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Artificial Gaussian neurons are very common structures of artificial neural networks like radial basis function. These artificial
neurons use a Gaussian activation function that includes two parameters called the center of mass (cm) and sensibility factor (𝜆).
Changes on these parameters determine the behavior of the neuron. When the neuron has a feedback output, complex chaotic
behavior is displayed.This paper presents a study and implementation of this particular neuron. Stability of fixed points, bifurcation
diagrams, and Lyapunov exponents help to determine the dynamical nature of the neuron, and its implementation on embedded
system illustrates preliminary results toward embedded chaos computation.

1. Introduction

The study of dynamical systems that involves artificial
neurons is very complex; usually, numerical solutions are
required when analytical solutions are difficult to be made.
These simulations require models from single neurons to
interconnected neurons and help to explain the behavior of
complex neural structures. A similar work about analysis
of complex dynamic systems with groups of neurons is [1],
where results show that the periodically forced Hodgkin-
Huxley oscillator exhibits not only periodic motions but also
non-periodic motions (quasi-periodic or chaotic oscillation)
depending on the amplitude and the frequency of the stimu-
lating current, the exhibited complex motions were similar to
motions found experimentally in squid giant axons. Inspira-
tion on neural structures from the nature is given by the work
of Wang [2] where a complex dynamic behavior is generated
from the Bonhoeffer-van der Pol model, and it is due to
the interaction between the periodic stimulating current and
Bonhoeffer-van der Pol oscillations. A complete work about
the analysis of nature-inspiredmodels wasmade by Korn and
Faure [3]. Authors use different models of excitable cells with
different modes of firing of busting neurons. These models

that simulate different structures of the brain are complex
nonlinear systems that generate oscillations inclusive chaotic
ones. With this in mind, the signals of the brain generated
by neural structures could be chaotic. Soriano et al. presents
a similar work where the Fitzhugh-Nagumo neural model
is analysed using a new method called cloned dynamics
approach used for calculating the Lyapunov spectrum of
dynamical systems [4].

Single neurons have been studied recently, in part because
simple configuration could exhibit high complexity in its
dynamics that includes chaos. Li and Chen [5] demonstrate
that a single neuron can show a chaotic behavior due to
the nonlinear dynamics where dependency of parameters
is strong, generating switching between coexisting chaotic
attractors and connected attractors [5].

A comparison between single neurons models is made in
the work of Sungar et al. [6] to establish a model for cognitive
purpose, where synchronization conditions are explored. A
neural model with a high propensity to synchronization
could be more plausible for modeling neural activity. El
Boustani and Destexhe [7] use microelectrodes inserted in
the cat cerebral cortex that show neuronal discharges very
similar to stochastic variables or single neurons; in this
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case, single neurons show stochastic dynamics, but on large
scales the behavior is more coherent with high dimensional
chaos [7]. Other example is the study of structures from
thalamocortical neurons that can be explained using a model
of the generated current. An analysis made on this model
to enervate one-dimensional maps captures the essentials of
the chaotic behavior [8]. Cellular neural networks (CNN) are
another related work. Single cells make interactions between
neighbors only and generate complex behavior. Roska and
Chua work with discrete time CNN using the Chua’s local
activity principle and nonhomogeneous spatiotemporal pat-
terns are induced by initial setting in these systems [9]. A
complete review of these systems can be found in the work
of Roska and Chua [10].

The study of single neurons as an isolated system is
important because very complex dynamics can be generated
in a simple structure. Usually, single neurons are modelled
with differential equations with a time delay [11].The study of
these systems is diverse and extended; however, it is possible
to take advantage of the richness in this behavior in a variety
of applications like chaos computing [12, 13]. In all cases,
phase plots, waveform plots, and power spectra (in others
cases, Lyapunov exponents) are used to confirm chaoticity.

