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Abstract 
This paper presents an algorithm for designing a cryptographic system, in which the derivative 
disproportion functions (key functions) are used. This cryptographic system is used for an operative 
identification of a differential equation describing the movement of quasi-stationary objects. The 
symbols to be transmitted are encrypted by the sum of at least two of these functions combined with 
random coefficients. A new algorithm is proposed for decoding the received messages making use of 
important properties of the derivative disproportion functions. Numerical experiments are reported to 
demonstrate the algorithm’s reliability and robustness. 
 
Keywords: Identification of quasi-stationary dynamic objects, cryptographic systems, sums of key functions, 
identification algorithms 

1 Introduction 
In the modern Engineering Science and Technology, especially in the areas of Adaptive Control 

and Technical Diagnostics during a regular operation, the determination of a differential equation that 
describes a dynamic object is a very important and urgent task. Often there is an additional 
requirement of minimization of the time necessary for solving that task. Therefore, it is desirable to 
find the characteristics of the object at the current time without making use of any instantaneous 
values of the monitored processes. The coefficients of the differential equation can be changed due to 
some uncontrolled effects. In some cases, the order of the equation can also be changed. Even the type 
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of the equation may be varied when a linear object becomes nonlinear. Finally, the parameters of the 
nonlinear elements are subject to variations as well. 

A typical example of practical problems with the uncertainties of the above-mentioned kind is as 
follows. Consider a problem of technical diagnostics of a large class of quasi-stationary objects the 
static parameters of which (measured at a fixed time moment t) satisfy the following equation 

                                          y k t x.                                                                                             (*) 

Here, x and y are the input and output parameters, respectively, and the (unknown) function  k t is 

assumed to vary much slower than the input function  x x t . If the considered technical device is 
damaged, the proportionality (*) is distorted and may follow the perturbed relationship 
                                                 y k x,t x b t ,                                                                                 (**) 

where   0b t  .  
         The system of technical diagnostics should detect such deterioration and estimate its scale. The 
easiest way to do that would be comparing the values of functions (*) and (**) for the same values of 
x. However, since the ratio function  k t in (*) for quasi-stationary objects uses to change randomly 
its value with time, it becomes very difficult (if not impossible) to determine its value at a given time 
point.  

Because of its importance, the challenging problem of identification of dynamic objects has been 
studied in many publications. Even though in the majority of works correlation methods, least squares 
techniques, and the Fourier series expansion of signals are usually employed, new algorithms for 
solving this problem appear regularly. For example, a structural parametric identification on the basis 
of the multi-frequency quantization is described in (Kartashev et al., 2015). The simulation method 
using correlative methods of identification is proposed in (Porkuyan and Kuznetsova, 2008). In 
(Medvedev, 2000), the algorithms of identification of parameters and of object order are discussed. All 
these methods are based on the recurrent observer derivatives. Some heuristic algorithms have also 
been studied (Pervushin, 2013). 

 However, all those methods require the observation of processes during a certain time interval, 
which is not always available. The main novelty of this paper is that we develop a new identification 
method making use of only instantaneous values of the input-output processes and their derivatives. 
This is done by exploiting the derivative disproportion functions (DDF) introduced previously in 
(Avramenko, 2000; Avramenko and Zabolotny, 2009; Avramenko and Karpenko, 2002) whereas their 
comprehensive description is found in (Kalashnikov et al., 2017). 

The rest of the paper is arranged as follows. Section 2 states the problem, while Section 3 defines 
the derivative disproportion functions and lists dome of their important properties. The identification 
algorithm is described in Section 4. Section 5 deals with a numerical example and the results of 
numerical experiments. Section 6 presents the concluding remarks, while the acknowledgments and 
the list of references finish the paper. 

2 Problem Statement 
Consider a quasi-stationary dynamic object with one input and one output whose behavior is 

described by the differential equation 
       1

1 0
n n

n na y a y a F y x t ,
                                                                             (1) 

where t denotes the time,  x t  and  y t are the functions of input and output, respectively; and 

finally, F is a nonlinear operator (element) that affects (converts) the function  y t . The main 
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of the equation may be varied when a linear object becomes nonlinear. Finally, the parameters of the 
nonlinear elements are subject to variations as well. 

