedades neoplásicas. Las moléculas empleadas actúan por diferentes mecanismos moleculares que pueden implicar la inhibición de la iniciación, promoción, progresión y metástasis de las células cancerosas.¹²

1.5 Fármacos antineoplásicos

Un mismo fármaco puede tener más de un modo de acción sobre la célula tumoral, aunque habitualmente predomina uno de ellos. La clasificación que se utiliza actualmente se basa en la diana o punto de acción del antineoplásico (Figura 2).^{13, 14}

Figura 2. Clasificación de algunos fármacos antineoplásicos.

 Antineoplásicos que actúan sobre el ADN dentro de los cuales podemos encontrar a los siguientes. <u>Agentes alquilantes:</u> estos ejercen su efecto citotóxico mediante la transferencia de sus grupos alquilo a diversos componentes celulares. La alquilación del ADN nuclear probablemente representa la principal interacción que da lugar a la citólisis. Estos también reaccionan con grupos sulfhidrilo, amino, hidroxilo, carboxilo y fosfato de otros nucleófilos celulares (Figura 3).¹¹

Figura 3. Estructuras de los principales compuestos alquilantes.

<u>Agentes antimetabolitos:</u> estos son similares estructuralmente a los metabolitos, pero no pueden ser usados por el cuerpo de una manera productiva. En las células, los antimetabolitos son tomados en lugar de los metabolitos a los cuales se parecen, y son procesados de una manera similar a los compuestos normales. La presencia de los antimetabolitos previene a las células de realizar sus funciones vitales y las células son entonces incapaces de crecer y sobrevivir. Varios de los antimetabolitos usados interfieren con la producción de los ácidos nucleicos, ARN y ADN. Si el ADN no puede ser producido, las células no pueden dividirse correctamente (Figura 4).¹⁵

Figura 4. Ejemplos de agentes antimetabolitos.

<u>Antibióticos antitumorales:</u> muchos de estos antibióticos se unen al ADN a través de la interacción entre bases específicas y bloquean la síntesis de ARN, ADN o de ambos; producen escisión de la cadena de ADN, e interfieren en la replicación celular. Todos los antibióticos antineoplásicos que actualmente se utilizan son productos de diversas cepas de *Streptomyces*, éstos comprenden las antraciclinas, bleomicina y mitomicina (Figura 5).¹⁵

(Antraciclina)

Figura 5. Ejemplo de antibióticos antitumorales

- Antineoplásicos que actúan sobre la mitosis sin afectar el ADN
- **Derivados de productos naturales:** entre los principales fármacos derivados de productos naturales se encuentran los alcaloides de la *Vinca rosea*, cuyo mecanismo de acción implica la inhibición de la polimerización de la tubulina, lo que altera el ensamble de los microtúbulos. Otros fármacos son los taxanos derivados de *Taxus brevifolia* y del *Taxus baccata*, estos funcionan como sustancias tóxicas para el huso mitótico, y por último se encuentran las epipodofilotoxinas derivados de la *Podophyllum peltatum* y cuyo principal mecanismo de acción implica la inhibición de la topoisomerasa II.¹⁵

Como puede observarse, existen diversos compuestos que pueden ser empleados como agentes antineoplásicos, la mayoría de origen sintético; sin embargo, muchos de ellos no son específicos para las células cancerosas, sino que también dañan a las células sanas provocando la aparición de efectos adversos, tales como:

- la depresión inmunológica y de la médula ósea.
- disminución en el número de plaquetas (trombopenia).
- reducción del número de leucocitos (leucopenia).
- reacciones en la piel.
- daño hepático.
- pérdida de cabello.

- náuseas y vómito.
- entre otros.1

Por lo anterior, es necesario el diseño y síntesis de nuevos agentes antineoplásicos que presenten efectos menos nocivos para el paciente y con una mejor eficacia en comparación con los tratamientos actualmente disponibles.

Un ejemplo de ello son las moléculas que incorporan en su estructura diversos heteroátomos como son nitrógeno, azufre y oxígeno, las cuales podrían formar complejos con el ADN, y dichos heteroátomos incrementar la fuerza del complejo mediante la formación de puentes de hidrógeno con el ADN. Dicha fuerza de interacción entre el compuesto y el ADN se correlaciona con la actividad anticancerígena. Con base en ello, se cree que la presencia de heteroátomos en la molécula juega un rol importante en la exhibición de la actividad anticancerígena.¹⁶ Ejemplos de este tipo de moléculas son las acetamidas y algunos azoles.

CAPITULO II

ANTECEDENTES

Los compuestos que incorporan en su estructura diversos heteroátomos son de gran importancia en química medicinal, debido a que muchos de ellos presentan diversas propiedades biológicas. Dentro de este tipo de moléculas encontramos a las amidas o acetamidas, las cuales juegan un papel muy importante en la composición de diversos sistemas biológicos. Las amidas son un grupo importante dentro de la química orgánica y constituye un grupo funcional clave en péptidos, polímeros y varios productos naturales y farmacéuticos. Un análisis mostró que el grupo carboxiamida aparece en más del 25% de los fármacos conocidos.¹⁷

Por su parte algunos azoles como el imidazol, pirazol, benzimidazol y benzotriazol se encuentran formando parte de numerosos productos farmacéuticos, mostrando una amplia gama de actividades biológicas tales como: antimicobacterial, antifúngica y antihipertensiva.^{18,19}

En años recientes tanto las acetamidas como los azoles han mostrado actividad en diferentes líneas tumorales.¹⁶

2.1 Imidazol

En el año 2010, Özkay¹⁶ y colaboradores llevaron a cabo la síntesis de derivados de imidazol-(benzo)azoles e imidazol-piperazinas. Los compuestos fueron diseñados para contener dos grupos farmacólogos diferentes que ya han reportado su actividad anticancerígena de manera individual. La subestructura *N*-[4-(4,5-difenil-1*H*-imidazol-2-il)fenil]acetamida se fijó en todos los compuestos, y se sustituyó la posición 2 de la fracción acetamida con el fin de clasificar los compuestos en dos grupos diferentes (Figura 6). El primero contendría en su estructura diferentes azoles y benzoazoles (imidazol-(benzo)azoles); por su parte el segundo grupo estaría formado por derivados de piperazina (imidazol-piperazinas). Además, el compuesto del cual se partió (**1**) también se incluyó en los ensayos de citotoxicidad con el fin de determinar la contribución de los grupos en la actividad.

Figura 6. Estructura del compuesto 1.

A estos compuestos se les realizó el screening en dos líneas celulares tumorales HT-29 (colon) y MCF-7 (mama) empleando la técnica de MTT, en concentraciones de 0.64, 1.6, 6.4, 16, 32 y 80 μ g/mL y usando cisplatino como control positivo.

Del grupo de los tiol(benzo)azoles, los compuestos **2**, **3**, **4**, **5** y **6** con sustituyentes como benzoxazol, benzotiazol, triazol, tetrazol y tiadiazol (Figura 7) mostraron una mayor actividad que el compuesto **1** con valores de IC₅₀ de 1.6 para el compuesto **5**, y 2.6 μ g/mL para el compuesto **6** en células HT-29, mientras que en células MCF-7 los valores de IC₅₀ fueron de 3.2 para los compuestos **4** y **6** (Tabla 3).

Figura 7. Estructuras de los compuestos 2, 3, 4, 5 y 6.

Compuestos	HT-29 IC₅₀ (μg/mL)	MCF-7 IC ₅₀ (μg/mL)		
1	28.7	42.6		
2	11	11.2		
3	18	15.8		
4	10.7	3.2		
5	1.6	4.5		
6	2.7	3.2		
Cisplatino	1.7	2.6		

Tabla 3.	Valores	de IC 50	para los	s com	puestos	1-6
----------	---------	----------	----------	-------	---------	-----
Mientras que los tio-(benzo)azoles **3**, **4** y **9**, con sustituyentes como clorobenzoxazol, metilbenzoxazol y tiazol presentaron citotoxicidad aproximada a la del compuesto **1**; sugiriendo que el benzoxazol-2-tiol, benzotiazol-2-tiol, 1,2,4triazol-5-tiol, 1,2,3,4-tetrazol-5-tiol y 1,2,4-tiadiazol-3-tiol contribuyen al aumento de la citotoxicidad.

Por su parte el compuesto **10**, el cual posee como sustituyente un metilimidazol, la actividad se vio disminuida.

En el segundo grupo la mayoría de los compuestos mostraron menor citotoxicidad en ambas líneas celulares comparando la actividad con el compuesto **1**, revelando que los sustituyentes derivados de piperazina no tienen efecto importante en la actividad.

2.2 Benzotriazol

El benzotriazol es un compuesto heterocíclico que consiste de un anillo de benceno en el que dos átomos de carbono adyacentes están covalentemente unidos a tres átomos de nitrógeno en un anillo de cinco miembros; un gran número de sus derivados han mostrado actividad biológica.²⁰ Ejemplo de ello es lo reportado en 2011 por Carta²¹ y colaboradores, quienes identificaron una serie de nuevos agentes antiproliferativos durante una selección de compuestos que podrían actuar contra *Mycobacterium tuberculosis*, estos compuestos pertenecen a derivados de 3-aril-1-benzotriazol-1-il-acrilonitrilo.

Los ensayos de actividad citotóxica fueron llevados a cabo en diferentes líneas celulares de tumores hematológicos humanos (CCR-FCCM, WIL-2NS y CCPRSB) y de tumores sólidos (SKMEL28, MCF-7, SKMES-1, HepG2, DU145); empleando 6-mercaptopurina (6MP) y etopósido como fármacos de referencia.

Se observó que el compuesto **11** (Figura 8), fue el que mejor actividad citotóxica presentó en las líneas celulares evaluadas, con CC₅₀ de 0.09 μ M para las células CCR FSB hasta 0.08 μ M para las células HepG2 (Tabla 4).

Líneas	CC ₅₀ (μM)			
celulares	11	6MP	Etopósido	
CCR FCCM	0.2	1	0.09	
WIL2 NS	0.1	3	0.2	
CCR FSB	0.09	1.1	0.1	
SKM EL28	0.2	15	1.2	
MCF7	0.1	3.2	1	
SKM ES1	0.6	58	0.3	
HepG2	0.8	8	0.7	
DU145	0.6	2	0.4	

Tabla 4. Actividad antiproliferativa del compuesto 11.

Figura 8. Estructura del compuesto 11.

Con el fin de comprender el mecanismo de acción de esta clase de compuestos se llevó a cabo un extenso análisis de la literatura científica para detectar posibles analogías estructurales con otras moléculas dotadas de actividad antiproliferativa similar. Similitudes parciales fueron encontrados con diversas moléculas, pero las más convincentes fueron aquellas con derivados de resveratrol y trimetoxi-aril-tiofeno, agentes antimitóticos bien conocidos que actúan en el sitio de unión a la colchicina de la tubulina.

Estudios recientes llevados a cabo por otros grupos sobre estos derivados han confirmado su capacidad para inhibir la polimerización de tubulina evitando de este modo la formación de células fusiformes mediante el bloqueo de la replicación celular en su metafase.

2.3 Benzimidazol

El benzimidazol, posee un amplio espectro de aplicaciones biológicas y clínicas debido a su estructura parecida a los nucleótidos naturales que se encuentran en los sistemas vivos, este también se encuentra en una variedad de compuestos de origen natural como lo es la vitamina B12. El benzimidazol y sus derivados representan una clase de compuestos que poseen diversas actividades biológicas²², entre las cuales destaca la actividad anticancerígena, como lo muestra un estudio por parte de Alkahtani²³ y colaboradores en el año 2012, quienes prepararon derivados de benzo[*d*]imidazol (Figura 9) y compararon la actividad contra benzimidazol 5,6-dicloro-1- β -D-ribofuranosil (DRB), el cual es

un análogo de adenosina que ha demostrado inhibir la ARN polimerasa II tanto *in vitro* como *in vivo*.

Figura 9. Estructura del DRB y diseño de los derivados.

	R_3 N R_1 R_3 N R_1	
R 1	R ₂	R₃
Н	Н	CI
Me	Me	F
Et	Et	OMe
CFз	Н	CI
CF₃	<i>i</i> -Pr	Н
<i>i</i> -Pr	Alil	Me
o-CI-fenil	Ciclopropilmetil	Н
<i>o</i> -F-fenil	Bencilo	Н
SMe	<i>m</i> -CF ₃ -bencil	Н
SOMe	<i>p</i> -CF3-bencil	Н
SO ₂ Me	o-NO2-bencil	Н
CF3	<i>p</i> -NO ₂ -bencil	Н

Tabla 5. Sustituyentes de los derivados de benzimidazol tipo II.

_

De los compuestos sintetizados por este equipo de investigación se seleccionaron los de tipo II (Tabla 5) para ser evaluados contra las líneas celulares HCT-116 (carcinoma colorrectal) y MCF-7 (carcinoma de mama).

Se observó que el compuesto **15** (Figura 10) mostró una buena actividad tanto en las células HCT-116 y MCF-7 con IG₅₀ de 7 y 6 μM, respectivamente, siendo de 3.5 a 6 veces más potente que DRB, sugiriendo que el anillo de ribosa puede ser prescindible. Posteriormente se llevó a cabo la modificación estructural del compuesto **15** mediante la sustitución del 5,6- dicloro y eliminando el trifluorometilo, sin embargo, se redujo drásticamente la actividad en comparación con **15**. Se probaron diferentes sustituyentes en la posición R1 (Me, Et, *i*-Pr y fenilos sustituidos), sin embargo, tuvieron poco efecto en la viabilidad celular, por lo que se identificó el trifluorometilo como un sustituyente eficaz en la posición R1.

Figura 10. Estructura del compuesto 15.

Manteniendo la porción 5,6-dicloro-2-(trifluorometil)-1*H* benzo [*d*] imidazol, se llevó a cabo la introducción de sistemas cíclicos y acíclicos en la posición R₂ (Figura 11); sin embargo, en los derivados **16-19**, donde R₂ es alquilo (Me, Et, *i*-Pr o alilo) se notó la pérdida de actividad, no obstante, el derivado **21** (R₂ =

bencilo) exhibió una potencia comparable a **15**, y aumentó en comparación con el DRB. Otro de los derivados que mostró una mejora fue el compuesto **22**, donde un resto de *o*-nitrobencilo en la posición R₂ se tradujo en una mejora de la actividad, con valores de IG₅₀ 5.9 y 1.5 en μ M para células HCT-116 y MCF-7 respectivamente; lo que indicaba la tolerancia de un gran anillo en la posición R₂ del esqueleto de benzo[*d*]imidazol.

Figura 11. Estructura de derivados tipo II con diferentes grupos R.

Posteriormente se sustituyó la ribosa por un ciclopentilo; sin embargo, se redujo ligeramente la actividad, pero se decidió mantener la porción 5,6-dicloro-1-ciclopentil-1*H* benzo [*d*] imidazol y modificar R₁ con SOMe y SO₂Me, dando así los compuestos **23** y **24**, aumentando el potencial con valores de Gl₅₀ = 0.5 μ M y 0.6 μ M para cada compuesto.

2.4 Pirazol

El pirazol es un heterociclo de cinco miembros, que contiene dos enlaces dobles y dos átomos de nitrógeno en las posiciones adyacentes, es un isómero estructural del imidazol y posee aromaticidad.²⁴ Esta clase de compuestos son muy importantes ya que se consideran estructuras prometedoras en química medicinal.

Una revisión de la literatura reveló que varios derivados de pirazol *N*sustituidos se han implementado como antitumorales, antiproliferativos, antiangiogénicos, proapoptóticos, y como agentes antitubulina. Además, estos compuestos son capaces de ejercer notables efectos contra el cáncer mediante la inhibición de diferentes tipos de enzimas, proteínas, y receptores, que desempeñan papeles críticos en la división celular.

Además, el compuesto V (Figura 12), el cual tiene un núcleo *N*-fenilpirazol fue desarrollado por Vertex Pharmaceuticals como un inhibidor de quinasas Src y quinasas c-Jun *N*-terminal (JNKs).²⁵

Figura 12. Compuesto V

Otro ejemplo de esto es el de Reddy y colaboradores²⁶ en el año 2015, quienes sintetizaron una serie de híbridos de pirazol que contienen benzimidazol en su estructura (Figura 13), ambas moléculas bioactivas, y evaluaron su actividad antiproliferativa contra tres líneas tumorales humanas: pulmón (A549), mama (MCF-7), y cervical (HeLa); y emplearon 5-fluorouracilo como control positivo.

Figura 13. Estructura de los híbridos de pirazol.

De las moléculas evaluadas, los compuestos **25**, **26** y **27** mostraron inhibición potente en las líneas tumorales evaluadas, con valores de IC₅₀ de 0.83 – 1.81 μ M, superiores a los mostrados por el 5-Fluorouracilo (2.13 - 4.16 μ M). Los resultados fueron más notorios en la línea celular MCF-7, en donde el

compuesto **25** fue el más potente (IC₅₀ 0.83 μ M), seguido del compuesto **26** (IC₅₀ 0.95 μ M) y el **27** (IC₅₀ 1.17 μ M) (Tabla 6).