Implementation of single neurons has been made usually
with electronic circuits, where the nonlinear behavior is
analysed by means of electronic simulation software [14], or
by designing analog electronics using the same way to solve
differential equations by analog computers [15, 16]. Due to the
social demands for sophisticated products and the require-
ments on the daily industrial processes to cover the human
needs, it is important the implementation of new scientific
tools on embedded systems.The embedded systems are often
defined as a collection of programmable parts surrounded
by ASICs (application-specific integrated circuits) and other
standard components that interact continuouslywith an envi-
ronment through sensors and actuators. The programmable
parts include microcontrollers and DSPs [17, 18]. The use of
embedded systems simplifies the design procedure involved
and reduces the time process implementation, so a prototype
has a rapid launch.

In this paper, a single neuron is represented as a nonlinear
discrete dynamic system. Bifurcation diagrams and Lyapunov
exponents are used to explain the behavior of the system and
determinate effects of the parameters to generate periodicity,
stability, and chaos. Finally, we presented an implementation
of a single neuron with a Gaussian activation function in
an embedded system based on the open-source platform
Arduino, which is a micro-controller-based electronic board
of 8-bit microcontroller ATmega168 [19]. Experiments are
made using two potentiometers to establish the parameter
values and as results, some bifurcation diagrams comparable
with numerical results are made.

2. A Single Gaussian Neuron

A neuron is an information-processing unit that is funda-
mental to the operation of a neuronal network [20]. It is a
simple model approximation of a biological neuron usually
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Figure 2: Single recurrent artificial Gaussian neuron.

called simple-processing unit. The block diagram of Figure 1
shows the classical model of a neuron, identifying three basic
elements:

(i) A set of synapses or connecting links, each of which
is characterized by a weight of its own. Specifically, an
input signal𝑋

𝑖
, connected to the neuron, ismultiplied

by the synaptic weight𝑊
𝑖
.

(ii) An adder to add the input signals, pondered by the
respective weight.

(iii) An activation function for limiting the amplitude of
the output of a neuron. Normally this function is
nonlinear such as Gaussian, sigmoidal or hyperbolic
tangential forms.

In this paper we deal with a single recurrent artificial
Gaussian neuron (SRAGN) in which, as can be seen in
Figure 2, the output 𝑦 is feedback to the main input 𝑥,
while the other two inputs, cm and 𝜆, are parameters of the
activation function.

The Gaussian activation function is given by

𝑓
𝑎 (𝑥, 𝜆, cm) = 𝑒

(−1/𝜆)(𝑥−cm)2 (1)

and has bell form as can be seen in Figure 3.
A single neuron can be considered as a difference equa-

tion that can generate complex behavior when the input is
a feedback of its output and the activation function is a
Gaussianmap, a commonly studied nonlinear discrete system
[21].

Thus, the discrete response of this SRAGN is governed by

𝑦
𝑘
= 𝑓
𝑎
(𝑥
𝑘
, 𝜆, cm) = 𝑒(−1/𝜆)(𝑥𝑘−cm)

2

, (2)
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Figure 3: Gaussian bell. Its two parameters are displayed in the plot.

where

(i) 𝑘 = {1, 2, 3, . . . , 𝑛} denotes the number of the execu-
tion of (2), with 𝑦

𝑘
and 𝑥
𝑘
as the neuron response and

input for execution 𝑘, respectively.
(ii) Consider that input 𝑥

𝑘+1
is the feedback response 𝑦

𝑘
,

with 𝑥
1
= 𝑦
0
= 0 as initial condition.

(iii) It is considered that each execution 𝑘 takes 𝑇 seconds
to complete the computation of 𝑓

𝑎
(⋅).

Then, discrete response of the SRAGN (2) can be rewriten
as a one-dimensional nonlinear discrete dynamical system

𝑥
𝑘+1
= 𝑒
(−1/𝜆)(𝑥

𝑘
−cm)2
. (3)

For certain parameter values 𝜆 and cm, the response 𝑥
𝑘
of

system (3) can display highly complex behavior and even
chaotic phenomena.

For instance, with values 𝜆 = 0.7 and cm = 0.25, response
𝑥
𝑘
tends to a fixed point, see Figure 4(a). For values 𝜆 = 0.4

and cm = 0.25, response 𝑥
𝑘
is a periodical oscillation shown

in Figure 4(b). For values 𝜆 = 0.15 and cm = 0.50, response
𝑥
𝑘
seems to be an irregular or chaotic response shown in

Figure 4(c). In the next section, the dynamical behavior for
SRAGN (3) is analyzed.

