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Abstract: Presently the search for new drugs from natural resources is of growing interest to the
pharmaceutical industry. Natural products have been the source of new drugs since ancient times.
Plants are a good source of secondary metabolites which have been found to have beneficial properties.
The present study is a review of the chemistry and pharmacology of Citrus sinensis. This review
reveals the therapeutic potential of C. sinensis as a source of natural compounds with important
activities that are beneficial for human health that could be used to develop new drugs.
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1. Introduction

Natural products have been a rich source of compounds for drug discovery and offer larger scale
structural diversity than synthetic compounds. Natural products have been major sources of bioactive
agents and will continue to play a protagonist role in the discovery of new drugs [1]. The genus
Citrus belongs to the family Rutaceae, This genus is the most important fruit tree crop in the world,
with an annual production of approximately 123 million tons in 2010 [2,3]. Various species of Citrus are
useful, such as C. limon (lemon), C. medica (citron), C. aurantium (sour orange), C. paradisi (grapefruit),
C. reticulata (mandarin, tangerine), C. clementina (clementine) and C. sinensis (sweet orange) [4].
This review presents a botanical description of C. sinensis, its traditional uses, chemical composition,
and pharmacological studies.

2. Botanical Description

C. sinensis represents the largest citrus cultivar groups grown around the world, accounting for
about 70% of the total annual production of Citrus species [5]. C. sinensis is native to Asia and is
now widespread throughout the Pacific and warm areas of the world. C. sinensis is an evergreen
flowering tree. The height of orange trees is generally 9–10 m, with large spines on branches. Leaves
are alternate, with narrowly winged-petioles (3–5 mm wide, 6.5–15 cm long); the shape of blades
ranges from elliptical, oblong to oval, bluntly toothed and they emit a strong characteristic citrus odor
due to the presence of copious oil [6]. Flowers are axillary borne singly or in whorls of 6 (5 cm wide)
with five white petals and 20–25 yellow stamens. The fruit may be globose to oval (6.5 to 9.5 cm wide)
and ripens to orange or yellow. Anatomically, the fruit consists of two distinct regions, the pericarp,
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also called the peel, skin or rind, and the endocarp or pulp with juice sac glands [7,8]. The skin consists
of an epidermis of epicuticular wax with numerous small aromatic oil glands that give of its particular
smell. The pericarp consists of the outer flavedo or epicarp, largely made of parenchymatous cells and
cuticle [9,10]. The albedo or mesocarp lying beneath the flavedo consists of tubular-like cells joined
together to constitute the tissue mass compressed into the intercellular area. The fruit usually contains
a sweet pulp and several to numerous seeds within [11]. The fruit pulp is typically formed of eleven
segments of juice filled with flavor that goes from sour to sweet. In orchards it is sensitive to frost.
The fruit is perennial and it has adapted to a variety of climates [12].

3. Traditional Uses

C. sinensis is consumed all over the world as an excellent source of vitamin C, which is a powerful
natural antioxidant that builds the body’s immune system [13]. It has been used traditionally
to treat ailments like constipation, cramps, colic, diarrhea, bronchitis, tuberculosis, cough, cold,
obesity, menstrual disorder, angina, hypertension, anxiety, depression and stress [14].

4. Chemical Composition

C. sinensis is a rich source of secondary metabolites which contribute to the pharmacological
activities attributed to this plant. Several types of chemical compounds have been identified in fruits,
peel, leaves, juice and roots of C. sinensis, which include the following groups: flavonoids 1–54 [15–25].
steroids 55,56, hydroxyamides, alkanes and fatty acids 57–60 [18], coumarins 61–67 [26–29], peptides
68–70 [30], carbohydrates 71–74 [31], carbamates and alkylamines 75–78 [32], carotenoids 79–82 [33],
volatile compounds 83–148 [34–39], and nutritional elements such as potassium, magnesium, calcium
and sodium [40]. Table 1 lists the different groups of compounds, region of collection, plant and
references. The chemical structures of constituents isolated and characterized in C. sinensis are shown
in Figures 1–9.

Table 1. Groups of compounds, region of collection and plant organ.

Compound Region of Collection Plant Organ References

Flavonoids: 1–54

United States: Washington, Florida (2, 3, 21, 27, 50–54).
India: Hisar, Shahjahanpur (1, 4). Pakistan (19, 28). Italy:
Sicily, Messina (17, 18, 20, 22–26, 29–34). Spain: Murcia,
Huelva (5–16). Germany: Braunschweig (35–42). Czech
Republic: Prague (43–49)

Peel, flavedo,
molasses, whole

fruit, leaves
[15–25]

Steroids: 55–56 United States: Washington (55–56) Leaves [18]

Hydroxylamide, alkane,
Fatty acids: 57–60 United States: Washington (57–60) Leaves [18]

Coumarins: 61–67 India: Shahjahanpur (61) United States: Florida
(Lakeland) (62–67) Peel, root [26–29]

Peptides: 68–70 Japan: Wakayama (68–70) Peel [30]

Carbohydrates: 71–74 Sweden: Stockholm (71–74) Fruit [31]

Carbamates,
alkylamines: 75–78 Spain: Valencia (75–78) Fruit [32]