Compuesto	R	R1	R2	IC ₅₀ (μM)		
				A549	MCF-7	HeLa
25	Н	Br	Н	1.82 ± 0.4	0.83 ± 0.3	1.76 ± 0.7
26	F	F	н	1.13 ± 0.2	0.95 ± 0.3	1.57 ± 0.3
27	CI	CI	н	1.34 ± 0.2	1.17 ± 0.2	1.63 ± 0.3
Nocodazol				1.87 ± 0.5	1.6 ± 0.2	2.83 ± 0.3
5-Fluorouracilo				2.13 ± 0.3	2.36 ± 0.2	4.6 ± 0.9

 Tabla 6. Actividad anticancerígena de los derivados de pirazol.

En cuanto a las células A549 y HeLa, los tres compuestos también mostraron valores de IC50 aceptables con concentraciones de no más de 1.82 μ M.

2.5 Acetamidas

Dentro del grupo de investigación se ha trabajado en la obtención de diferentes hidroxiacetamidas, ejemplo de ello es que en 2012 Ontiveros²⁷ llevó a cabo la síntesis de (*S*)-*N*-(1-hidroxi-3-fenilpropan-2-il)-2-(1*H*-imidazol-1-il)acetamida, partiendo de diferentes clorhidratos y cloruro de bromoacetilo en una mezcla de diclorometano/agua (4:1) y empleando carbonato de potasio (K₂CO₃) como base para obtener las bromoamidas correspondientes, las cuales se hicieron reaccionar con imidazol utilizando K₂CO₃ en acetonitrilo y calentamiento, obteniendo así el imidazol acetamida en forma de éster; para

finalmente llevar a cabo una reducción con borohidruro de sodio (NaBH₄) en tetrahidrofurano/agua a reflujo, obteniendo así las hidroxiacetamidas correspondientes (Esquema 1).

R= Bn (**18%**)

Sin embargo, los porcentajes de rendimientos obtenidos fueron muy bajos. Cabe mencionar que las moléculas obtenidas en este trabajo se les realizaron ensayos biológicos para determinar su actividad antibacteriana en *E. coli* y *S. aureus* observando concentraciones mínimas inhibitorias de 250 µg/mL para ambas cepas.

Por otra parte, Hernández-Fernánde z^{28} y colaboradores en 2015 llevaron a cabo la síntesis de β -hidroxiacetamidas bajo irradiación en microondas, a partir de ésteres y condiciones libres de base. Para lo cual se partió de derivados de acetato de etilo y amino alcoholes quirales, como se muestra en el esquema 2.

Esquema 2. Análisis retrosintético para la obtención de hidroxiacetamidas.

Los ésteres se sintetizaron a partir de la sustitución nucleofílica del bromoacetato de etilo con diferentes azoles cíclicos en presencia de K₂CO₃ en CH₃CN a reflujo. Posteriormente los derivados obtenidos se sometieron a una reacción de sustitución empleando varios amino alcoholes bajo las siguientes condiciones: tolueno (PhMe) bajo irradiación en microondas a 180 °C durante 10 minutos, obteniendo rendimientos que van del 83-96 %, mostrando con esto que la síntesis vía microondas es una opción rápida y eficiente para la obtención de este tipo de moléculas (Esquema 3).

$$(N) = 0 + H_2 N$$

$$(N) =$$

Esquema 3. Síntesis de β -hidroxiacetamidas vía microondas.

Además, en el año 2014 Ali²⁹ y colaboradores llevaron a cabo la síntesis de algunos derivados de 1- [*H*] benzotriazol (Esquema 4), partiendo de la formación del éster de benzotriazol utilizando dimetilformamida (DMF) como disolvente, en agitación y a temperatura ambiente, mientras que en los pasos 2 y 3 se requirió llevar a cabo las reacciones a reflujo y tiempo de reacción de 20-24 h, generando rendimientos entre 82-86%.

Esquema 4. Síntesis de derivados de benzotriazol.

Considerando que el cáncer es un problema de salud a nivel mundial y que moléculas como las acetamidas y azoles presentan actividad sobre algunas líneas celulares tumorales se propuso llevar a cabo la síntesis de moléculas, que incorporen en su estructura tanto la parte acetamida como la del azol, utilizando irradiación de microondas como energía de activación; y evaluar su actividad anticancerígena y citotóxica. Para lo cual se propuso la siguiente hipótesis.

CAPITULO III

3.1 Hipótesis

La actividad anticancerígena *in vitro* de β-hidroxiacetamidas es mayor que la actividad mostrada por la Doxorrubicina, así como menos citotóxica ante las líneas celulares normales.

3.2 Objetivo General

Sintetizar y caracterizar las β-hidroxiacetamidas, y evaluar la actividad anticancerígena en células SiHa y HT-29 comparar su actividad con el fármaco doxorrubicina y evaluar la actividad citotóxica en células de hígado de Chang *in vitro*.

3.3 Objetivos Específicos

- Sintetizar los ésteres derivados de azoles.
- > Sintetizar las β -hidroxiacetamidas vía microondas.
- Caracterizar los nuevos compuestos obtenidos por medio de Resonancia Magnética Nuclear (RMN ¹H, ¹³C) y Espectrometría de Masas de Alta Resolución (EMAR).

- ➤ Evaluar la anticancerígena de los compuestos de interés en las líneas celulares SiHa (A TCC® HTB-35[™]) y HT-29 (ATCC® HTB-38[™]) mediante el ensayo de WST-1.
- ➤ Evaluar la actividad citotóxica de los compuestos de interés en células de hígado de Chang (ATCC® CCL-13™) mediante el ensayo de WST-1.
- Llevar a cabo el análisis de datos obtenidos de la actividad anticancerígena y citotóxica.

CAPÍTULO IV

METODOLOGÍA EXPERIMENTAL

4.1 información general

4.1.1 Métodos sintéticos

El material de vidrio y las barras de agitación magnética que se emplearon en las reacciones, se secaron en una estufa a una temperatura de 120 °C. Todas las materias primas utilizadas fueron adquiridas en Aldrich, Fluka y otros distribuidores de materiales, reactivos y equipos de laboratorio.

El curso de las reacciones se siguió por cromatografía en capa fina, empleando como fase estacionaria gel de sílice, diferentes mezclas de disolventes (AcOEt, Hex, MeOH, EtOH) como fase móvil y como revelador se utilizó luz ultravioleta y vapores de yodo.

La purificación de los productos obtenidos se llevó a cabo por cromatografía en columna utilizando gel de sílice Merck 60 (230-400 mm) como fase estacionaria y diversas mezclas de disolventes como fase móvil.

Los puntos de fusión se determinaron en el equipo Electrothermal 1101D, los espectros de RMN se obtuvieron de un espectrómetro Varian MERCURY 200 a 200MHz para ¹H, Varian INOVA 400 a 400MHz para ¹H y 100MHz para ¹³C. Los desplazamientos químicos (δ) se reportan en partes por millón (ppm) con respecto a la referencia interna de tetrametilsilano (TMS) para ¹H; las constantes de acoplamiento (*J*) están dadas en Hertz (Hz). La multiplicidad de las señales se denotó con las siguientes abreviaturas: **s** para indicar una señal simple, **d** para indicar una señal doble, **dd** para indicar una señal doble de dobles, **t** para indicar una señal triple, **dt** para indicar un doble de triples, **c** para indicar una señal cuádruple, **m** para indicar una señal múltiple, **a** para indicar una señal ancha y sistema **AB**. Los disolventes deuterados empleados en las determinaciones fueron CDCl₃ y DMSO-*d*₆.

Los análisis de masas de alta resolución (EMAR) se llevaron a cabo en un equipo JEOL MStation JMS-700.

4.1.2 Métodos Biológicos

Para el trabajo de manipulación de las líneas celulares y la técnica de evaluación de la actividad citotóxica, se empleó lo siguiente:

Líneas celulares obtenidas de la American Type Culture Collection (ATCC):

Células HeLa [Chang Liver] (ATCC[®] CCL-13[™])

Características: Esta línea se deriva de tejido hepático normal, posteriormente fue encontrado, basado en el análisis de isoenzimas, cromosomas marcadores HeLa y huellas dactilares de ADN, que se han establecido a través de la contaminación de células HeLa. Se trata de células epiteliales adherentes, y su nivel de bioseguridad es 2.³⁰

Células HT-29 (ATCC® HTB-38™)

Características: Esta línea celular se deriva de tejido de colon de un paciente masculino de 72 años, caucásico con adenocarcinoma colorectal. Se trata de células epiteliales adherentes, y su nivel de bioseguridad es 1.³⁰

Células SiHa (ATCC[®] HTB-35[™])

Características: Esta línea celular se deriva de fragmentos de tejido primario de cérvix obtenido después de una cirugía de un paciente asiático de género femenino de 55 años. Se trata de células epiteliales adherentes, y su nivel de bioseguridad es 2.³⁰

- Los materiales, reactivos y equipos que se emplearon se describen a continuación:
- Balanza analítica
- Cámara de Neubauer
- Desionizador de agua Millipore
- Frasco de cultivo T25 costar 3055
- Membranas de filtración de 0.22 μm de diámetro de poro (Millipore)
- Pipetas automáticas y puntillas de 10-100 μL, 20-200 μL, 100-1000 μL
- Pipetas de 5 y 10 mL
- Pipetas Pasteur
- Placa de calentamiento y agitador magnético
- Placas para cultivo celular de 96 celdillas (Corning)
- Potenciómetro
- Reservorios
- Vasos de precipitados de diferentes capacidades (Pyrex)
- Agua bidestilada
- Alcohol etílico
- 2-(4-lodofenil)-3- (4-nitrofenil)-5- (2,4-disulfofenil)-2H-tetrazolio (WST-1)
- Cloruro de sodio (Sigma)
- Medio Esencial Mínimo (Sigma)

- Fosfato de sodio monobásico (Sigma)
- Fosfato de sodio dibásico (Sigma)
- Suero Fetal bovino (SFB) (Sigma)
- Tripsina (Sigma)

La esterilización del material se realizó en dos autoclaves marca All American modelo 75X y 25X. Se trabajó en una campana de flujo laminar modelo SG-303 marca The Baker Company. Se utilizó una incubadora con CO₂ modelo 3403 marca Thermo SCIENTIFIC y una mini incubadora modelo l5110 marca LABNET. Se empleó una centrífuga modelo Sorvall ST 16R y un microscopio invertido modelo TLM400 marca LABOMED. La lectura de las placas se realizó en un lector de microplacas ELISA modelo ELX800 marca BIOTEK.

4.2 Métodos sintéticos

4.2.1 Procedimiento general para la preparación de ésteres E1-E3.

Para la preparación de los ésteres se llevó a cabo una reacción de sustitución nucleofílica entre el bromoacetato de etilo con diferentes azoles cíclicos (imidazol, pirazol y benzimidazol), empleando carbonato de potasio (K₂CO₃) como base, acetonitrilo (CH₃CN) como disolvente y ultrasonido como fuente de activación; obteniendo así los compuestos **E1-3** (Esquema 5).

Esquema 5. Síntesis de ésteres.

Se colocó en un matraz redondo de 250 mL el azol correspondiente (pirazol, imidazol o benzimidazol) (1 Eq), K₂CO₃ (2.1 Eq) y CH₃CN (30 mL), posteriormente se agregó gota a gota bromoacetato de etilo (1.3 Eq), se tapó y se colocó en el baño de ultrasonido durante 4 h. Transcurrido ese tiempo se agregaron 15 mL de agua y se realizaron extracciones con AcOEt (3 x 30 mL); la fase orgánica se secó utilizando Na₂SO₄ anhidro, el cual se filtró; y se evaporó a presión reducida. El producto obtenido se purificó por cromatografía en columna empleando diversas mezclas de disolventes (AcOEt, Hex, MeOH).

4.2.1.1 Preparación del compuesto E1.

Siguiendo el procedimiento general, se hicieron reaccionar 2 g (29.3 mmol)

de pirazol; 8.53 g (61.7 mmol) de K₂CO₃, en 30 mL de CH₃CN; y 6.38 g, 4.23 mL (38.2 mmol) de bromoacetato de etilo. El

producto obtenido se purificó por cromatografía en columna empleando un sistema AcOEt:Hex (7:3).

4.2.1.2 Preparación del compuesto E2.

Siguiendo el procedimiento general, se hicieron reaccionar 2 g (29.3 mmol)

de imidazol; 8.53 g (61.7 mmol) de K₂CO₃; en 30 mL de CH₃CN; y 6.38 g, 4.23 mL (38.2 mmol) de bromoacetato de

etilo. El producto obtenido se purificó por cromatografía en columna empleando un sistema AcOEt:Hex:MeOH (5:4:1).

4.2.1.3 Preparación del compuesto E3.

Siguiendo el procedimiento general, se hicieron reaccionar 2 g (16.9 mmol)

de benzimidazol; 4.91 g (35.6 mmol) de K₂CO₃; en 30 mL de CH3CN; y 3.68 g, 2.44 mL (22.0 mmol) de bromoacetato de etilo. El producto obtenido se purificó por cromatografía en columna

empleando un sistema AcOEt:Hex (9:1).

4.2.2 Procedimiento para los derivados de benzotriazol.

Para la síntesis de los ésteres derivados de benzotriazol se modificó el tiempo (3 h) y el disolvente (Dimetilformamida, DMF) basándose en la metodología empleada por Ali et al.²⁹; obteniendo así el éster correspondiente (Esquema 6).

Esquema 6. Síntesis de éster derivado de benzotriazol.

En un matraz redondo de 250 mL se colocó el benzotriazol (1 Eq), K₂CO₃ (2.1 Eq) y DMF (30 mL), posteriormente se agregó gota a gota bromoacetato de etilo (1.3 Eq), se tapó y se colocó en el baño de ultrasonido durante 4 h. Transcurrido ese tiempo se agregaron 100 mL de agua, se filtró a vacío; el producto obtenido se purificó por columna cromatográfica, empleando un sistema Hex:AcOEt (3:1).

4.2.3 Procedimiento general para la preparación de hidroxiacetamidas.

A fin de obtener las hidroxiacetamidas se tomó como base la reacción descrita por Hernandez-Fernandez *et al.*²⁸ Esta vez cambiando el medio de reacción, PhMe por etanol (EtOH); modificando la temperatura a 100 °C y aumentando el tiempo de reacción a 20 minutos (Esquema 7). Obteniendo así las hidroxiacetamidas con los diferentes sustituyentes (**HA1-25**).

Esquema 7. Preparación de β -hidroxiacetamidas.

En un vial para microondas de 10 mL provisto de agitador magnético se agregó el éster correspondiente (**E1-5**) (1Eq), seguido de un equivalente molar del correspondiente 1,2-aminoalcohol [etanolamina, (*S*)-alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)-fenilalaninol] y 3 mL de etanol como disolvente. Se llevaron las reacciones al microondas y se ajustaron los parámetros de agitación (600 rpm), temperatura (100 °C) y el tiempo (20 min) para obtener el mayor porcentaje de rendimiento en cada uno de los compuestos. Se realizó cromatografía en capa fina para comprobar la formación del producto usando una mezcla AcOEt:Hex:MeOH (5:4:1, v/v). La mezcla de reacción se filtró, se lavó con etanol y el licor madre se concentró por evaporación a presión reducida, el crudo de reacción se purificó por cromatografía en columna (para los que así lo requirieron)

usando un sistema AcOEt:Hex:MeOH (5:4:1, v/v) para obtener así las correspondientes hidroxiacetamidas.

4.2.3.1 Preparación del compuesto HA1.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de pirazolil acetato de etilo; 0.12 g, 0.12 mL (1.9 mmol) de etanolamina y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de agitación

(600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.2 Preparación del compuesto HA2.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de pirazolil acetato de etilo; 0.15 g, 0.15 mL (1.9 mmol) de (S)-2-aminopropan-1-ol; y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de

agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.3 Preparación del compuesto HA3.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de pirazolil acetato de etilo; 0.2 g, 0.22 mL (1.9 mmol) de (*S*)-2-amino-3-metilbutan-1-ol; y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.4 Preparación del compuesto HA4.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de pirazolil acetato de etilo; 0.23 g, 0.25 mL (1.9 mmol) de (*S*)-2-amino-4-metilpentan-1-ol; y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.5 Preparación del compuesto HA5.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de pirazolil acetato de etilo; 0.29 g (1.9 mmol) de (S)-2-amino-3-fenilpropan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de agitación (600 rpm), temperatura (100

°C) y tiempo (20 min).

4.2.3.6 Preparación del compuesto HA6.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de imidazolil acetato de etilo; 0.12 g, 0.12 mL (1.9 mmol) de etanolamina y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de agitación

(600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.7 Preparación del compuesto HA7.