3. SRAGN Dynamical Behavior Analysis

Firstly, consider the case in that response 𝑥
𝑘
of system (3)

tends to be a fixed point and remains in it. Formally, a fixed
point is defined as follows.

Definition 1 (see [22]). A fixed point 𝑥∗, or also called point
of period one, of system 𝑥

𝑘+1
= 𝑓(𝑥

𝑘
) is a point such that

𝑓(𝑥
∗
) = 𝑥
∗, for all 𝑘.

Using Definition 1, it is possible to determine the fixed
points of period one for the SRAGN (3); however, fixed points
𝑥
∗ are difficult to calculate as an analytical solution because

the function (3) is exponential and has two parameters

Table 1: Fixed points of period one with 𝜆 = 0.5 and stability deter-
mination for different values of cm.

Center of mass cm Fixed point 𝑥∗ |𝑑𝑓(𝑥
∗
)/𝑑𝑥|

0.1 0.60295098 1.21301
0.2 0.657708295 1.2041
0.3 0.712062035 1.1736
0.4 0.765516458 1.1192
0.5 0.81745663 1.0380
0.6 0.867062256 0.9262
0.7 0.913144492 0.7785
0.8 0.95379542 0.5867
0.9 0.98548942 0.3369
1.0 1.0 0.0

(cm and 𝜆). Approximated solutions 𝑥∗ can be computed
using numerical methods. As an example, setting 𝜆 to 0.5,
fixed points 𝑥∗ are computed and shown in Table 1 for dif-
ferent cm values.

As with other dynamical systems, the fixed points of
period one can be attracting, repelling, or indifferent. The
type of fixed point is determined from the gradient of the
tangent to the function 𝑓(𝑥

𝑘
) at the fixed point 𝑥∗. A test

for stability of fixed points for nonlinear discrete systems is
established with the following result.

Theorem2 (see [22]). Suppose thatmap𝑓(𝑥) has a fixed point
at 𝑥∗; then the fixed point is stable if



𝑑𝑓 (𝑥
∗
)

𝑑𝑥



< 1, (4)

and it is unstable if


𝑑𝑓 (𝑥
∗
)

𝑑𝑥



> 1. (5)

When |𝑑𝑓(𝑥∗)/𝑑𝑥| = 1, the fixed point is neither
repelling nor attracting. Using Theorem 2, stability test of
some fixed points 𝑥∗ computed for (3) is shown in Table 1.

Then, there is one unstable period-one fixed point at 𝑥∗ =
0.657708295 when 𝜆 = 0.5 and cm = 0.2. When 𝜆 = 0.9
and cm = 0.5, (3) has one stable fixed point of period one
at 𝑥∗ = 0.754050244206. Exploring values of 𝜆 and cm,
there are different stable or unstable period-one points of (3).
Thus, a question arises: where do the orbits go if not to these
unstable points of period one?

One answer is that response 𝑥
𝑘
tends to infinity because

system (3) is unstable, but there are cases in that response 𝑥
𝑘

remains in a bounded domain as in Figure 4(b). The value in
which a fixed point changes from stable to unstable is called
bifurcation point. When the system reaches a bifurcation
point a doubling period occurs.

In order to explain the above, consider the next with
𝑓
𝑁
(𝑥) = 𝑓(𝑓(. . . 𝑓(𝑥))).

Definition 3 (see [22]). For system 𝑥
𝑘+1
= 𝑓(𝑥

𝑘
), a fixed point

of period𝑁 is a point at which 𝑥
𝑘+𝑁
= 𝑓
𝑁
(𝑥
𝑘
) = 𝑥
𝑘
, for all 𝑘.
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Figure 4: Responses on time: (a) fixed point, (b) periodical oscillation, (c) chaotic oscillation.