A typical example of practical problems with the uncertainties of the above-mentioned kind is as 
follows. Consider a problem of technical diagnostics of a large class of quasi-stationary objects the 
static parameters of which (measured at a fixed time moment t) satisfy the following equation 

                                          y k t x.                                                                                             (*) 

Here, x and y are the input and output parameters, respectively, and the (unknown) function  k t is 

assumed to vary much slower than the input function  x x t . If the considered technical device is 
damaged, the proportionality (*) is distorted and may follow the perturbed relationship 
                                                 y k x,t x b t ,                                                                                 (**) 

where   0b t  .  
         The system of technical diagnostics should detect such deterioration and estimate its scale. The 
easiest way to do that would be comparing the values of functions (*) and (**) for the same values of 
x. However, since the ratio function  k t in (*) for quasi-stationary objects uses to change randomly 
its value with time, it becomes very difficult (if not impossible) to determine its value at a given time 
point.  

Because of its importance, the challenging problem of identification of dynamic objects has been 
studied in many publications. Even though in the majority of works correlation methods, least squares 
techniques, and the Fourier series expansion of signals are usually employed, new algorithms for 
solving this problem appear regularly. For example, a structural parametric identification on the basis 
of the multi-frequency quantization is described in (Kartashev et al., 2015). The simulation method 
using correlative methods of identification is proposed in (Porkuyan and Kuznetsova, 2008). In 
(Medvedev, 2000), the algorithms of identification of parameters and of object order are discussed. All 
these methods are based on the recurrent observer derivatives. Some heuristic algorithms have also 
been studied (Pervushin, 2013). 

 However, all those methods require the observation of processes during a certain time interval, 
which is not always available. The main novelty of this paper is that we develop a new identification 
method making use of only instantaneous values of the input-output processes and their derivatives. 
This is done by exploiting the derivative disproportion functions (DDF) introduced previously in 
(Avramenko, 2000; Avramenko and Zabolotny, 2009; Avramenko and Karpenko, 2002) whereas their 
comprehensive description is found in (Kalashnikov et al., 2017). 

The rest of the paper is arranged as follows. Section 2 states the problem, while Section 3 defines 
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Consider a quasi-stationary dynamic object with one input and one output whose behavior is 

described by the differential equation 
       1

1 0
n n

n na y a y a F y x t ,
                                                                             (1) 

where t denotes the time,  x t  and  y t are the functions of input and output, respectively; and 

finally, F is a nonlinear operator (element) that affects (converts) the function  y t . The main 
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characteristics of the latter operator (element) as well as the upper bound of the order of equation (1) 
are assumed to be known. 

In this paper, we restrict ourselves to the case, where both  x t  and  y t are deterministic 
processes, although it isn’t very difficult to examine more realistic noisy processes. The coefficients of 
equation (1) may be accepted as constants during the process of identification. 

It is necessary to identify the coefficients of equation (1) by making use of only instantaneous 
values of input and output processes and their derivatives or to determine that there is a transient in the 
current time. (The proposed method doesn’t identify the object during the transition process.) The task 
is completed by exploiting the derivative disproportion functions (DDF) introduced previously in 
(Avramenko, 2000; Avramenko and Zabolotny, 2009; Avramenko and Karpenko, 2002) and fully 
described in (Kalashnikov et al., 2017). For the paper to be self-sufficient, the definitions and key 
properties of these functions are presented in the following sections. 

3 Derivative Disproportion Functions 
In the competitive world of today, the value of information is constantly increasing and therefore, 

it is necessary to encrypt this information in order to hide it from an unauthorized use. The latter aim 
has led to the widespread use of cryptographic techniques within information systems, the most 
famous of which are Data Encryption Standard (DES, 1999), Advanced Encryption Standard (AES, 
2001), and the Rivest-Shamir-Adleman (RSA) cryptosystem (Rivets et al., 1978). But the new 
powerful super-computers and the technologies of network and neural computing that have arisen 
since 2000, bring up the revision of the previous cryptographic systems that had been considered as 
absolutely reliable. Therefore, the development of new approaches to the creation of cryptosystems is 
relevant. 