Siguiendo el procedimiento general, se hicieron reaccionar 0.25 g (1.6

mmol) de imidazolil acetato de etilo; 0.12 g, 0.13 mL (1.6 mmol) de (*S*)-2-aminopropan-1-ol; y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de

agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.8 Preparación del compuesto HA8.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de imidazolil acetato de etilo; 0.2 g, 0.22 mL (1.9 mmol) de (S)-2-amino-3-metilbutan-1-ol; y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.9 Preparación del compuesto HA9.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de imidazolil acetato de etilo; 0.23 g, 0.25 mL (1.9 mmol) de (*S*)-2-amino-4-metilpentan-1-ol; y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.10 Preparación del compuesto HA10.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.9

mmol) de imidazolil acetato de etilo; 0.29 g (1.9 mmol) de (*S*)-2-amino-3-fenilpropan-1-ol; y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de agitación (600 rpm), temperatura (100

°C) y tiempo (20 min).

4.2.3.11 Preparación del compuesto HA11.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzimidazolil acetato de etilo; 0.09 g, 0.09 mL (1.5 mmol) de etanolamina y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.12 Preparación del compuesto HA12.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzimidazolil acetato de etilo; 0.11 g, 0.12 mL (1.5 mmol) de (*S*)-2-aminopropan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los parámetros

del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.13 Preparación del compuesto HA13.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzimidazolil acetato de etilo; 0.15 g, 0.16 mL (1.5 mmol) de (S)-2-amino-3-metilbutan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los

parámetros del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.14 Preparación del compuesto HA14.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzimidazolil acetato de etilo; 0.17 g, 0.19 mL (1.5 mmol) de (S)-2-amino-4-metilpentan-1-ol y 3

H mL de etanol como disolvente. Se ajustaron los

parámetros del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.15 Preparación del compuesto HA15.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzimidazolil acetato de etilo; 0.22 g (1.5 mmol) de (*S*)-2-amino-3-fenilpropan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de agitación (600 rpm),

temperatura (100 °C) y tiempo (20 min).

4.2.3.16 Preparación del compuesto HA16.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzotriazolil acetato de etilo; 0.12 g, 011 mL (1.5 mmol) de etanolamina y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.17 Preparación del compuesto HA17.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5 mmol)

de benzotriazolil acetato de etilo; 0.11 g, 0.12 mL (1.5 mmol) de (S)-2-aminopropan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.18 Preparación del compuesto HA18.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzotriazolil acetato de etilo; 0.15 g, 0.16 mL (1.5 mmol) de (S)-2-amino-3-metilbutan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los

parámetros del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.19 Preparación del compuesto HA19.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzotriazolil acetato de etilo; 0.17 g, 0.19 mL (1.5 mmol) de (*S*)-2-amino-4-metilpentan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los

parámetros del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.20 Preparación del compuesto HA20.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de benzotriazolil acetato de etilo; 0.22 g (1.5 mmol) de (S)-2-amino-3-fenilpropan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de agitación (600 rpm),

temperatura (100 °C) y tiempo (20 min).

4.2.3.21 Preparación del compuesto HA21.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de 2-(2*H*-benzotriazolil) acetato de etilo; 0.09 g, 0.09 mL (1.5 mmol) de etanolamina y 3 mL de etanol como disolvente. Se ajustaron los parámetros del

microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.22 Preparación del compuesto HA22.

Siguiendo el procedimiento general, se hicieron reaccionar 0.25 g (1.2

mmol) de 2-(2*H*-benzotriazolil) acetato de etilo; 0.09 g, 0.10 mL (1.2 mmol) de (*S*)-2-aminopropan-1-ol y 3 mL de etanol como disolvente. Se ajustaron los

parámetros del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.23 Preparación del compuesto HA23.

Siguiendo el procedimiento general, se hicieron reaccionar 0.3 g (1.5

mmol) de 2-(2*H*-benzotriazolil) acetato de etilo; 0.15 g, 0.16 mL (1.5 mmol) de (*S*)-2-amino-3-metilbutan-1- ol y 3 mL de etanol como disolvente. Se ajustaron los

parámetros del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.24 Preparación del compuesto HA24.

Siguiendo el procedimiento general, se hicieron reaccionar 0.25 g (1.2

mmol) de 2-(2*H*-benzotriazolil) acetato de etilo; 0.14 g, 0.16 mL (1.2 mmol) de (*S*)-2-amino-4-metilpentan-1-ol

y 3 mL de etanol como disolvente. Se ajustaron los

parámetros del microondas de agitación (600 rpm), temperatura (100 °C) y tiempo (20 min).

4.2.3.25 Preparación del compuesto HA25.

Siguiendo el procedimiento general, se hicieron reaccionar 0.25 g (1.2

mmol) de 2-(2H-benzotriazolil) acetato de etilo; 0.18 g (1.2 mmol) de (S)-2-amino-3-fenilpropan-1ol y 3 mL de etanol como disolvente. Se ajustaron los parámetros del microondas de agitación (600

rpm), temperatura (100 °C) y tiempo (20 min).

4.3 Pruebas de actividad citotóxica y anticancerígena.

Para llevar a cabo los ensayos, se seleccionaron los compuestos HA6-HA10, teniendo como sustituyentes un anillo de imidazol y diferentes aminoalcoholes, las cuales se obtuvieron mediante síntesis orgánica. Los compuestos seleccionados para esta etapa son los que se muestran en la siguiente figura:

HA6

HA7

HA8

HA10

Figura 14. Estructura de las moléculas evaluadas.

4.3.1 Preparación de los compuestos evaluados para la realización de las pruebas biológicas.

Para preparar las distintas diluciones a probar de los compuestos, se preparó una solución "stock" de 1 mg/mL en dimetilsulfóxido (DMSO) de cada uno de ellos, de ahí se tomó la cantidad correspondiente de solución y se diluyó a 2 mL con medio esencial mínimo (MEM). Cada uno, fue esterilizado por filtración utilizando membranas Millipore[®] con tamaño de poro de 0.22 μm. Se probaron 3 compuestos por cada microplaca que se utilizó (cada dilución por triplicado), llevando a cabo tres repeticiones bajo las mismas condiciones de estudio.

4.3.2 Selección de líneas celulares y método de análisis.

La actividad biológica de los compuestos seleccionados se probó en células de hígado de Chang, para evaluar la citotoxicidad y para la actividad anticancerígena en células SiHa (cáncer de cérvix) y células HT-29 (cáncer de colon). La técnica empleada fue el ensayo de reducción de WST-1 siguiendo el protocolo descrito a continuación.

4.3.3 Proliferación celular y cultivo en placa de 96 pocillos.

Se utilizaron cultivos confluentes de cada línea celular para obtener una suspensión de células, empleando tripsina al 0.5%. Se colocaron las células en un tubo eppendorf, se centrifugaron a 1000 rpm por 10 minutos a 25 °C, se eliminó el sobrenadante, y se resuspendió la pastilla celular con 3 mL de medio

MEM. Se contaron las células en una cámara de Neubauer utilizando un microscopio invertido.

Una vez conocido el número total de células, se preparó una suspensión celular para colocar 10000 células en cada uno de los pozos (100 μ L/pozo) de la microplaca de 96 pocillos. La placa así preparada se incubó por 24 horas a 37 °C, bajo una atmósfera de CO₂ al 5%.

4.3.4 Exposición de los compuestos sobre líneas celulares

Posteriormente se adicionaron a las células los compuestos a evaluar a diferentes concentraciones (concentraciones 500, 250, 125, 62.5, 31.25 y 15.625 μ g/mL) por triplicado y se incubaron por 24 horas bajo las mismas condiciones (Figura 15).

Figura 15. Modelo para los ensayos biológicos.

47

4.3.5 Ensayo con WST-1

Una vez transcurrido ese tiempo, se retiró el medio de cultivo de la placa de 96 pocillos y se colocaron 10 µL del reactivo WST-1 a cada uno de los pozos y se incubó la microplaca por 2 horas más bajo las mismas condiciones. Finalmente se realizó la lectura de la densidad óptica a 450 nm utilizando un lector de ELISA (Esquema 8).

Este procedimiento se llevó a cabo tanto en las células de hígado de Chang como en las células cancerígenas.

Esquema 8. Metodología para la evaluación de la actividad biológica.

La técnica de citotoxicidad mediante el reactivo WST-1 [2-(4-lodofenil)-3-(4nitrofenil)-5-(2,4-disulfofenil)-2H-tetrazolio] permite analizar de una forma directa la viabilidad celular y de una manera indirecta, medir la proliferación celular. Se trata de un ensayo colorimétrico, de cuantificación espectrofotométrica que se basa en la degradación de las sales de tetrazolium WST-1 a sales de formazán, mediante la acción de las deshidrogenasas mitocondriales, que se producen de forma natural cuando las células son viables. Esta técnica es sensible, rápida y sencilla cuando la comparamos con otras técnicas de medida de la proliferación celular (Figura 16).

Figura 16. Reducción del WST-1.

4.3.6 Cálculo del porcentaje de viabilidad

Para el cálculo del porcentaje de viabilidad se consideró como el 100% de viabilidad celular el promedio de la absorbancia de las celdillas control (la cual contenía células con medio de cultivo) y se utilizó para calcular la viabilidad de las células expuestas a los compuestos.

4.4 Seguridad en el laboratorio y disposición de residuos.

El mantenimiento de la seguridad en el laboratorio y la disposición de cada uno de los residuos generados en el presente proyecto de investigación se realizó de acuerdo a lo señalado en el Reglamento Interno de Seguridad e Higiene de la Facultad.

Se manejaron residuos tanto químicos como biológicos, los cuales se dispusieron en diversos contenedores (Tabla 7); el material biológico restante y el físico reusable se esterilizó mediante calor húmedo.

Contenedores					
Α	Soluciones salinas de pH -8, sales, ácidos y bases. H		Oxidantes		
В	Sólidos inorgánicos, sales inorgánicas.	Resid	uos de cianuro		
С	Tóxicos e inflamables, aminas, solventes orgánicos no halogenados.	colo	orante y lugol		
D	Tóxicos e inflamables, aminas, solventes orgánicos halogenados.	Vidrio impregnado con sustancias peligrosas	Contenedores, frascos vacíos de vidrio o que hayan sido quebrados que contuvieron reactivos o residuos peligrosos.		
E	Muy tóxicos, cancerígenos orgánicos e inorgánicos.	Plastico impregnado con sustancias peligrosas	Contenedores o frascos vacíos que contuvieron reactivos o residuos peligrosos.		
F	Reciclo de sales de metales preciosos.	Basura industrial	Arena o diaper (sanitas, papel, magitel) impregnado con residuos peligrosos. Absorbente que se utiliza para contener derrames. Guantes de plástico y latex.		
	G	Combinacion	nes orgánicas sólidas.		

Tabla 7.	Disposición de	residuos.

CAPÍTULO V

RESULTADOS Y DISCUSIÓN

A continuación, se muestran los resultados de la síntesis y la caracterización de los compuestos obtenidos, además de la actividad citotóxica y anticancerígena de los mismos.

5.1 Síntesis orgánica

Para cumplir con los objetivos planteados, inicialmente se llevó acabo el análisis retrosintético (Esquema 9) para obtener las moléculas de interés.

Esquema 9. Análisis retrosintético para la obtención de las azolilhidroxiacetamidas.

Como se puede observar en el esquema anterior, las azolilhidroxiacetamidas (HA1-25) pueden obtenerse a partir de la reacción de los
azolil-acetatos de etilo (**E1-5**) con diversos aminoalcoholes [etanolamina, (*S*)alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)-fenilalaninol]. A su vez los azolil-acetato de etilo (**E1-5**) pueden obtenerse mediante la reacción de sustitución nucleofílica del bromo acetato de etilo con los azoles cíclicos correspondientes (pirazol, imidazol, benzimidazol y benzotriazol).

5.1.1 Síntesis de azolil-acetatos de etilo E1-3.

Para la preparación de los azolil-acetatos de etilo (**E1-3**) se hizo reaccionar el azol correspondiente (pirazol, imidazol, benzimidazol) con bromoacetato de etilo empleando K₂CO₃ como base y acetonitrilo como disolvente, asistido por ultrasonido a 50 °C por 4 horas (Esquema 10).

Esquema 10. Síntesis de ésteres E1-3.

Los resultados se muestran en la tabla 8, donde se puede observar que los compuestos **E1 y E2** se obtuvieron como líquidos y con rendimientos químicos del 75 y 42%, respectivamente. Mientras que el compuesto **E3** se obtuvo como un sólido blanco con punto de fusión de 63-65 °C y con un rendimiento del 80%.

Compuesto	Azol	Rendimiento %	Apariencia	P.f. (°C)
E1	Pirazol	75	Líquido amarillo	
E2	lmidazol	42	Líquido amarillo	
E3	Benzimidazol	80	Sólido blanco	63-65

Tabla 8. Resultados de la síntesis de ésteres E1-3.

Los compuestos fueron caracterizados por RMN ¹H y ¹³C. A continuación, a modo de ejemplo, se describen las señales más importantes para el compuesto **E2** (Figura 17): en un desplazamiento de 1.29 ppm una señal triple con una constante de acoplamiento de 7.2 Hz e integra para tres protones y corresponde al metilo; en 4.24 ppm se observa un cuarteto con una constante de acoplamiento de 7.2 Hz, e integra para dos protones correspondientes al CH₂ vecino al metilo; en 4.70 ppm una señal sencilla que integra para dos protones correspondientes al CH₂ vecino al carbonilo; en 6.96, 7.09 y 7.50 ppm tres señales sencillas correspondientes a los protones del anillo de imidazol, lo anterior se resume en la tabla 9.

δ (ppm)	Multiplicidad	Integración	Protón	J(Hz)
1.29	t	3H	C H 3-CH2	7.2
4.24	С	2H	C H 2-CH3	7.2
4.70	S	2H	C H 2-C=O	
6.96	S	1H	NC H =CH	
7.09	S	1H	NCH=CH	
7.50	S	1H	N=C H N	

Tabla 9. Desplazamientos químicos en RMN ¹H de **E2**.

Figura 17. Espectro de RMN ¹H del compuesto E2.

Por su parte en el espectro de RMN ¹³C (Figura 18) se observan las señales correspondientes a los siete carbonos del compuesto **E2**. La señal que aparece en 14.0 ppm corresponde al carbono del metilo; en 48.0 y 62.0 ppm dos señales correspondientes a los carbonos del grupo metileno (CH₂C=O y OCH₂-CH₃). Las señales en 120.0, 129.0 y 137.9 ppm correspondientes a los carbonos del anillo de imidazol. Por último, en 167.4 ppm se aprecia una señal que pertenece al carbono del grupo carbonilo (C=O). En la tabla 10 se resumen estos resultados.

δ (ppm)	Asignación
14.0	C H ₃
48.0	CH2C=O
62.0	OCH2-CH3
120.0	CH-N
129.6	CH=CHN
137.9	N=CH
167.4	C=O

Tabla 10. Desplazamientos químicos en RMN ¹³C de E2.

Figura 18. Espectro de RMN ¹³C del compuesto E2.

El espectro de fragmentación obtenido en el análisis de espectrometría de masas de baja resolución (ionización FAB⁺), mostró la relación masa/carga (m/z) del ion molecular. La masa molecular del compuesto **E2** ionizado [M+H]⁺ es de 155.0821 y la relación masa/carga (m/z) del ion molecular [M+H]⁺ en masas de alta resolución fue de 155.0822, por lo cual se puede afirmar que el compuesto sintetizado y purificado corresponde al compuesto **E2**.

5.1.2 Síntesis y caracterización de los derivados de benzotriazol.

Para la preparación del benzotriazolil-acetato de etilo (**E4**) se hizo reaccionar benzotriazol con bromo acetato de etilo empleando K₂CO₃ como base y *N*,*N*-dimetilformamida como disolvente, asistido por ultrasonido a 50 °C por 3 horas; obteniendo el 2-(1*H*-benzo[*d*][1,2,3]triazol-1-il)acetato de etilo, así como también su isómero, el 2-(2*H*-benzo[*d*][1,2,3]triazol-1-il)acetato de etilo (Esquema 11).

Lo anterior puede explicarse debido a las formas tautoméricas del benzotriazol²⁶ (Esquema 12), ya que los sustituyentes podrían unirse por el nitrógeno en posición 1 o por el nitrógeno en posición 2, dando lugar a una mezcla de dos isómeros, favoreciendo al isómero de la posición 1.

Esquema 12. Formas tautoméricas del benzotriazol.

Para ambos casos se obtuvieron sólidos blancos, con rendimientos de 58 y 12% para el **E4** y **E5**, respectivamente; así como factores de retención de 0.31 para el compuesto **E4** y de 0.62 para el compuesto **E5** (Figura 19), empleando una mezcla de disolventes Hex:AcOEt (3:1).

Figura 19. Cromatografía en capa fina de los compuestos E4 y E5.

