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In nature, an interesting topic is about how a cell can be reconfigured in order to achieve a different task. Another interesting topic
is about the learning process that seems to be a trial and error process. In this work, we present mechanisms about how to produce
a reconfigurable logical cell based on the tent map. The reconfiguration is realized by modifying its internal parameters generating
several logical functions in the same structure. The logical cell is built with three blocks: the initial condition generating function,
the tent map, and the output function. Furthermore, we propose a reconfigurable structure based on a chaotic system and an
evolutionary algorithm is used in order to tune the parameters of the cell via trial and error process.

1. Introduction

Adaptation in nature is a relevant research area that has
many applications in artificial systems, which can be used for
the benefit of society. Particularly in biology, a neuron can
reconfigure itself to develop different tasks using the same
structure; however, this procedure is a mystery.The processes
of adaptation, learning, and coupling between them have
been research pursuits therein, and the understanding of this
processes can help to build artificial devices.The act of joining
living tissue with electronics has long been imagined in the
world of science fiction, but cybernetic organisms are now
one step closer to reality, thanks to work emerging from
researchers that have built tiny electronic meshes out of sili-
con nanowires and have used them as scaffolds to grow nerve,
heart, and muscle tissue.

Chaotic dynamical systems are commonly used in com-
munication systems, like the generation of pseudorandom
signals, and encryption, among others. Chaotic systems are
recognized by the richness of their dynamics; however, these

systems could be very sensible to perturbations or a combi-
nation of an infinite number of instabilities. Chaotic systems
of one dimension may generate a remarkable variety of
behaviors if they are observed as a function of time due to
different initial conditions or their parameters [1]. The use of
one-dimensional mapping is feasible, as the logistic map for
instance or the tent map, to generate logical functions [2–4].

Nowadays, the searching for alternative solutions in the
hardware used in computational systems is a very important
aspect in the area [5]; one of them is the development of
reconfigurable hardware, where the chaotic circuits are candi-
dates to perform these types of tasks [6–8]. As expected, the
chaotic elements might generate different logical functions,
with reconfiguration capabilities [9, 10]. Other alternatives
consist of architectures that use programmable gates circuits
(FPGA’s), whose configuration is made by rewiring multiple
static gates of single purpose; that is, a single logic gate has a
fixed configuration. In this work, a tent map 1 is used to build
a reconfigurable cell that generates different logical basic
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functions where an evolutionary algorithm is used to adjust
its parameters [11–13].

𝑓 (𝑥) = {
𝜇𝑥, if 𝑥 < 0.5,
𝜇 (1 − 𝑥) , if 𝑥 ≥ 0.5.

(1)

Evolutionary computation is a paradigm inspired by
the natural selection theory proposed by Charles Darwin,
where several evolutionary processes can be accounted for in
computing including three of them in the developing of an
evolutionary algorithm: the fitness assignation, the inclusion
of diversity, and the selection of more fitted individuals that
can reproduce and have offspring. In evolutionary computa-
tion the same process that occurs in nature is emulated, but
in a simple way. Genetic algorithms, genetic programming,
and estimation of distribution algorithms are examples of
this kind of algorithms [11, 12]. In this work, an easy imple-
mentation of an estimation of distribution algorithm called
Evonorm [13] is used for tuning the parameters of the recon-
figurable logic cell. This counts as the actual way for tuning
the parameters usually made by trial and error process. Using
this algorithm generated all the sixteen logic functions con-
sidering two inputs.

Although previous paragraphs seem to be uncorrelated,
the possibility of designing reconfigurable logic cells by elec-
tronic circuits allows one (i) to explain how a same structure
of artificial systems (circuits) can be reconfigured to develop
different tasks; (ii) to incorporate chaotic dynamics as the
basis of reconfiguration at the artificial systems (circuits); (iii)
to define alternative architectures, distinct from FPGA’s, such
that the reconfiguration goes beyond rewiring; and (iv) to
exploit evolutionary computation towards the optimization
of parameters in the reconfiguration process. The main
contribution of this paper is on a reconfigurable logic cell.
This reconfigurable logic cell can represent several logical
functions, all in the same structure changing specific param-
eters. The setting of these parameters is made by an evolu-
tionary algorithm. In Section 2, a reconfigurable logic cell is
presented. In Section 3, the Evonorm evolutionary algorithm
is described and used to set the parameters of reconfigurable
logic cell proposed. In Section 4, the proposal architecture is
used to generate different logical functions. Conclusion and
future work are given in the last section.