Carotenoids: 79–82 Germany: Stuttgart (79–82) Fruit [33]

Volatile compounds:
83–148

Spain: Huelva (83–85, 87, 88, 90, 121–124, 138–141).
China: Songzi (Hubei) (137, 125, 126, 143–148). Turkey:
Dortyol–Hatay, Kozan (98–101, 105–110, 116, 120).
United States: Florida (92–97, 111–119, 127–131).
Germany: Steinheim (86, 89, 91, 102–104, 132–136, 142)

Fruit, orange
blossom, peel,

leave
[34–39]

Potassium, magnesium,
calcium and sodium China: Beijing Natural and

commercial juices [40]
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The results of these studies clearly demonstrate that orange is a good source of compounds that
could have good potential for incorporation into human food products as functional ingredients and
for new drugs, as we shall see from their pharmacological activities.

5. Pharmacological Activities

5.1. Antibacterial Activity

The antibacterial activity of essential oil, crude extracts and pure compounds of C. sinensis has
been demonstrated in several studies. Silver nanoparticles synthesized at 25 ˝C and 60 ˝C using
C. sinensis peel aqueous extract, showed diverse zones of inhibition using the agar well-diffusion
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method against Escherichia coli (25 ˝C 12.5 mm, 60 ˝C 16.0 mm), Pseudomonas aeruginosa (25 ˝C
11.7 mm, 60 ˝C 13.4 mm) and Staphylococcus aureus (25 ˝C 7.8 mm, 60 ˝C 9.2) [41]. Another
study showed that silver nanoparticles synthesized by mixing silver nitrate solution with C. sinesis
juice for 2 h at 37 ˝C displayed minimum inhibitory concentration (MIC) values of 20 µg/mL for
Bacillus subtilis and Shigella and 30 µg/mL for S. aureus and E. coli. Antibiofilm activity of 80% to
90% was observed at 25 µg/mL [42]. Cold-pressed terpeneless (CPT) C. sinensis oil dissolved in
ethanol or dimethylsulphoxide (DMSO) displayed MICs for Listeria monocytogenes at 0.3% and 0.25%
v/v, and for Salmonella typhimurium at 1% v/v. Both ethanol and DMSO oil dispersion systems
exhibited an intermediate MIC of 0.75% v/v for Lactobacillus plantarum [43]. CPT at 0.5% v/v
also displayed an inhibition zone effect at 10 µL against S. aureus strains: methicillin-susceptible
strain (31.50 ˘ 3.02 mm); methicillin-resistant strain (65.83 ˘ 3.76 mm); methicillin- and vancomycin
intermediate-resistant strains (76.67 ˘ 4.08 mm and 32.50 ˘ 2.74, respectively). Inhibition of bacterial
growth in the plates containing test oil was judged by comparing with the visible growth of untreated
control plates [44]. The essential oil containing 1,8-cineole and hydrocarbons showed MIC90% ě 10%
(v/v) against P. aeruginosa [45]. Another study showed that C. sinensis oil showed diverse inhibition
diameters with 0.1 mL of the oil against E. coli (18 ˘ 2 mm), L. monocytogenes (27 ˘ 2 mm), B. cereus
(19˘ 2 mm) and S. aureus (14˘ 3 mm) [46]. Sweet orange oil and its major compounds decanal (73.36%),
octanal (78.12%), and linalool (90.61%) obtained by molecular distillation and column chromatography
showed inhibitory bactericidal effects on E. coli (MIC 100–25 µg/mL; MBC 200–50 µg/mL), S. aureus
(MIC 100–50 µg/mL; MBC 200–100 µg/mL), Saccharomyces cerevisiae (MIC 100–6.25 µg/mL; MBC
200–25 µg/mL), Aspergillus niger (MIC 50 µg/mL; MBC 200–100 µg/mL) and no activity for Penicillium
citrinum [47]. A mixture (1:1 v/v) of C. sinensis and C. bergamia essential oils showed inhibitory activity
with a MIC value of 0.25%–0.5% (v/v) and a minimum inhibitory dose (MID) of 50 mg/L against
vancomycin-susceptible and vancomycin-resistant Enterococcus faecium and E. faecalis, respectively.
The predominant components of the mixture were limonene (45%–73%), citral (0.7%–3%) and linalool
(0.5%–15%) [48,49]. Terpene oil obtained from C. sinensis essence produced 29.2 ˘ 3.7 mm zones of
inhibition with 10 µL of oil, against eleven strains/serotypes of Salmonella (S. enteritidis, S. senftenberg,
S. senftenberg, S. tennessee, S. kentucky, S. heidelberg, S. montevideo, S. michigan, S. typhimurium, and
S. Stanley). The most predominant compound in the oil was d-limonene at a level of about 94%.
Myrcene was the second most predominant compound, accounting for about 3% of the oil [50].
C. sinensis oil had strong antibacterial activities on L. monocytogenes, E. coli, S. enteritidis, P. mirabilis and
B. cereus [51]. An anti-acne formulation based on C. sinensis (3%), Ocimum basilicum L (5%) essential
oils and acetic acid (12%) inhibited Propionibacterium acnes. This antibacterial activity is due mainly
to the 94.0% of limonene in C. sinensis, and limonene (2.54%), linalool (21.0%) and eugenol (7.17%)
in O. basilicum L [52]. Peel hexane extract of C. sinensis displayed antimycobacterial activity against
drug-sensitive (MIC 200 µL/mL), isoniazid-resistant (MIC 25 µL/mL), and ethambutol-resistant
(MIC 50 µL/mL) variants of Mycobacterium tuberculosis H37Rv. Streptomycin showed a MIC value
of 0.50 µL/mL for the sensitive strain whereas a MIC >8 µL/mL for the resistant strain. Isoniazid
displayed a MIC value of 0.60 µL/mL for the sensitive strain whereas for the resistant strain was
>1 µL/mL. Ethambutol gave a MIC value of 2 µL/mL for the sensitive strain and for the resistant strain
was >32 µL/mL. Finally, rifampicin showed a MIC value of 0.60 µL/mL for the sensitive strain and
a MIC >2 µL/mL for the resistant strain. In this study the standard drugs displayed better activity than
the tested extracts. However, from the most active extract it is possible to obtain compounds with better
activity than standard drugs [53]. Acetone and hexane extracts of C. sinensis leaf showed inhibition
zones of 27 mm towards Helicobacter pylori. Clarithromycin (0.05 µg/mL) was added as positive control,
and this antibiotic displayed better activity than the tested extracts. It is important to point out that
active extracts could contain compounds with better activity [54]. The above results clearly indicate
the wide antibacterial spectrum of C. sinensis thus justifying its use as antibacterial agent.
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5.2. Antifungal Activity