Fixed points of period two are numerically computed for
(3), and with values of 𝜆 = 0.5 and cm = 0.2 there are two
stable period-two fixed points at 𝑥∗ = 0.293828883932 and
𝑥
∗
= 0.982546391135.
In summary, if the period-one fixed point 𝑥∗ is stable,

iterative responses will be attracted to that point, which
means that response 𝑥

𝑘
stabilizes to a constant value after a

sufficiently long time. If 𝜆 = 0.5 and cm = 0.2, fixed point of
period one becomes unstable and stable fixed points of period
two are created; the response 𝑥

𝑘
will alternate between two

values on each iterative step after a sufficient amount of time.
As 𝜆 and cmpass through 0.15 and 0.25, respectively, the fixed
points of period two lose stability and fixed points of period
four are created. As with other dynamical systems, all of this
information can be summarized on bifurcation diagrams.
Setting cm = 0.25, a bifurcation diagram is illustrated in
Figure 5, where a value close to 𝜆 = 1 establishes a stable
fixed point. For 0.2 < 𝜆 < 0.65, two stable fixed points of
period two are created. For 0.1 < 𝜆 < 0.2, the fixed points
of period two will be unstable and fixed points of period four
will appear. If parameters are changed even further, stability
is lost again, which marks the rise of a period eight cycle for
(3) and so on. The periods of the attractive cycles are 1, 2, 4,
8, 16, and 32, and the bifurcations are called period-doubling
bifurcations.Thus, SRAGNexhibits a variety of behaviors as𝜆
and cm take different values; inclusive there are responses of
complex behavior for certain parameter values, which seem
chaotic, as in Figure 4. At this point, chaos is understood in
the sense of deterministic dynamical systems.

No definition of the term chaos is universally accepted
yet, but almost everyone would agree on the three ingredients
used in the following working definition [21].

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

l

= 0.25

𝜆

𝑋
𝑘

cm

Figure 5: Bifurcation diagram of (3) setting cm = 0.25.

Chaos is an aperiodic long-term behavior in a deter-
ministic system that exhibits sensitive dependence on initial
conditions.

Aperiodic long-term behavior means that there are tra-
jectories which do not settle down to fixed points, periodic
orbits, or quasiperiodic orbits as 𝑡 → ∞. Deterministic
means that the system has no randomor noisy inputs or para-
meters. Sensitive dependence on initial conditionsmeans that
nearby trajectories separate exponentially fast.

An attractor is a closed set 𝐴 with the following proper-
ties.

(1) 𝐴 is an invariant set. Any trajectory 𝑥(𝑡) that starts in
𝐴 stays in 𝐴 for all time.

(2) 𝐴 attracts an open set of initial conditions. There is
an open set 𝑈 containing 𝐴 such that if 𝑥(0) ∈ 𝑈,
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Figure 6: A bifurcation diagram and Lyapunov exponent setting cm = 0.25.
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Figure 7: A bifurcation diagram and Lyapunov exponent setting cm = 0.50.

then the distance from 𝑥(𝑡) to 𝐴 tends to zero as 𝑡 →
∞.Thismeans that𝐴 attracts all trajectories that start
sufficiently close to it. The largest such 𝑈 is called the
basin of attraction of 𝐴.

(3) 𝐴 is minimal. There is no proper subset of 𝐴 that
satisfies conditions (1) and (2).

A strange attractor is an attractor that exhibits sensitive
dependence on initial conditions [21].

The Lyapunov exponents are a criterion used for diagno-
sis of whether or not a system is chaotic. One of the properties
of chaos is the sensitivity to initial conditions. This means

that if two trajectories start close to one another in phase
space they will move exponentially away from each other for
small times on the average. However, it is known that an orbit
on a chaotic attractor for a bounded system also returns to
all accessible states with equal probability. This property is
known as ergodicity. Thus iterates return infinitely closely,
infinitely often to any previous point on the chaotic attractor.
The Lyapunov exponents give an indication as to whether two
orbits starting close together diverge or converge. In order
to determine if responses of SRAGN are chaotic for certain
parameters, Lyapunov exponents will be computed by means
of the next results.
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Figure 8: A bifurcation diagram and Lyapunov exponent setting cm = 0.75.

Pot. 1

Pot. 2

ADC
channel 0

ADC
channel 1

𝜆

𝜆

𝑋

Neuron
responsePWM

digital pin 6
Plot

Arduino Diecimila board

𝑦𝑛−1
𝑧
−1

𝑦𝑛

Program in FLASH memory

cm
𝑦 = 𝑓𝑎(𝑋, 𝜆, cm)

Figure 9: Schematic diagram of the system.