2. Reconfigurable Dynamical Logic Cell

In our proposal, the reconfigurable logical cell is constituted
by an architecture consisting of three blocks: (i) a generator
of initial conditions, (ii) a tent map, and (iii) an output block.
Each block obeys the following:

(i) the initial condition of the reconfigurable logic cell is
defined by the following equation:

𝑥
0
= (𝑥
𝑠
+ 𝐵𝑈) mod 1, (2)

where𝑥
𝑠
∈ (0, 1) is an ignition seed,𝐵 = [𝑏

1
𝑏
2
] ∈ 𝑅2,

and 𝑈 = [𝑢
1
𝑢
2
]𝑇 with 𝑢

1
, 𝑢
2
∈ {0, 1};

(ii) the tent map yields the first iteration using (1); that is,
𝑥
1
= 𝑓 (𝑥

𝑠
+ 𝑏
1
𝑢
1
+ 𝑏
2
𝑢
2
) ; (3)

𝑢
1

𝑢
2

𝑥
𝑠
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Figure 1: Block diagram of the logical cell.

(iii) the output block is a function𝑦:(0, 1) → {0, 1},𝑥
1
→

{0, 1}, generating a bistable response as follows:

𝑦 (𝑥) = {
1, if 𝑥

1
> 𝛽,

0, otherwise,
(4)

where 𝛽 is a threshold reference signal to determine
the output of the system, a logical zero, or a logical
one.

Figure 1 illustrates a block diagram of a reconfigurable
logic cell defined by (1), (2), and (4). Considering the inputs
𝑢
1
, 𝑢
2
, the reconfigurable logic cell generates 16 logic func-

tions. Without a loss of generality, we explain two functions
𝑓
14
and 𝑓
8
(OR &AND logic gates) of these 16 whose outputs

satisfy the true Table 1.

2.1. Function 𝑓
14

(OR). For the function 𝑓
14
, the recon-

figurable logical cell is tuned by considering the following
parameters 𝜇 = 2, 𝑏

1
= 𝑏
2
= 0.2, 𝛽 = 0.5, and 𝑥

𝑠
= 0.1. These

parameters satisfy the response shown in Table 2, column
𝑌OR.

The behavior of the reconfigurable logic cell is described
in what follows. If the initial condition is 𝑥

0
= 0.1 + 0.25𝑢

1
+

0.25𝑢
2
and inputs 𝑢

1
= 0, 𝑢

2
= 0, then 𝑥

0
= 0.1 and the

first iteration of the tent map 1 is 𝑓(𝑥) = 0.2. Thus, the output
defined by 4 is𝑦 = 0. Repeating the exercise with 𝑢

1
= 0, 𝑢

2
=

1, we have 𝑥
0
= 0.35, 𝑓(𝑥) = 0.7, and 𝑦 = 1. Following this

way, all the possible combinations are considered with two
logic inputs to get the results illustrated in column 𝑌OR(𝑥) of
Table 2, so the logical cell under the parameters defined above
can generate the behavior of a logical function OR.

2.2. Function 𝑓
8
(AND). For this case, the same parameter

values used above are considered, except the 𝛽 parameter
is now tuned to 0.75. Note that only one parameter is
reconfigured.The output of the logic gate is shown in Table 2,
column𝑦AND.Thismeans that only one parameter is changed
for the reconfiguration of the logical cell generating from the
logical function OR to the logical function AND.

Note that the selection of the parameter values can be
adjusted by trial and error but this was an exhausted task;
hence, the evolutionary algorithms arise as a convenient alter-
native. We propound the Evonorm evolutionary algorithm
to be used for the selection of the parameter values and the
algorithm explained in the next section.



Discrete Dynamics in Nature and Society 3

Table 1: True table for OR and AND logic gates.