Almost all cryptosystems use integers as keys. The greater the key length is, the more difficult it 
is to “break” a cryptosystem by fitting a key or by solving a factorization problem. The transition from 
integers to real numbers, or even better to real type functions is expected to considerably complicate 
the task of cryptanalysis and to increase the stability of cryptosystems. 

   The new methods of classifying information can be developed on the basis of the use of 
disproportion functions. Disproportion functions on the derivatives and on the values were proposed 
and studied in (Avramenko, 2000; Avramenko and Zabolotny, 2009; Avramenko and Karpenko, 
2002).   

In this part of the paper, we recall the capability of such an approach for classifying and 
declassifying of both analog signal and the signal in the form of a sequence of symbols from the 
specified alphabet (Avramenko, 2000; Avramenko and Zabolotny, 2009). This cryptosystem is based 
on the use of disproportion functions. The input symbols are encoded by the sum of real functions 
(keys) combined with random coefficients. Due to the disproportion functions, there appeared an 
opportunity to recognize the sum of which functions is included in the received signal at the current 
moment, despite the unknown coefficients involved, and thus to recognize the encrypted symbols. 

    Derivative disproportion functions characterize numerical functions. They permit to obtain a 
quantitative assessment of deviation of a numerical function from the power function ny k x   for a 
given value of the argument, regardless of the multiplier k. Here 1n   is an integer. 

    The n-th order derivative disproportion of the function  y y x  with respect to x ( 0x  ) is 
defined as follows: 

    1 n
( n )
x n n

y d y@ d y
n!x dx

   .                                                                                             (2) 

 

 

       In the particular case of 1n   (order 1), formula (2) of the derivative disproportion is reduced 
to               

                 1( )
x

y dy@ d y
x dx

  .                                                                                                          (3)           

   As it could be expected, for the linear function y kx its disproportion of order 1 is zero for any 
value of the coefficient k. The symbol @ is chosen to designate the operation of determination of 
disproportion. The symbol “d” is selected to refer to the function’s derivative as the main object of 
disproportion calculated. Finally, the left-hand side of (3) is read “at d one y with respect to x”. 

 
If a function is specified in the parametric form, the n-th order derivative disproportion (2) is 

determined by applying the rules of calculation of  
n

n
d y
dx

 under the parametric dependence of y upon x. 

In particular, the first-order derivative disproportion of the function defined parametrically as 
 x t  and  x t  (where t is the parameter, and    0 0t , ' t   ) has the form 

                           
 

     
 

 
 

11 t
x t

t

t ' ty'y@ d y @ d t .
x x' t ' t

 


 
                                                         (4)      

       Clearly if    t k t  for some constant k, its derivative disproportion (4) equals zero in all the 

area in which the functions  y t  and  x t  are simultaneously defined. 
       Lemma 1 [7]. Every derivative disproportion function of order n boasts the following properties: 

1. Multiplying the function y by any scalar k leads to scaling its derivative disproportion by the 
same scalar. 

2. The order n derivative disproportion of a sum (difference) of functions equals to the sum 
(difference) of their derivative disproportion. 

3. For the linear function y kx , its derivative disproportion of order 1 is zero for any value of 
the coefficient k. 
Proof. It is readily verified by simple algebraic manipulations with the use of definition (2). ■                                                                                                           

 Remark 1. In other words, the operator  n
x@ d defined on the space  nC  of n times smoothly 

differentiable real functions is linear over this space.                                                                              ■                     

4 Identification Algorithm 
Let us rewrite equation (1) in the form of the sum of key functions with unknown coefficients: 

       0
1

n
i i

i
f t k f t ,


                                                                                                               (5) 

where by the function 0f we denote the input process x, while the functions   1 2i if f t ,i , , ,n,  
represent the output process  y t  and its derivatives. The identification problem applied to quasi-
stationary dynamic objects can be illustrated with the following example. 

Example 1. Consider a communication system transmitting symbols (signals) encoded with a 
cryptosystem K based on key functions  i if f t ,  each defined on a (time) interval 

 0 0 1i it ,T ,T ,i , ,m    . The functions are assumed smooth and n times differentiable. A symbol 
transmitted at the time moment t is encoded by the sum of (at least two) key functions with possible 
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moment, despite the unknown coefficients involved, and thus to recognize the encrypted symbols. 