Ambos compuestos fueron caracterizados por RMN ¹H y ¹³C, a continuación se describen las señales más importantes para el compuesto **E4** (Figura 20): en un desplazamiento químico de 1.26 ppm se observa una señal triple que corresponde al grupo CH₃ del etilo, con una constante de acoplamiento de 7.1 Hz, e integra para tres protones; en 4.25 ppm se puede apreciar un cuarteto que corresponde al CH₂ del etilo, con una constante de acoplamiento de 7.1 Hz, e integra para dos protones; en 5.42 ppm se presenta una señal sencilla

correspondiente al CH₂ unido al nitrógeno del benzotriazol, e integra para dos protones; posteriormente en 7.36-7.44 ppm se observa una señal múltiple, que integra para un protón, el cual corresponde al protón **a** del anillo aromático; de 7.44-7.56 ppm una señal múltiple, que integra para dos protones, el cual corresponde a los protones **b** del anillo aromático; y finalmente en 8.09 ppm una señal doble que corresponde al protón **c** del anillo aromático, con una constante de acoplamiento de 8.04 Hz, e integra para un protón (Tabla 11).

δ (ppm)	Multiplicidad	Integración	Protón	<i>J</i> (Hz)
1.26	t	3H	CH2-C H 3	7.1
4.25	С	2H	C H 2-CH3	7.1
5.42	S	2H	C H 2-C=O	
7.36-7.44	m	1H		
7.44-7.56	m	2H	Hb Hb	
8.09	d	1H	He	8.4

 Tabla 11. Desplazamientos químicos en RMN ¹H de E4.

Figura 20. Espectro de RMN ¹H del compuesto E4.

Por otro lado en el espectro de RMN de ¹³C (Figura 21) se observan las diez señales correspondientes a los carbonos del compuesto **E4**, la señal que aparece en 14.06 ppm corresponde al carbono del grupo metilo (**C**H₃CH₂); las dos señales que aparecen en 49.09 y 62.33 ppm corresponden a los carbonos del grupo metileno (**C**H₂C=O y O**C**H₂-CH₃); mientras que las señales correspondientes a los carbonos aromáticos del benzotriazol aparecen en 109.24, 120.19, 124.12, 127.91, 133.38 y 146.03 ppm; y finalmente en 166.37 ppm aparece la señal correspondiente al carbono del grupo carbonilo (Tabla 12).

Tabla 12. Desplazamientos químicos en RMN ¹³C de E4.

δ (ppm)	Asignación
14.06	CH₃
49.09	C H ₂ C=O
62.33	O C H₂-CH₃
109.24	C-1
120.19	C-2
124.12	C-3
127.91	C-4
133.38	C-5
146.03	C-6
166.37	C =O

Figura 21. Espectro de RMN ¹³C del compuesto E4.

Para el caso del compuesto **E5** las señales más importantes se describen a continuación: en un desplazamiento químico de 1.28 ppm se observa una señal

triple que corresponde al CH₃ del etilo con una constante de acoplamiento de 7.1 Hz, e integra para tres protones; en 4.28 ppm un cuarteto que corresponde al CH₂ del etilo con una constante de acoplamiento de 7.1 Hz e integra para dos protones; en 5.54 ppm se observa una señal sencilla que corresponde al CH₂ unido al nitrógeno del benzotriazol, e integra para dos protones; hasta este punto las señales tanto para el compuesto **E4** como **E5** son las mismas, sin embargo en la región de los aromáticos solo aparecen dos señales simétricas, la primera de 7.37-7.45 ppm y la segunda de 7.85-7.94 ppm, ambas integran para dos protones correspondientes a los protones a y b respectivamente, a diferencia del compuesto **E4** que en la región de los aromáticos se presentan tres señales; comprobando la simetría de la molécula (Tabla 13, Figura 22).

δ (ppm)	Multiplicidad	Integración	Protón	J(Hz)
1.28	t	3H	CH2-C H 3	7.1
4.28	С	2H	C H 2-CH3	7.1
5.54	S	2H	C H 2-C=O	
7.37-7.45	m	2H	Ha Ha	
7.85-7.94	m	2H	Hb Hb	

Tabla 13. Desplazamientos químicos en RMN ¹H de E5.

Figura 22. Espectro de RMN ¹H del compuesto E5.

En el espectro de RMN de ¹³C (Figura 23) se observan las siete señales correspondientes a los carbonos del compuesto **E5**, la señal que aparece en 13.92 ppm corresponde al carbono del grupo metilo (**C**H₃CH₂); las dos señales que aparecen en 56.98 y 61.69 ppm corresponden a los carbonos del grupo metileno (**C**H₂C=O y O**C**H₂-CH₃); mientras que las señales correspondientes a los carbonos aromáticos del benzotriazol aparecen en 117.95, 126.84 y 144.05 ppm; y finalmente en 166.70 ppm aparece la señal correspondiente al carbono del grupo carbonilo (Tabla 14).

δ (ppm)	Asignación
13.92	C H ₃
56.98	CH2C=O
61.69	OCH2-CH3
117.95	C-1
126.84	C-2
144.05	C-3
166.70	C=O

Tabla 14. Desplazamientos químicos en RMN ¹³C de E5.

Figura 23. Espectro de RMN ¹³C del compuesto E5.

5.1.3 Síntesis y caracterización de las hidroxiacetamidas

Una vez obtenidos los compuestos **E1-5**, éstos se hicieron reaccionar con diferentes amino-alcoholes [etanolamina, (*S*)-alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)-fenilalaninol], empleando EtOH como disolvente a 100 °C, bajo irradiación de microondas por 20 min, obteniendo así las correspondientes azolil-hidroxiacetamidas (Esquema 13).

R= H, Me, *i*-Pr, *i*-Bu, Bn

Esquema 13. Condiciones de reacción para la obtención de las hidroxiacetamidas

5.1.3.1 Síntesis y caracterización de pirazolil-hidroxiacetamidas

Una vez obtenido el pirazolil acetato de etilo (**E1**) se llevó a cabo la preparación de las hidroxiacetamidas, empleando diferentes aminoalcoholes [etanolamina, (*S*)-alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)-fenilalaninol], en EtOH como medio de reacción, 600 rpm, a 100 °C bajo irradiación en microondas por 20 minutos (Esquema 14).

Esquema 14. Preparación de las pirazolil-hidroxiacetamidas.

Los resultados se resumen en la siguiente tabla, en la cual es posible observar que las pirazolil-hidroxiacetamidas se obtuvieron como sólidos blancos, con rendimientos químicos de 81, 85, 91 y 97% para los compuestos **HA4**, **HA1**, **HA5** y **HA3**, respectivamente. Mientras que para el compuesto **HA2** se obtuvo un rendimiento más bajo (Tabla 15).

Compuesto	R	Rendimiento (%)	Apariencia	P.f. (°C)
HA1	Н	85	Sólido blanco	108-110
HA2	Me	42	Sólido blanco	119-121
HA3	<i>i</i> -Pr	97	Sólido blanco	124-126
HA4	<i>i-</i> Bu	81	Sólido blanco	85-88
HA5	Bn	91	Sólido blanco	113-114

Tabla 15. Resultados de la síntesis de pirazolil-hidroxiacetamidas.

Las pirazolil-hidroxiacetamidas **HA1-5** fueron caracterizadas por Resonancia Magnética Nuclear (RMN) de ¹H, ¹³C y Espectrometría de Masas de Alta Resolución (EMAR).

Las señales más importantes de RMN de ¹H para la pirazolilhidroxiacetamida **HA1** (Figura 24) son las siguientes: en un desplazamiento químico de 3.35 ppm se aprecia una señal triple con una constante de acoplamiento de 5.6 Hz que integra para dos protones correspondientes a los protones vecinos al grupo amina; en 3.61 se observa otra señal triple que integra para dos protones con una constante de acoplamiento de 5.6 Hz y que corresponde a los protones del metileno unido al hidroxilo; en 4.89 ppm una señal sencilla que integra para dos protones correspondientes al metileno vecino al carbonilo; en 6.36 una señal triple con una constante de acoplamiento de 2.2 Hz que integra para un protón correspondiente al protón **a** del anillo de pirazol; en 7.56 una señal doble que integra para un protón, con una constante de acoplamiento de 1.8 Hz correspondiente al protón **b** del anillo de pirazol; y finalmente en 7.70 una señal doble que integra para un protón con una constante de acoplamiento de 2.2 Hz correspondiente al protón **c** del anillo de pirazol; en 1abla 16 se resumen estos resultados.

δ (ppm)	Multiplicidad	Integración	Protón	<i>J</i> (Hz)
3.35	t	2H	C H 2NH	5.6
3.61	t	2H	C H ₂OH	5.6
4.89	S	2H	CH2C=O	
6.36	t	1H	C H =CHN	2.2
7.56	d	1H	C H =N	1.8
7.70	d	1H	C H -N	2.2

Tabla 16. Desplazamientos químicos en RMN ¹H de HA1.

Figura 24. Espectro de RMN ¹H del compuesto HA1.

ſ

En el espectro de RMN de ¹³C (Figura 25) se observan las siete señales correspondientes a los carbonos del compuesto **HA1**, las señales que aparecen en 41.7, 53.6 y 59.9 corresponden a los carbonos de los grupos metileno (CH₂NH, CH₂C=O y CH₂OH); en 105.7, 131.7 y 139.9 aparecen los carbonos correspondientes al anillo de pirazol; y finalmente en 168.4 la señal correspondiente al carbono del grupo carbonilo, en la tabla 17 se resumen estos resultados.

δ (ppm)	Asignación
41.7	C H₂NH
53.6	CH2C=O
59.9	C H ₂ OH
105.7	C H=CHN
131.7	CH-N
139.9	N=CH
168.4	C=O

Tabla 17. Desplazamientos químicos en RMN ¹³C de HA1.

Figura 25. Espectro de RMN ¹³C del compuesto HA1.

El espectro de fragmentación obtenido en el análisis de espectrometría de masas de baja resolución (ionización FAB⁺), mostró la relación masa/carga (m/z) del ion molecular. La masa molecular del compuesto **HA1** ionizado [M+H]⁺ es de 170.0930 y la relación masa/carga (m/z) del ion molecular [M+H]⁺ en masas de alta resolución fue de 170.0927, mostrando un porcentaje de error de +4.5 ppm, por lo cual se puede afirmar que el compuesto sintetizado y purificado corresponde al compuesto **HA1**.

5.1.3.2 Síntesis y caracterización de las imidazolil-hidroxiacetamida

Una vez obtenido el imidazolil-acetato de etilo (**E2**) se llevó a cabo la preparación de las hidroxiacetamidas, empleando diferentes aminoalcoholes [etanolamina, (*S*)-alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)-fenilalaninol], utilizando EtOH como medio de reacción, a 100 °C, 600 rpm y bajo irradiación en microondas durante 20 minutos (Esquema 15).

Esquema 15. Síntesis de las imidazolil-hidroxiacetamidas

Se obtuvieron las imidazolil-hidroxiacetamidas **HA6-10** como sólidos blancos, con rendimientos químicos que van desde el 100% para el compuesto **HA6** al 43% para el compuesto **HA8**. Así mismo, se llevó a cabo la determinación de sus puntos de fusión. Todos estos resultados se resumen en la tabla 18.

Compuesto	R	Rendimiento (%)	Apariencia	P.f. (°C)
HA6	Н	99	Sólido blanco	124-126
HA7	Me	70	Sólido blanco	172-173
HA8	<i>i</i> -Pr	43	Sólido blanco	174-176
HA9	<i>i</i> -Bu	88	Sólido blanco	162-164
HA10	Bn	62	Sólido blanco	189-190

Tabla 18. Resultados de la síntesis de imidazolil-hidroxiacetamidas.

Los compuestos **HA6-10** fueron caracterizados por Resonancia Magnética Nuclear (RMN) de ¹H, ¹³C y Espectrometría de Masas de Alta Resolución (EMAR). A modo de ejemplo se describen las señales más importantes de RMN de ¹H para el compuesto **HA7** (Figura 26): en 1.14 ppm se observa una señal doble con una constante de acoplamiento de 6.8, que integra para 3 protones y que corresponde para los protones del grupo metilo; en 3.47 y 3.51 dos señales doble de dobles con constantes de acoplamiento de 11.2 y 5.2 Hz, que integran para un protón cada una, y que corresponden a los protones del metileno vecino al grupo hidroxilo; en 3.95 aparece una señal múltiple que integra para un protón correspondiente al grupo metino; en 4.72 una señal sencilla que integra para dos protones correspondiente al CH₂ vecino al carbonilo; en 6.97, 7.10 y 7.65 tres señales anchas que integran para un protón cada una y que corresponden a los protones del anillo de imidazol. Estos resultados se muestran en la tabla 19.

δ (ppm)	Multiplicidad	Integración	Protón	J(Hz)
1.14	d	3H	C H ₃CH	6.8
3.47	dd	1H	C H 2OH	11.2, 5.2
3.51	dd	1H	CH2OH	11.2, 5.2
3.95	m	1H	C H CH₃	
4.72	S	2H	CH2C=O	
6.97	а	1H	C H -N	
7.10	а	1H	C H= CH-N	
7.65	а	1H	N=CH-N	

Tabla 19. Desplazamientos químicos en RMN ¹H de **HA7**.

Figura 26. Espectro de RMN ¹H del compuesto HA7.

En el espectro de RMN de ¹³C (Figura 27) se pueden observar las ocho señales de los carbonos correspondientes al compuesto **HA7**, la señal que aparece en 17.1 ppm corresponde al carbono del metilo (CH₃); en 30.0 ppm la señal correspondiente al carbono del metileno vecino al carbonilo (CH₂C=O); en 50.4 aparece la señal del metino vecino al CH₃; en 66.0 la señal del carbono correspondiente al metileno vecino al hidroxilo; en 121.9, 129.0 y 139.6 las señales correspondientes a los carbonos del anillo de imidazol; y finalmente en 169.0 la señal del carbono correspondiente al carbono correspondiente al carbono del anillo de imidazol; y finalmente en 169.0 la señal del carbono correspondiente al carbonilo, el resumen de estos resultados se muestra en la tabla 20.

δ (ppm)	Asignación		
17.1	CH₃		
30.0	CH2C=O		
50.4	C HCH ₃		
66.0	C H₂OH		
121.9	CH-N		
129.0	C H=CHN		
139.6	N=CH		
169.0	C =O		

Tabla 20. Desplazamientos químicos en RMN ¹³C de **HA7**.

Figura 27. Espectro de RMN ¹³C del compuesto HA7.

El espectro de fragmentación obtenido en el análisis de espectrometría de masas de baja resolución (ionización FAB⁺), mostró la relación masa/carga (m/z) del ion molecular. La masa molecular del compuesto **HA7** ionizado [M+H]⁺ es de 184.1086 y la relación masa/carga (m/z) del ion molecular [M+H]⁺ en masas de alta resolución fue de 184.1092, por lo cual se puede afirmar que el compuesto sintetizado y purificado corresponde al compuesto **HA7**.

5.1.3.3 Síntesis y caracterización de las benzimidazolil-Hidroxiacetamidas

Una vez obtenido el benzimidazolil acetato de etilo (**E3**) se llevó a cabo la preparación de las benzimidazolil-hidroxiacetamidas, empleando diferentes aminoalcoholes [etanolamina, (*S*)-alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)-fenilalaninol], con EtOH como medio de reacción, a 100 °C, 600 rpm, bajo irradiación en microondas durante 20 minutos (Esquema 16).

Esquema 16. Preparación de las benzimidazolil-hidroxiacetamidas.

Se obtuvieron los compuestos **HA11-15** como sólidos blancos, con rendimientos químicos que van desde 78% para el caso del compuesto **HA15**; hasta el 39% para el compuesto **HA13**. También se llevó a cabo la determinación de los puntos de fusión para cada uno de los compuestos (Tabla 21).

Compuesto	R	Rendimiento (%)	Apariencia	p.f. (°C)
HA11	Н	68	Sólido blanco	208-210
HA12	Me	53	Sólido blanco	208-209
HA13	<i>i</i> -Pr	39	Sólido blanco	214-217
HA 14	<i>i</i> -Bu	68	Sólido blanco	185-187
HA15	Bn	78	Sólido blanco	225-226

Tabla 21. Resultados de la síntesis de benzimidazolil-hidroxiacetamidas.

Las Benzimidazolil-hidroxiacetamidas **HA11** -**15** fueron caracterizadas por Resonancia Magnética Nuclear (RMN) de ¹H, ¹³C y Espectrometría de Masas de Alta Resolución (EMAR).

A continuación, a modo de ejemplo, se describen las señales más importantes de RMN de ¹H para la benzimidazolil-hidroxiacetamida **HA12** (Figura 28): en un desplazamiento químico de 1.07 ppm se observa una señal doble con una constante de acoplamiento de 6.7 Hz, e integra para tres protones, que corresponde al CH₃; en 3.30 ppm y 3.38 ppm se aprecian dos señales dobles de dobles que integran para un protón cada una, y corresponden al CH₂ vecino al OH; de 3.73-3.85 ppm aparece una señal múltiple, la cual integra para un protón y corresponde al CH; en 4.91 se observa un sistema AB que integra para dos protones, los cuales corresponden al CH₂ vecino al carbonilo; de 7.17-7.28 ppm aparece una señal múltiple, que integra para los dos protones **a** del anillo aromático; en 7.43-7.48 ppm una señal múltiple correspondiente al protón **b** del anillo aromático; en 7.63-7.68 ppm un multiplete correspondiente al protón **c** del

anillo aromático; en 8.17 una señal sencilla que integra para un protón, el cual corresponde al CH del benzimidazol; y finalmente en 8.28 una señal doble con una constante de acoplamiento de 7.9 Hz que integra para un protón y que corresponde al protón del grupo amino, los resultados anteriores se muestran en la tabla 22.