Antifungal activity of plant crude extracts, oils and secondary metabolites of C. sinensis has
been reported. The compound 3-[4-hydroxy,3-(3-methyl-2-butenyl)-phenyl]-2-(E)-propenal isolated
from hexane extract of injured peel of C. sinensis L. Osbeck cv. Valencia or C. paradisa MacFaden
cv. Marsh showed activity against Penicillium digitatum and against Cladosporium cucumerinum on
Si gel tlc plates using 7 µg of compound [55]. Aqueous, ethanol and petroleum ether extracts of
C. sinensis L. (Osbeck) showed activity against Candida albicans [56]. Another study showed that an
oil combination (1:1) of C. maxima Burm and C. sinensis L. (Osbeck) obtained by hydrodistillation
caused 100% inhibition of the mycelial growth of Aspergillus fumigatus, A. terreus, Alternaria
alternate, Fusarium oxysporum, Helminthosporium oryzae, and Trichoderma viride at 750 ppm [57].
Polymethoxylated flavones obtained from C. sinensis peel extract (flavone-7-O-[6-acyl]-glucoside,
tetramethyl-O-scutellarein, nobiletin, natsudaidai, tangeretin, heptamethoxyflavone) showed activity
against Aspergillus niger (MICě 1.6 mg/mL) using a microbroth dilution assay [58]. The hydrodistilled
essential oils of six different varieties of C. sinensis showed antifungal efficacy against P. digitatum
(ED50 2389.9–1004.6 ppm) and P. italicum (ED50 5407.5–3142.2 ppm). Essential oil from peels obtained
by cold-pressing method showed activity against Mucor hiemalis, P. expansum and F. proliferatum having
inhibition of 36.5%, 34.9% and 59.5% using the agar dilution technique [59]. The increasing worldwide
incidence of fungal infections has created the need to search for new antifungal agents, and in this
context C. sinensis offers a variety of compounds with antifungal activity.

5.3. Antiparasitic Activity

Parasitic diseases, are serious worldwide public health problems, and C. sinensis is an alternative
in the treatment and control of these diseases. The hexane (IC50 42.13 µg/mL), chloroform
(IC50 88.03 µg/mL), ethyl acetate (IC50 26.67 µg/mL), acetone (IC50 > 100 µg/mL), and methanol
(IC50 > 100 µg/mL) extracts of C. sinensis peel, displayed moderate antimalarial activity against
chloroquine (CQ)-sensitive (3D7) strain of Plasmodium falciparum. In this study, various standard drugs
were used: artemisinin (3D7 strain IC50 0.0045 µg/mL), chloroquine (3D7 strain IC50 0.021 µg/mL),
CQ diphosphate (D6 strain IC50 0.00311 µg/mL), mefloquine (D6 strain IC50 0.01608 µg/mL) and
quinine (3D7 strain IC50 0.02 µg/mL) [60]. The petroleum ether and methanol extracts of C. sinensis
showed moderate antimalarial activity against P. falciparum FCK 2 strain having IC50 values of 51.06
and 53.61 µg/mL, respectively. Untreated controls, consisting of parasitized red blood cells and 10 µL
Ci of [35S]-methionine were used [61]. Essential oil of C. sinensis peel showed that a dose of 0.4 g/mL
caused death of Trypanosoma evansi in 3 min, and induced death of Trypanosoma brucei brucei in 5 min.
A set of positive control (25 mg/mL of diminavetor), negative control (infected blood suspended in
heparin and Phosphate Buffer Saline Glucose pH 7.2) and diluent control (pure vegetable oil 100%)
were set up. Diminavetor induced total lysis after 2 min for both parasites [62]. Although extracts
showed weak antiparasitic activity, there is the need for the separation, purification and structural
elucidation of pure compounds from extracts and essential oil of C. sinensis in order to find potential
antiparasitic drugs.