    Derivative disproportion functions characterize numerical functions. They permit to obtain a 
quantitative assessment of deviation of a numerical function from the power function ny k x   for a 
given value of the argument, regardless of the multiplier k. Here 1n   is an integer. 

    The n-th order derivative disproportion of the function  y y x  with respect to x ( 0x  ) is 
defined as follows: 

    1 n
( n )
x n n

y d y@ d y
n!x dx

   .                                                                                             (2) 

 

 

       In the particular case of 1n   (order 1), formula (2) of the derivative disproportion is reduced 
to               

                 1( )
x

y dy@ d y
x dx

  .                                                                                                          (3)           

   As it could be expected, for the linear function y kx its disproportion of order 1 is zero for any 
value of the coefficient k. The symbol @ is chosen to designate the operation of determination of 
disproportion. The symbol “d” is selected to refer to the function’s derivative as the main object of 
disproportion calculated. Finally, the left-hand side of (3) is read “at d one y with respect to x”. 

 
If a function is specified in the parametric form, the n-th order derivative disproportion (2) is 

determined by applying the rules of calculation of  
n

n
d y
dx

 under the parametric dependence of y upon x. 

In particular, the first-order derivative disproportion of the function defined parametrically as 
 x t  and  x t  (where t is the parameter, and    0 0t , ' t   ) has the form 

                           
 

     
 

 
 

11 t
x t

t

t ' ty'y@ d y @ d t .
x x' t ' t

 


 
                                                         (4)      

       Clearly if    t k t  for some constant k, its derivative disproportion (4) equals zero in all the 

area in which the functions  y t  and  x t  are simultaneously defined. 
       Lemma 1 [7]. Every derivative disproportion function of order n boasts the following properties: 

1. Multiplying the function y by any scalar k leads to scaling its derivative disproportion by the 
same scalar. 

2. The order n derivative disproportion of a sum (difference) of functions equals to the sum 
(difference) of their derivative disproportion. 

3. For the linear function y kx , its derivative disproportion of order 1 is zero for any value of 
the coefficient k. 
Proof. It is readily verified by simple algebraic manipulations with the use of definition (2). ■                                                                                                           

 Remark 1. In other words, the operator  n
x@ d defined on the space  nC  of n times smoothly 

differentiable real functions is linear over this space.                                                                              ■                     

4 Identification Algorithm 
Let us rewrite equation (1) in the form of the sum of key functions with unknown coefficients: 

       0
1

n
i i

i
f t k f t ,


                                                                                                               (5) 

where by the function 0f we denote the input process x, while the functions   1 2i if f t ,i , , ,n,  
represent the output process  y t  and its derivatives. The identification problem applied to quasi-
stationary dynamic objects can be illustrated with the following example. 

Example 1. Consider a communication system transmitting symbols (signals) encoded with a 
cryptosystem K based on key functions  i if f t ,  each defined on a (time) interval 

 0 0 1i it ,T ,T ,i , ,m    . The functions are assumed smooth and n times differentiable. A symbol 
transmitted at the time moment t is encoded by the sum of (at least two) key functions with possible 
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time delays (shifts)  0 1i i,T ,i , ,m.    For example if the transmitted symbol is encoded as the sum 
of two key functions  and 1p qf f , p,q m,   the signal transmitted to the communication channel has 
been encoded as 

                      0 0p p p q q q p qy t k f t k f t ,k ,k .                                                            (6) 

It is assumed that the invader (hacker) who may have got an unauthorized access to the channel is 
informed of neither the key functions if  nor their time delays (shifts) i , nor the coefficients 

 ik , i p,q.    
At the receiver end of the communication system, the full list of key functions and their delays is 

known but which of them (and with what coefficients) are involved in the received signal (6) is to be 
detected. The recognition of these functions and their coefficients in (6) permits to decode the current 
symbol  y t . 

The problem of detecting both the key functions and their coefficients in (6) is solved by the 
algorithm proposed in the next subsection. 

