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COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE

DOCTOR EN INGENIERÍA
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OBJECTIVE AND METHODOLOGY OF THE STUDY: The objective of this research is

the study and the optimization of the Location-Inventory Problem (LIP). This problem

defines how many facilities to locate, where to locate them, which retailers they serve,

how manage their inventory, so as to minimize the total cost, while ensuring a specified

service level.

Because of the nature of the problem, an extensive variety of models can be gener-

ated. The problem addressed in this thesis consists on a mono-product supply chain of two

echelons formed by a set of plants, a set of distribution centers, and a set of retailers. The

most distinctive features are the stochastic demand, the consideration of multiple plants

and the inventory measurement in each selected facility. The inclusion of several plants

x
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involves the presence of allocation decisions. In our case they are limited as single source,

which means that each demand point should be serviced by a single supply point.

This study provides the computational complexity proof of LIP, the mathematical

formulation of the problem and some exact techniques for solving it. In the complexity

proof, we demonstrate that the decision version of the Location-Inventory Problem is NP-

complete by building a reduction from the Bin Packing Problem, revealing that LIP is

at least as difficult as the Bin Packing Problem. As consequence the Location-Inventory

Problem is NP-hard.

Regarding to the mathematical formulation, we present a Mixed Integer Nonlinear

Problem (MINLP), which is demonstrated to be nonconvex. Therefore, two reformula-

tions are developed, one, still, a Mixed Integer Nonlinear Problem (MINLP2) and one as a

Mixed Integer Linear Problem (MILP). The nonlinear terms in MINLP2 are treated by ap-

proximations made through the secant and the pieciwese method. Concerning the MILP,

it is solved by a column generation technique.

Finally, we conduct an analysis for evaluating the behavior of the supply chain, and

also the robustness of the solution against the uncertainty. To do that we performed a

simulation that generates different sizes of demand and evaluates the feasibility of the

optimal solutions to the new demand values.

CONTRIBUTIONS AND CONCLUSIONS: The importance of the presented work consists

on the integration of elements that, as far as we know, have not been addressed together

in the literature. This integration allows to study more practical situations, but resulted

in a much more complex problem, mainly due to the consideration of several plants with

different parameters, the stochastic demands and the capacitated locations. Moreover,

inventory management involve necessarily nonlinear terms, which make the problem even

harder to solve.

Some papers involve multiple plants, but they assume that the value of their param-

eters such as delivery time, shipping cost or production capacity are the same for all the
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plants. This assumption make the allocation decisions indistinct and therefore, greatly

simplifies the problem

In addition, none of the published works formally demonstrated the computational

complexity of the general problem. It is also an important contribution of this research.

The result that LIP is NP-hard suggests that any exact algorithm may fail to solve large in-

stances, nevertheless, the strategic nature of the problem indicates that an optimal solution

is valuable, since the savings between an optimal and other feasible solution can represent

a large amount of money. For that reason, we decided to explore exact solution methods.

The mathematical models are also a contribution. On one side, the reformulations

allow to solve the problem, to optimality or near to optimality, directly with an solver

without the need of decomposing the problem. On the other side, the column generation

takes advantages of the structure of the problem.

Computational experiments evaluate the techniques, showing that the approximation

by piecisewise method generates the best results, i.e., good solutions in a reasonable time.

When the instances to be solved are not too large and when the CPU time is not limited,

MILP model developed in this thesis can be used.

Firma del asesor:

Dra. Ada Margarita Álvarez Socarrás



CHAPTER 1

INTRODUCTION

In a competitive world, companies must ensure an efficient use of their resources. This

can be achieved by the integration of the productive actors along with the decision-making

coordination at all levels in the supply chain. In this work we study the interactions be-

tween tactical and strategic decisions; concretely location and inventory decisions in a

mono-product supply chain.

Location decisions involve determining the number, location, and size of the facil-

ities to be used. They are typically classified as strategic decisions because they involve

large monetary investments and long-lasting effect on supply-chain performance. Several

studies (Gilmore, 2014) have been conducted to conclude that around 80% of the cost of

a supply chain is locked in its initial design.

The inventory decisions, on the other hand, hold the key to success of physical

distribution, so they affect the finances and the competitive advantage of a company. In

Mexican companies, by instance, according to data from the company A.T. Kearney 1

cited by the Secretary of Economy 2, the logistic costs represent the 10.3% of their sales,

of which the 40% corresponds to transportation cost and the 60% to inventories, order

processing, storage and distribution management.

Location and inventory decisions are correlated in the costs. For example, many

1http://www.atkearney.com.mx/
2http://www.gob.mx/se/

1

http://www.atkearney.com.mx/
http://www.gob.mx/se/


CHAPTER 1. INTRODUCTION 2

distribution centers reduce the cost of transporting product to customers and it will provide

better service, but having few distribution centers reduces the cost of holding inventory via

pooling effects, and reduces the fixed costs associated with operating distribution centers

via economies of scale (Erlebacher and Meller, 2000). Integrating both decisions into

the Location-Inventory Problem (LIP), the goal is to determine how many facilities to

locate, where to locate them, which clients to assign to each facility, how often to reorder

the product, and what level of stock to maintain, so as to minimize the total cost, while

ensuring a specified service level. The problem applies in a company when the following

questions arise:

• Is the number of depots ideal?

• Should some facilities be relocated, opened or closed?

• Is the product moving in the best way?

• Is it necessary to adjust the capacity of some facilities?

These questions are more relevant in presence of high variability demand, since that pro-

duces high levels of inventories, therefore, the location selection is affected by the assign-

ment of clients and the demand variability.

Because of the nature of the problem, an extensive variety of models can be gener-

ated. They may vary substantially based upon the assumptions considered such as: loca-

tion area (discrete or continuous), facilities features (capacitated or uncapacitated), costs

(variable, fixed, economies of scale), product demand (stochastic or deterministic), inven-

tory review (continuous or periodic), etc. Therefore, the literature on Location-Inventory

Problems is extensive. Farahani et al. (2015) present a wide survey of recent works.

We study a specific problem that arises in a mono-product supply chain of two level

networks, consisting of a set of plants, a set of candidate distribution centers and a set of

retailers. The aim is to select suitable distribution centers in order to meet the demand at

the lowest possible cost. The most distinctive features are:

• Optimization by cost, ignoring the geographic location of facilities.

• Stochastic demands in retailers and distribution centers. This type of demand is



CHAPTER 1. INTRODUCTION 3

caused by ups and downs in demand without a clear tendency. It is a crucial deter-

minant of supply chain performance.

• Single source constraint. Each selected distribution center must be supplied by a

single plant (first echelon) and each retailer should be serviced by a single distribu-

tion center (second echelon). This consideration plays a significant role for several

computational methods, nevertheless, it is a common policy that offers advantages

as reduced managerial coordination complexity, decreased need for information sys-

tems integration between source facilities, and guaranteed customer service.

• The inventory management in each selected facility: we use the variant of the

Economic Order Quantity EOQ model developed by Axsäter (1996), in which the

stochastic demand is represented by its mean value. Define the reorder point and the

quantity of order, which affect in having excessive or insufficient stock to be able to

meet the demand.

• Limited capacity in the distribution centers, which is the reason for considering the

highest possible level of inventory, i.e., estimated inventory at the moment a new

order of the product arrives.

• The presence of multiple plants producing allocation decisions, in our case as single

source constraints.

An example is shown in the Figure 1.1. There, two distribution centers (hereinafter

referred to as DC) are selected, each retailer is assigned to one of them, and each DC is

supplied by only a single plant. Notice that neither the full set of the plants nor the full set

of DC is used.
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Plants

DC

Retailers

Figure 1.1: Elements in the supply chain

1.1 OBJECTIVES

The main objective of this research is to contribute to the state of the art of the the

Location-Inventory Problem, to prove its computational complexity and to develop an

exact algorithm to solve it. The specific objectives are the following:

• To prove the computational complexity of the problem.

• To formulate a mathematical model and validate it.

• To develop exact algorithms and evaluate them.

1.2 DISSERTATION STRUCTURE

The remainder of this dissertation is organized as follows. Chapter 2 recalls the main

concepts for the understanding of the research, these are: principles of inventory manage-

ment, mixed integer nonlinear programming, and column generation method. The state

of art is presented in Chapter 3, meanwhile Chapter 4 is dedicated to the mathematical
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formulation of the problem. The computational complexity is studied in Chapter 5, the

methodology proposed is explained in Chapter 6 and 7, showing the approximation devel-

oped and the column generation technique, respectively. The computational experiments

are reported in Chapter 8 followed by the conclusions in Chapter 9.



CHAPTER 2

BACKGROUND

In this chapter, we present the theory for the understanding of the work. The topics are ex-

posed in three categories: Inventory management, Mixed Integer Nonlinear Programming,

and Column Generation.

2.1 INVENTORY THEORY

The main goal of inventory management is to meet the demand at the lowest possible

cost. Even for high standards of demand attention, the inventory can not be excessive,

since there are monetary and capacity limitations. In this section, inventory management

is discussed, focusing on two aspects: the definition of an inventory policy and the com-

pliance with the storage capacity.

2.1.1 INVENTORY POLICY

Inventory policy states two basic questions that must be answered in order to satisfy the

demand: how much to order (known as order quantity) and when to order (known as

reorder point). The most common inventory model is the Economic Order Quantity Model

(EOQ) developed by F. W. Harris of General Electric. The EOQ consists of a formula for

6
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Total of  fixed and holding cost

Holding cost

Fixed cost

Order quantityQ

Cost

Figure 2.1: Fixed and holding costs as functions of the order quantity.

calculating the optimal order quantity that minimizes the sum of holding cost and ordering

cost with the following assumptions (Muller, 2011):

• the demand rate is constant and known,

• the carrying cost and ordering cost are independent of the quantity ordered (no

discounts),

• the lead time, the time that elapses between placing an order and actually receiving

it, is constant and known,

• orders arrive in a single batch (no vendor stockouts or backorders).

Within an irregular market behavior, namely in the presence of uncertainty, these as-

sumptions do not reflect practical cases. Hence, complicated variations of the basic model

have been developed. Nonetheless, Zheng (1992) and Axsäter (1996) demonstrated that

EOQ model produces a very good approximation for working inventory costs of systems

under uncertainty of demand, so the EOQ is still widely used (Alhaj et al., 2016; Chuang

and Chiang, 2016; Muriana, 2016; Roy et al., 2016; Sana, 2015).