5.4. Antiproliferative Activity

A standardized extract of red orange juice obtained from three pigmented varieties of C. sinensis
(Moro, Tarocco, Sanguinello) inhibited proliferation of normal human prostatic epithelial cell line
PZ-HPV-7 at 10´3 g/mL and lung fibroblast cell line of Chinese hamsters V79-4 at 10´4 g/mL.
Untreated controls just with 5 ˆ 104 cells/well were employed [63]. The juice of fruits of
C. sinensis (L) Osb. (cv. Washington Navel and cv. Sanguinello) at concentrations of 82.6%
and 73% showed 100% antiproliferative activity against the cell lines: K562 (human chronic
myelogenous leukemia) and HL-60 (human leukemia). In the same way concentration of 10%
showed 90.5% antiproliferative activity against MCF-7 cells (human breast adenocarcinoma) [64].
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Another study showed the anti-proliferative and cytostatic effects of C. sinensis juice on the
growth of guinea corn radicle has been documented. In this study it was shown that percentage
of inhibition at concentrations of 5%, 10%, 20%, 40% and 60% (v/v) were of 18.94%, 72.37%,
91.96%, 99.72%, and 100% respectively. The concentrations of 40% and 60% (v/v) of juice showed
cytostatic effects compared with the standard drug methotrexate (50 µg/mL) which showed 77.71%
of inhibition [65]. Polymethoxyflavones isolated from peels of C. sinesis showed activity on
human lung cancer cells. Nobiletin and 3,5,6,7,8,31,41-heptamethoxyflavone had a half inhibitory
concentration (IC50) of 50 µM against H1299 cells, while 5-hydroxy-3,7,8,31,41-pentamethoxyflavone
and 5-hydroxy-3,6,7,8,31,41-hexamethoxy-flavone showed IC50 values of 16.5 µM against H1299 cells.
The above four flavonoids had similar activity towards human lung cancer cells H441 and H460 [66].
Cold-pressed orange peel oil containing a mixture of non-hydroxylated polymethoxyflavones
(75.1%) and hydroxylated polymethoxyflavones (5.44%) and a mixture containing only hydroxylated
polymethoxyflavones (97.2%) induce apoptosis in breast cancer cells MCF-7 with a Minimal
Effective Concentration (ECmin) of 9.25 and 4.62 µg/mL, respectively [67]. Other study with
Apc(Min/+) mice (a mouse model for human familial adenomatous polyposis) fed with 5% of
orange peel extract containing 30% polymethoxyflavones (tangeretin 19.0%, heptamethoxyflavone
15.24%, tetramethoxyflavone 13.6%, nobiletin 12.49%, hexamethoxyflavone 11.06 and sinensitin 9.16%)
decreased the development of tumors [68]. Several compounds also obtained from peel extract
presented inhibitory activities against the proliferation of cells (IC50) and induced apoptosis (AC50) of
HL-60 cell lines: 3,5,6,7,8,31,41-heptamethoxyflavone (IC50 13.31 ˘ 1.28 µM; AC50 33.88 ˘ 0.01 µM),
nobiletin (IC50 1.50˘ 7.01 µM; AC50 > 100 µM), 3,5,6,7,31,41-hexamethoxyflavone (IC50 20.59˘ 1.01 µM;
AC50 92.10 ˘ 5.67 µM), 31-hydroxy-5,6,7,8,41-pentamethoxyflavone (IC50 52.72 ˘ 0.22 µM;
AC50 94.62 ˘ 1.50 µM), 41-hydroxy-5,6,7,8,31-pentamethoxyflavone (IC50 47.41 ˘ 3.64 µM;
AC50 87.10 ˘ 7.83 µM), 5-hydroxy-3,6,7,8,31,41-hexa-methoxyflavone (IC50 4.16 ˘ 2.33 µM;
AC50 5.90 ˘ 0.11 µM), 5-hydroxy-3,6,7,31,41-pentamethoxyflavone (IC50 2.07 ˘ 2.56 µM;
AC50 5.87 ˘ 0.13 µM) [69]. Another study demonstrated that D-limonene rich volatile oil obtained
from blood oranges inhibited proliferation of colorectal cancer cells HT-29 at 1000 ppm [70]. Flavones
and isoflavones showed inhibition of cell proliferation and induction of cell apoptosis on MCF-7
breast cancer cells: 5-hydroxy-3,6,7,8,31,41-hexamethoxyflavone (IC50 2.50 µM; (ECmin) 1.56 µM),
5,6,7,41-tetramethoxyflavone (IC50 10.5 µM; ECmin 3.15 µM ), 3,5,6,7,8,31,41-heptamethoxyflavone
(IC50 > 50 µM; ECmin 50 µM), 5,6,7,31,41-pentamethoxyflavone (IC50 > 50 µM; ECmin >50 µM). A Cell
numbers (1 ˆ 103 cells) were presented as control [71]. The aqueous extract of C. sinensis L. (Osbeck)
showed significant cytotoxic effect on cells of the Yoshida ascites sarcoma [72]. 41-Geranyloxyferulic
(0.141 ˘ 0.011 mg/g) obtained C. sinensis depicted a potential chemopreventive effect [73]. All of
these antiproliferative features suggest that properties of extracts and pure compounds particularly
flavonoids contained in C. sinensis, could be explored for chemopreventive and therapeutic purposes
in cancer.