4.1 Algorithm’s Description 
The problem in question is hard to solve since the key functions and their coefficients can be 

detected only approximately. The received message  y t  is expanded in time, so exact or 

approximate derivatives of this function are needed. When the data are discrete, e.g.,    1

0

N
j j

y t



, 

then the desired approximate “derivative” of the (discretized) function  y t is found by a special 
method, similar to that by Gregory-Newton (cf., Khan et al., 2003). 

The algorithm is quite complicated, and due to the space restriction, here we present its 
description for 3m  only (the complete version can be found in (Kalashnikov et al., 2017) and other 
publications of the authors).  

The main idea of the general algorithm is as follows: if the key function delays (shifts) 
1i ,i ,m   , are known, we may represent the received message  y t  as the sum of all key 

functions with yet unknown coefficients ik  (for simplicity, assume that all delays are zero): 

                            0
1

m
i i

i
f t k f t


  .                                                                                       (7) 

Then we have to calculate their coefficients at the current moment t. Coefficients will be equal to zero 
for those functions that are not involved in the encrypted signal (7). 

 
As we mentioned above, the description of the algorithm will be given for the case 3m   only. 

The algorithm consists of m steps (that is, 3 in our case). 
 

     Step 1. Select arbitrarily one of the key functions, for instance, the first one  1 1f f t . By making 

use of (3) calculate the derivative disproportion for the signal  0f t  and denote it as 

     
1

1
01 0fF t : @d f t . Besides, derivative disproportions F21(t) and F31(t) are calculated for the key 

functions  2f t  and  3f t  with respect to  1f t . Due to the linearity of operator @ (see, Remark 1), 
formula (7) yields for 3m  : 

 

 

           
       

 
 
 

 
 

 
 

 
 

 
 

           

1

1 1

1 0 0 2 2
01 0 1 2

1 1 1 1

1 13 3
3 2 2 3 3 2 21 3 31

1 1

0f

f f

f t f ' t f t f ' t
F t @d f t k k

f t f ' t f t f ' t

f t f ' t
k k @d f t k @d f t k F t k F t .

f t f ' t

 
        

 
 

      
 

                      (8) 

Here, the first term on the right-hand side of the upper line of (8) is zero due to assertion 3 of 
Lemma 1. 

 
Step 2. Again, pick up randomly one of the remaining derivative disproportions F21(t) and F31(t); 

let it be, for instance, F21(t). Now we compute the derivative disproportions of the functions F01(t) and 
F31(t) with respect to F21(t); denote them as F0121(t) and F3121(t), respectively. 

 
Applying the operator of the derivative disproportion of order 1 to both sides of (8), making use 

of its linearity and property 3 of Lemma 1 one easily gets 

    
 

 
 

 
 

 
   01 01 31 31

0121 2 3 3 3121
21 21 21 21

0
F t F ' t F t F ' t

F t k k k F t .
F t F ' t F t F ' t

 
       

 
                             (9) 

 
Step 3. Relationship (9) shows the linear dependence of the function F0121 on the function F3121. 

Therefore, based on property 3 of Lemma 1, we conclude that the derivative disproportion function 
F01213121(t) of the function F0121 with respect to F3121 is zero for all feasible t: 

       
 

 
 3121

1 0121 0121
01213121 0121 3 3

3121 3121
0F

F t F ' t
F t @ d F t k k .

F t F ' t
                                         (10) 

 
Now one can use relations (8) and (9) in the reverse order and calculate the desired values of the 

unknown coefficients ik . Indeed, first from (9) one readily gets 

                 0121
3

3121

Fk ;
F

                                                                                                       (11)      

the latter, in its turn, together with (8) implies: 

                    01 3 31
2

21

F k Fk .
F


                                                                                       (12)    

Finally, by substituting the just found 2k and 3k in (7), one deduces the value of 1k : 

                         
 

2 2 2 3 3 3
1

1 1

y t k f t k f t
k .

f t
 


   




                                                          (13) 

The algorithm stops having decoded the received message (quasi-stationary dynamic object)  0f t  by 
having detected the unknown coefficients associated with the involved key functions. All coefficients 
related to the non-used key functions are zero. The object has been identified.                                      ■                                                                             