Order quantity (Q) is the amount of product to order from the supplier. The goal is

to optimize the compromise between ordering and holding costs. The average annual fixed

order cost decreases as Q increases because fewer orders are placed. On the other hand,

the average annual holding cost increases as Q increases since units remain in inventory
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longer. Thus, the order quantity affects the two types of costs in opposite ways. The

annual fixed ordering cost is minimized by making Q as large as possible, but the holding

cost is minimized by having Q as small as possible (Muckstadt and Sapra, 2010), as shown

in Figure 2.1.

Reorder point (R) is the inventory level at which an order should be placed. It has

to be high enough to satisfy the demand until the new order arrives. It depends on the

demand and the lead time; when these parameters are unknown, meeting the demand can

only be achieved with some probability. To analyze that, we study the inventory by cycles,

which is defined as the time between two successive-order arrivals. Observe Figure 2.2,

when the reorder point and the order quantity (Q) are fixed but the demand is uncertain,

stockout and excess inventory may occur in the inventory cycles (IC1, IC2, · · · , ICi), even

when the lead time (LT ) is known and constant. In the figure, during the first inventory

cycle (IC1), the reorder point is less than the demand causing stockout, but it is not the

case for the other cycle.

The desired probability of fulfilling the demand during the lead time is called service

level and it is used for calculating the appropriate stock to protect against the variance

in lead-time demand (to mitigate risk of stockout). This stock, called safety stock (S),

is defined as a function of the service level in such a way that the higher the desired

service level is, the more safety stock needs to be held and consequently, the involved

costs (maintenance, transportation, and holding costs) are also higher. So, the reorder

point (R) is then the sum of the expected lead-time demand (D
′
) plus the safety stock:

R = D
′
+S. (2.1)

2.1.2 STORAGE CAPACITY LIMITATION

Because of the uncertainty on the demand, the product in stock may not be entirely con-

sumed, in some cases, the excess of the storage capacity may be present. As a conse-
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Figure 2.2: Evolution of inventory level at the distribution center. Adapted from Miranda et al.

(2009).

quence, unnecessary costs are incurred in storage, insure, interests, taxes, etc. Depending

on the specific industry and the actions taken to deal with this matter, other effects are

produced. For example, in technology industries, usually the prices rapidly drop and hav-

ing excess inventory implies losses; in other industries, the excess inventory may violate

safety regulations resulting in fines. In either case, enforcing the storage limitations is a

good business practice, both for keeping costs low and for facilitating inventory manage-

ment, particularly for high-value items.

In summary, the inventory policy should consider not only stockout, but also the

possibility of exceeding the storage capacity. This may happen upon the arrival of a new

order, as shown in Figure 2.2. The key decision is the reorder-point magnitude: if the

demand during lead time is lower than the expected, the arrival of the new order may

exceed the capacity. We capture this consideration in the capacity constraint, formalized

in Section 4.2.2.
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2.2 MIXED INTEGER NONLINEAR PROGRAMMING

Typically, models for the Location-Inventory Problem involve nonlinearity associated to

the safety stock cost and integer variables associated to location decisions, causing mixed

integer nonlinear programming models (MINLP). Geometrically, nonlinear programs can

behave much differently from linear programs, mainly the optimal solution can occur:

(a) at an interior point of the feasible region;

(b) on the boundary of the feasible region, but no an extreme point; or

(c) at an extreme point of the feasible region.

Consequently, algorithms such as the simplex method, that search only extreme points

may not determine an optimal solution.

The tractability of these problems depends significantly on whether the objective

function and the constraints are convex or not and if the model has a combinatorial and

integer domain. Generally, nonlinear problems are non convex and it is difficult to reach

optimality (Bussieck and Vigerske, 2010). Moreover, it is known that MINLP models are

NP-hard (Kannan and Monma, 1978), it is so often, that linear programming models are

preferable over non linear programming models.

2.2.1 MINLP SOLVER SOFTWARE

Algorithms for solving MINLP models are often built by combining algorithms from Lin-

ear Programming, Integer Programming, and Nonlinear Programming, e.g., branch and

bound, outer approximation, local search, global optimization. Most of the solvers imple-

ment one (or several) of three algorithmic ideas to tackle MINLP models (Bussieck and

Vigerske, 2010). In case of a nonconvex MINLP, these solvers can still be used as heuris-

tic. Especially branch and bound techniques that use nonlinear programming for bounding

often find good solutions also for nonconvex problems, while pure outer approximation
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based algorithms may easily run into infeasible linear programming or MIP relaxation due

to wrong cutting planes.

The basic purpose of the solvers is to find a solution – that is, values for the decision

variables in the model – that satisfies all of the constraints and maximizes or minimizes

the value of the objective function (if there is one). The kind of solution one can expect,

and how much computing time may be needed to find a solution, depends primarily on

the next characteristics of the model:

• Model size, number of decision variables and constraints,

• type of variables,

• type of functions,

• other issues as scaling, convexity, definition of the parameters, etc.

According to Bussieck and Vigerske (2010) the earliest commercial software pack-

age that could solve MINLP problems was SCICONIC in the mid 1970s. It links Special-

Ordered-Set variables provided a mechanism to represent low dimensional nonlinear terms

by a piecewise linear approximation and thus allowed to use mixed-integer linear pro-

gramming (MIP) to obtain solutions to an approximation of the MINLP. In 1980 Gross-

mann and Kocis developed DICOPT, a general purpose algorithm for convex MINLP based

on the outer approximation method. Since then, a number of academic and commercial

codes for convex MINLP have emerged, either based on outer approximation using MIP

relaxations, an integration of outer approximation into a linear programming (LP) relax-

ation based branch and cut, or nonlinear programming (NLP) relaxation based branch and

bound algorithms. For the global solution of nonconvex MINLP, the first general purpose

solvers were alphaBB, BARON, and GLOP, all based on convexification techniques for

nonconvex constraints.

While state of art MIP solvers typically implement advanced automatic reformula-

tion and preprocessing algorithms, such techniques are less commonly available in MINLP

solvers, and in a limited form. Therefore, the modelers choice of problem formulation is

still very important when solving an MINLP.
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Table 2.1: MINLP solvers
Solver Optimality scope Algorithms Other characteristics Developer

Global Local B* OAA Other of the algorithms

AlphaECP CM & PM Extended cutting

plane

MIP is redefined by linearizing non-

linear constraint at solutions of the

MIP outer approximation

R. G of T. Westerlund in Abo

Akademic University, Fin-

land

Dicopt CM X Used NLP relaxation & MIP Carnegie Mellon University

SBB CM X Handle discrete variable (NLP &

MIP)

ARKI Consulting & Devel-

opment A/S.

AlphaBB* CM & NM X R.G. of C. Fludas in Princen-

ton University

Baron* CM & NM X CTNF Carnegie Mellon University

& Purdue University

GLOP* X

Couenne CM & NM CTNF Use MINLP reformulations

Bonmin CM X X GBL LP NLPr and B&B Carnegie Mellon University

Fmincoset X

Cplex CM X X CTNF Inputs: NC objective function,

NCBV, SOC, QCSOC.

Mosek CM

(MIQCPs)

X Input: SOC Mosek Aps

FICO xpress optimizar CM X Input: SOC, NCBV Dash Optimization

SCIP CM & NM CTNF Zuse Institute Berlin

Gurobi CM X X Input: NCBV, SOC, QCSOC Gurobi optimzation

Lindo API CM & NM CTNF B&C that utilizes LPs for bounding

FMINCONSET X X

Knitro X X

MILANO CM X H. Y. Benson in Drexel Uni-

versity.

MINLP-BB CM R. Fletcher & S. Leyffer at the

University of Dundee

MISQP CM & NM X SQP Restriction integrality in solution of

NLP sequential quadratic program .

K. Schittkowki at the Univer-

sity of Bayreuth

OQNLP X Multistart scartter

search algorthm.

Randomized approach by sampling

starting points. Use nonlinear relax-

ation .

BNB CM X Uses nonlinear relaxation for the

bounding.

K. Kuipers in the University

of Groningen.

ANTIGONE CM & NM CTNF It implements a spacitial B&B algo-

rithm that utilizes MIPs for bound-

ing.

R. Misener & C. Floudas in

Princeton University

AOA CM OAA / GBL Constructs an MIP outer approx. Of

the feasible region of the MINLP.

Paragon Decision Technol-

ogy

LAGO CM & NM

(MIQCPs)

CTNF I. Nowak in Humboldt Uni-

versity

MIDACO CM & NM Extended ant colony based on an

Oracle penalty function.

Schuller in Hokkaido Univer-

sity.

MINOTAUR CM X Offers to replace S. Leyffer, J. Linderoth, J.

Luedtke. . . at the University

of Winsconsin Madison.

Filmint CM Lehight University

2.3 COLUMN GENERATION

Column generation is an efficient algorithm for solving programs that are too large to

consider all the variables explicitly. The process operates by splitting the problem being

solved into two problems: the master problem and the pricing problem (Lasdon, 2013,

cap.3). The master problem is the original problem with only a subset of variables being

considered; as this problem does not contain all of the columns (variables), sometimes it

is called restricted master problem (Barnhart et al., 1998).

The pricing problem is a new problem created to find the most profitable column

(variable) for being added to the master problem. If the optimal value of the pricing prob-
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lem is negative (assuming without loss of generality that the problem is a minimization

problem), a variable with negative reduced cost has been identified, this variable is added

to the master problem, and the master problem is solved again. Then, a new set of dual

values is obtained, and the process is repeated until no negative reduced cost variables are

identified, when the solution to the master problem is optimal (Desrosiers and Lübbecke,

2005). These ideas can be observed in Figure 2.3.

Initial columns 

(factibles) 

Simplex 

multipliers 

Pricing 

problem 

Solution 

(column) 

Master 

problem  

Combines  

previous and new 

solutions in an 

optimal  way  

Figure 2.3: General idea of column generation method.



CHAPTER 3

RELATED LITERATURE

The Location-Inventory Problem was first studied by Daskin et al. (2002), since then the

problem has been increasingly recognized, generating an extensive variety of models.

Farahani et al. (2015) present a recent review of the general problem and its variants. In

this section we analyze # selected referred journal articles with the closest features to the

problem addressed in this thesis. They were published in the period from 2000 to 2015.

Three issues are examined, i) the supply chain features, ii) the mathematical formulation

and iii) the methodology of solution.