Definition 4 (see [22]). The Lyapunov exponent 𝐿 computed
using the derivative method is defined by

𝐿 =
1

𝑀
(ln 𝑓


(𝑥
1
)

+ ln 𝑓


(𝑥
2
)

+ ⋅ ⋅ ⋅ + ln 𝑓


(𝑥
𝑀
)

)

=
1

𝑀

𝑀

∑

𝑖=1

ln 𝑓

(𝑥
𝑖
)

,

(6)

where 𝑓 = 𝑑𝑓(𝑥)/𝑑𝑥 represents differentiation with respect
to 𝑥 and 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑀
are 𝑀 successive samples. The

Lyapunov exponent may be for a sample of points near the
attractor to obtain an average Lyapunov exponent.

The divergence of chaotic orbits can only be locally
exponential, because if the system is bounded, as most of
the SRAGN responses are, 𝑥

𝑘
cannot go to infinity. Thus, the

Lyapunov exponent (6) is a measure of this divergence of
orbits. Then the criterion for chaos becomes [23]

𝐿 > 0 (chaotic) ,

𝐿 ≤ 0 (regular motion) .
(7)

Then, the signs of the Lyapunov exponents provide a
qualitative picture of a system’s dynamics. One-dimensional
maps are characterized by a single Lyapunov exponent which
is positive for chaos, zero for a marginally stable orbit, and
negative for a periodic orbit [24].

The above criterion is useful to determine the chaotic
behavior of trajectories 𝑥

𝑘
of (3) that start and stay in a

bounded domain for all time. Three cases are considered
for analysis of the behavior of the SRAGN (3) by means of
bifurcation diagrams and Lyapunov exponents setting cm in
0.25, 0.50, 0.75 and varying the 𝜆 parameter from 0 to 1.

In Figure 6, parameter cm = 0.25, the chaotic behavior is
presented in the narrow interval 0.05 < 𝜆 < 0.1, the period-
𝑁 region is presented in the interval 0.1 < 𝜆 < 0.65, and
the region of stable fixed point of period one corresponds to
0.65 < 𝜆 < 1.

In Figure 7, parameter cm = 0.50, the chaotic behavior is
presented in the interval 0.06 < 𝜆 < 0.2, the period-𝑁 region
is presented in the interval 0.2 < 𝜆 < 0.5, and the region of
stable fixed point of period one corresponds to 0.5 < 𝜆 < 1.

In Figure 8, parameter cm = 0.75, the region of chaotic
behavior is vague near to 𝜆 = 0.1, the period-𝑁 region is
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presented in the interval 0.1 < 𝜆 < 0.3, and the fixed point of
period one is presented in a wide region given by 0.3 < 𝜆 < 1.

From illustrated cases, if any parameter 𝜆 or cm takes
values close to one, the behavior of responses will tend to a
stable fixed point independent of the other parameter. From
bifurcation diagrams and Lyapunov exponents computed,
there are indicia that chaotic behavior is present in SRAGN
for certain parameter intervals.

4. Implementation of Single Neurons in
an Embedded System

Arduino is an open-source platform to work with electronic,
control, robotic, and informatics prototypes. The platform
consists of a microcontroller-based board and an integrated
development environment (IDE) software to write, debug,
and download programs to the board. Both the board and
the IDE are opened to the users, either hardware or software
modifications can be made. There are some versions of this
board according to the desired features; the implementation
presented in this paper uses the Arduino Diecimila one,
which is based on the 8-bit microcontroller ATmega168
whose main features are as follows: operation at 5Vdc,
16MHz clock speed, 16 KB FLASH memory program, and
1 KB SRAM data memory.

This board is the main component of the prototype and
has in its memory the complete neuron working. Also two
potentiometers were connected to modify the value of the
parameters, each one in the range of [0, 5] Vdc that are

converted to a [0, 1] floating point normalized range by doing
the following.

(1) Lecture in a [0, 5] Vdc range.
(2) Analog-to-digital converter (ADC) gets [0, 255]

binary.
(3) Dividing by 255.0 gets [0, 1] floating point normalized

range.