𝑢
1

𝑢
2

OR AND
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Table 2: Outputs for the logical functions 𝑓
14
and 𝑓

8
(OR and AND

logical gates).

𝑢
1

𝑢
2

𝑥
𝑠

𝑓(𝑥) 𝑌OR(𝑥) 𝑌AND(𝑥)

0 0 0.1 0.2 0 0
0 1 0.1 0.7 1 0
1 0 0.1 0.7 1 0
1 1 0.1 0.8 1 1

3. Evolutionary Computation

An important question is about the existence of an efficient
way to determine the values of the parameters of the reconfig-
urable logic cell. In this section, we show how parameters can
be tuned in order that the logical functions will be generated.
Particularly, we illustrate the case of 2 inputs generating
16 outputs. An evolutionary algorithm is used to this end.
Essentially, an evolutionary algorithm is used for searching
solutions [11, 12]. Here we exploit it to tune the parameters
of the reconfigurable logic cell. The selected evolutionary
algorithm is called Evonorm [13] and is based on four items
as follows:

(1) representation of individuals;
(2) evaluation or fitness calculation of every individual;
(3) selection of the best fitted individuals;
(4) generation of new individuals.

Tracking the above four items, every potential solution
is represented as an individual of a population where it is
assigned an evaluation value depending on its performance
to solve the problem of tuning the parameters. Specifically, In
Evonorm, a marginal random variable is used for yielding a
new population via an estimation of a normal distribution.
The implementation of the algorithm requires two matrices
and three vectors. One of the two matrices is named 𝑃 ∈
R𝑇𝑖×𝑇𝑃 , which represents the population of solutions, where
𝑇
𝑖
is the number of total individuals and 𝑇

𝑃
is the number of

parameters.Theothermatrix is denoted as𝑃
𝑠
∈ R𝑇𝑠×𝑇𝑃 , which

stores selected individuals, where𝑇
𝑠
is the number of selected

individuals, usually ten percent of the total population. The
vector 𝐹𝐸 ∈ R𝑇𝑖×1 stores the evaluation value per individual.
The vectors 𝜇 ∈ R𝑇𝑝×1 and 𝜎 ∈ R𝑇𝑝×1 are used for storing
the mean and standard deviation, respectively, of the random
variable used per parameter. The above definitions corre-
spond to the first item of evolutionary algorithm Evonorm.
The initial population is generated randomly using a uniform
distribution function.

In what follows, the Evonorm evolutionary algorithm
is highlighted for determining the initial conditions of the

reconfigurable logic cells. Every individual 𝑘 of the popula-
tion is evaluated as follows.

Step 1. Evaluation and extraction of the logical cell parame-
ters. Extraction of the parameters: 𝑥

𝑠
= 𝑃(𝑘, 1), 𝜇 = 𝑃(𝑘, 2),

𝛽 = 𝑃(𝑘, 3), 𝑏
1
= 𝑃(𝑘, 4), and 𝑏

2
= 𝑃(𝑘, 5).

Step 2. Calculation of 𝑟 = ∑𝑇𝑃pr=1 |𝑦𝑑pr − 𝑦(𝑥𝑠), 𝜇, 𝑘, 𝑏1, 𝑏2)|/4,
where 𝑦𝑑pr is a vector that represents the expected output
values corresponding to every input combination in the cell.
For example, the function𝑓

7
has the following outputs𝑦𝑑pr =

[1; 1; 1; 0] that correspond to the inputs [00; 01; 10; 11],
respectively. The maximum number of outputs is considered
to perform the normalization; in this example, number four
is used for the normalization of the evaluation.

Step 3. Determine the evaluation as 𝐹𝐸
𝑘
= 1 − 𝑟. A maximi-

zation of this function is expected.

Step 4. Selection of the most fitted individuals. This proce-
dure sorts the individuals of matrix 𝑃 using the evaluation
vector 𝐹𝐸 as a criterion. Then a selection of 𝑇

𝑖
individuals is

made for generating a new population 𝑃
𝑠
. In this procedure is

stored the best fitted individual in vector 𝐼
𝑥
∈ R𝑇𝑠×𝑇𝑃 .