Erlebacher and Meller (2000) formulate a non-linear location-inventory model. They

use a continuous approximation and bounding heuristics. For problems with 16 customers,

they obtained solutions that were between 3.78% and nearly 36% of a lower bound. An

exchange heuristic improved the solution considerably

Daskin et al. (2002) present a Location-Inventory Problem considering a single un-

capacitated supplier and multiple retailers, modelled as a nonlinear integer programming

model which is restructured as a set-covering integer programming model. The inventory

is estimated and just considered into the objective function, being ignored in the con-

straints, which only are of single source and retailers allocation. They solve cases where

the variance-to-mean ratio at each retailer is identical for all retailers, using a Lagrangian

relaxation combined with branch and bound. Shen et al. (2003) study the same problem

and the same cases using a column generation technique, that allows optimal solution up

14
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to 150 retailers. Jia Shu (2005) propose, for the general case, a column generation algo-

rithm exploiting special structures of the model. Their approach is able to solve larger

problems (up to 500 retailers).

Ozsen et al. (2009) consider a centralized logistics system of uncapacitated ware-

houses and retailers, formulated as a nonlinear integer-programming problem and solved

by a Lagrangian heuristic algorithm.

Tancrez et al. (2012) propose a problem of two levels (factories, distribution centers

and customers) with multiple sourcing in every layer. They use a local search with several

descent techniques, that allows get out of a local minimum. It gets solutions for large

networks (1000 customers).

Atamtürk et al. (2012) present several Facility Location-Inventory Problems of two

levels (capacitated or uncapacitated, correlated retailer demand, stochastic lead times and

multicomodities). They modelled the problems as conic quadratic mixed integer prob-

lems. The approach leads to similar or better computational solution times than the re-

ported by other publications.

Nyberg et al. (2013) study a three-stage multiechelon inventory system with specific

exact linearizations without decomposition. An MILP underestimation of the problem can

be solved as part of a sequential piecewise approximation scheme to solve the problem

within a desired optimality gap.

Diabat and Theodorou (2015) study a two-echelon inventory management problem

with multiple warehouses and retailers,formulated as a mixed integer non-linear program

such that its continuous relaxation is non-convex. A piecewise linearization is used to

transform the model.
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In the Table 3.2 we go through the LIP literature in terms of its applications.

Table 3.2: LIP applications

Reference Application Instances

Daskin et al. (2002) Platelets distribution of a

blood bank

150 hospitals

Tancrez et al. (2012) Reverse logistic of glass

panes in a European manu-

facturer

10 factories, 500

customers



CHAPTER 4

MATHEMATICAL FORMULATION

In this section we formally describe the addressed problem. First, the used notation is

specified and then we explain how the inventory has been modeled and how it is included

in the location problem. Finally, the developed models are described.

4.1 NOTATION

The main elements of the problem are denoted as follows: a set of p plants denoted by

I = 1,2, ..., p, a set of n candidate distribution centers denoted by J = 1,2, ...,n and a set

of m retailers denoted by K = 1,2, ...,m. Each distribution center has a specific storage

capacity q j as well as the plants has a specific production capacity pi. Regarding to the

retailers, there is a mean µk and a variance σk of the daily demand for each one. The

involved costs are:

h: Annual holding cost per item.

u j: Fixed annual cost for locating the distribution center j.

f j: Fixed cost for placing an order from distribution center j.

gi j: Variable cost of shipping an order from plant i to distribution center j.

ai j: Unit shipment cost from plant i to distribution center j.

c jk: Unit shipment cost from distribution center j to retailer k.

18
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Other important elements of the problem are:

r: Number of working days in a year.

β : Weight factor associated with the shipment cost.

θ : Weight factor associated with the inventory cost.

ℓi j: Lead time from plant i to distribution center j.

α: Probability of meeting the demand during lead time.

zα : Standard normal random variable corresponding to cumulative probability of α .

4.2 INVENTORY MANAGEMENT

Inventory is considered only in open distribution centers. Inventory in plants and retailers

is ignored because it does not affect the main decision regarding to which distribution

centers should be open. We next explain how the inventory is defined and evaluated in

a specific distribution center, assuming for the moment that we know which retailers are

assigned to this distribution center, and also which plant supplies it. For defining the

inventory management, we assume that the demand is uncertain, independent, and can

be described by a normal distribution. The stochastic EOQ model proposed by Axsäter

(1996) is used for this matter. We focus the analysis on defining the inventory policy and

obeying the storage capacity.

4.2.1 INVENTORY POLICY

Unlike the classical inventory problem, for our model the inventory policy has to consider

the network configuration since the costs are different depending on the plant and the

distribution center involved. Thus, the order quantity and the reorder point are defined as

a function of the allocation between the elements of the problem.

The order quantity (Q j) in distribution center j is defined as a ratio between its
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annual demand (D j) and the number of orders (O j) during the planning horizon,

Q j =
D j

O j
. (4.1)

On the other hand, the total number of orders is defined based on the model proposed by

Daskin et al. (2002) and is calculated as:

O j =

√

√

√

√

√

√

θhD j

2

(

f j +β ∑
i∈I

gi jZi j

) , (4.2)

where Zi j is a binary variable that takes value one if the plant i serves the distribution

center j and zero otherwise. Note that Equation (4.2) is considering not only the annual

demand but also the ordering ( f j) and transportation cost (gi j), being both dependent

on the network configuration. Substituting the value of the total number of orders into

Equation (4.1) and simplifying, the order quantity can be expressed as:

Q j =

√

√

√

√ωD j

(

f j +β ∑
i∈I

gi jZi j

)

. (4.3)

Due to the uncertain demand the reorder point (R j) must be sufficiently high to satisfy the

current demand during lead time (C j). This is achieved with some probability, as follows:

P
(

C j ≤ R j

)

= α, (4.4)

where the knowledge of the current demand is assumed, and the desired probability to

avoid stockout is denoted by α . Now, for calculating the reorder point, we normalize

Equation (4.4),

P

(

C j− µ́ j

σ́ j
≤ R j− µ́ j

σ́ j

)

= α, (4.5)

P(z≤ zα) = α, (4.6)

where the variable R j may be deduced as a function of known parameters, as shown in
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Equation (4.7). Reminding Equation (2.1), the reorder point is the sum of the expected

lead-time demand plus the safety stock, here the safety stock is denoted as zα σ́ j.

R j = µ́ j + zα σ́ j. (4.7)

4.2.2 STORAGE CAPACITY LIMITATION

Storage capacity limitation is considered because of the possibility of slow sales during

the lead time, causing over inventory at the moment an order arrives. This is controlled

through a constraint that measures the stock in the distribution centers. It involves the

order size plus the reorder point minus the product consumed during lead time, the ele-

ments in an inventory (see Figure 2.2). Since the current demand is unknown, we use a

minimum probable demand (M j) that generates a large but acceptable quantity of product

in the distribution center j. The worst case is when there is no demand at all, causing that

all the product remains in the distribution center. However, it is very unlikely, so it has not

been considered. Therefore, the constraint for storage-capacity limitation is:

Q j +R j−M j ≤ q j. (4.8)

It is expected that the current demand will be at least as equal as the defined minimum

demand with probability of 1− γ , which is the same as:

P(C j ≤M j) = γ. (4.9)

We normalize Equation (4.9):

P

(

C j− µ́ j

σ́ j
≤ M j− µ́ j

σ́ j

)

= γ, (4.10)

P(z≤ zγ) = γ, (4.11)
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and isolate the variable M j to compute its value in terms of known parameters, as follows:

M j = µ́ j + zγ σ́ j, (4.12)

where zγ is the quantile of the standard normal distribution of demand that contains the

probability γ of not exceeding capacity. Substituting Equations (4.7) and (4.12) into Equa-

tion (4.8) and denoting ze = zα − zγ , the capacity constraint becomes:

Q j + zeσ́ j ≤ q j, (4.13)

This estimates the inventory size as the order quantity plus ze times the standard deviation

of demand during lead time at the distribution center j.

4.3 NONLINEAR MODEL

Before describing the first model developed for the problem, let us introduce some ad-

ditional notation. The parameters are shown in Table 4.1, meanwhile the variables are

shown in Table 4.2.

Table 4.1: Calculated parameters in LIP

Notation Interpretation Calculation

D Total mean daily demand of all set of retailers ∑k µk

ρi j Cost parameter for sending product from the

plant i to the distribution center j

f j +βgi j

du
i j Upper bound on the total amount of product

sending from the plant i to the distribution cen-

ter j

min
{

∑
k

µk, pi,q j

}

ć jk Weighted annual shipment cost per item from

the distribution center j to the retailer k

β rc jk

ái j Weighted annual shipment cost per item from

the plant i to the distribution center j

β rai j

φ Inventory factor θhrzα

η Inventory factor
√

2rθh

τ Inventory factor η(θh)−1
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Table 4.2: Variables in LIP model

Notation Interpretation Type

X j Binary variable that takes the value of one if the

distribution center j is selected and zero otherwise

Decision

variables for

defining the

supply chain

network

Yjk Binary variable that takes value one if the distribu-

tion center j supplies retailer k and zero otherwise

Zi j Binary variable that takes value one if the plant i

serves the distribution center j and zero otherwise

Di j Mean daily demand in the distribution center j that

is served by the plant i

Auxiliary

variables for

inventory

management

S j Variance of the daily demand for each distribution

center j

Tj Lead time in days for deliveries at each distribution

center j

Now, the problem is modeled as a Mixed Integer Nonlinear Problem (MINLP).

min ∑
j∈J

(

u jX j + ∑
k∈K

µkć jkYjk +∑
i∈I

ái jDi j +η
√

∑
i∈I

ρi jDi j +φ
√

S jTj

)

(4.14)

s.t:

∑
j∈J

Yjk = 1 ∀k ∈ K (4.15)

∑
i∈I

Zi j = X j ∀ j ∈ J (4.16)

Di j ≤ du
i jZi j ∀i ∈ I, j ∈ J (4.17)

∑
i∈I

Di j ≥ ∑
k∈K

µkYjk ∀ j ∈ J (4.18)

∑
j∈J

Di j ≤ pi ∀i ∈ I (4.19)

τ
√

∑
i∈I

ρi jDi j + ze

√

S jTj ≤ q jX j ∀ j ∈ J (4.20)

Tj = ∑
i∈I

ℓi jZi j ∀ j ∈ J (4.21)
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S j = ∑
k∈K

σkYjk ∀ j ∈ J (4.22)

X j, Yjk, Zi j ∈ {0,1} ∀k ∈ K, i ∈ I, j ∈ J (4.23)

Tj, Di j ∈ Z
+ ∀ j ∈ J (4.24)

S j ∈ R ∀ j ∈ J (4.25)

The objective function minimizes the total weighted cost of the distribution network.