5.5. Antioxidant Activity

In recent years there has been increasing interest in plant antioxidants because of their
potential health-promoting properties. The antioxidant activity of juices of C. sinensis acquired
in a local supermarket based on kinetics of hydrogen peroxide scavenging displayed k values
of 1.2 ˘ 0.3 ˆ103 s´1 and 0.4 ˘ 0.1 ˆ103 s´1. The significant variation in kinetic constants
of H2O2 elimination in food samples points to its potential use as a relative indicator and
control of antioxidant activity [74]. The total antioxidant activity of Moro C. sinensis crude
juice was evaluated on the basis of its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH‚),
OH‚ and 2,21-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS‚`) radicals and to reduce
iron. It was found that Moro juice efficiently scavenge ABTS radical cations reaching up to
64% of quenching corresponding to 14.30 µM using Trolox equivalents (TE) as the reference
antioxidant, it also was able to scavenge DPPH radicals with an antioxidant power corresponding



Molecules 2016, 21, 247 14 of 24

to 14.39 ˘ 0.19 µM TE and eliminated about the 87% of hydroxyl radical generated at 16.40 µM TE.
The above antioxidant activities are attributed to the presence of five C-glycosyl flavones: lucenin-2,
vicenin-2, stellarin-2, lucenin-2-41-methyl ether and scoparin; one 3-hydroxy-3-methylglutaryl glycosyl
flavonol: 3-hydroxy-3-methylglutaryl glycosyl quercetin; and one flavone O-glycosides: chrysoeriol
7-O-neoesperidoside [75]. An amperometric biosensor for the quantification of the scavenging capacity
of orange juices displayed values for natural orange juice at 1.01 mM of IC50/µM 10.6 ˘ 0.5, the one
purchased commercially gave values at 2.27, 1.56, 0.91, 2.22 mM of IC50 values 17.0 ˘ 0.8 µM,
17.2 ˘ 0.7 µM, 26.4 ˘ 0.8 µM, 18.9 ˘ 0.9 µM, respectively, substances such as ascorbic acid
(IC50 30.3 ˘ 0.9 µM), caffeic acid (no significant results), gallic acid (no significant results), ferulic acid
(no significant results), curcumin (no significant results), catechol (no significant results), quercetin
(no significant results) were used for control and also for comparing. The orange juice showed the best
activity [76]. Seed extract of C. sinensis exhibited antioxidant activity using reducing power and DPPH
radical-scavenging assays, gallic acid (IC50 = 29.5 µM) was used as control standard [77]. The flavonoid
content of several methanolic extract fractions of Navel orange peel (flavedo and albedo of C. sinensis)
was first analysed phytochemically and then assessed for its antioxidant activity in vitro. The chemical
structures of the fractionated constituents were originally determined by comparing their retention
times and the obtained UV spectral data with the available bibliographic data and further verified by
detailed LC-DAD-MS (ESI+) analysis. The main flavonoid groups found within the fractions examined
were polymethoxylated flavones, O-glycosylated flavones, C-glycosylated flavones, O-glycosylated
flavonols, O-glycosylated flavanones and phenolic acids along with their ester derivatives. In addition,
the quantitative HPLC analysis confirmed that hesperidin is the major flavonoid glycoside found in
the orange peel. The antioxidant activity of the orange peel methanolic extract fractions was evaluated
by DPPH assay and the Co(II)/EDTA-induced luminol chemiluminescence assay. Results showed that
orange peel methanolic extracts possess moderate antioxidant activity as compared with the activity
observed for the aglycones, diosmetin (EC50 71.79 ˘ 13.58 mg and hesperetin (EC50 29.18 ˘ 2.80 7 mg).
Quercetin (EC50 = 0.06 mg quercetin/mg DPPH) was used as positive control and the tested aglycones
exhibited a significant higher hydroxyl scavenging activity than quercetin [78]. C. sinensis juice showed
84.81% DPPH antiradical effect at 100 µg/mL. In this study the ascorbic acid (96.36%) was used as
positive control showing 96.36% DPPH antiradical effect [79]. The bound phenolic content of citrus
peel showed DPPH scavenging at 1 mg/mL, OH scavenging at 4 mg/mL, Fe2+ chelating ability at
0.48 mg/mL and the inhibition of Fe2+ induced lipid peroxidation in pancreas at 142.8 µg/mL [80].
Acetone-water extract obtained from fresh edible part of red oranges fruits (C. sinensis, Torocco)
displayed an intracellular antioxidant activity of 85% in Caco-2 cells at 50 mg/mL. Positive standard
drugs—gallic acid and vitamin C—were used. The extract obtained from red oranges exhibited
significant higher antioxidant activity than positive controls [81]. The antioxidant activity of methanol
and ethanol extracts of C. sinensis peel showed a significant free radical scavenging activity generated
by ABTS of 55.8% and 60.7%, respectively and DPPH scavenging activity based on its capability as
hydrogen donator of 70% and 80%, respectively. Water (20–150 µL) and ascorbic acid were used as
a control [82,83]. Dichloromethane extract and diethyl ether, ethyl acetate and n-butanol fractions
obtained from methanolic extract showed scavenging activity expressed as EC50 ranging from 3 to
1.1 mg dry extract/mg DPPH. The ethyl acetate fraction showed the best antioxidant activity, which is
due to the presence of C-glycosylated flavones, O-glycosylated flavones, polymethoxylated flavones,
O-glycosylated flavanones and esters of phenolic acids. The positive controls, ascorbic acid, trolox
and quercetin were used. Trolox was found to be 7.2 times more active, ascorbic acid was 9.1 times
more active and quercetin 10.9 times more active than ethyl acetate fraction [84,85].The current state of
knowledge shows the benefits of C. sinensis as antioxidant therapeutic agent. Thus we encourage the
use of C. sinensis as a nutraceutical agent.
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5.6. Hypocholesterolemic Activity