So, the calculation of the neuron response is in the [0, 1]
normalized range, but this value is converted to a [0, 5] Vdc
representation that can be measured by an instrument such
as an oscilloscope by doing the following.

(1) Variable in a [0, 1] floating point normalized range.
(2) Multiplying by 255.0 gets [0, 255] binary.
(3) Pulse width modulation (PWM) delivers an average

voltage signal in the range [0, 5] Vdc.

Figure 9 shows a schematic diagram of the system
implementation. ADC and PWM modules are implemented
internally in the microcontroller. The pins used for these
modules are mapped on board terminals.

The program was written using the programming lan-
guage provided by the Arduino platform, and the compiler
was responsible for the code optimization and translation
to machine code. The ATmega168 microcontroller includes
native instructions to work with signed/unsigned/fraction/
nonfraction multiplications and 8-bit number comparisons
whichmake this microcontroller a good option to work with.
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Figure 11: Bifurcation diagram using cm = 0.25, 0.30, 0.35, and 0.40.
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Figure 12: Bifurcation diagram using cm = 0.45, 0.50, 0.55, and 0.60.
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Assignation of the initial condition 𝑥
1
= 0

Do an infinite loop with containing these 5 steps:
(1) Read data: read 𝑥, 𝜆 and cm from the analog input pins of the board.
(2) Compute neuron response using (3). Notice that if 𝜆 = 0 then the division in (3)

renders undefined, so assignment must be 𝑦
𝑘
= 1.

(3)Write the value of the response in an analog output pin of the board.
(4) Update the value of the previous response. 𝑥

𝑘
= 𝑦
𝑘−1

.
(5) Ensure delay enough time to complete 𝑇 seconds since the loop execution began.

Pseudocode 1
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Figure 13: Bifurcation diagram using cm = 0.65, 0.70, 0.75, and 0.80.

Next, we present the pseudocode of the program which can
be easily extended to more than one SRAGN (Pseudocode 1).

It is important to notice that the feedback of the output is
made by software instead of connecting a wire from output
pin to an input pin. This action avoids noise and improves
the calculation. Finally, note that around 300 or even more
neurons can be processed in this embedded system.

5. Experimental Results

In this section, some bifurcation diagrams from embedded
single neurons are presented. A personal computer was used
to acquire the data from the embedded system and make the
plots. All bifurcation diagrams are made using the output
versus the change of the parameter 𝜆 while cm remains fixed
in each diagram. The value of cm starts at 0.05 until 1.0 with
increments of 0.05 because the 8-bit precision defined by the
PWM and ADC modules. The period of execution 𝑇 has

been fixed to 10 milliseconds. The experimental results are
illustrated in Figures 10, 11, 12, 13, and 14.

6. Conclusions

Single neurons can show a variety of behaviors; this particular
neuron that involves the use of a Gaussian activation function
depends on only two parameters. Chaoticity is shown using
numerical simulation by bifurcation diagrams and Lyapunov
exponents. The implementation of this simple neuron on an
embedded system generates the same results as numerical
ones. An interpretation for these bifurcation diagrams could
be that, for each value of cm, 𝜆 chooses the type of response:
fixed points, oscillating, or chaotic. For small values in cm, the
predominant response (in all 𝜆 range) tends to be oscillating,
for medium values in cm, the predominant response is
chaotic, and finally for bigger values in cm (close to 1), the
predominant response is stable. By “predominant response”
we mean the graphic form in the greater part of the range of
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Figure 14: Bifurcation diagram using cm = 0.85, 0.90, 0.95, and 1.00.

𝜆; for example, in the last plot (cm = 1) we can see that the
predominant response is a fixed point; however the general
form is something as a unitary pulse, that is, a bistable non-
linear system.

A multiple interaction of these neurons could produce
interesting structures that have complex behaviors, so the
future work is to study more this neuron, what the cause of
these behaviors is, the structures that can be formed, and also
the control or adjustment of the parameters to get desirable
behaviors, for example, the representation of oscillations
observed in heart pulses, the activation ofmuscles forwalking
or breathing, learning and recognition.
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