 
Remark 2. If the disproportion (10) isn’t equal to zero, it is necessary to check the following 

points: 
1 There may be a transient process in the object. When this process is finished, the disproportion 

will be equal to zero. 
2 A non-linearity has appeared in the object, or the parameters of the nonlinear element have 

been changed. 
3 The order of the equation is greater than it was previously estimated.                                        ■                              
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time delays (shifts)  0 1i i,T ,i , ,m.    For example if the transmitted symbol is encoded as the sum 
of two key functions  and 1p qf f , p,q m,   the signal transmitted to the communication channel has 
been encoded as 

                      0 0p p p q q q p qy t k f t k f t ,k ,k .                                                            (6) 

It is assumed that the invader (hacker) who may have got an unauthorized access to the channel is 
informed of neither the key functions if  nor their time delays (shifts) i , nor the coefficients 

 ik , i p,q.    
At the receiver end of the communication system, the full list of key functions and their delays is 

known but which of them (and with what coefficients) are involved in the received signal (6) is to be 
detected. The recognition of these functions and their coefficients in (6) permits to decode the current 
symbol  y t . 

The problem of detecting both the key functions and their coefficients in (6) is solved by the 
algorithm proposed in the next subsection. 

4.1 Algorithm’s Description 
The problem in question is hard to solve since the key functions and their coefficients can be 

detected only approximately. The received message  y t  is expanded in time, so exact or 

approximate derivatives of this function are needed. When the data are discrete, e.g.,    1

0

N
j j

y t



, 

then the desired approximate “derivative” of the (discretized) function  y t is found by a special 
method, similar to that by Gregory-Newton (cf., Khan et al., 2003). 

The algorithm is quite complicated, and due to the space restriction, here we present its 
description for 3m  only (the complete version can be found in (Kalashnikov et al., 2017) and other 
publications of the authors).  

The main idea of the general algorithm is as follows: if the key function delays (shifts) 
1i ,i ,m   , are known, we may represent the received message  y t  as the sum of all key 

functions with yet unknown coefficients ik  (for simplicity, assume that all delays are zero): 

                            0
1

m
i i

i
f t k f t


  .                                                                                       (7) 

Then we have to calculate their coefficients at the current moment t. Coefficients will be equal to zero 
for those functions that are not involved in the encrypted signal (7). 

 
As we mentioned above, the description of the algorithm will be given for the case 3m   only. 

The algorithm consists of m steps (that is, 3 in our case). 
 

     Step 1. Select arbitrarily one of the key functions, for instance, the first one  1 1f f t . By making 

use of (3) calculate the derivative disproportion for the signal  0f t  and denote it as 

     
1

1
01 0fF t : @d f t . Besides, derivative disproportions F21(t) and F31(t) are calculated for the key 

functions  2f t  and  3f t  with respect to  1f t . Due to the linearity of operator @ (see, Remark 1), 
formula (7) yields for 3m  : 
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                      (8) 

Here, the first term on the right-hand side of the upper line of (8) is zero due to assertion 3 of 
Lemma 1. 

 
Step 2. Again, pick up randomly one of the remaining derivative disproportions F21(t) and F31(t); 

let it be, for instance, F21(t). Now we compute the derivative disproportions of the functions F01(t) and 
F31(t) with respect to F21(t); denote them as F0121(t) and F3121(t), respectively. 

 
Applying the operator of the derivative disproportion of order 1 to both sides of (8), making use 

of its linearity and property 3 of Lemma 1 one easily gets 
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 
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 
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 
                             (9) 

 
Step 3. Relationship (9) shows the linear dependence of the function F0121 on the function F3121. 

Therefore, based on property 3 of Lemma 1, we conclude that the derivative disproportion function 
F01213121(t) of the function F0121 with respect to F3121 is zero for all feasible t: 
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 

 
 3121

1 0121 0121
01213121 0121 3 3

3121 3121
0F

F t F ' t
F t @ d F t k k .