The first term in Equation (4.14) calculates the cost for locating distribution centers, while

the transportation costs are simplified in the second and third term. The weighted cost

for holding inventory, ordering cost and variable cost for sending orders to the selected

centers are shown simplified in the fourth term. The last sum corresponds to the weighted

cost for holding safety stock.

Regarding to constraints, Equations (4.15) ensure that each retailer is assigned to

a single distribution center, while Equations (4.16) ensure that each open distribution

center is assigned to a single plant. Equations (4.17, 4.18) are bounds for the value of

distribution-center demand when it is attended by plant i, which has to be at least as equal

to the served demand, but no greater than the production capacity or the storage capac-

ity. Equations (4.19) express the capacity production of each plant. Inequality expressed

in Equation (4.20) indicates the capacity constraints for distribution centers. These con-

straints indicate the same as Equation (4.13) but expressed in terms of the variables defin-

ing the supply chain network. Expressions (4.21) define the lead time of delivering an

order in the distribution centers. The constraints in Equation (4.22) define the variance

of the daily demand for each distribution center. Finally, Equation (4.23) and Equation

(4.25) establishe the nature of the variables.

Since the solvers for MINLP usually are made under the assumption of convexity,

their performance is depended on that property. We study the model convexity in the next

section.
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4.3.1 NON-CONVEXITY PROOF

In this section we study some convexity properties to prove that MINLP, expressed in

Equations (4.14–4.25), is not a convex problem, nevertheless it is a model formed by

concave functions.

In an optimization problem, convexity of the objective function and constraints are

crucial. Problems with this property have important theoretical properties (e.g., the local

necessary optimality conditions for these problems are sufficient for global optimality),

and what is much more important, convex problems can be efficiently solved numerically,

which is not, the case for general nonconvex problems.

Definition 1. A function f :Rn −→R is convex if the domain in f is a convex set and if

for all x,y ∈ domain f , and θ with 0≤ θ ≤ 1, we have

f (θx+(1−θ)y)≤ θ f (x)+(1−θ) f (y). (4.26)

Definition 2. A convex optimization problem is one of the form:

min f0(x) (4.27)

s.t: fi(x)≤ 0, i = 1, ...m,

aT
i x = bi, i = 1, ...p,

where the functions f0, . . . fm :Rn→R are convex, and the equality constraint func-

tions hi(x) = aT
i x−bi must be affine (Boyd and Vandenberghe, 2004, chap. 4).

4.3.1.0 CALCULUS RULES FOR CONVEXITY

We apply the next calculus rules of convexity (see Boyd and Vandenberghe, 2004, chap.

3).

Rule 1 [Nonnegative weighted sums]: Let f be a convex function and α ≥ 0, then

the function of α f is convex. If f1 and f2 are both convex function, then so is their sum



CHAPTER 4. MATHEMATICAL FORMULATION 26

f1 + f2. Combining nonnegative scaling and addition, the set of convex functions is itself

a convex cone: a nonnegative weighted sum of convex functions,

f = w1 f1 + . . .+wm fm,

is convex. Similarly, a nonnegative weighted sum of concave functions is concave.

Rule 2 [Vector composition]: When the function h is convex (concave), h is non-

decreasing in each argument, and gi are convex (concave) then f is convex (concave) in

f (x) = h(g(x)) = h(g1(x), . . .gk(x)), with no assumption of differentiability of h or g, and

general domains.

Rule 3 [Concave function]: If xa is convex onR+ when a≥ 1 or a≤ 0, and concave

for 0≤ a≤ 1.

Rule 4 [Affine function]: A function f : Rn −→ R
m is affine if it is a sum of a

linear function and a constant. It always keep the equality in Equation 1, so all affine (and

therefore also linear) functions are both convex and concave.

Returning to our model, we first examine the objective function of MINLP. It was

established as:

min ∑
j∈J

(

u jX j + ∑
k∈K

µkć jkY jk +∑
i∈I

ái jDi j +η
√

∑
i∈I

ρi jDi j +φ
√

S jTj

)

Since it is a nonnegative weighted sum, which preserves convexity, the focus will be on

each of its terms, which are linear functions except two of them. Taking into account

the previous rules, in order to prove the convexity, we only need to verify the convexity

of the radicands in each square root. The radicands are concave, so using Rule 2, it can

be concluded that the complete functions are concave. Since all the summands in the

objective function are concave, the complete function is concave.

Now, the aim is to know if the feasible set is a convex set. Constraints defined by
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Equations (4.15–4.19) and (4.21–4.22) are linear, so they are convex. However, constraint

expressed in Equation 4.20 is a non negative sum of the functions evaluated before but

with different scale. We already know that they are concave functions, so the composition

is also concave.

4.3.1.0 ALTERNATIVE PROOF

Other way to prove convexity is using the Hessian Matrix. For simplicity we consider the

specific case of three variables, setting the cardinality of set I in 2 and the cardinality of

set J in 1. A function of more than two variables, f (x1,x2, . . . ,xn) is said convex (concave)

if and only if its Hessian matrix (∇2 f (x)) of nxn is positive (negative) semi-definite for

all the possible values of (x1,x2, . . . ,xn). In the term η
√

∑i∈I ρi jDi j the scalar does not

affect the convexity, for the rest, the matrix of Hessian is:

H =





−ρ
σ́ j2

σ́ j11
εσ́ j1 −ρσ́ j11ρσ́ j21εσ́ j1

−ρσ́ j11ρσ́ j21εσ́ j1 −ρ
σ́ j2

σ́ j21
εσ́ j1



 , (4.28a)

where ε1 = 1
4

(

∑i∈I ρi1Di1

)− 3
2 . A 2× 2 matrix can be classified as positive (negative)

semi-definite if and only if its diagonal entries are both non-negative (non-positive) and its

determinant is non-negative. For this function, the entries are negative and the determinant

is zero, so this function is not convex, it is concave.

Now, for the term
√

S jTj the Hessian matrix is:

H =





−ϕT
σ́ j2

σ́ j1
−ϕTσ́ j1Sσ́ j1

−ϕTσ́ j1Sσ́ j1 −ϕS
σ́ j2

σ́ j1



 , (4.29a)

where ϕ = 1
4

(

S1T1)
− 3

2 .The function is clearly not convex, accordingly the objective func-
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tion neither is.

Summarizing, the model MINLP is not a convex optimization problem, but the ob-

jective function and constraints are concave.

Solving the MINLP model, we could not get optimal solutions, even after pre-

processing and trying with several solvers, moreover, the feasible solutions found were

not good. Because it was not possible to find optimal solutions, we decided to look for a

new formulation that is exposed in the next section.

4.4 REFORMULATION

4.4.1 NON LINEAR REFORMULATION

For the reformulation, a new decision variable is required for expressing the connection

between the sets. We denoted the link between the plant i, distribution center j and the

retailer k by the variable Wi jk, which takes the value of 1 if the connection exists, and 0 is

not. Then, the new model is denoted by (MINLP2), it is expressed as follows:

min ∑
j∈J

(

u jX j + ∑
k∈K

µkć jkYjk +∑
i∈I

ái jDi j +η ∑
i∈I

ρ̂i jD̂i j +φ ∑
i∈I

ℓ̂i jŜi j

)

(4.30)

s.t:

Wi jk ≤ Yjk ∀i ∈ I, j ∈ J,k ∈ K (4.31)

Wi jk ≤ Zi j ∀i ∈ I, j ∈ J,k ∈ K (4.32)

Wi jk ≥ Yjk +Zi j−1 ∀i ∈ I, j ∈ J,k ∈ K (4.33)

Di j = ∑
k∈K

µkWi jk ∀i ∈ I, j ∈ J (4.34)

Si j = ∑
k∈K

σkWi jk ∀i ∈ I, j ∈ J (4.35)

∑
k∈K

Y jk ≤ mX j ∀ j ∈ J (4.36)
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∑
j∈J

Yjk = 1 ∀k ∈ K (4.37)

∑
i∈I

Zi j = X j ∀ j ∈ J (4.38)

∑
j∈J

Di j ≤ pi ∀i ∈ I (4.39)

τ ∑
i∈I

ρ̂i jD̂i j + ze ∑
i∈I

ℓ̂i jŜi j ≤ q jX j ∀ j ∈ J (4.40)

D̂i j =
√

Di j ∀i ∈ I, j ∈ J (4.41)

Ŝi j =
√

Si j ∀i ∈ I, j ∈ J (4.42)

X j, Yjk, Zi j,Wi jk ∈ {0,1} ∀k ∈ K, i ∈ I, j ∈ J (4.43)

Di j,Si j, D̂i j, Ŝi j ∈ R ∀i ∈ I, j ∈ J (4.44)

where ∀i ∈ I, j ∈ J :

ρ̂i j =
√

ρi j, ℓ̂i j =
√

ℓi j.

4.4.2 LINEAR REFORMULATION

It is not difficult to see that the problem could be visualized in another way. Specifically, a

subset of retailers could be preassigned to a distribution center enable to meet its demand,

and then, the selected distribution center could be assigned to a plant, minimizing cost

at the same time. With this idea in mind, let us define additionally the following set and

variables which are necessary to establish a new formulation:

B: The collection of nonempty subsets (b) of the retailer set (K). Note that there are

2msubsets, m = |K|.
Ebi j: Binary variable that specifies if the assignment formed by subset b, distribution

center j and plant i is selected.

δkb: Parameter that takes value of one if the retailer k belongs to set b.

ωbi j: Cost for ordering, holding inventory and transporting product regarding plant i,
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distribution center j and subset b of retailers.