Literature data shows that C. sinensis possesses beneficial properties related with cholesterol
which is a serious health problem. The administration of lyophilized C. sinensis juice at a dose of
5 g/kg in aqueous vehicle in a volume of 0.5 mL/100 g body weight for 15 days on adult male Wistar
rats (200–250 g), decreased plasma levels of cholesterol (31%), LDL (44%) and triglycerides (33%) [86].
Microsized insoluble fibers from C. sinensis fruits lowered the concentrations of serum triglycerides
(15.6%–17.8%) and serum total cholesterol (15.7%–17.0%) by means of enhancing the excretion of
cholesterol (123%–126%) and bile acids (129%–133%) in feces [87]. Studies of hypocholesterolemia
activity of C. sinensis are few, however they are relevant and interesting, suggesting further research on
this topic, which will be of great benefit, is warranted.

5.7. Anti-Obesity Activity

In the last years, several studies have recently evaluated the beneficial effects of C. sinensis
and the active components in weight management and obesity. Moro juice extract (Morosil®,
400 mg/die) was able to induce a significant reduction in body mass index (BMI) after 4 weeks
of treatment. Moreover, in subjects treated with Moro extract, body weight, BMI, waist and hip
circumference were significantly different from the placebo group. It was suggested that the active
compounds anthocyanins, hydroxycinnamic acids, flavone glycosides and ascorbic acid contained
in Moro juice have a synergistic effect on fat reduction in humans [88]. The effects of citrange
(C. sinensis ˆ Poncirus trifoliata) fruit extracts in high-fat (HF) diet-induced obesity mice were studied.
Female C57BL/6 mice were fed with a chow diet (control), an HF diet, HF diet supplemented with
1% w/w citrange peel extract (CPE) or 1% w/w citrange flesh and seed extract (CFSE) for 8 weeks.
Results showed that both CPE and CFSE regulated the glucose metabolic disorders in obese mice.
In CPE and CFSE-treated groups, the body weight, blood glucose, serum total cholesterol (TC) and low
density lipoprotein cholesterol (LDL-c) levels were significantly reduced relative to those in the HF
group. To explore the mechanisms of action of CPE and CFSE on the metabolism of glucose and lipid,
related genes expressions in liver were assayed. In liver tissue, the expression level of peroxisome
proliferator-activated receptor γ (PPARγ) and its target genes were down-regulated by CPE and CFSE
as revealed by qPCR tests. In addition, both CPE and CFSE decreased the expression level of liver
X receptor (LXR) α and β, both involved in lipid and glucose metabolism. Results suggested that
CPE and CFSE administration could ameliorate obesity and metabolic disorders in HF diet-induced
obesity mice probably through the inhibition of PPARγ and LXRs gene expressions. Among the main
flavonoids of citrange extracts were naringin and poncirin both could be the bioactive compounds in
this process [89]. Aqueous- methanol extracts of flavedo, albedo, and pulp of pooled samples of two
varieties of Citrus fruits (C. reticulate and C. sinensis) efficiently prevented oxidative stress in human
adipocytes with no cytotoxic effects [90]. Many medications have been used to manage obesity over
the years. However, most of the anti-obesity drugs that were approved and marketed have now been
withdrawn due to serious adverse effects, in this sense the results mentioned above reveal that the
beneficial effects of citrus and the active components could be used in weight management and obesity.

5.8. Activity in Cardiovascular System

Varieties of Citrus are a rich source of dietary flavonoids which reduce the risk of adverse
cardiovascular events. The drinking of commercial C. sinensis juice (CSJ) decreased diastolic and
systolic blood pressure in 5.13% (p = 0.03) and ´5.91% (p = 0.003) respectively in healthy volunteers
using 500 mL/day of orange juice twice a day during four-weeks. However, the administration of
natural CSJ during four weeks did not have significant effects on either diastolic or systolic blood
pressure [91]. The water-ethanol and acetone leaf extracts of C. sinensis showed inotropic depression
on the atria of guinea pigs of both sexes (300–500 g) having values of EC50 of 300 µg/mL and
140 µg/mL, respectively. Drugs control naloxone (10 µM), propranolol (1.5 µM atropine sulfate),
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atropine sulfate (1 µM propranolol), did not change the effect of the crude extract [92]. In fact,
cardiovascular medications are indicated for and/or used to treat many different disorders, conditions
and diseases affecting the cardiovascular system, but in some cases could produce intensified effects,
toxic levels, side effects and/or adverse effects. The results of these investigations show that oranges
can be used therapeutically to treat this disease and could be safe.