F t F ' t
                                         (10) 

 
Now one can use relations (8) and (9) in the reverse order and calculate the desired values of the 

unknown coefficients ik . Indeed, first from (9) one readily gets 

                 0121
3

3121

Fk ;
F

                                                                                                       (11)      

the latter, in its turn, together with (8) implies: 

                    01 3 31
2

21

F k Fk .
F


                                                                                       (12)    

Finally, by substituting the just found 2k and 3k in (7), one deduces the value of 1k : 

                         
 

2 2 2 3 3 3
1

1 1

y t k f t k f t
k .

f t
 


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                                                          (13) 

The algorithm stops having decoded the received message (quasi-stationary dynamic object)  0f t  by 
having detected the unknown coefficients associated with the involved key functions. All coefficients 
related to the non-used key functions are zero. The object has been identified.                                      ■                                                                             

 
Remark 2. If the disproportion (10) isn’t equal to zero, it is necessary to check the following 

points: 
1 There may be a transient process in the object. When this process is finished, the disproportion 

will be equal to zero. 
2 A non-linearity has appeared in the object, or the parameters of the nonlinear element have 

been changed. 
3 The order of the equation is greater than it was previously estimated.                                        ■                              
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This algorithm can be used for rapid identification of quasi-stationary dynamic objects if the 
input and output processes are smooth.  No interferences are allowed. 

 
Remark 3. As it can be easily concluded, the knowing of the list of involved functions and their 

delay (shift) values i is indispensable for the implementation of this simplified version of the 
decoding algorithm. The more sophisticated procedures that may be needed to decipher the received 
message in the lack of such important information are described in (Avramenko, 2000; Avramenko 
and Zabolotny, 2009).                                                                                                                                          

5 Numerical Illustration 
The efficiency of the developed algorithm was tested by using computer simulations. Namely, 

consider the Duffing equation that is employed for describing many kinds of nonlinear objects: 

 
2

2 3
0 12 2d x dx x hx G cos t

dtdt
        ,                                     (14) 

where t is the time variable, x (t) is a system’s deviation from the initial state,  is a  dissipation factor 
(damping), 0 and h are the coefficients depending on the system parameters, and finally, 1G, ,   are 
the amplitude, frequency, and phase of the external influence. 

 
Before modeling, the values of coefficients and parameters of external influence were specified 

randomly in equation (14). Then the Cauchy problem was solved by the use of Runge-Kutta method of 
the 4th order with the step time equal to 0.01s.  The processes x(t) and dx/dt were thus numerically 
obtained. The second derivative 2 2d x dt  was calculated with the aid of the Newton-Stirling numerical 
method using the first derivative.   

 
      The coefficients of the differential equation that were first defined and that calculated are 

shown in Table 1.                                              

                                                                                

t  
DDF 1k  2k  3k  4k  

Def.  Calc. Def. Calc. Def. Calc. Def. Calc. 

0.3 

71 68 10.  

 0.13 0.1300 0.062 0.06233 3.02 3.02 1 1.00003 

1.42 – 0.0002 0.13 0.1301 0.062 0.06098 73.1 72.45 1 1.00322 

Table 1: Coefficients (defined and calculated) of the differential equation  

The minor deviations are associated with the choice of the time quantization step for modeling and 
calculation of derivatives. 

 
Figure 1 shows a plot of the derivative disproportion function (DDF) (10) if the parameter 

2𝛼   changed abruptly from 0.23 to 0.35 when the time is equal to 0.57 seconds.  As a result, the DDF 
(10) has stopped being zero. 

 

 

 
At the end of the transition process, the values of DDF (11) are again equal to zero, and the 

coefficient  k3=0.35  is constant. 

 
                           Figure 1: An irregularity occurs at t = 0.57 
 

Figure 2 depicts the change of the ratio k3 from 0.23 to 0.38 in the time interval 0.57 to 0.72.  On 
this interval, the DDF (10) wasn’t zero, so it is impossible to calculate the coefficients of equation (7). 
However, at the end of the transition process, the DDF (10) again becomes zero, and the coefficient k3 
received the constant value of 0.38. 

           

 
                            Figure 2: Another irregularity happens in the time interval 0.57 to 0.72 
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This algorithm can be used for rapid identification of quasi-stationary dynamic objects if the 
input and output processes are smooth.  No interferences are allowed. 