ωbi j = ∑
k

(ć jk + ái j)µkδkb +φ
√

∑
k

σkδkbℓi j +η
√

∑
k

µkδkbρi j (4.45)

sbi j: Capacity used in the distribution center j to satisfy demand of b when it is supplied

by qi.

sbi j = τ
√

∑
k

µkδkbρi j + ze

√

∑
k

σkδkbℓi j (4.46)

Now the problem can mathematically be stated as a Mixed Integer Linear Problem

(MILP):

min ∑
j

u jX j +∑
b

∑
i

∑
j

ωbi jEbi j (4.47)

s.t:

∑
b

∑
i

∑
j

δkbEbi j = 1 ∀k ∈ K (4.48)

∑
b

∑
j
∑
k

µkδkbEbi j ≤ pi ∀i ∈ I (4.49)

∑
b

∑
i

sbi jEbi j ≤ q jX j ∀ j ∈ J (4.50)

X j,Ebi j ∈ {0,1} ∀i ∈ I, j ∈ J,b ∈ B (4.51)

The objective function minimizes the location cost and the cost of the distribution

network, namely the transportation cost in all levels and the cost of ordering and hold-

ing inventory (working inventory and safety stock). Regarding to constraints, EquationS

(4.48) ensure that each retailer is served, Equations (4.49) and (4.50) are the capacity con-

straints for plants and distribution centers respectively and finally, constraints expressed

through Equations (4.51) establish the nature of the variables.

It is important to emphasize that this formulation has the same search space than

MINLP expressed through Equations (4.14–4.25); here, all possible subsets of retailers
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are beforehand considered and it is possible to calculate the inventory and transporta-

tion costs before optimizing, as opposed to formulation MILP where these costs are vari-

ables.Nevertheless, the optimal solutions are the same in both formulations.

This model has two important advantages, one theoretical and one practical. The

first one is that the model gets rid of the nonlinearity as function of the variables, which

means that now the model is a linear problem and a local optimum is also a global opti-

mum. The practical advantage is related to the cost. When the retailers are grouped, sig-

nificant inventory–cost savings can be achieved in a phoneme called risk pooling (Eppen,

1979). The disadvantage is that the number of constraints and variables grows exponen-

tially, so it is only possible to solve small and medium instances.



CHAPTER 5

COMPUTATIONAL COMPLEXITY

ANALYSIS

In this chapter, we formally establish the computational tractability of a LIP, even though

numerous studies have addressed LIP and its variants, to the best of our knowledge, none

formally demonstrated its computational complexity. Variants of LIP have been consid-

ered as NP-hard; some of them because they extend the Uncapacitated Facility Location

Problem (UFLP), others because they use the Economic Order Quantity Model (EOQ)

(Harris, 1990) for managing the inventory. Both, UFLP and EOQ, are NP-hard; the former

is proved by Krarup and Pruzan (1983), the latter by Gallego et al. (1992).

The complexity proof is made through the theory of NP-completeness, which pro-

vides techniques for proving that a given problem is as hard as other problems that are

recognized as being difficult. The knowledge of the complexity of a problem gives infor-

mation about what solution techniques can be considered. For complex problems, exact

algorithms are often impractically inefficient for all but the smallest problem instances,

and instead techniques that require less computational resources even though they do not

guarantee an optimal solution are preferred: approximation algorithms (including ran-

domized approaches) and heuristics (Papadimitriou, 1994).

32
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5.1 COMPUTATIONAL COMPLEXITY THEORY

Without addressing the depths of theoretical computer science and avoiding topics such

as Turing machines, we first give an introduction to NP-completeness and then the com-

plexity proof for LIP.

The term NP stands for nondeterministic polynomial time and refers the ability to,

given an input, guess a correct solution, if it exists, and verify it, all in polynomial time.

An optimization problem is called NP-hard if its corresponding decision problem is NP-

complete (Papadimitriou, 1994). While the optimization problems seek the best solution

according to some criteria, the decision problems seek to determine whether at least one

solution fulfills the criteria. An optimization problem can be transformed into a decision

problem by replacing each objective function with a fixed bound (i.e., requiring the value

to be at most a given constant for minimized objectives and at least a given constant

for maximized objectives), and then asking whether a solution satisfying all the original

constraints of the optimization problem as well as the newly placed bounds exist, which

is now a yes-or-no question.

According to Garey and Johnson (1979) and Papadimitriou and Steiglitz (1982), the

steps to prove that a decision problem is NP-complete are the following:

1. Prove that the decision problem under study belongs in the class NP.

2. Prove that every problem in the class NP is can be reduced in polynomial time to

the problem under study.

In the next sections, we describe how we performed each of these steps for proving that

the Location-Inventory Problem is NP-hard.
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5.2 DECISION PROBLEM

The decision problem associated to the Location-Inventory Problem is denoted here by

LIP-D. It is stated as follows:

Instance: Given the following inputs:

• a set K of m retailers indexed by k, each with a mean daily demand µk and a variance

of daily demand σk,

• a set J of n potential distribution centers indexed by j, each with a fixed opening

cost u j, a fixed cost of placing an order f j, and a storage capacity q j,

• a set I of p plants indexed by i, each with a production capacity bi, a specific time

of delivering products ℓi j to distribution center, and transportation costs (gi j, ai j),

• an annual budget H ∈ Z
+.

Question: Does an assignment of retailers to distribution centers and of distribution

centers to plants exist such that neither production capacities of plants nor storage ca-

pacities of distribution centers are violated (capacity constraints), each open distribution

center is supplied by a single plant and each retailer is supplied by a single distribution

center (single-source constraints), the number of open distribution centers is at most n

(activation constraint), and the total cost (objective function converted into a constraint) is

less or equal to H?

5.3 MEMBERSHIP TO NP-CLASS

Theorem 5.3.1. LIP-D ∈ NP.

Proof. We can assert that LIP-D is in NP, since a nondeterministic algorithm only needs

to select elements of the set I and set J and assign the retailers in such way that each

retailer is attended by one open distribution center which is attended by a single plant and
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neither the production capacity of the plants nor the storage capacity of the distribution

center is exceeded. To verify the feasibility of the solution, an algorithm, called witness

or certificate is needed. In our case the algorithm must check the next requirements:

• The allocation of each retailer. This task is bounded by O(m).

• The fulfillment of the storage capacity. The inventory is calculated and evaluated in

each distribution center open, since it is a function of the assigned retailer and the

assigned plant, this step has the order of O(m ·n · p) regardless the inventory model

used. In our problem this is evaluated in Equation (4.13).

• The fulfillment of the production capacity bi in plants. The demand satisfied by a

plant is calculated and compared to the capacity. This task is bound by O(m · p).
• The number of open distribution centers is at most n. This task is bound by O(n).

• The fulfillment of the annual budget. This requires to evaluate the total cost, the

argument in Function (4.14), and compare it to the budget. This task is bound by

O(m ·n · p).

If the constraints are satisfied, the algorithm returns “yes”. The certificate for LIP-D runs

in polynomial time, it is bounded by O(m(1+2np+ p)+n).

5.4 REDUCTION

The second step to establish that a particular problem is NP-complete entails the use of

a reduction algorithm (F). This is a polynomial algorithm, which, given any input x to

problem P1, transforms it into an equivalent input F(x) to problem P2 (Papadimitriou,

1994). This is denoted by P1 ≺ P2.

In practice, it is not necessary to reduce every problem in the class NP to the problem

that is being tested, it is enough to reduce a problem that has been previously proven as

NP-complete. The first compendium of NP-complete problems was given by Garey and

Johnson (1979) and it was updated by Crescenzi and Kann (2005).
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To achieve this step, we study the problem in three basic cases: a deterministic

version with only one plant (1-LIP-D), a deterministic version with multiple plants (M-

LIP-D) and a stochastic version with multiple plants (S-LIP-D). For the first one, we use

a reduction from Bin Packing Problem, once we have proven this case, that is, 1-LIP-D

is NP-complete, we reduce it to M-LIP-D (the second case), at last this second case is

reduced to the third one.

5.4.1 REDUCTION FROM BIN PACKING PROBLEM (CASE 1-LIP-D)

For the 1-LIP-D complexity proof, we chose the Bin Packing Problem in its decision

version, denoted here by BP-D. The idea is to demonstrate that an algorithm capable of

solving 1-LIP-D can also solve BP-D. Due to these problems have not exactly the same

inputs, a reduction F of the input x is needed, as illustrated in Figure 5.1.

The proof that BP-D is NP-complete is made through the reduction from the Tri-

partite Matching Problem and the Partition Problem. The demonstration can be found

in Papadimitriou and Steiglitz (1982) and Garey and Johnson (1979). BP-D is stated as

follows:

Instance: Given a finite set U of items, a size su ∈ Z+ for each u ∈U , a bin capacity

c∈ Z
+, and a bin count w ∈ Z

+.

Question: Is there a partition U1,U2, . . . ,Uw with U =
⋃w

i=1Ui and ∀i 6= j : Ui∩U j =

/0 such that ∀Ui : ∑u∈Ui
su ≤c?

� 
Algorithm 

for LIP - D  

�ሺ�ሻ 

Algorithm for BP - D  

 � 
“yes” 

“no” 

Figure 5.1: Reduction from BP-D to 1-LIP-D.
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Table 5.1: Analogy between input parameters

BP-D 1-LIP-D

Notation Input Notation Input

U Set of items K Set of retailers

su Size of items µk Demand of retailers

c Bin capacity q Distribution center capacity

w Number of bins n Number of distribution centers

Theorem 5.4.1. BP-D ≺ 1-LIP-D.

Proof. Some inputs of BP-D can be associated to inputs of LIP-D as indicated in Ta-

ble 5.1, the missing inputs can be set to a constant value or to a parameter from BP-D

as shown in Table 5.2. Such assignments produce the case 1-LIP-D, which consists in

having known demands, without uncertainty, and having also a single plant of unlimited

capacity of production, i.e., the plant is able to supply any quantity of demand. Note that

the distribution centers have the same capacity, by other hand, there is now, one type of

allocation (retailers to distribution centers) and, since the variance of the demand is null,

there is no need to keep inventory, so we have that:

• the reorder point (from Equation 4.7) and minimum probable demand (from Equa-

tion 4.12) are equal to zero, that is:

∀ j : R j = M j = 0, (5.1)

• the order quantity (from Equation 4.3) depends only on the demand in the distribu-

tion center,

∀ j : Q j =
√

D j =
√

∑
k

µkYk j, (5.2)

where Yk j is a binary variable that specifies whether the retailer k is assigned to the distri-

bution center j.

An instance of the 1-LIP-D case is shown in Figure 5.2(a): two distribution centers

are open, each retailer is assigned to one of them and each open distribution center is
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supplied by the unique plant. In Figure 5.2(b), an instance for the general case is shown,

considering several plants, which is more complex.