-	δ (ppm)	Multiplicidad	Integración	Protón	J(Hz)
-	° (PP)				• ()
	1.07	d	3H	C H ₃CH	6.7
	3.30	dd	1H	C H aOH	10.6, 5.8
	3.38	dd	1H	C H ₀OH	10.6, 5.8
	3.73-3.85	m	1H	C H CH₃	
	4.91	AB	2H	CH2C=O	16.3
-	7.17-7.28	m	2H	H _a H _a	
-	7.43-7.48	m	1H	Hb	
	7.63-7.68	m	1H	H _c when	
	8.17	S	1H	N H	
	8.28	d	1H	NH	7.9

 Tabla 22. Desplazamientos químicos en RMN ¹H de HA12.

Figura 28. Espectro de RMN ¹H del compuesto HA12.

En el espectro de RMN de ¹³C (Figura 29) se pueden observar once señales de los carbonos correspondientes al compuesto **HA12**, la señal que aparece en 17.04 ppm corresponde al carbono del metilo (CH₃); en 46.89 la señal correspondiente al carbono del metileno vecino al carbonilo (CH₂C=O); en 64.18 la señal del carbono correspondiente al metileno vecino al hidroxilo; en 110.20, 119.29, 121.42, 122.25, 134.24, 143.19 y 144.86 las señales correspondientes a los carbonos del benzimidazol; y finalmente en 165.84 la señal del carbono correspondiente al carbonilo, los resultados anteriores se resumen en la tabla 23.

 Tabla 23. Desplazamientos químicos en RMN ¹³C de HA12.

δ (ppm)	Asignación
17.04	C H ₃
46.89	C H ₂ C=O
64.18	C HCH ₃
110.20	C-1
119.29	C-2
121.42	C-3
122.25	C-4
134.24	C-5
143.19	C-6
144.86	C-7
165.84	C=O

Figura 29. Espectro de RMN ¹³C del compuesto HA12.

El espectro de fragmentación obtenido en el análisis de espectrometría de masas de baja resolución (ionización FAB⁺), mostró la relación masa/carga (m/z) del ion molecular. La masa molecular del compuesto **HA12** ionizado [M+H]⁺ es de 234.1243 y la relación masa/carga (m/z) del ion molecular [M+H]⁺ en masas de alta resolución fue de 234.1251.

5.1.3.4 Síntesis y caracterización de las 1*H*-benzotriazolhidroxiacetamidas

Una vez obtenido el 1*H*-benzotriazolil-acetato de etilo (**E4**) se llevó a cabo la preparación de las 1*H*-benzotriazolil-hidroxiacetamidas, empleando diferentes aminoalcoholes [etanolamina, (*S*)-alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)-fenilalaninol], empleando EtOH como medio de reacción, a 100 °C, 600 rpm, bajo irradiación en microondas durante 20 minutos (Esquema 17).

Esquema 17. Síntesis de las 1*H*-benzotriazolil-hidroxiacetamidas.

Los compuestos **HA16-20** se obtuvieron como sólidos blancos con rendimientos aceptables que van desde 94% para el compuesto **HA19** hasta 60% como es el caso del compuesto **HA20**, a todos los compuestos obtenidos se les determinó el punto de fusión (Tabla 24).

Compuesto	R	Rendimiento (%)	Apariencia	p.f. (°C)
HA16	Н	91	Sólido blanco	187-190
HA17	Me	83	Sólido blanco	197-200
HA18	<i>i</i> -Pr	93	Sólido blanco	226-228
HA19	<i>i</i> -Bu	94	Sólido blanco	150-154
HA20	Bn	60	Sólido blanco	208-209

Tabla 24. Resultados de la síntesis de 1*H*-benzotriazolil-hidroxiacetamidas.

Las 1H-benzotriazolil-hidroxiacetamidas HA16-20 fueron caracterizadas por Resonancia Magnética Nuclear (RMN) de ¹H, ¹³C y Espectrometría de Masas de Alta Resolución (EMAR). A modo de ejemplo se describen las señales más importantes de RMN de ¹H para la 1*H*-benzotriazolil-hidroxiacetamida HA16 (Figura 30): en un desplazamiento químico de 3.20 ppm se aprecia una señal múltiple correspondiente al CH2 unido al grupo amina; en 3.47 se observa otra señal múltiple que corresponde al CH2 unido al grupo hidroxilo; posteriormente en 4.81 una señal triple, con una constante de acoplamiento de 5.3 Hz, que integra para un protón y corresponde al OH; en 5.46 aparece una señal sencilla que integra para dos protones correspondientes al CH2 vecino al carbonilo; de 7.36 a 7.46 se observa una señal múltiple que corresponde a los protones del anillo aromático (Ha); en 7.55 una señal doble de dobles, con constantes de acoplamiento de 17.3 y 10.0 Hz correspondiente a los protones aromáticos (H_b); en 7.77 y 8.04 dos señales dobles, con constantes de acoplamiento de 8.31 y 8.3 Hz respectivamente que integran para un protón cada una correspondiente a los protones aromáticos (H_c y H_d); y finalmente en 8.52 una señal ancha que integra para un protón correspondiente al grupo amino. Los datos se resumen en la tabla 25.

δ (ppm)	Multiplicidad	Integración	Protón	<i>J</i> (Hz)
3.20	m	2H	C H 2NH	
3.47	m	2H	C H ₂OH	
4.81	t	1H	OH	5.3
5.46	S	2H	C H 2C=O	
7.36-7.46	m	1H	Harth	
7.55	dd	1H	Ho	17.3
7.77	d	1H	G. r.	8.31
8.04	d	1H	Harris	8.3
8.52	а	1H	NH	

 Tabla 25. Desplazamientos químicos en RMN ¹H de HA16.

Figura 30. Espectro de RMN de ¹H del compuesto HA16.

En el espectro de RMN de ¹³C (Figura 31) se pueden observar once señales de los carbonos correspondientes al compuesto **HA16**, la señal que aparece en 41.76 ppm corresponde al carbono del metileno (**C**H₂-NH); en 49.94 la señal correspondiente al carbono del metileno vecino al carbonilo (CH₂C=O); en 59.64 la señal del carbono correspondiente al metileno vecino al hidroxilo; en 110.98, 119.01, 123.85, 127.27, 133.75 y 145.09 ppm las señales correspondientes a los carbonos del anillo aromático; y finalmente en 165.65 la señal del carbono correspondiente al carbonilo, lo anterior se resume en la tabla 26.

δ (ppm)	Asignación
41.76	CH2-NH
49.94	C H ₂ C=O
59.64	C H₂OH
110.98	C-1
119.01	C-2
123.85	C-3
127.27	C-4
133.75	C-5
145.09	C-6
165.65	C=O

Tabla 26. Desplazamientos químicos en RMN ¹³C de HA16.

Figura 31. Espectro de RMN ¹³C del compuesto HA16.

5.1.3.5. Síntesis y caracterización de las 2*H*-benzotriazolilhidroxiacetamidas

Una vez obtenido el 2*H*-benzotriazolil acetato de etilo (**E5**) se llevó a cabo la preparación de las 2*H*-benzotriazol-hidroxiacetamidas, empleando diferentes aminoalcoholes [etanolamina, (*S*)-alaninol, (*S*)-valinol, (*S*)-leucinol y (*S*)fenilalaninol], empleando EtOH como medio de reacción, a 100 °C, 600 rpm, bajo irradiación en microondas durante 20 minutos (Esquema 18).

Esquema 18. Síntesis de las 2*H*-benzotriazolil-hidroxiacetamidas.

Los compuestos **HA21-25** se obtuvieron como sólidos blancos con rendimientos químicos que van del 99% para el compuesto **HA24**, hasta 25% para el compuesto **HA25**. A todos los compuestos se les determinó su punto de fusión (Tabla 27).

Compuesto	R	Rendimiento (%)	Apariencia	p.f. (°C)
HA21	Н	58	Sólido blanco	149-150
HA22	Me	46	Sólido blanco	170-173
HA23	<i>i</i> -Pr	47	Sólido blanco	166-169
HA24	<i>i</i> -Bu	99	Sólido blanco	140-142
HA25	Bn	22	Sólido blanco	110-112

Tabla 27. Resultado de la síntesis de las 2*H*-benzotriazolil hidroxiacetamidas.

Las 2*H*-benzotriazolil-hidroxiacetamidas **HA21-25** fueron caracterizadas por Resonancia Magnética Nuclear (RMN) de ¹H, ¹³C y Espectrometría de Masas de Alta Resolución (EMAR).

A continuación a modo de ejemplo se describen las señales más importantes de RMN de ¹H para la 2*H*-benzotriazolil-hidroxiacetamida **HA23** (Figura 32): en un desplazamiento químico de 0.88 aparece una señal doble con una constante de acoplamiento de 6.8 Hz, que integra para seis protones correspondientes a los metilos; en 1.78 a 1.94 una señal múltiple que integra para un protón, correspondiente al CH base del *i*-Pr; en 3.44 una señal triple con una constante de acoplamiento de 5.5 Hz, que integra para dos protones correspondientes al CH₂ vecino al hidroxilo; en 3.54 a 3.65 se observa una señal múltiple que integra para un protón correspondiente al CH vecino al grupo amina; en 4.70 un triplete con una constante de acoplamiento de 5.4 Hz, que integra para un protón y corresponde al protón del hidroxilo; a 5.51 un sistema AB que integra para dos protones correspondientes al CH₂ vecino al carbonilo; en 7.42 a

7.50 un multiplete que integra para dos protones correspondientes a los protones del anillo aromático; de 7.89 a 7.98 otra señal múltiple correspondiente a los protones del anillo aromático; en 8.16 una señal doble, con una constante de 8.9 Hz, que integra para un protón correspondiente al grupo amino (Tabla 28).

δ (ppm)	Multiplicidad	Integración	Protón	J(Hz)
0.88	d	6H	(C H 3)2CH	
1.78-1.94	m	1H	C H (CH3)2	
3.44	t	2H	C H 2OH	5.3
3.54-3.65	m	1H	C H -NH	
4.70	t	1H	OH	
5.51	AB	2H	CH2C=O	17.3
7.42-7.50	m	2H	H _a H _a	8.31
7.89-7.98	m	2H	Hb	8.3
8.16	d	1H	NH	

 Tabla 28. Desplazamientos químicos en RMN ¹H de HA23.

Figura 32. Espectro de RMN de ¹H del compuesto HA23.

En el espectro de RMN de ¹³C (Figura 33) se pueden observar las nueve señales de los carbonos correspondientes al compuesto **HA23**, la señal que aparece en 19.57 ppm corresponde al carbono de los metilos ((**C**H₃)₂CH); en 28.24 la señal correspondiente al carbono del metino base del *i*-Pr ((CH₃)₂**C**H); en 56.21 la señal del carbono correspondiente al metileno vecino al carbonilo (**C**H₂C=O); en 58.38 el carbono correspondiente al metino vecino al grupo amino; en 61.12 aparece la señal correspondiente al carbono del metino del metileno vecino al grupo vecino al hidroxilo (**C**H₂OH) 117.85, 126.43 y 143.91 ppm las señales correspondientes a los carbonos del anillo aromático; y finalmente en 164.73 la señal del carbono correspondiente al carbonilo (**Tabla 29**).

δ (ppm)	Asignación		
19.57	(C H ₃) ₂ CH		
28.24	(CH3)2 C H		
56.21	C H₂OH		
58.38	CH-NH		
61.12	C H ₂ OH		
117.85	C-1		
126.43	C-2		
143.91	C-3		
164.73	C=O		

 Tabla 29. Desplazamientos químicos en RMN ¹³C de HA23.

Con estos resultados, se puede confirmar que cada uno de los compuestos planteados en el presente proyecto fueron obtenidos de forma satisfactoria. De los veinticinco compuestos sintetizados se eligieron cinco para llevar a cabo la evaluación biológica con base a lo reportado en la literatura, donde se describe que los compuestos que incorporan en su estructura el anillo de imidazol presentan actividad anti-cancer.^{16, 32}

5.2 Pruebas de actividad biológica.

Con base en lo anterior se eligieron cinco hidroxiacetamidas **HA6-HA10** (Figura 34) correspondientes a la serie con imidazol, para llevar a cabo la evaluación de su actividad biológica en las líneas celulares: HT-29 (cáncer de colon), SiHa (cáncer de cérvix); y una no transformada (células de hígado de Chang) utilizando doxorrubicina como fármaco de referencia para la actividad anti-cáncer y tritón X como control de muerte celular.

Figura 34. Estructura de los compuestos evaluados y doxorrubicina.

Para llevar a cabo la evaluación anti-cáncer se decidió utilizar diferentes concentraciones (diluciones seriadas) 500, 250, 125, 62.5 y 31.625 μ g/mL, de los cinco compuestos a evaluar.

5.2.1 Evaluación de la actividad anticancerígena

Después de la exposición de los compuestos **HA6-HA10** sobre células SiHa a las diferentes concentraciones, se determinó la viabilidad celular mediante la prueba de reducción del WST-1. A continuación se muestran los resultados de viabilidad en esta línea celular (Tabla 30, Figura 35).

Tabla 30. Porcentajes de viabilidad en células SiHa.

Compuesto	Concentraciones (µg/mL)					
Compuesto	15.625	31.25	62.5	125	250	500
HA6	95.4 ± 1.7	91.7 ± 0.6	92.3 ± 0.4	90.0 ± 0.7	90.0 ± 0.4	90.0 ± 1.5
HA7	93.9 ± 0.9	95.9 ± 2.2	93.4 ± 0.7	87.5 ± 1.1	90.2 ± 1.3	89.1 ± 1.8
HA8	90.2 ± 0.6	89.9 ± 0.9	90.4 ± 1.5	91.0 ± 2.0	89.7 ± 0.7	85.2 ± 1.1
HA9	88.4 ± 4.4	90.2 ± 4.6	89.3 ± 3.7	83.9 ± 2.8	86.1 ± 0.4	83.2 ± 1.7
HA10	98.0 ± 1.3	95.2 ± 2.0	97.2 ± 1.3	96.7 ± 3.7	96.7 ± 1.6	93.5 ± 1.8
Doxorrubicina	67.3 ± 2.7	64.3 ± 1.4	66.4 ± 0.6	65.4 ± 0.2	70.1 ± 1.0	80.1 ± 2.2

En la tabla 30 puede observarse que los compuestos muestran porcentajes de viabilidad entre 83.2 a 98% en las diferentes concentraciones evaluadas. Esto puede apreciarse mejor en la figura 35, donde observamos que los compuestos que mostraron mayor citotoxicidad fueron los compuestos **HA8** y **HA9**, moléculas que incorporan en su estructura los grupos isopropilo e isobutilo, respectivamente, con porcentajes de viabilidad celular de 85.2 y 83.2% a la más alta concentración evaluada (500 µg/mL).

Figura 35. Efecto de las hidroxiacetamidas sobre células SiHa a 24 horas de exposición.

Por otro lado, el compuesto **HA10** fue el que presentó menor citotoxicidad con porcentajes viabilidad que van de 93.5 a 98.0% bajo las mismas concentraciones y condiciones de estudio. En la figura 36 se presentan las estructuras de estos tres compuestos.

Figura 36. Estructura de los compuestos HA8-HA10.

Con estos resultados obtenidos, se decidio evaluar la actividad anti-cáncer de estos mismos compuestos en la linea celular HT-29. Los resultados se muestran en la tabla 31 y figura 37.

Compuestos	Concentraciones (µg/mL)					
compuestos	15.625	31.25	62.5	125	250	500
HA6	77.7 ± 0.90	79.0±0.50	59.6±0.45	60.9 ± 0.45	59.3±0.70	59.0±0.70
HA7	82.6±0.60	73.7±0.40	72.8±0.95	74.4 ± 0.65	73.7±0.40	68.7 ± 2.71
HA8	94.3 ± 0.65	95.2 ± 0.50	83.1 ± 1.15	81.0±0.65	76.2 ± 0.32	62.8 ± 2.65
HA9	84.3 ± 1.55	86.5 ± 0.42	84.6±0.32	77.9 ± 0.90	72.1 ± 1.88	58.6±0.15
HA10	84.8 ± 3.35	87.2 ± 0.65	83.8±0.15	78.1 ± 1.30	77.7±0.15	72.5 ± 2.55

 Tabla 31. Porcentajes de viabilidad en células HT-29.