 
Remark 3. As it can be easily concluded, the knowing of the list of involved functions and their 

delay (shift) values i is indispensable for the implementation of this simplified version of the 
decoding algorithm. The more sophisticated procedures that may be needed to decipher the received 
message in the lack of such important information are described in (Avramenko, 2000; Avramenko 
and Zabolotny, 2009).                                                                                                                                          

5 Numerical Illustration 
The efficiency of the developed algorithm was tested by using computer simulations. Namely, 

consider the Duffing equation that is employed for describing many kinds of nonlinear objects: 
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dtdt
        ,                                     (14) 

where t is the time variable, x (t) is a system’s deviation from the initial state,  is a  dissipation factor 
(damping), 0 and h are the coefficients depending on the system parameters, and finally, 1G, ,   are 
the amplitude, frequency, and phase of the external influence. 

 
Before modeling, the values of coefficients and parameters of external influence were specified 

randomly in equation (14). Then the Cauchy problem was solved by the use of Runge-Kutta method of 
the 4th order with the step time equal to 0.01s.  The processes x(t) and dx/dt were thus numerically 
obtained. The second derivative 2 2d x dt  was calculated with the aid of the Newton-Stirling numerical 
method using the first derivative.   

 
      The coefficients of the differential equation that were first defined and that calculated are 

shown in Table 1.                                              
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Def.  Calc. Def. Calc. Def. Calc. Def. Calc. 
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71 68 10.  

 0.13 0.1300 0.062 0.06233 3.02 3.02 1 1.00003 

1.42 – 0.0002 0.13 0.1301 0.062 0.06098 73.1 72.45 1 1.00322 

Table 1: Coefficients (defined and calculated) of the differential equation  

The minor deviations are associated with the choice of the time quantization step for modeling and 
calculation of derivatives. 

 
Figure 1 shows a plot of the derivative disproportion function (DDF) (10) if the parameter 

2𝛼   changed abruptly from 0.23 to 0.35 when the time is equal to 0.57 seconds.  As a result, the DDF 
(10) has stopped being zero. 

 

 

 
At the end of the transition process, the values of DDF (11) are again equal to zero, and the 

coefficient  k3=0.35  is constant. 

 
                           Figure 1: An irregularity occurs at t = 0.57 
 

Figure 2 depicts the change of the ratio k3 from 0.23 to 0.38 in the time interval 0.57 to 0.72.  On 
this interval, the DDF (10) wasn’t zero, so it is impossible to calculate the coefficients of equation (7). 
However, at the end of the transition process, the DDF (10) again becomes zero, and the coefficient k3 
received the constant value of 0.38. 

           

 
                            Figure 2: Another irregularity happens in the time interval 0.57 to 0.72 
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These minor fluctuations of the values of k3 are the result of numerical differentiation with the use 

6-order differences. 
 
Those examples demonstrate the proposed algorithm’s performance. According to the rapidly 

detected fluctuations and their derivatives, the algorithm is robust and allows one to implement 
efficiently the operational control of the parameters of dynamic systems. 

6 Concluding Remarks 
The determination of a differential equation that describes a dynamic object is a very important 

and challenging task. An additional requirement of minimization of the time necessary for solving that 
task is quite frequent. 

 
A plenty of various numerical algorithms has been developed to solve the identification problem. 

However, all those methods require the observation of processes during a certain time interval, which 
is not always possible. The main novelty of this paper is in that we propose a new identification 
method making use of only instantaneous values of the input-output processes and their derivatives. 
The task is completed by exploiting the derivative disproportion functions (DDF) introduced 
previously in (Avramenko, 2000; Avramenko and Zabolotny, 2009; Avramenko and Karpenko, 2002) 
and comprehensively described in (Kalashnikov et al., 2017). 

 
Namely, we propose a cryptosystem where real functions are used as keys. The example is 

provided to illustrate the operation of such a system where symbols are encoded by the sum of the key 
functions with random coefficients. Decryption occurs with the help of the first order derivative 
disproportion functions calculated for the received signal and the key functions. 

 
For a practical application of such cryptosystems, one should bear in mind that in the process of 

calculation of the coefficients during decoding, there may arise examples of division by small 
numbers, or a ratio of two numbers both close to zero. This can lead to information distortion. 
Therefore, the encrypted message must be decoded before it is transmitted to a communication 
channel. If necessary, the message must be encrypted once again with other coefficients in the hope 
that the generator of random numbers varies the obtained coefficients of the key functions. 
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