Table 5.2: Assignment of the remaining parameters

Inputs that do not depend on the instance Inputs that depend on the instance

∀i, j gi j = 0,ai j = 0, ℓi j = 0 ∀ j q j =
√

c

∀ j,k c jk = 0 ∀i bi ≥ ∑
u∈U

su

∀ j u j = 0, f j = 0

∀k σk = 0

α = 0,zα = 0,β = 0,θ = 2,h = 1

Plant
Retailers

≡ Items

Distribution centers

≡ Bins

(a) The simplest case: p = 1

Plants

Retailers

Distribution centers

(b) General case: p≥ 1

Figure 5.2: Two instances of LIP and their corresponding solutions. The difference between them

is the number of plants and the assignment of retailers. In Figure 5.2(a) the allocation of the

retailers is made by groups: each distribution center represents a bin and each retailer represents

an item of the Bin Packing Problem.
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5.4.2 SOLUTION EQUIVALENCE

To prove the equivalence between the solution problems, it should be shown that both

have the same answer with the same input. We introduce a BP-D input in the reduction

to be transformed into a 1-LIP-D input. Then, the BP-D instance is solved through an

algorithm for 1-LIP-D (Figure 5.1). We get the answer “yes” (or “no”) if and only if, the

answer of the related instance of problem BP-D is “yes” (or “no”), i.e., we must show that

the set of items can be divided in w subsets or less if and only if there is a feasible solution

to 1-LIP-D problem with n or less distribution centers open:

• “yes” answer in BP-D⇒ “yes” answer in 1-LIP-D: the feasibility in BP-D consists

in assigning the items while respecting the bin capacity, that is,

∑
u

suVu ≤ c, (5.3)

where Vu is a binary variable that specifies whether the item is assigned to the bin.

Meanwhile, from Equations (4.13) and (5.2), the feasibility in each distribution cen-

ter consists in the allocation of all the retailers without exceeding the storage capac-

ity. Therefore, in 1-LIP-D,

√

∑
k

µkYk j ≤ q j =
√

c, (5.4)

which is equivalent to Equation (5.3). So, if there is a nondeterministic algorithm

that decides “yes” the input of the BP-D then there is a partition of items that does

no exceed the bin capacity, which means that there is a partition of retailers that

does not exceed the capacity of the distribution centers in LIP-D,

• “no” answer in BP-D ⇒ “no” answer in 1-LIP-D: if an instance of BP-D has an-

swer “no”, that means that all possible partitions of items are unable to respect the

capacity of the bin, which implies that all possible assignments of retailers exceed

the storage capacity of at least one of the open distribution centers.
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5.4.3 EFFICIENCY

An important aspect of a reduction is its efficiency, meaning that the resources used are

limited in such a manner that they do not absorb the complexity of the problem and affect

the interpretation of the demonstration (Papadimitriou, 1994); specifically, we limit the

amount of memory used by the algorithm to transformed one input (x) of BP-D into an

equivalent input F(x) to problem 1-LIP-D. In our case, the reduction requires the number

of items (|U |), the number of bins (w), the bin capacity (c) and the list of items size

(su) and generates the inputs expressed in Table 5.2 as indicated in Algorithm 1. Note

that for each bin a distribution center is defined (lines 9–18) and likewise for each item

a retailer is defined (lines 19–22); no additional memory is needed to accomplish this

when reading the input. The transformation computes the storage capacity (
√

c) in O(1)

time (and outputs it n = w times, once per each distribution center). It also computes the

production capacity (∑k∈K µk) for the plant, iterating over the set of items (m = |U |= |K|,
as the items are represented as retailers), which is carried out in O(m) time with a single

scalar variable and is, therefore, efficient.

5.4.4 GENERALIZATIONS (CASES M-LIP-D & S-LIP-D)

The reduction was carried out considering the simplest case of the LIP, that is, the de-

terministic version of the problem with just one plant (1-LIP-D). The presented proof

establishes that also variants of LIP with more than one plant and/or non-zero variances

of retailer demand are NP-complete: firstly, it can be established that such variants belong

to NP-class with polynomially verifiable certificates (applying the same certificate shown

in Section 5.3) and secondly, the simplest case of LIP used in the present proof can be

trivially and efficiently reduced to such variants.

Theorem 5.4.2. 1-LIP-D ≺ M-LIP-D.

Proof. Both problems have the same parameters, so there is no need to transform or define
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Algorithm 1 Reduction from BP-D to LIP-D

Input: |U |,su,c,w

Output: m,n, p,α,zα ,β ,h,uk,g1 j,a1 j, ℓ1 j,c jk,µk,σk,b1,q j

1: m← |U | ⊲ FIX THE CARDINALITY OF THE SETS (I,J,K)

2: n← w

3: p← 1

4: β ← 0 ⊲ DEFINE INVENTORY PARAMETERS

5: α ← 0 ⊲ The safety stock is no required

6: zα ← 0

7: θ ← 2

8: h← 1

9: for x← 1 to n do ⊲ DEFINE THE DISTRIBUTION CENTERS PARAMETERS

10: ux← 0

11: fx← 0

12: g1x← 0

13: a1x← 0 ⊲ There is a unique plant

14: ℓ1x← 0

15: for k← 1 to w do

16: cxk ← 0

17: end for

18: end for

19: for all u ∈U do ⊲ DEFINE THE RETAILERS PARAMETERS

20: µu← su

21: σu← 0 ⊲ Deterministic version

22: end for

23: b1← 0

24: for all k ∈ K do ⊲ ASSERT FEASIBILITY OF THE PLANT CAPACITY

25: b1← b1 +µk

26: end for

27: for x← 1 to n do ⊲ ASSERT FEASIBILITY IN DISTRIBUTION CENTERS

28: qx←
√

c ⊲ Distribution centers have the same capacity

29: end for

the inputs, except the production capacity which is set as the value of at least the sum of

the retailers demand. This step is just a sum and an assignment which is an efficient step.

Then LIP-D with multiple plants can solve a version with an unique plant, which is able

to fully supply the retailers set, this is:

bi ≥ ∑
k∈K

µk. (5.5)

Theorem 5.4.3. M-LIP-D ≺ S-LIP-D.

Proof. These problems also have the same parameters, no transformation is required. The

stochastic version is perfectly able to solve a deterministic version, just set the value of

demand variance to zero, which is already done in previous reductions (see Algorithm 1

in line 21). This step is also efficient.
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APPROXIMATIONS

In this chapter, we work with the MINLP2 model expressed in Equations(4.30–4.44).

Since it involves nonlinear terms and the used solvers did not report good solutions, we

decided to replace these terms. We did it in two ways: by a secant approximation and by a

piecewise-linear curve. These two approximations will be evaluated in order to determine

which one performs better.

6.1 APPROXIMATION THROUGH A SECANT

We substitute the Equations (4.41) and (4.42) for an approximation made by the secant,

resulting on the next constraints:

D̂i j ≥
Di j√

D
, (6.1)

Ŝi j ≥
Si j√

S
. (6.2)

This new model, denoted by MINLP-R, is a relaxation of MINLP2, which means

that the problem is easier than the original one. It optimizes on a larger feasible region,

allowing more candidates to be the optimum. The optimum value of the relaxed problem,

that is the best over the expanded feasible region, must then equal or improve the opti-

42
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mum value of the original model. Being MINLP2 a minimization problem, the relaxation

provides the same or an smaller value for all feasible solutions to MINLP2. Formally:

Definition Relaxation [Wolsey (1998)]: A problem (RP) zR = min{ f (x) : x ∈ T ⊆ Rn} is

a relaxation of (IP) z = min{c(x) : x ∈ X ⊂ Rn} if :

• X ⊆ T , and

• f (x)≤ c(x) for all x ∈ X .

To show that MINLP-R is a relaxation of MINLP2, observe that the objective func-

tion remains unchanged, so the second condition is fulfilled. Regarding to the first condi-

tion, we need to demonstrate that the feasible set of MINLP2 (denoted as Fo) is contained

inside the feasible set of MINLP-R (denoted by Fr. Considering that only two constraints

have been modified, we simply need to demonstrate that the original constraints can be

transformed into the new ones,that is a solution that satisfies these two original constraints

also satisfied the modified constraints.

Theorem 6.1.1. Fo⊆ Fr

Proof. Suppose that x is a solution of MINLP2, x ∈ Fo and it satisfies the Equation (4.41).

Let us prove that x also satisfies the constraint that replaces it (Equation 6.1).

∀i, j : D̂i j =
√

Di j ⇒ D̂i j ≥
Di j√

D

We know that Di j ≤ D, (6.3)

applying the square root in both sides
√

Di j ≤
√

D, (6.4)

when Di j = 0
√

Di j = 0, (6.5)

when Di j > 0

we can divide by Di j

√

Di j

Di j
≤
√

D

Di j
, (6.6)

and simplifying and rearranging terms
√

Di j ≥
Di j√

D
. (6.7)
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In a similar way, we proceed to demonstrate that every solution that satisfies Equation

(4.42) also satisfies Equation (6.2).

∀i, j : Ŝi j =
√

Si j ⇒ Ŝi j ≥
Si j√

S

As Si j ≤ S, (6.8)

applying the square root in both sides
√

Si j ≤
√

S, (6.9)

when Si j = 0
√

Si j = 0, (6.10)

when Si j > 0

we can divide by Si j

√

Si j

Si j
≤
√

S

Si j
, (6.11)

and simplifying and rearranging terms
√

Si j ≥
Si j√

S
, (6.12)

∴ x ∈ Fo⇒ x ∈ Fr ∧ Fo⊆ Fr.

As a relaxation, MINLP-R provides a lower bound for MINLP2. Moreover, if its

optimal solution is contained in the feasible region of MINLP2, this solution provides an

upper bound. To be feasible to MINLP2, the solution must satisfy the constraint expressed

by Equation 4.40, but evaluating the original function of mean and variance of the demand,

Equations (4.41) and (4.42), in the next way:

τ
√

∑
i∈I

ρi jD̈i j + ze

√

∑
i∈I

ℓi jS̈i j ≤ q jX j ∀ j ∈ J, (6.13)

where D̈i j and S̈i j are the mean and variance, respectively, of the served demand by the

distribution center j and supplied by the plant i, according the optimal solution in MINLP-

R model.
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6.2 PIECEWISE APPROXIMATION

In the second approximation developed , instead of using secants in the square root func-

tions, we now use a piecewise linear approximation for solving the model (4.30–4.44) by

adding proper variables and constraints. The approximation is made over the same inter-

val than the original functions and consists of a sequence of linear segments. It is known

that the larger the number of linear pieces is used, the better approximation is obtained,

but also it is increased the computational performance impact, since greater CPU time is

needed to solve the transformed problem.