Los resultados mostrados en la tabla anterior indican que el compuesto **HA6** presenta porcentajes de viabilidad del 59-60% a las concentraciones de 62.5, 125, 250 y 500 µg/mL. Por otro lado, el compuesto **HA9** muestra un 58.6% de viabilidad a la concentración más alta probada (500 µg/mL), mientras que el compuesto **HA8** mostró un 62.8% de viabilidad a la misma concentración. Un mayor porcentaje de viabilidad se observa con los compuestos **HA7** y **HA10** con valores de 68.7 y 72.5 a la más alta concentración evaluada. Podemos notar que los compuestos **HA8** y **HA9**, una vez más resultan ser de los compuestos que muestran mayor actividad.

Figura 37. Efecto de las hidroxiacetamidas sobre células HT-29 a 24 horas de exposición.

A continuación, se muestran las estructuras de los compuestos más activos en las células HT-29 (Figura 38).

Figura 38. Estructura de los compuestos HA6, HA8 y HA9.

5.2.2 Evaluación de la actividad citotóxica

Una vez evaluada la actividad anti-cáncer de estos compuestos, el siguiente paso consistió en evaluar la toxicidad de los mismos utilizando células de hígado de Chang, con la finalidad de evaluar el efecto citotóxico en otro tipo de células que no son tumorales mediante la prueba de WST-1. Los resultados se presentan en la tabla 32 y en la figura 39.

Compuestos	Concentraciones (µg/mL)					
compuestos	15.625	31.25	62.5	125	250	500
HA6	88.9 ± 2.77	87.0±0.99	80.2 ± 1.30	86.6±0.86	76.2 ± 1.37	85.8±3.71
HA7	79.9±0.10	80.7 ± 0.95	78.9 ± 2.69	73.0 ± 0.50	73.9 ± 0.30	83.2 ± 1.20
HA8	78.8±0.06	78.4 ± 0.45	78.0 ± 2.05	81.5 ± 0.80	88.2 ± 1.15	89.2 ± 0.30
HA9	89.2 ± 1.95	88.5 ± 1.75	77.5 ± 2.55	72.3 ± 2.17	69.1 ± 1.05	75.3 ± 2.80
HA10	93.3 ± 0.79	92.4 ± 1.00	81.8±0.41	84.3 ± 2.18	98.3 ± 0.46	85.6±0.47

Tabla 32. Porcentajes de viabilidad en células de hígado de Chang.

Como se puede observar en la tabla anterior, los porcentajes de viabilidad a la concentración más alta alcanzaron valores desde 75.3 hasta 89.2%, es importante considerar que los compuestos con porcentajes de viabilidad por encima del 80% pueden considerarse como no citotóxicos, y esto ocurre en los compuestos **HA6**, **HA7**, **HA8** y **HA10** (Figura 39).

Figura 39. Efecto de las hidroxiacetamidas sobre células Chang a 24 horas de exposición.

Analizando los resultados de las pruebas realizadas, podemos observar que las moléculas **HA8** y **HA9**, fueron las que presentaron la mejor actividad anticáncer en las células HT-29 y SiHa; mientras que el compuesto **HA6** resultó ser de los más activos solo en la línea celular HT-29. Es importante hacer notar que la actividad citotóxica de los compuestos **HA6** y **HA8** en las células de hígado Chang fue menor a la concentración de 500 µg/mL (Tabla 33).

Tabla 33. Resultados de los compuestos HA6, HA8 y HA9.

Compuestes		500 μg/ml	L
compuestos	SiHa	HT-29	Chang
HA6	90.0	59.0	85.8
HA8	85.2	62.8	89.2
HA9	83.2	58.6	75.3

Analizando la estructura de los compuestos **HA6**, **HA8** y **HA9** observamos que éstos poseen como sustituyente un H, un grupo isopropilo e isobutilo, respectivamente, sustituyentes pequeños comparados con los reportados por Özkay¹⁶ (compuesto **5** y **6**) (Figura 40), en los que los carbonos del anillo de imidazol están sustituidos y además dentro de la estructura se encuentra un anillo de tetrazol o un tiazol, asimismo los valores de IC₅₀ de estos compuestos en células HT-29 fue de 1.6 y 2.7 µg/mL, valores mucho menores a los presentados por las hidroxiacetamidas **HA6**, **HA8** y **HA9** (500 µg/mL).

Figura 40. Comparación estructural entre los compuestos HA6, HA8 y HA9 vs 5 y 6.

Es importante notar que los compuestos HA6, HA8 y HA9 mostraron una actividad moderada en las células HT-29, mientras que en las células SiHa la actividad no fue relevante. Estos resultados son similares a los encontrados por

Wang *et al.*,³³ quienes realizaron la síntesis y evaluación de derivados de imidazol en 5 líneas celulares tumorales, mostrando que el compuesto más activo presentaba actividad citotóxica selectiva solo en dos de las cinco líneas celulares evaluadas MCF-7 (cáncer de mama) y SMMC-7721 (cáncer de hígado).

Asimismo, Yang *et al.*, ³⁴ realizaron la síntesis y evaluación anti-cáncer de compuestos híbridos entre imidazol y 2-fenilbenzofurano, encontrando que el compuesto más activo exhibía una actividad selectiva solo en las células SMMC-7721 de entre cinco líneas evaluadas.

Tomando en cuenta lo anterior se propone como trabajo a futuro la evaluación de las hidroxiacetamidas **HA6**, **HA8** y **HA9** en otras líneas celulares, tales como MCF-7, lo cual, según lo reportado por diversos autores, es una de las líneas celulares en las que los compuestos que incorporan el anillo de imidazol dentro de su estructura muestran una actividad selectiva. También se propone evaluar las hidroxiacetamidas que poseen en su estructura otros sustituyente azo (pirazol, benzimidazol y benzotriazol) y mantener los sustituyentes H, isopropilo e isobutilo, que están presentes en las moléculas **HA6**, **HA8** y **HA9**, anteriormente descritas, y observar si la actividad anti-cáncer mejora de forma considerable.

También se ha observado que compuestos similares a los descritos en el presente trabajo poseen actividad como radiosensibilizadores, tal es el caso de Uto *et al.*,³⁵ quienes sintetizaron y evaluaron derivados de 2-nitroimidazol, observando que el compuesto **TX-2036** posee una fuerte actividad como

readiosensibilizador, por lo que una opción alterna será llevar a cabo modificaciones estructurales en el anillo de imidazol y observar si la actividad incrementa notoriamente.

Figura 41. Estructura del compuesto TX-2036.

Además, no hay que dejar de lado los compuestos **HA1-HA5** y **HA11-HA25**, que incorporan los anillos de pirazol, benzimidazol y benzotriazol en su estructura; los cuales también han mostrado poseer actividad, no solo como anticancerígenos como lo reportan autores como Alkatahni (benzimidazol)²³, Carta (benzotrizol)²¹ y Reddy (pirazol)²⁶; sino que también se han evaluado este tipo de derivados sobre diferentes microrganismos, ejemplo de ello es lo reportado por Ahn *et al.*,³⁶ quienes sintetizaron moléculas con pirazol en su estructura y evaluaron su actividad sobre *E. coli, P. aeruginosa, S. epidermidis* y *S. aureus*, mostrando buenos resultados.

Por otro lado, He *et al.*, ³⁷ llevaron a cabo la síntesis de nuevos inhibidores de DGAT1 de tipo benzimidazol, para el tratamiento de diabetes mellitus tipo II. Asimismo, algunos derivados de benzotriazol han sido evaluados para estudiar su actividad sobre diferentes virus (Loddo et al.)²⁰, como agente antimicobacterial, antihelmíntico y como activador de los canales de potasio,

entre otros.³⁸ Por lo que una alternativa, para las moléculas que no se evaluaron en el presente estudio, seria llevar a cabo su evaluación en alguna de las actividades biológicas mencionadas anteriormente y observar su comportamiento.

CAPÍTULO VI

CONCLUSIONES

- Se sintetizaron cinco ésteres derivados de diferentes azoles (imidazol, pirazol, benzimidazol y benzotriazol) (E1-E5), empleando como método de activación ultrasonido, obteniendo porcentajes de rendimientos que van desde 42 al 80%, por lo que emplear este método de activación es una buena opción para la obtención de este tipo de compuestos.
- Se obtuvieron dos ésteres derivados de benzotriazol (E4 y E5) debido a las formas tautoméricas del benzotriazol, ya que los sustituyentes pueden unirse al nitrógeno en posición 1 o 2 del anillo de triazol, dando lugar a una mezcla de isómeros, favoreciendo al isómero de la posición 1. Lo anterior se puede comprobar a partir de los porcentajes de rendimiento que fueron de 58 y 12%, para el compuesto E4 y E5, respectivamente; y por caracterización de cada uno de los compuestos por resonancia magnética nuclear tanto de ¹H como de ¹³C, en los que se pueden observar las señales características correspondientes a los sustituyentes en las posiciones tanto 1 como 2 del anillo de triazol.
- Se sintetizaron 25 hidroxiacetamidas empleando como precursores los ésteres E1-E5; con diferentes aminoalcoholes, tales como etanolamina, (S)-alaninol, (S)-valinol, (S)-leucinol y (S)-fenilalaninol, vía microondas y

empleando etanol como disolvente, obteniendo porcentajes de rendimientos que van desde el 22 al 99%. Anteriormente este tipo de reacciones se han llevado a cabo empleando tolueno como disolvente, por lo que el uso de etanol es una alternativa para la obtención de este tipo de moléculas con buenos resultados, además de ser un método más amigable con el medio ambiente.

- Por otro lado, se seleccionaron 5 hidroxiacetamidas (HA6-HA10) correspondientes a la serie de imidazol y se evaluó la actividad anticancerígena sobre dos líneas celulares SiHa y HT-29, cáncer de cérvix y cáncer de colon, respectivamente; observando que en las células SiHa los compuestos no mostraron actividad relevante, ya que los porcentajes de viabilidad solo alcanzaron un 83.2% a una concentración de 500 µg/mL.
- En cuanto a la evaluación en las células HT-29, los compuestos que presentaron una mejor actividad fueron HA6, HA8 y HA9 con porcentajes de viabilidad que van del 59.0 al 62.8% a una concentración de 500 μg/mL, además los compuestos HA6 y HA8 fueron los que presentaron menor citotoxicidad a esa misma concentración en las células Chang con porcentajes de 85.8 y 89.2%, respectivamente. Por lo que se sugiere que estos compuestos poseen actividad selectiva por las células HT-29.
- > Además, los compuestos HA7 y HA10 tampoco mostraron mayor citotoxicidad en las células de hígado de Chang. Tomando en

consideración lo anterior se propone la evaluación de estas moléculas sobre algún tipo de microorganismo, ya que está ampliamente reportado que este tipo de anillos poseen actividad sobre varios tipos de bacterias, así como algunos hongos.

REFERENCIAS

- Cáncer (febrero 2015). Recuperado el 27 septiembre 2015, de http://www.who.int/topics/cancer/es/
- Klug, William S., Cummings, Michael R., Spencer, Charlotte A. (2006)
 Conceptos de Genética, Madrid, España, Ed. Pearson.
- Karp, G., (2009) Biología Celular y Molecular Conceptos y experimentos, México, Ed. McGraw-Hill Interamericana Editores, S.A.
- Tipos de cáncer que afectan a los mexicanos (14 febrero 2013)
 Subsecretaría de prevención y promoción de la salud. Recuperado el 27 octubre 2014. http://www.spps.gob.mx/noticias
- "Estadísticas a propósito de día mundial contra el cáncer (4 de febrero)" (2014) Instituto Nacional de Estadística y Geografía. Recuperado el 18 septiembre 2014 <u>http://www.inegi.org.mx</u>.
- "Posibles causas" Asociación Española Contra el Cáncer (AECC).
 Recuperado el 04 de Julio 2016 <u>https://www.aecc.es</u>
- "Cancer Classification" National Cancer Institute (NCI) SEER Training Modules. Recuperado el 04 de julio 2016. <u>http://training.seer.cancer.gov/</u>
- 8. "introducción a los tratamientos del cáncer" CancerQuest. Recuperado el 04 de junio del 2016. <u>http://www.cancerquest.org</u>
- "Tipos comunes de tratamiento para el cáncer" Amerian Cancer Society.
 Recuperado el 4 de junio 2016. <u>http://www.cancer.org/espanol</u>

- 10. ¿Qué es la radioterapia? ¿Cuándo se usa? (s.f.) American cancer society.
 Recuperado el 4 de abril de 2015 de http://www.cancer.org/ Actualizado el 6 de marzo del 2014.
- 11. "Terapia fotodinámica para el cáncer" National Cancer Institute (NCI). Recuperado el 04 de junio 2016. <u>http://www.cancer.gov/espanol</u>
- 12. Rashid, M. et al. Arabian J. Chem. 2015, (In Press, Corrected Proof)
- Benedí, J., Gomez del Rio, M.A., Farmacia profesional, 2006, Vol. 20, Núm. 2, 60-64.
- 14. Benedí, J., Gomez del Rio, M.A., *Farmacia profesional*, **2006**, Vol. 20, Núm. 3, 42-46.
- 15. Katzung G. B., "Farmacología básica y clínica", 11a Ed., Editorial El Manual Moderno S.A. de C.V., 2005, ISBN 970-729-164-8
- 16. Özkay, Y., Isikdag, I., Incesu, Z., Akalin, G. *Eur. J. Med. Chem.* **2010**, 45, 3320-3328
- 17. Yang, X. D., Zeng, X. H., Zhao, Y. H., Wang, X. Q., Pan, Z.Q., Li, L., Zhang, H.B. *J. Comb. Chem.* **2010**, 12, 307-310.
- Khose, G., Shinde, S., Panmand, A., Kulkarni, R., Munot, Y., Bandyopadhyay, A., Barawkar, D., Patil, S.N. *Tetrahedron Lett.* 2014, 55, 2671-2674.
- Gobis, K., Foks, H., Seroki, M., Augustynowicz-Kopéc, E., Napiorkowska,
 A. *Eur. J. Med. Chem.* 2015, 89, 13-20.
- 20. Loddo, R., Novelli, F., Sparatore, A., Tasso, B., Tonelli, M., Boido, V., Sparatore, F., Collu, G., Delogu, I., Giliberti, G., La Colla, P. *Bioorg. Med. Chem.* **2015**, 23, 7024-7034.

- 21. Carta A., Briguglio, I., Piras, S., Boatto, G., La Colla, P., Loddo, R., Tolomeo, M., Grimaudo, S., Di Cristina, A., Pipitone, R. M., Laurini, E., Paneni, M. S., Posocco, P., Fermeglia, M., Pricl, S. *Eur. J. Med. Chem.* **2011**, 46, 4151-4167.
- 22. Azam, M., Ali Khan, A., Al-Resayes, S. I., Islam, M. S., Saxena, A. K., Dwivedi, S., Musarrat, J., Trzesowska-Kruszynska, A., Kruszynski, R. Spectrochim. Acta Mol. Biomol. Spectrosc., 2015, 142, 286-291.
- 23. Alkahtani H. M., Abbas, A. Y., Wang, S. *Bioorg. Med. Chem. Lett.* **2012**, 22, 1317-1321.
- 24. Kumar, H., Saini, D., Jain, S., Jain, N. *Eur. J. Med. Chem.* **2013**, 70, 248-258.
- 25. El-Karim, S.S.A., Anwar, M. M., Mohamed, N. A., Nasr, T., Elseginy, S. A. *Bioorg. Chem.* **2015**, 63, 1-12.
- 26. Reddy, T.S., Kulhari, H., Reddy, V. G., Bansal, V., Kamal, A., Shukla, R. *Eur. J. Med. Chem.***2015**, 101, 790-805.
- 27. Ontiveros Catillo, K.G. (2012) Síntesis y caracterización de amidas quirales derivadas de la (s)-fenilalanina. Evaluación de su actividad antibacteriana *in vitro.* (Tesis de maestría) Universidad Autonoma de Nuevo León, México.
- Hernandez-Fernandez, E., Sánchez-Lara, P. P., Ordóñez, M., Ramirez-Marroquín, O. A., Avalos-Alanis, F. G., López-Cortina, S., Jimenez-Pérez, V. M., Ibarra-Rivera, T. R. Tetrahedron: Asymmetry, **2015**, 26, 73-78.
- 29. Ali O. E.; El-Galil A. E.; Mostafa E. E., Synthesis and antimicrobial of some new substitutedtetrazolomethylbenzo[d]-[1,2,3]triazole derivatives using

1H-benzo[d][1,2,3]triazole as starting material, *Res Chem Intermed* **2014** *40*,1545–1556.