Step 5. Calculate the mean and the standard deviation per
parameter:

𝜇pr =
∑
𝑇𝑠

𝑘=1
(𝑃
𝑠𝑘,pr
)

𝑇
𝑠

,

𝜎pr =

√(∑
𝑇𝑠

𝑘=1
(𝑃
𝑠𝑘,pr
− 𝜇pr))

𝑇
𝑠

.

(5)

Step 6. Generate a new population considering a marginal
random variable with normal distribution:

𝑃
𝑘,pr =

{
{
{

𝑁(𝜇pr, 𝜎pr) , 𝑈 ( ) > 0.5,

𝑁 (𝐼
𝑥pr
, 𝜎pr) , otherwise.

(6)

𝑁(𝜇pr, 𝜎pr) is a random variable that generates numbers
with a normal distribution function considering a mean 𝜇pr
and a standard deviation 𝜎pr, precalculated previously. The
approximation of a standard random variable with a normal
distribution is calculated using (7), where 𝑈( ) is a random
variable with normal distribution:

𝑁(𝜇, 𝜎) = 𝜇 + 𝜎(
12

∑
𝑖=1

(𝑈 ( )) − 6) . (7)

Steps 1–6 are repeated several times in cycles called gener-
ations. This algorithm is capable of adjusting the parameters
of the reconfigurable logical cell and generates all the logical
functions for two inputs 𝑢

1
, 𝑢
2
.
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Table 3: Logic functions.

𝑢
1

𝑢
2

𝑓
0

𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
6

𝑓
7

𝑓
8

𝑓
9

𝑓
10

𝑓
11

𝑓
12

𝑓
13

𝑓
14

𝑓
15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 4: Parameter’s values for generating 16 logic functions.

Función 𝜇 𝑏
1

𝑏
2

𝛽 𝑥
𝑠

𝑓
0

2 0.25 0.25 0.85 0.111
𝑓
1

2 0.3 0.3 0.9 0.45
𝑓
2

2 0.7 0.15 0.5 0.111
𝑓
3

2 0.3 0.2 0.8 0.4
𝑓
4

2 0.15 0.7 0.5 0.111
𝑓
5

2 0.2 0.4 0.5 0.4
𝑓
6

2 0.45 0.45 0.25 0.111
𝑓
7

2 0.45 0.45 0.1 0.111
𝑓
8

2 0.25 0.25 0.75 0.111
𝑓
9

2 0.5 −0.1 0.6 0.3
𝑓
10

2 0.1 0.25 0.5 0.111
𝑓
11

2 −0.1 0.4 0.6 0.3
𝑓
12

2 0.25 0.1 0.5 0.111
𝑓
13

2 0.4 −0.1 0.6 0.3
𝑓
14

2 0.25 0.25 0.5 0.111
𝑓
15

2 0.25 0.25 0.2 0.111

4. Tuning Parameter Values by Evonorm

Evonorm algorithm is used to generate a better parametric
solution for all the logic functions considering two input
variables, as shown in Table 3.

The parameter values for all the logic functions with
two inputs were generated by an evolutionary algorithm
(Table 4). For example, the boolean function 𝑓

12
is generated

by considering the parameter values 𝑥
𝑠
= 0.111, 𝜇 = 2,

𝑏
1
= 0.25, 𝑏

2
= 0.1, and 𝛽 = 0.5 according to Table 4. The

initial condition 𝑥
0
is equal to 0.11 with inputs 𝑢

1
= 0, 𝑢

2
=

0; so these value are used in (1) to get in the first iteration
𝑓(𝑥) = 0.222, and the output 𝑦 = 0 is given by (4). Repeating
this process, all the outputs are generated, as illustrated in
Table 4.

5. Conclusion

A development of a reconfigurable logic cell based on tent
map is presented. The reconfiguration is made by tuning
the parameter values: 𝑥

𝑠
, 𝛽, 𝑏

1
, 𝑏
2
, and 𝜇. The Evonorm

algorithm is a useful tool for tuning the parameter values of
the reconfigurable logic cell and generating all the 16 boolean
functions of two logical inputs (remaining fixed 𝜇, Table 4).
As a future work, a comparison between other evolutionary
algorithms and the use of reconfigurable logic cells with three
or more inputs is expected.
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