The basic idea is to subdivide the interval where we want to approximate the nonlin-

ear function by introducing vertices, that we call break points and to determine the value

in the original function at each of these vertices, then to connect them by lines to obtain a

piecewise linear function.

Several formulations for the piecewise linearization have been proposed in the liter-

ature. The most common are the incremental cost, the convex combination by SOS1 and

by SOS2 (Tomlin, 1988). SOS1, or a special ordered set of type 1, is a set of variables

where no more than one set member may be non-zero, and positive in the feasible solu-

tion. In SOS2, or special ordered sets of type 2, at most two can be nonzero, and if two are

nonzero, they must be consecutive in their ordering. Here, the used formulation follows

the model proposed by Bazaraa et al. (1993).

6.2.1 PROPOSED MODEL

We denote the break points of the function D̂i j by ρD
b and the break points of the function

Ŝi j by ρS
b with b = 0,1, . . . ,κ . Then, ∀i ∈ I, j ∈ J, the function D̂i j can be approximately
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linearized over the interval
[

ρD
0 ,ρ

D
κ

]

as:

L
(

D̂i j

)

=
κ

∑
b=1

√

ρD
b λ D

bi j (6.14)

Di j =
κ

∑
b=1

ρD
b λ D

bi j (6.15)

λ D
0i j ≤ FD

0i j (6.16)

λ D
bi j ≤ FD

b−1,i j +FD
bi j (b = 1, · · · ,κ−1) (6.17)

λ D
κi j ≤ FD

κ−1,i j (6.18)

κ−1

∑
b=0

FD
bi j = 1 (6.19)

κ

∑
b=0

λ D
bi j = 1 (6.20)

FD
bi j ∈ {0,1} ,λ D

bi j ≥ 0 (6.21)

Likewise, ∀i ∈ I, j ∈ J, the approximation for Ŝi j in the interval
[

ρS
0 ,ρ

S
κ

]

is estab-

lished as:

L
(

Ŝi j

)

=
κ

∑
b=1

√

ρS
b λ S

bi j (6.22)

Si j =
κ

∑
b=1

ρS
b λ S

bi j (6.23)

λ S
0i j ≤ FS

0i j (6.24)

λ S
bi j ≤ FS

b−1,i j +FS
bi j (b = 1, . . . ,κ−1) (6.25)

λ S
κi j ≤ FS

κ−1,i j (6.26)

κ−1

∑
b=0

FS
bi j = 1 (6.27)

κ

∑
b=0

λ S
bi j = 1 (6.28)

FS
bi j ∈ {0,1} ,λ S

bi j ≥ 0 (6.29)
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∑
j∈J

u jX j + ∑
j∈J

∑
k∈K

µkć jkYjk + ∑
j∈J

∑
i∈I

ái jDi j +∑
i∈I

∑
j∈J

∑
b∈B

ηhi j

√

ρD
b λ D

bi j + · · ·

· · ·+∑
i∈I

∑
j∈J

∑
b∈B

φ ti j

√

ρS
b λ S

bi j (6.30)

τ ∑
i∈I

∑
b∈B

hi j

√

ρD
b λ D

bi j + ze ∑
i∈I

∑
b∈B

ti j

√

ρS
b λ S

bi j ≤ q jX j∀ j ∈ J (6.31)

This model introduces κ extra binary variables, κ+1 continuous variables and κ+5

constraints in each approximation, i.e Di j and Si j. Lin et al. (2013) show the comparatives

of others proposals for piecewise approximation, with fewer variables and constraints.

However, for mixed integer models, fewer constraints do not imply necessarily better

solutions, in much cases, is the opposite.
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COLUMN GENERATION

Preliminary computational experiments showed that solving directly formulations MINLP

and MILP by using a commercial optimizer is not viable, for the incapability of getting

the optimum value and solving large instances.

Other approach for solving MILP may be to enumerate all possible combinations of

feasible groups of retailers and assign them to a plant and to a distribution center. This

gives a finite but very large number of groups. Just considering the retailers, the largest

number of combinations is equal to the power set of retailers, namely 2m. Even if these

assignments are limited by physical constraints such as production capacity or storage

capacity, the number of possibilities is impractical.

However, the performed experiments allowed us to know about the structure of the

problem and its behavior, so we decided to keep formulation MILP and apply decomposi-

tion techniques, in order to solve larger instances.

Since most of the variables will be non-basic and take a value of zero in the optimal

solution, we decided to use a column generation approach, where the appealing idea is to

work only with a sufficiently meaningful subset of variables (Desrosiers and Lübbecke,

2005). Each variable is called column, and it is used if it has potential to improve the

objective function. In the next section we expose how the column generation is applied to

our problem.
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7.1 MODELS

7.1.1 MASTER PROBLEM

The master problem selects sets of retailers and assigns them to a plant and to a distri-

bution center to minimize the system cost, taking into account the production capacity,

the storage capacity and the service to all the retailers. The model is the same as the one

described through Equations (4.47–4.51), the only difference lies in the fact that here not

all possible variables are used, reason for calling it Restricted Master Problem.

7.1.2 PRICING PROBLEM

The pricing problem consists in finding a column (variable) with a negative reduced cost or

to prove that no such column exists. In our problem, a column is a variable that represents

a group formed by retailers, a plant and a distribution center with negative reduce cost.

Therefore, if a column with negative reduced cost exists the pricing problem will always

identify it (Barnhart et al., 1998).

We will denote by πk, σi and γi j the dual values corresponding to constraints (4.48–

4.50) respectively. Variables used for defining the assignments in formulation MINLP are

used again, they are variables Zi j, which take the value of one if distribution center located

at j is served by plant i, and variables Yjk that take the value of one if retailer k is served

by distribution center j.

We will also need the auxiliary variables:

Di j : Covered demand at distribution center j and supplied from plant i.

Wi j : Cost for ordering, holding inventory and transporting product regarding plant i,

distribution center j and subset of retailers b.

Si j : Used capacity at distribution center j when plant i supplies it.
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Notice that, variables Wi j and Si j have the same concept of ωbi j (Equation 4.45)

and sbi j (Equation 4.46) but now they are variables and their values are not explicitly

calculated for all possible combination of elements, they are obtained after optimizing

the model. Relating to parameters, there is the upper bound (du
i j) on the total amount

of product shipped from plant i to distribution center j (See Equation 4.1) and an upper

bound (wu
i j) on the total weighted cost of product shipped from plant i to distribution center

j equal to:

wu
i j = maxk{ć jk}D+ ái jD+φ

√

∑
k

υkli j +η
√

ρi jD (7.1)

The pricing problem is the next:

min ∑
i

∑
j

Wi j−∑
k

∑
j

πkYk j−∑
i

∑
j

σiDi j−∑
i

∑
j

γ jSi j (7.2)

s.t:

Wi j = ∑
k

µkć jkYk j + ái jDi j +φ
√

∑
k

υkli jYk j +η
√

ρi jDi j ∀i ∈ I, j ∈ J (7.3)

Si j = τ
√

ρi jDi j + ze

√

∑
k

υkli jYk j ∀i ∈ I, j ∈ J (7.4)

Wi j ≤ wu
i jZi j ∀i ∈ I, j ∈ J (7.5)

Si j ≤ du
i jZi j ∀i ∈ I, j ∈ J (7.6)

∑
i

∑
j

Zi j = 1 (7.7)

∑
i

Di j ≥∑
k

µkYk j ∀ j ∈ J (7.8)

Di j ≤ DZi j ∀i ∈ I, j ∈ J (7.9)

∑
j

Yk j = 1 ∀k ∈ K (7.10)

Wi j,Si j,Di j ≥ 0 ∀i ∈ I, j ∈ J (7.11)

Zi j,Yk j ∈ {0,1} ∀i ∈ I, j ∈ J (7.12)

Equation (7.7) is the convexity constraint that asserts only one assignment, the re-
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maining constraints define or limit the variables.

There is a drawback in this formulation. We again have non-linearities in the func-

tions, so the optimal solution is not guaranteed. For this reason, we decided to approximate

the nonlinear functions obtaining the model expressed in Section 7.2.2.

7.2 SOLUTION PROCESS

In this section, we explain the four basic steps of the proposed column generation method.

In the first step, initial columns are required for solving the master problem, which is

the second step. Then, we solve the pricing problem and we get new columns to add to

the master problem and so on, until we prove that the optimal solution has been reached.

Finally, the master problem is again optimized, but with the integer constraint, since usu-

ally the last master problem does not satisfy the integrality conditions. These steps are

explained next in more detail.

7.2.1 INITIAL COLUMNS

For creating the initial columns, we propose to change the idea of allocating retailers by

the idea of assigning groups of retailers to a distribution center. Figure 7.1(a) and Figure

7.1(b) illustrates both ways for allocating.
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Plants

Retailers

DC

(a) Allocation of retailers (b) Allocation of group of
retailers

Figure 7.1: Different approaches to allocation

The generation of initial columns basically consists of creating groups of retailers

of different sizes, assess the amount of product demanded by each group and assign them

to a plant, respecting the capacity constraints.

7.2.2 ADDING COLUMNS

7.2.2.0 APPROXIMATE METHOD

Since the pricing model is non linear, we decided to approximate the square root terms:

Vi j =
√

∑
k

υkli jYk j (7.13)

Pi j =
√

ρi jDi j (7.14)

min ∑
i

∑
j

Wi j−∑
k

∑
j

πkYk j−∑
i

∑
j

σiDi j−∑
i

∑
j

γ jSi j (OF)
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s.t:

Wi j = ∑
k

µkć jkYk j + ái jDi j +φVi j +ηPi j ∀i ∈ I, j ∈ J (C1)

Si j = τPi j + zeVi j ∀i ∈ I, j ∈ J (C2)

Wi j ≤ wu
i jZi j ∀i ∈ I, j ∈ J (C3)

Si j ≤ du
i jZi j ∀i ∈ I, j ∈ J (C4)

∑
i

Di j ≥∑
k

µkYk j ∀ j ∈ J (C5)

Vi j−mvℓ̂i j ∑
k

υkYk j = ℓ̂i j

(√

∑
k

υk−mv ∑
k

υk

)

∀i ∈ I, j ∈ J (C6)

Pi j−mPρ̂i jDi j = ρ̂i j

(√
D−mPD

)

∀i ∈ I, j ∈ J (C7)

Di j ≤ DZi j ∀i ∈ I, j ∈ J (C8)

∑
i

∑
j

Zi j = 1 (C9)

∑
j

Yk j = 1 ∀k ∈ K (C10)

Wi j,Si j,Di j,Vi j,Pi j ≥ 0 ∀i ∈ I, j ∈ J (C11)

Zi j,Yk j ∈ {0,1} ∀i ∈ I, j ∈ J (C12)

7.2.2.0 EXACT METHOD

It is not necessary to select the column with the most negative reduced cost. Any col-

umn with negative reduced cost will improve the solution quality (Barnhart et al., 1998).