30. Recuperado el 19 de julio de 2016 de https://www.atcc.org

- 31. Tómas, F., Abboud, J.L., Laynez, J., Notario, R., Santos, L., Nilsson, S.O., Catalán, J., Claramnt, R.M., Elguer, J. *J. Am. Chem. Soc.* **1989**, 111, 7348-7353.
- 32. Negi, A., alex, J., Amrutkar, S., Baviskar, A., Joshi, G., Singh, S., Banerjee, U., Kumar, R., *Bioorg. Med. Chem.* **2015**, 23, 5654-5661.
- 33. Wang, X; Liu, L; Li, Y; Sun, C; Chen, W; Li, L; Zhang, H; Ynag, X; *Eur. J. Med. Chem.* **2013**, 62, 111-121.
- 34. Yang, X; Wan, W; Deng, X; Li, Y; Yang, L; Li, L; Zhang, H; *Bioorg, Med. Chem. Lett.* **2012**, 22, 2716-2719.
- 35. Uto, Y. et al. Bioorg Med Chem. 2008, 16, 6042-6053.
- 36. Ahn, M; Gunasekaran, P; Rajasekaran, G; Kim, E; Lee, S; Bang, G; Cho,
 K; Hyun, J; Lee, H; Jeon, Y; Kim, N; Ryu, E; Shin, S; Bang, J. *Eur. J. Med. Chem.* 2017, 125, 551-564.
- 37. He, M. et al. Med Chem. Lett. 2013, 4, 773-778.
- 38. Briguglio, S; Piras, S; Corona, P; Gavini, E; Nieddu, M; Boatto, G; Carta,A. *Eur. J. Med. Chem.* 2015, 97, 612-648.

ANEXOS

2-(1*H*-pirazol-1-il) acetate de etilo (E1).

Rendimiento: 75%, líquido viscoso de coloración amarilla, RMN ¹H (400 MHz, CDCl₃): δ 1.28 (t, J = 7.2 Hz, 3H, CH₃CH₂O), 4.23 (c, J = 7.1 Hz, 2H, OCH₂CH₃), 4.92 (s, 2H, CH₂C=O), 6.33 (dd, J = 2.2, J = 2.1 Hz, 1H, CH=CH-N), 7.48 (d, J = 2.3 Hz, 1H, CH=N), 7.56 (d, J = 1.8 Hz, 1H, CH-N). RMN ¹³C (100 MHz, CDCl₃): δ 14.1 (CH₃CH₂O), 53.1 (CH₂C=O), 61.8 (CH₃CH₂O), 106.5 (CH=CH-N), 130.6 (CH-N), 140.1 (CH=N), 168.0 (C=O). EMAR (FAB⁺): calculado para C₇H₁₁N₂O₂ [M+H]⁺, *m/z* 155.0821; encontrado [M+H]⁺, *m/z* 155.0815.

2-(1*H*-imidazol-1-il) acetato de etilo (E2).

Rendimiento: 42%, liquido viscoso ligeramente amarillo, RMN ¹H (400 MHz, CDCl₃): δ 1,29 (t, *J* = 7.2 Hz, 3H, CH₃CH₂O), 4.24 (c, *J* = 7.2 Hz, 2H, OCH₂CH₃), 4.70 (s, 2H, CH₂C=O), 6.96

(s, 1H, NCH=CH), 7.09 (s, 1H, NCH=CH), 7.50 (s, 1H, N=CHN). RMN ¹³C (100 MHz, CDCl₃): δ 14.0 (CH₃), 48.0 (CH₂C=O), 62.0 (OCH₂CH₃), 120.0 (CH-N), 129.6 (CH=CHN), 137.9 (N=CH), 167.4 (C=O). EMAR (FAB⁺): calculado para C₇H₁₁N₂O₂ [M+H]⁺, *m/z* 155.0821; encontrado [M+H]⁺, *m/z* 155.0822.

2-(1*H*-benzo[*d*]imidazol-1-il) acetato de etilo (E3).

Rendimiento: 80%, sólido blanco, p. f.: 63-65 °C, RMN ¹H (400 MHz, CDCl₃): δ 1.23 (t, *J* = 7.1 Hz, 3H, CH₃CH₂O), 4.20 (c, *J* = 7.1 HZ, 2H, OCH₂CH₃), 4.83 (s, 2H, CH₂C=O),

7.26-7.33 (m, 3H, Harom), 7.78-7.83 (m, 1H, Harom), 7.88 (s, 1H, N=CH-N). RMN ¹³C (100 MHz, CDCl₃): δ 14.1 (CH₃), 46.1 (CH₂C=O), 62.2 (OCH₂CH₃), 109.3, 120.5, 122.5, 123.4, 143.5, 167.3 (C=O). EMAR (FAB⁺): calculado para C₁₁H₁₃N₂O₂ [M+H]⁺, *m/z* 205.0977; encontrado [M+H]⁺, *m/z* 205.0977.

2-(1*H*-benzo[*d*][1,2,3]triazol-1-il) acetato de etilo (E4).

Rendimiento: 58%, sólido blanco, p. f.: 77-79 °C, r.f. (Hex:AcOEt, 3:1 v/v): 0.31, RMN ¹H (400 MHz, CDCl₃): δ 1.26 (t, *J* = 7.1 Hz, 3H, CH₃CH₂) 4.25 (c, *J* = 7.1 Hz, 2H,

CH₂CH₃), 5.42 (s, 2H, CH₂C=O), 7.36-7.44 (m, 1H, Harom), 7.44-7.56 (m, 2H, Harom), 8.09 (d, *J* = 8.4 Hz, 1H, Harom). RMN ¹³C (100 MHz, CDCl₃): δ 14.06 (CH₃), 49.09 (CH₂C=O), 62.33 (OCH₂-CH₃), 109.24, 120.19, 124.12, 127.91, 133.38, 146.03, 166.37 (C=O).

2-(2*H*-benzo[*d*][1,2,3]triazol-1-il) acetato de etilo (E5).

Rendimiento: 12%, sólido blanco, p. f.: 116-119 °C, r. f.(Hex:AcOEt 3:1 v/v): 0.62, RMN ¹H (400 MHz, CDCl₃): δ 1.28 (t, *J* = 7.1 Hz, 3H, C**H**₃CH₂), 4.28 (c, *J* = 7.1 Hz, 2H,

CH₂CH₃), 5.54 (s, 2H, CH₂C=O), 7.37-7.45 (m, 2H, Harom), 7.85-7.94 (m, 2H, Harom). RMN ¹³C (100 MHz, CDCl₃): δ 13.92 (CH₃), 56.98 (CH₂C=O), 61.69 (OCH₂-CH₃), 117.95, 126.84, 144.05, 166.70 (C=O).

N-(2-hidroxietil)-2-(1*H*-pirazol-1-il) acetamida (HA1).

Rendimiento: 85%, sólido blanco, p. f.: 108-110 °C, RMN ¹H (400 MHz, CD₃OD): δ 3.35 (t, J = 5.6 Hz, 2H, CH₂NH), 3.61 (t, J = 5.6 Hz, 2H, CH₂OH), 4.89 (s, 2H, CH₂C=O), 6.36 (t, J = 2.2 Hz, 1H, CH=CH-N), 7.56 (d, J = 1.8 Hz, 1H, CH=N), 7.70 (d, J = 2.2 Hz, 1H, CH-N). RMN ¹³C (100 MHz, CD₃OD): δ 41.7 (CH₂NH), 53.6 (CH₂C=O), 59.9 (CH₂OH), 105.7, 131.7, 139.9, 1684 (C=O). (FAB⁺): calculado para C₇H₁₂N₃O₂ [M+H]⁺, *m/z* 170.0930; encontrado [M+H]⁺, *m/z* 170.0927.

(S)-N-(1-hidroxipropan-2-il)-2-(1H-pirazol-1-il) acetamida (HA2).

Rendimiento: 42%, sólido blanco, p. f.: 119-121 °C, RMN ¹H (400 MHz, CD₃OD):

(S)-N-(1-hidroxi-3-metilbutan-2-il)-2-(1H-pirazol-1-il) acetamida (HA3).

Rendimiento: 97%, sólido blanco, p. f.: 124-126 °C, RMN ¹H (400 MHz, CD₃OD):

δ 0.89 (d, J = 6. Hz, 3H, (CH₃)₂CH), 0.93 (d, J = 6.8 Hz, 3H, (CH₃)₂CH), 1.86 (m, 1H, CH(CH₃)₂), 3.54 (dd, J = 11.6,

5.2 Hz, 1H, CH₂OH), 3.59 (dd, J = 11.2, 4.4 Hz, 1H, CH₂OH), 3.68 (m, 1H, CHN),

4.88 (sistema AB, J = 13.2 Hz, 2H, CH₂C=O), 6.34 (2d, 1H, CH=CH-N), 7.53 (d, J = 1.6 Hz, 1H, CH=N), 7.68 (d, J = 2.0 Hz, 1H, CH-N). RMN ¹³C (100 MHz, CD₃OD): δ 18.8 (CH₃), 20.1 (CH₃), 30.1 (CH(CH₃)₂), 55.2 (CH*i*Pr), 58.4 (CH₂C=O), 63.1 (CH₂OH), 107.2 (CH-CH=N), 133.2 (CH-N), 139.9 (CH=N), 169.7 (C=O). EMAR (FAB⁺): calculado para C₁₀H₁₈N₃O₂ [M+H]⁺, *m/z* 212.1399; encontrado [M+H]⁺, *m/z* 212.1406.

(S)-N-(1-hidroxi-4-metilpentan-2-il)-2-(1H-pirazol-1-il) acetamida (HA4).

Rendimiento: 81%, sólido blanco, p. f.: 85-88 °C, RMN ¹H (400 MHz, CDCl₃):

δ 0.86 (dd, *J* = 6.5, 1.9 Hz, 6H, (CH₃)₂CH), 1.24-1.33 (m, 2H, CH₂CH), 1.43-1.55 (m, 1H, (CH₃)₂CH), 3.45 (dd, *J* = 11.2, 3.5 Hz, 1H, CH₂OH), 3.62 (dd, *J* = 11.3, 3.4 Hz, 1H,

CH₂OH), 4.00 (a, 1H, CHCH₂), 4.83 (sistema AB, J = 16.9 Hz, 2H, CH₂C=O), 6.33 (t, J = 1.9 Hz, 1H, CH=CH), 6.49 (d, J = 8.2 Hz, 1H, NH), 7.50 (d, J = 2.1 Hz, 1H, CH=N), 7.58 (d, J = 2.1 Hz, 1H, CH=N). RMN ¹³C (100 MHz, CD₃OD): δ 22.11 (CH₃), 22.96 (CH₃), 24.78 (CH(CH₃)₂), 39.89 (CH₂CH), 50.23 (CHCH₂), 54.90 (CH₂C=O), 65.06 (CH₂OH), 106.66 (CH=N), 131.31 (CH-N), 140.97 (CH=N), 167.66 (C=O).

(S)-N-(1-hidroxi-3-fenilpropan-2-il)-2-(1H-pirazol-1-il) acetamida (HA5).

Rendimiento: 91%, sólido blanco, p. f.: 113-114 °C, RMN ¹H (400 MHz, CD₃OD):

δ 2.73 (dd, *J* = 13.6, *J* = 8.4 Hz, 1H, CH₂Ph), 2.89 (dd, *J* = 13.6, 6.4 Hz, 1H, CH₂Ph), 3.49 (dd, *J* = 11.2, *J* = 5.6 Hz, 1H, CH₂OH), 3.54 (dd, *J* = 11.2, *J* = 4.8 Hz, 1H,

CH2OH), 4.11 (m, 1H, CHBn), 4.79 (sistema AB, J = 13.6 Hz, 2H, CH2C=O), 6.31

(m, 1H, CH-CH=N), 7.18-7.27 (m, 5H, Harom), 7.52 (d, J = 1.2 Hz, 1H, CH=N), 7.56 (d, J = 2.4 Hz, 1H, CH-N). RMN ¹³C (100 MHz, CD₃OD): δ 38.0 (CH₂Ph), 54.60 (CHBn), 55.1 (CH₂C=O), 63.9 (CH₂OH), 107.2 (CH-CH=N), 127.6, 129. 6 (2C), 130.5 (2C), 139.7 (Carom), 133.1 (CH-N), 141.2 (CH=N), 169.2 (C=O). EMAR (FAB⁺): calculado para C₁₄H₁₈N₃O₂ [M+H]⁺, *m/z* 260.1399; encontrado [M+H]⁺, *m/z* 260.1398.

N-(2-hidroxietil)-2-(1H-imidazol-1-il) acetamida (HA6).

Rendimiento: 99%, sólido blanco, p. f.: 124-126 °C, RMN ¹H (400 MHz, CD₃OD):

(S)-N-(1-hidroxipropan-2-il)-2-(1H-imidazol-1-il) acetamida (HA7).

Rendimiento: 70%, sólido blanco, p. f.: 172-173 °C, RMN ¹H (400 MHz, CD₃OD):

δ 1.14 (d, J = 6.8 Hz, 3H, CH₃CH), 3.47 (dd, J = 11.2, 5.2 Hz, 1H, CH₂OH), 3.51 (dd, J = 11.2, 5.2 Hz, 1H, CH₂OH),

3.95 (m, 1H, CHCH₃), 4.72 (s, 2H, CH2-C=O), 6.97 (a, 1H, CH=CH-N), 7.10 (a, 1H, CH=CH-N), 7.65 (a, 1H, N=CH-N). RMN ¹³C (100 MHz, CD₃OD): δ 17.1 (CH₃), 30.0 (CH₂C=O), 50.4 (CHCH₃) 66.0 (CH₂OH), 121.9, 129.0, 139.6, 169.0

(C=O). EMAR (FAB⁺): calculado para C₈H₁₄N₃O₂ [M+H]⁺, *m/z* 184.1086; encontrado [M+H]⁺, *m/z* 184.1092.

(*S*)-*N*-(1-hidroxi-3-metilbutan-2-il)-2-(1*H*-imidazol-1-il) acetamida (HA8). Rendimiento: 43%, sólido blanco, p. f.: 174-176 °C, RMN ¹H (400 MHz, CD₃OD):

δ 0.91 (d, J = 7.2 Hz, 3H, (CH₃)₂CH), 0.94 (d, J = 7.2 Hz,
3H, (CH₃)₂CH), 1.86 (m, 1H, CH(CH₃)₂), 3.55 (dd, J = 11.2,
6.4 Hz, 1H, CH₂OH), 3.63 (dd, J = 11.6, 4.4 Hz, 1H,

CH₂OH), 3.71 (m, 1H, CHN), 4.76 (sistema AB, J = 13.2 Hz, 2H, CH₂C=O), 6.98 (s, 1H, CH=CH-N), 7.12 (s, 1H, CH=CH-N), 7.67 (s, 1H, N=CH-N). RMN ¹³C (100 MHz, CD₃OD): δ 18.9 (CH₃), 20.1 (CH₃), 30.2 [CH(CH₃)₂], 50.5 (CH₂C=O), 58.5 (CHNH), 63.1 (CH₂OH), 121.9, 129.1, 139.6, 169.5 (C=O). EMAR (FAB⁺): calculado para C₁₀H₁₈N₃O₂ [M+H]⁺, *m/z* 212.1399; encontrado [M+H]⁺, *m/z* 212.1393.

(S)-N-(1-hidroxi-4-metilpentan-2-il)-2-(1H-imidazol-1-il) acetamida (HA9).

Rendimiento: 88%, sólido blanco, p. f.: 162-164 °C, RMN ¹H (400 MHz, CD₃OD):

δ 0.94 (dd, *J* = 13.7, 6.6 Hz, 6H, (CH₃)₂CH), 1.32-1.48 (m, 2H, CH₂CH), 1.57-1.72 (m, 1H, CH(CH₃)₂), 3.51 (ddd, *J* = 16.8, 11.1, 5.3 Hz, 2H, CH₂OH), 4.01 (dc, *J* = 10.2, 5.2

Hz, 1H, CHCH₂), 4.77 (sistema AB, *J* = 16.1 Hz, 2H, CH₂C=O), 7.01 (s, 1H, N=CH), 7.12 (s, 1H, CH-N), 7.69 (s, 1H, N-CH). RMN ¹³C (100 MHz, CD₃OD): δ 21.00 (CH₃), 22.33 (CH₃), 24.58 (CH(CH₃)₂), 39.70 (CH₂CH), 49.00 (CH₂C=O), 49.72 (CHCH₂), 63.95 (CH₂OH), 120.33 (CH-N), 127.90 (CH-N), 138.00 (N=CH),

167.58 (**C**=O). EM (FAB⁺): calculado para C₁₁H₂₀N₃O₂ [M+H]⁺, *m/z* 226; encontrado [M+H]⁺, *m/z* 226.