5.9. Antiosteoporotic Activity

Problems related with osteoporosis, characterized by a loss of bone mass, is a major health problem
that affect persons of advanced age. Citrus showed a potential protective activity against osteoporosis.
Administration of ethanol extract of leaves and peel of C. sinensis (5 mg/kg) on ovariectomized rats,
increased trabecular bone mineral content and bone mineral density of tibia as well as improved
the levels of phosphorus and calcium reducing the bone loss [93]. The effects of feeding orange
pulp on bone quality in a male rat with osteoporosis model improved some characteristics of bone
structure [94]. Thus, alternative approaches and investigations for managing osteoporosis are needed
and in this regard some evaluations of the anti-osteoporotic activity of C. sinensis, showed that it could
be beneficial, safe and effective in management of osteoporosis.

5.10. Protective of UV Activity

Excessive UV radiation produces genetic mutations that could develop skin cancer. Standardized
extract prepared from red orange (Bionap®, 15 and 30 µg/mL) showed protective effects on ultraviolet
B (shortwave) which induced damage in human keratinocytes. This activity could occur to the block of
cellular oxidative stress-related events such as inflammation and apoptosis [95]. A supplement of red
orange complex® (C. sinensis varieties Moro, Tarocco and Sanguinello) produced by Bionap Company
reduced UV-induced skin erythema on human healthy volunteers using a dose of 100 mg/daily for
15 days. Moreover, skin age spots pigmentation (melanin content) decreased from 27% to 7% when
subjects were exposed to red orange extract [96]. The presented investigations demonstrate that
C. sinensis protect cells from genotoxic effects of an UV radiation. Thus, orange can be a good candidate
for sun protection products. However more research in this field is required.

5.11. Relaxant, Sedative and Anxiolytic Activities

Aromatherapy is the use of essential oils and extracts as an alternative treatment for medical
purposes. Exposure to ambient odor of natural essential oil of C. sinensis showed a relaxant and sedative
effect on dental patients [97]. The methanol and dichloromethane extracts obtained from the flowers of
C. sinensis (L.) Osbeck showed a dose-dependent sedative effect in the exploratory cylinder model mice
with an ED50 (ip) values of 47.04 ˘ 12.03 mg/kg and 129.15 ˘ 21.25 mg/kg, respectively. Hesperidin
(ED50 = 11.34 ˘ 2.48 mg/kg) was identified in the methanol extract as the sedative active principle of
this plant [98]. Anxiolytic activity of sweet orange aroma was demonstrated in forty male volunteers
who were allocated to five different groups for the inhalation of sweet orange essential oil (test aroma:
2.5, 5, or 10 drops). Psychologic parameters (state-anxiety, subjective tension, tranquilization, and
sedation) and physiologic parameters (heart rate and gastrocnemius electromyogram) were evaluated.
Results gave scientific support to use as a tranquilizer by aromatherapists [99]. Sweet orange aroma
(C. sinensis oil) in Wistar rats demonstrated anxiolytic-like activity. The animals were exposed to the
orange aroma (100, 200 or 400 µL) for 5 min within a plexiglass chamber and were then immediately
submitted to the behavior tests. All doses of C. sinensis oil showed anxiolytic effect. Diazepam
(2 mg/kg) was used as positive control. C. sinensis almost showed the same effect as diazepam [100].
Because of the well-recognized therapeutic potentials of extract and compounds of C. sinensis to present
relaxant and sedative-hypnotic activities, orange represents an excellent natural alternative.
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5.12. Insecticidal Activity

Essential oil extracted from leaves of C. sinensis have insecticidal activity against larvae of
Culex pipiens molestus (LC50 60 mg/L), two main compounds terpineol and 1,8-cineole were the
most effective against C. pipiens molestus bites offering complete protection during 1.6 and 2 h,
respectively [101]. Essential oil of C. sinensis obtained from fruit peel presented activity against
Musca domestica L. (LC50 3.9 mg/dm3). Dimethyl 2,2-dichlorovinyl phosphate (LC50 of 0.5 mg/dm3),
a volatile organophosphate was used as a positive control. The positive control showed better
activity than essential oil [102]. Orange essential oil (LC50 3.9 (1.2–13) mg/dm3 (95% CI)) with
(+)-limonene as the main component kill M. domestica L. within 15 min or less. Deltamethrin
(LC50 9.2 (2.8–29.5) mg/dm3 (95% CI)) was used as positive control, and this was more effective
than essential oil [103]. C. sinensis essential oil showed activity against larvae of M. domestica with
lethal concentrations between 3.93 and 0.71 µL/cm2, while lethal time LT50 varied between 5.8 to
2.3 days [104]. Essential oil of fruit peels and seeds of C. sinensis killed the larvae and adults of
Triboluim castaneum by contact action. Larval toxicity was found at 42.48 µL, 41.58 µL and 40.28 µL
at 24, 48 and 72 h exposure. The adult toxicity was 45.46 µL, 53.28 µL and 44.55 µL at 24, 48, and
72 h exposure, respectively [105]. Volatile extract of C. sinensis peels showed insecticidal potency
during 30 and 60 min, against certain number of mosquitos (41 ˘ 8; 78 ˘ 5), houseflies (22 ˘ 4;
72 ˘ 7) and cockroaches (31 ˘ 4; 85 ˘ 5) [106]. Essential oil of C. sinensis was tested against
Planococcus ficus a mealybug pest in grape vine growing areas worldwide. The LC50 and LC90 in
adults were 5.4 and 16.2 mg/mL, respectively. Whereas pre-ovipositing adult females LC50 and LC90