Knowing that, we can improve the efficiency of our implementation when the pricing

problem must be a intensively computed.
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7.2.3 INTEGER MASTER PROGRAM

Sometimes, when no column prices out for entering to the base in the master program, the

actual solution does not satisfy the integrality conditions. Branch and Price, which is a

generation of branch-and-bound with LP relaxation, allows column generation.



CHAPTER 8

COMPUTATIONAL EXPERIMENTS

In this chapter we will describe the computational experiments which have been designed

for evaluation the performance of our proposed solutions.

8.1 ASSERTING CAPACITY CONSTRAINT

As we say before, the demand is attended with a certain service level as consequence

of uncertainty parameters. Once the demand is present the actual service level and the

fulfill of capacity may differ from the estimates, in order to verify this, a simulation was

executed. Instances with different values of parameters, that affect the computational

complexity, were generated. Once the instances were solved, a demand (µs) was simulated

for each one, then the optimal configuration is tested of be feasible, that means two things:

• verify if the capacity limitation is fulfill in the distribution center open. The used

capacity (C j) in the distribution center is calculated by:

C j = Q+R−Ds
j, (8.1)

where Ds
j := Demand simulated during lead time in distribution center j.

Ds
j = ∑

k

∑
i

µsℓi jYjkZi j, (8.2)
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• compare a simulated demand during lead time versus the inventory in distribution

center j, which is supplied by plant i. This inventory has to be large enough to keep

the service level, i.e. the instance solution must meet the condition:

Ds
j ≤ zα ∑

k

∑
i

σkℓ̂i jYk jZi j + µ́ j, ∀i, j (8.3)

Notice that Equation (8.1) and Equation (4.8) are the same, but the value of de-

mand is changed for the simulated one. This value is generated randomly with a uniform

distribution in the same range in which the mean of dairy demand in the instances was

originally generated and in a larger range. The parameters of the instances are:

Table 8.1: Factors considered in the instances evaluated.

Factor Levels

Service level (α) 75%, 98%

Probability of fulfill capacity (γ) 80%, 95%

Number of plants (p) 4, 6

Number of distribution centers (n) 6, 8

Number of retailers (m) 10, 13

Lead time [days] [1–8], [1–24]

We get 64 groups of combinations with 10 different instances of each group. The

demand was simulated, in the two ranges of demand, 1000 times for each instance in a

program implemented in PYTHON
1 v.3.3.3. The instances are classified in four types, as

in Table 8.2.

Table 8.2: Classification of the instances in the simulations.

Instances
LT µs

[days] [units]

A [1–8] [5,60]

B [1–24] [5,60]

C [1–8] [10,155]

D [1–24] [10,155]

The instances were modeled and optimized through GAMS
2 v.24.2.3 and CPLEX

3

v.12.6. The results are shown in the Figure 8.1. The bar chart shows the percentage

1https://www.python.org/
2http://gams.com//
3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

https://www.python.org/
http://gams.com//
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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of feasible distribution center, i.e. the total ration of distribution centers to which the

inventory assigned has not exceed the capacity. A feasible instance is the one with any

exceed distribution center. The opposite case, an infeasible instance is, for example, when

certain instance got a optimal solution and let say, four distribution centers were selected,

this solution is feasible and optimal theoretically, but when the simulation is running, one

distribution center is insufficient for keep the inventory, in that case, even if the other

distribution center are capable to manage the inventory all the time (2000 scenarios), then

the instance is consider infeasible. Of course, the percentage is less than the percentage of

feasible distribution center. For last, the ratio of meet demand in all cases is of 100 %. We

can see that the safety stock is enough to meet the demand, even with a low service level

(75%). That indicates, that it is possible to change the probability of service level (α) and

the probability of fulfill the capacity (γ) and decrease the inventory, which also means to

decrease the cost.

A B C D

70 %

80 %

90 %

100 %

Feasible distribution centers Feasible instances Meet demand

Figure 8.1: Simulation results

In the Table 8.3, the ratio of infeasible scenarios is shown according the values of

the estimate probability of fulfill the capacity and the desirable service level. The results

oscillate just a little, although, a bigger value of service level implies a bigger ratio of

infeasibility, but it is not significant.
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Table 8.3: Service level vs fulfill capacity

Probability of fulfill Service level Infeasible

capacity (γ) (α) scenarios

80% 75% 14.40%

95% 75% 13.48%

80% 98% 15.46%

95% 98% 13.97%

Summarizing,the capacity constraint and the inventory has been modeled correctly

and the inventory-management goal is reached.

8.2 COLUMN GENERATION - INITIAL COLUMNS

This was programmed in PYTHON
4 2.7, the program uses classes for defining the plants,

the distribution centers and the retailers. Lists and dictionaries are also used. The complete

source code, the data processing and also, some examples of program execution can be

found in https://github.com/NellyMonserrat/heuristico.git.

The performance of the program is evaluated according to the columns generation

time, this was achieved through an experiment developed in a laptop computer with Intel

Core i5 CPU @ 2.3 GHz processor, 6 GB of RAM following the listed parameters in Table

8.4. It shows the lower level, upper level and the size variation of each parameter.

Table 8.4: Variation of parameters

Parameters Levels Size variation

Number of plants (p) 10 – 30 10

Number of distribution centers (n) 20 – 50 5

Number of retailers (m) 100 – 550 50

Desirables columns 10m – 50m 10

Each possible combination was repeated 10 times. The experimental results can

be observed in the Figure 8.2. Horizontal axis shows the number of elements in the in-

stances, plants (Figure 8.2(a)), distribution centers (Figure 8.2(b)) and retailers (Figure

4https://www.python.org/

https://github.com/NellyMonserrat/heuristico.git
https://www.python.org/
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8.2(c)). The vertical axis represents the number of milliseconds taken to create six differ-

ent number of columns, that increased according the number of total retailers (m).

Both in Figure 8.2(a) and in Figure 8.2(c), for all series, the mean of the required

time increases progressively according to the number of the plants and the distribution

centers, a different performance is shown in the Figure 8.2(b). When the number of centers

increases, the mean time to generate the columns is lower, the reason is once we have

created the group of retailers, the assignment only consists in comparing the amount of

product required for each grouping (a calculation already done) with the storage capacity,

this operation has the complexity of O(1). Namely, as increased the number of potential

distribution centers, it is easier to generate a column.
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Figure 8.2: Generation time of initial columns
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CONCLUSIONS

The accuracy and the computational efficiency of the piecewise linear approximation de-

pends on the selection of break points so, it is value the study of break point selection

strategies to get good solution in reasonable time. In our specific case, for the square root

function, some ideas to explore are: to select more break points inside the interval with

the largest approximation error, increase iteratively the number of points, adding points at

the midpoint of each interval of the existing points.

We have proven that the decision problem corresponding to the Location-Inventory

Problem (LIP) is NP-complete with a reduction from the Bin Packing Problem, estab-

lishing that LIP is at least as difficult as the Bin Packing Problem, which is known to be

NP-complete. Therefore, the optimization version of the Location-Inventory Problem is

NP-hard. We represent inventory management in terms of the EOQ model, but the partic-

ularities of the model do not affect the proof, which indicates that the complexity of the

LIP does not depend on the inventory model used.

Knowing that LIP is NP-hard suggests that no exact algorithm can be expected to

efficiently solve large instances and the computation times in attempting such a solution

may be infeasible long. However, due to the strategic nature of the cost-minimization

problem that LIP represents, an optimal solution would be valuable, since the savings

between an optimal and a feasible solution may be large.
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We demonstrate that the reformulation and approximations are capable of providing

optimal solutions without using specialized algorithms. This contribution implies that

additional variants of the problem, could be solvable by optimization software.



NOMENCLATURE

Sets

B The collection of nonempty subsets of the retailers, index by b = 1,2, ...,2m.

I Set of plants, indexed by i = 1,2, ...p.

J Set of candidate distribution centers sites, indexed by j = 1,2, ...n.

K Set of retailers, indexed by k = 1,2, ...m.

Costs

β Weight factor of the shipment cost.

θ Weight factor of the inventory cost.

ai j Fixed cost per shipment from plant i to the distribution center j.

c jk Unit shipment cost from the distribution center j to retailer k.

f j Fixed cost for placing an order from the distribution center j.

gi j Variable cost per shipment from plant i to the distribution center j.

h Annual holding cost per item.

u j Fixed annual cost for locating the distribution center j.

Supply chain

ái j Weighted annual shipment cost from the plant i to the distribution center j per item.
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ć jk Weighted annual shipment cost from the distribution center j to the retailer k per

item.

α Probability of meeting the demand during lead time.

ℓi j Lead time from plant i to distribution center j.

µk Mean of the daily demand for retailer k.

σk Variance of the daily demand for retailer k.

ρi j Cost parameter for sending product from the plant i to the distribution center j.

C j Used capacity in the distribution center j.

D Total mean dairy demand of all set of retailers.

du
i j Upper bound on the total amount of product sending from the plant i to the distri-

bution center j.

pi Production capacity in plant i.

q j Storage capacity in the distribution center j.

r Number of working days in a year.

zα Value of the standard normal random variable corresponding to cumulative proba-

bility of α .

Inventory management

Q Order quantity, the amount of product to be asked to the plants.

R Reorder point, which is when to place an order.

Mathematical models

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Nonlinear Programming
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Modelling

σ́ Variance of demand in distribution center j during lead time.

M j Minimum probable demand in distribution center j during lead time.

ze Standard normal distribution value, that accumulates the probability of not incur-

ring in stock out and not exceeding the storage capacity.

µ́ j Mean of demand in distribution center j during lead time.

C j Current demand during lead time.

γ Probability of the expected minimum demand in distribution center j during lead

time.

Da Total annual demand in distribution center

x Number of orders per year.
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