(*S*)-*N*-(1-hidroxi-3-fenilpropan-2-il)-2-(1*H*-imidazol-1-il) acetamida (HA10). Rendimiento: 62%, sólido blanco, p. f.: 189-190 °C, RMN ¹H (400 MHz, CD₃OD):

δ 2.72 (dd, *J* = 13.6, 8.4 Hz, 1H, CH₂Ph), 2.92 (dd, *J* = 14.0, 6.0 Hz, 1H, CH₂Ph), 3.52 (dd, *J* = 10.8, 5.6 Hz, 1H, CH₂OH), 3.58 (dd, *J* = 10.8, 4.8 Hz, 1H, CH₂OH),

4.14 (m, 1H, CHBn), 4.63 (sistema AB, *J* = 16.0 Hz, 2H, CH₂C=O), 6.94 (a, 2H, CH=CH-N), 7.19-7.28 (m, 5H, Harom), 7.53 (s, 1H, N=CH-N). RMN ¹³C (100 MHz, CD₃OD): δ 38.0 (CH₂-Ph), 50.3 (CH₂C=O), 54.5 (CHBn), 64.0 (CH₂OH), 121.6, 127.5 (2C), 128.9, 129.5 (2C), 130.3 (2C), 139.6, 168.9 (C=O). EMAR (FAB⁺): calculado para C₁₄H₁₈N₃O₂ [M+H]⁺, *m/z* 260.1399; encontrado [M+H]⁺, *m/z* 260.1398.

2-(1H-benzo[d]imidazol-1-il)-N-(2-hidroxietil) acetamida (HA11).

Rendimiento: 68%, sólido blanco, p. f.: 208-210 °C, RMN ¹H (400 MHz, DMSO $ightarrow field (M, 2H, CH_2)$ (M, 2H, CH₂OH), 3.38 (a, 1H, OH), $ightarrow field (M, 2H, CH_2OH)$, 4.93 (s, 2H, CH₂C=O), 7.18-7.26 (m, 2H, Harom), 7.44 – 7.46 (m, 1H, Harom), 7.64 – 7.66 (m, 1H, Harom), 8.17 (s, 1H, N=CH-N), 8.40 (t, J = 5.4 Hz, 1H, NH). RMN ¹³C (100 MHz, DMSO- d_6): δ 42.2 (CH₂NH), 47.3 (CH₂C=O), 60.1 (CH₂-OH), 110.6, 119.8, 121.9, 122.8, 134.8, 143.7, 145.3, 167.1 (N=CH) (C=O). EMAR (CI⁺): calculado para C₁₁H₁₄N₃O₂ [M+H]⁺, m/z 220.1086; encontrado [M+H]⁺, m/z 220.1085. (*S*)-2-(1*H*-benzo[*d*]imidazoI-1-il)-*N*-(1-hidroxipropan-2-il) acetamida (HA12). Rendimiento: 53 %, sólido blanco, p. f.: 208 - 209 °C, RMN ¹H (400 MHz, DMSO-

 $\begin{array}{c} \begin{array}{c} & & & \\ & &$

(S)-2-(1*H*-benzo[*d*]imidazol-1-il)-*N*-(1-hidroxi-3-metilbutan-2-il) acetamida (HA13).

Rendimiento: 39 %, sólido blanco, p. f.: 214 - 217 °C, RMN ¹H (400 MHz, DMSO-

(S)-2-(1*H*-benzo[*d*]imidazol-1-il)-*N*-(1-hidroxi-4-metilpentan-2-il) acetamida (HA14).

Rendimiento: 68 %, sólido blanco, p. f.: 185 - 187 °C, RMN ¹H (400 MHz, CD₃OD):

δ 0.90 (d, *J* = 6.5 Hz, 3H, (CH₃)₂CH), 0.95 (d, *J* = 6.7 Hz, 3H, (CH₃)₂CH), 1.32 – 1.50 (m, 2H, CH₂CH), 1.59 – 1.70 (m, 1H, CH(CH₃)₂), 3.52 (dc, *J* = 11.1, 5.4 Hz,

2H, CH₂OH), 4.03 (dc, *J* = 10.1, 5.1 Hz, CH-NH), 5.02 (sistema AB, *J* = 16.4 Hz, 2H, CH₂C=O), 7.26 – 7.36 (m, 2H, Harom), 7.46 – 7.51 (m, 1H, Harom), 7.67 (m, 1H, Harom), 8.18 (s, 1H, N=CH). RMN ¹³C (100 MHz, CD₃OD): δ 20.82 ((CH₃)₂CH), 22.30 (CH(CH₃)₂), 24.57 (CH₂CH), 39.67 (CHCH₂), 49.79 (CH₂C=O), 64.00 (CH₂OH), 109.84, 118.75, 122.29, 123.02, 133.91, 142.49, 144.32 (N=CH), 167.40 (C=O). EMAR (EI⁺): calculado para C₁₅H₂₂N₃O₂ [M+H]⁺, *m/z* 276.1712; encontrado [M+H]⁺, *m/z* 276.1696.

(*S*)-2-(1*H*-benzo[*d*]imidazol-1-l)-*N*-(1-hidroxi-3-fenilpropan-2-il) acetamida (HA15).

Rendimiento: 78 %, sólido blanco, p. f.: 225 - 226 °C, RMN ¹H (400 MHz, DMSO-

*d*₆): δ 2.67 (dt, J = 15.1 Hz, 1H, CH₂Ph), 2.88 (dt, J = 12.1 Hz, 1H, CH₂Ph), 3.19 (dd, J = 10.4, 6.5 Hz, 1H, CH₂OH), 3.29 (dd, J = 10.4, 4.8 Hz, 1H,

CH₂OH), 3.88 - 4.01 (m, 1H, CH-NH), 4.90 (sistema AB, J = 16.2 Hz, 2H, CH₂C=O), 7.15 - 7.24 (m, 5H, Harom), 7.23 - 7.32 (m, 2H, Harom), 7.57 - 7.67 (m, 2H, Harom), 8.09 (s, 1H, N=CH-N), 8.37 (d, J = 8.5 Hz, 1H, NH). RMN ¹³C (100 MHz, CD₃OD): δ 36.59 (CH₂Ph), 46.88 (CH₂C=O), 54.44 (CH-NH), 65.60 (CH₂OH), 110.18, 119.23, 121.41, 122.25, 125.79, 125.98, 129.10, 134.10,
138.92, 139.72, 143.17, 144.79 (N=CH), 165.96 (C=O). EMAR (FAB⁺): calculado para C₁₈H₂₀N₃O₂ [M+H]⁺, *m/z* 310.1556; encontrado [M+H]⁺, *m/z* 310.1544.

2-(1*H*-benzo[*d*][1,2,3]triazol-1-il)-*N*-(2-hidroxietil) acetamida (HA16).

Rendimiento: 91 %, sólido blanco, p. f.: 187 - 190 °C, RMN ¹H (400 MHz, DMSO-

 $\begin{array}{c} \begin{array}{c} & & & \\ & &$

(S)-2-(1H-benzo[d][1,2,3]triazol-1-il)-N-(1-hidroxipropan-2-il) acetamida (HA17).

Rendimiento: 83 %, sólido blanco, p. f.: 197 - 200 °C, RMN ¹H (400 MHz, DMSO-

 $\begin{pmatrix} N = N & 0 & 0 \\ M = N & 0 & 0 \\ M & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} d_{0} \\ d_{0} \\$

(S)-2-(1*H*-benzo[*d*][1,2,3]triazol-1-il)-*N*-(1-hidroxi-3-metilbutan-2-il) acetamida (HA18).

Rendimiento: 93 %, sólido blanco, p. f.: 226 - 228 °C, RMN ¹H (400 MHz, DMSO-

(*S*)-2-(1*H*-benzo[*d*][1,2,3]triazol-1-il)-*N*-(1-hidroxi-4-metilpentan-2-il) acetamida (HA19).

Rendimiento: 94 %, sólido blanco, p. f.: 150 - 154 °C, RMN ¹H (400 MHz, DMSO-

*d*₆): δ 0.82 (d, *J* = 6.5 Hz, 3H, (CH₃)₂-CH), 0.89 (d, *J* = 6.6 Hz, 3H, (CH₃)₂-CH), 1.34 (t, *J* = 7.2 Hz, 2H, CH₂-CH), 1.55 - 1.71 (m, 1H, CH-(CH₃)₂), 3.28 - 3.44 (m,

2H, CH₂-OH), 3.76 – 3.87 (m, 1H, CH-NH), 4.77 (t, J = 5.6 Hz, 1H, OH), 5.44 (sistema AB, J = 16.3 Hz, 2H, CH₂-CO), 7.34 – 7.45 (m, 1H, Harom), 7.50 – 7.58 (m, 1H, Harom), 7.74 (d, J = 8.4 Hz, 1H, Harom), 8.04 (d, J = 8.6 Hz, 1H, Harom), 8.25 (d, J = 8.6 Hz, 1H, NH). RMN ¹³C (100 MHz, DMSO-*d*₆): δ 21.85 (CH₃), 23.32

(CH₃), 24.26 (**C**H-(CH₃)₂), 39.97, (**C**H₂-CH), 49.26 (CH-NH), 50.06 (CH₂C=O), 63.63 (CH₂-OH), 110.91, 119.01, 123.83, 127.20, 133.68, 145.10, 165.10 (**C**=O).

(*S*)-2-(1*H*-benzo[*d*][1,2,3]triazol-1-il)-*N*-(1-hidroxi-3-fenilpropan-2-il) acetamida (HA20).

Rendimiento: 60 %, sólido blanco, p. f.: 208 - 209 °C, RMN ¹H (400 MHz, CD₃OD):

δ 2.68 (dd, J = 13.3, 8.7 Hz, 1H, CH₂Ph), 2.89 (dd, J = 13.4, 5.1 Hz, 1H, CH₂Ph), 3.42 (m, 2H, CH₂OH), 3.96 (m, 1H, CHNH), 4.94 (a, 1H, OH), 5.38

(sistema AB, J = 16.3, 2H, CH₂C=O), 7.23 – 7.47 (m, 8H, Harom), 8.03 (d, J = 8.2 Hz, 1H, Harom), 8.47 (d, J = 8.2 Hz, 1H, NH). RMN ¹³C (100 MHz, CD₃OD): δ 36.6 (CH₂Ph), 50.0 (CHBn), 52.9 (CH₂C=O), 62.5 (CH₂OH), 110.8, 119.0, 123.8, 126.0, 127.2, 128.2, 129.2, 133.5, 139.0, 145.1, 165.0 (C=O). EMAR (FAB⁺): calculado para C₁₇H₂₀N₄O₂ [M+H]⁺, *m/z* 312.1586; encontrado [M+H]⁺, *m/z* 312.1587.

2-(2H-benzo[d][1,2,3]triazol-2-il)-N-(2-hidroxietil) acetamida (HA21).

Rendimiento: 58 %, sólido blanco, p. f.: 149 - 150 °C, RMN ¹H (400 MHz, DMSO-

*d*₆): δ 3.21 (c, *J* = 5.8 Hz, 2H, CH₂NH), 3.47 (c, *J* = 5.7 Hz, 2H, CH₂OH), 4.80 (t, *J* = 5.3 Hz, 1H, OH), 5.48 (s, 1H, CH₂C=O), 7.40 - 7.50 (m, 2H, Harom), 7.87 - 7.98

(m, 2H, Harom), 8.47 (t, *J* = 5.1 Hz, 1H, NH). RMN ¹³C (100 MHz, DMSO-*d*₆): δ 41.79 (CH₂NH), 58.35 (CH₂C=O), 59.58 (CH₂OH), 117.87, 126.49, 143.95, 164.95 (C=O). EMAR (EI⁺): calculado para C₁₀H₁₃N₄O₂ [M+H]⁺, *m/z* 221.1039; encontrado [M+H]⁺, *m/z* 221.0884.

(S)-2-(2H-benzo[d][1,2,3]triazol-2-yl)-N-(1-hidroxipropan-2-il) acetamida (HA22).

Rendimiento: 46 %, sólido blanco, p. f.: 170 - 173 °C, RMN ¹H (400 MHz, DMSO-

*d*₆): δ 0.88 (d, *J* = 6.6 Hz, 3H, CH₃), 3.44 (dd, *J* = 6.5, 5.4 Hz, 2H, CH₂OH), 3.55 - 3.64 (m, 1H, CH-CH₃), 5.51 (sistema AB, *J* = 15.5 Hz, 2H, CH₂C=O), 7.40 -

7.51 (m, 2H, Harom), 7.86 – 8.00 (m, 2H, Harom), 8.16 (d, J = 8.9 Hz, 1H, NH). RMN ¹³C (100 MHz, DMSO- d_6): δ 18.13 (CH₃), 56.22 (CH₃-CH), 58.39 (CH₂C=O), 61.12 (CH-OH), 117.85, 126.44, 143.92, 164.75 (C=O).

(*S*)-2-(2*H*-benzo[*d*][1,2,3]triazol-2-il)-*N*-(1-hidroxi-3-metilbutan-2-il) acetamida (HA23).

Rendimiento: 47 %, sólido blanco, p. f.: 166 - 169 °C, RMN ¹H (400 MHz, DMSO-

*d*₆): δ 0.88 (d, J = 6.8 Hz, 6H, (CH₃)₂CH), 1.78 – 1.94 (m, 1H, CH(CH₃)₂), 3.44 (t, J = 5.5 Hz, 2H, CH₂OH), 3.54 – 3.65 (m, 1H, CH-NH), 4.70 (t, J = 5.4 Hz, 1H,

OH), 5.51 (sistema AB, *J* = 15.5 Hz, 2H, CH₂C=O), 7.42 – 7.50 (m, 2H, Harom), 7.89 – 7.98 (m, 2H, Harom), 8.16 (d, *J* = 8.9 Hz, 1H, NH).). RMN ¹³C (100 MHz, DMSO-*d*₆): δ 19.57 (CH₃)₂CH), 28.29 (CH₃)₂CH), 56.21 (CH₂C=O), 58.38 (CH-NH), 61.12 (CH₂OH), 117.85, 126.43, 143.91, 164.73 (C=O).

(*S*)-2-(2*H*-benzo[*d*][1,2,3]triazol-2-il)-*N*-(1-hidroxi-4-metilpentan-2-il) acetamida (HA24).

Rendimiento: 99 %, sólido blanco, p. f.: 140 - 142 °C, RMN ¹H (400 MHz, DMSO-

*d*₆): δ 0.86 (d, *J* = 6.5 Hz, 3H, (CH₃)₂CH), 0.89 (d, *J* = 6.6 Hz, 3H, (CH₃)₂CH), 1.29 - 1.38 (m, 2H, CH₂-*i*Pr), 1.56 - 1.72 (m, 1H, CH(CH₃)₂), 3.24 - 3.43 (m, 2H,

CH₂OH), 3.75 - 3.87 (m, 1H, CH-NH), 4.77 (t, J = 5.6 Hz, 3H, OH), 5.46 (sistema AB, J = 15.5 Hz, 2H, CH₂C=O), 7.41 - 7.48 (m, 2H, Harom), 7.88 - 7.97 (m, 2H, Harom), 8.18 (d, J = 8.6 Hz, 1H, NH). RMN ¹³C (100 MHz, DMSO-*d*₆): δ 21.89 ((CH₃)₂CH), 23.29 ((CH₃)₂CH), 24.22 (CH(CH₃)₂), 39.98 (CH-*i*Pr), 49.30 (CH-NH), 58.35 (CH₂C=O), 63.55 (CH₂OH), 117.85, 126.44, 143.92, 164.42 (C=O).

(S)-2-(2H-benzo[d][1,2,3]triazol-2-il)-N-(1-hidroxi-3-fenilpropan-2-il) acetamida (HA25).

Rendimiento: 22 %, sólido blanco, p. f.: 110 - 112 °C, RMN ¹H (400 MHz,

CD₃OD): δ 2.80 (dd, *J* = 13.7, 7.9 Hz, 1H, CH₂Ph), 2.94 (dd, *J* = 13.7, 7.6 Hz, 1H, CH₂Ph), 3.58 (dc, *J* = 11.2, 5.2 Hz, 2H, CH₂OH), 4.09 – 4.20 (m, 1H,

CHBn), 5.43 (sistema AB, J = 15.6 Hz, 2H, CH₂C=O), 7.14 – 7.28 (m, 5H, Harom), 7.46 (dd, J = 6.6, 3.1 Hz, 2H, Harom), 7.88 (dd, J = 6.6, 3.1 Hz, 2H, Harom. RMN ¹³C (100 MHz, CD₃OD): δ 36.38 (CH₂Ph), 53.28 (CH₂C=O), 58.01 (CHBn), 62.30 (CH₂OH), 117.58, 126.00, 127.99, 128.90, 138.00, 144.53, 165.85 (C=O). EMAR (EI⁺): calculado para C₁₇H₁₉N₄O₂ [M+H]⁺, *m/z* 311.1508; encontrado [M+H]⁺, *m/z* 311.1334.

RESUMEN AUTOBIOGRÁFICO

Annel Cruz Iztetzi

Candidato para obtener el grado de Maestro en Ciencias con orientación en Farmacia.

Tesis: SÍNTESIS, CARACTERIZACIÓN Y EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA Y ANTICANCERÍGENA DE β -HIDROXIACETAMIDAS.

Campo de estudio: Farmacia

Biografía:

Nacida en Contla de Juan Cuamatzi, Tlaxcala, México el 30 de marzo del 1989, hija de Vicente Cruz Cruz y Sofía Iztetzi Vázquez.

Educación:

Egresada de la carrera de Ingeniería Química por la Universidad Politécnica de Tlaxcala en el año 2011.