were 5.4 and 13.5 mg/mL, respectively [107]. C. sinensis oil was tested on the cowpea adult bruchid,
Callosobruchus maculatus being toxic at 24 h exposure (LC50 = 269 µL/L) [108]. Peel extracts of C. sinensis
showed larvicidal and nymphicidal activity. Chloroform extract showed activity against the larvae of
Anopheles subpictus (LC50 = 58.25 ppm and LC90 = 298.31 ppm), the methanol extract was active against
larvae of Culex tritaeniorhynchus (LC50 = 38.15 ppm and LC90 = 184.67 ppm) and the hexane extract
was active against the nymph of Aphis gossypii (LC50 = 162.89 ppm and LC90 = 595.40 ppm) [109].
Ethanol extract of C. sinensis peels showed larvicidal and pupicidal activities against mosquito
of Anopheles stephensi (LC50 182.24–490.84 ppm); Aedes aegypti (LC50 92.27–497.41 ppm); and
Culex quinquefasciatus (LC50 244.70–530.97 ppm). The ethanol extract of C. sinensis showed 100%
repellency in 150 min and showed complete protection in 90 min at 350 ppm against A. stephensi,
A. aegypti and C. quinquefasciatus. The adult mortality was found with ethanol extract of C. sinensis
against A. stephensi (LC50 272.19 ppm; LC90 457.14 ppm), A. aegypti (LC50 289.62 ppm; LC90 494.88 ppm),
and C. quinquefasciatus (LC50 320.38 ppm; LC90 524.57 ppm) [110]. C. sinensis oil was effective
against C. quinquefasciatus larvae (LC50 11 µg) [111]. C. sinensis oil had insecticidal activity against
A. aegypti, C. quinquefasciatus and A. dirus [112]. C. sinensis oil presented fumigant toxicity against
Tetranychus urticae with LC50 2.22 µL/L. In this study eugenol and phosphine were used as positive
controls having LC50 = 0.004 µL/L air and 100% mortality at 2 ˆ 10´3 g/L [113].

C. sinensis var. pear peel essential oil showed insecticidal activity against Bemisia tabaci at 8.5 µL/L
which caused 97% mortality and LC50 3.80 µL/L of air. Eugenol (LC50 0.20 µ/L/L of air) was used as a
positive control. Eugenol showed better fumigant action than essential oil [114]. C. sinensis essential oil
showed strong toxic effect on eggs of Hyalomma dromedarii, especially in earlier embryonic development
at concentration of 1:20 (oil: ethanol 95% v/v) [115]. The hexane extract of C. sinensis leaf possessed
moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90

values of 446.84 and 1370.96 ppm, respectively after 24 h of exposure [116]. Coumarins xanthyletin
and seselin, and the limonoid limonin isolated from hexane extract of C. sinensis leaves displayed
in vitro activity on the growth of Xylella fastidiosa at concentrations ranging from 1.00 to 2.00 mg/mL.
A blank experiment was performed with DMSO/H2O (1:1) alone (100 µL of bacterial culture, 33.5 µL
of DMSO and 33.5 µL of H2O) in the well and was used as a positive control [117]. Extract of C. sinensis
displayed strong bioactivity against Semia phis heraclei, Aphis craccivora, Tetranychus viennensis and
T. trancatus [118]. The results of the experiments showed that natural products of C. sinensis clearly
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affect the growth of diverse plagues, so orange has the potential for use as alternative crop protectants
against most likely pest species.

It is important to point out that literature includes three reviews of C. sinensis, one concerning
the utilization of its nutrients to make multiple products of added value such as essential oil, pectin,
yellow pigments, feed and enzymes [119]. The second review reported the chemical constituents
of C. sinensis varieties [120], and the third is about the chemical composition of the essential oil of
sweet orange [121]. Our review reported the chemical composition and pharmacological activities of
C. sinensis varieties and the potential use of this plant as a source of bioactive compounds.

6. Conclusions

Natural products have been and will be important sources of new pharmaceutical compounds.
Recently, there has been a renewed interest in natural product research due to the failure of alternative
drug discovery methods to deliver many lead compounds in key therapeutic areas. In this sense,
considering the health benefits of C. sinensis it presents excellent options for treating or helping in
a disease due to its bioactive compounds (drug candidates) that show important activities or for
developing new products, there is the need for public enlightenment on the importance of C. sinensis
and finding and discovering new and effective drug compounds, so this review represents an excellent
source of information about this natural product.
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