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Abstract

Introduction: Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in
extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest
challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on
dental pulp stem cells (DPSCs).

Material and methods: Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow
cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with
EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were
analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and
typical markers of osteoblastic phenotype were evaluated by RT-PCR.

Results: EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the
cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP)
and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect.

Conclusion: These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for
bone tissue engineering applications in periodontics and oral implantology.
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Introduction
The multi-lineage differentiation capacity of mesenchy-
mal stem cells (MSCs) has been amply studied in recent
years because of its implication in tissue engineering and
regenerative medicine [1, 2]; however, this field is cur-
rently faced with the critical challenge of developing
novel approaches to regenerate large bone defects. Some
years ago, Gronthos and colleagues isolated dental pulp
stem cells (DPSCs) from human third molars confirming
that these cells present the ability to differentiate into

odontogenic/osteogenic cells [3–5]. Previous reports
have shown that the osteogenic differentiation on DPSCs
is successfully induced by chemical cues such as dexa-
methasone, ascorbic acid, and β-glycerophosphate [6–8].
Although these compounds have proven efficacy, ana-
lysis of the role of growth factors in osteogenesis has
been the aim of several studies focused on improving
extracellular matrix mineralization, a physiological process
characterized by high expression of alkaline phosphatase
(ALP) and osteocalcin (OCN), followed by calcium depos-
ition [9, 10].
Epidermal growth factor (EGF) and basic fibroblast

growth factor (bFGF) are powerful mitogens for many
cell types including MSCs [11–13]. Ideally, it is expected
that these factors maintain the self-renewal and multi-
potency capacities of these cells [14] but it is known that
they can also promote differentiation towards specialized
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lineages such as osteoblasts, a process largely controlled
by various growth factors [15, 16]. Certain studies show
that bFGF affects osteogenic differentiation of DPSCs
[17] through inhibition of ALP enzymatic activity and
mineralization [18]. This effect has also been shown in
stem cells from human exfoliated deciduous teeth
(SHED) and periodontal ligament stem cells (PDLSCs)
[19, 20]. On the other hand, it is well-known that an
extensive variety of mesenchymal cells normally ex-
press the epidermal growth factor receptor (EGFR), a
tyrosine kinase receptor that activates intracellular
signalling pathways that determine their fate [21–23].
Emerging evidence suggests that EGF works as an
enhancer of mineralization during differentiation of
MSCs derived from bone marrow [24, 25]; however,
the effect of EGF on osteogenic differentiation of
DPSCs is unknown.
The purpose of this study was to evaluate the role of

EGF and bFGF in order to identify crucial growth factors
associated with enhancing osteogenic differentiation of
DPSCs. We hypothesized that EGF supplementation
may increase mineralization on the osteogenic differenti-
ation of these cells. Our results provide evidence that
EGF treatment, but not bFGF, is capable of increasing
calcium deposit formation as well as ALP and OCN
gene expression compared to traditional osteogenic
medium. These observations indicate that EGF could be
an effective adjuvant for improving bone regeneration in
periodontics and oral implantology.

Material and methods
Subjects
Pulp samples were obtained from 12 human premolars
extracted for orthodontic purposes from healthy pa-
tients; finally, the dental pulp tissues of the youngest pa-
tient (18 years of age) were used. The protocol was
approved by the Ethics Committee, School of Dentistry
of the Universidad Autónoma de Nuevo León (UANL)
and performed in accordance with the ethical standards
laid down in the 1964 Declaration of Helsinki. Informed
consent was obtained from all donors.

Cell culture
Dental pulp explants were digested with 3 mg/ml colla-
genase type I and 4 mg/ml dispase (Sigma-Aldrich, St.
Louis, MO, USA) at 37 °C for 1 h. The cell suspension
was centrifuged at 300 g for 10 min, washed and then
filtered through a 70 μm nylon filter (BD Biosciences,
San Jose, CA, USA). Dental pulp cells were maintained
in α-modified Eagle's medium (α-MEM) supplemented
with 10 % fetal bovine serum (FBS) (Gibco-Invitrogen,
Carlsbad, CA, USA), 2 mM L-glutamine, 100 U/ml
penicillin, 100 μg/ml streptomycin and 0.25 μg/ml
amphotericin B (Sigma-Aldrich) at 37 °C in a humidified

atmosphere with 5 % CO2 for 3 weeks. The medium was
renewed every 3 days.

Magnetic cell sorting
Cell isolation was performed following the manufac-
turer’s protocol. Briefly, cultured cells were resuspended
in PBS with 1 % bovine serum albumin (BSA) (Sigma-
Aldrich) and then incubated with CD105 magnetic
microbeads (Miltenyi Biotech, Bergish Gladbach,
Germany) for 15 min at 4 °C. Cells were washed and
loaded into a MS column placed in the magnetic field of a
MiniMACS™ Separator (Miltenyi Biotech). Magnetically-
labelled cells were collected and subcultured until
passage 3 under the same growth conditions.

Flow cytometry analysis
To confirm the typical MSC immunophenotype, magnetic-
isolated cells were incubated with the following mono-
clonal antibodies: CD105-FITC, CD73-PE, CD13-PE,
CD45-FITC, CD34-PE, HLA-DR-PerCp, CD14-PE,
CD11b-PE (BD Biosciences) and CD90-FITC (Miltenyi
Biotech). Antibodies were added to ~1 x 105 cells per
sample and then incubated for 30 min at 4 °C in dark.
Stained cells were washed and then resuspended in
PBS with 4 % paraformaldehyde. All samples were
analyzed in a FACSCalibur™ flow cytometer system
(BD Biosciences).

Formalin-induced fluorescence assay
DPSCs were plated onto 6-well plates (Corning-Costar,
Corning, NY, USA) at a density of ~3 x 104 per well and
cultured for 7 days in α-MEM as a negative control, and
osteogenic medium (OM) as a positive control, com-
posed of α-MEM, 10−7 M dexamethasone, 50 μg/ml
ascorbic acid and 10 mM β-glycerophosphate (Sigma-
Aldrich). At the same time, cells were incubated with
OM containing 10 ng/ml of human EGF (OM + EGF)
(Miltenyi Biotech) and OM containing 10 ng/ml of
human bFGF (OM+ bFGF) (Life Technologies, Rockville,
MD, USA). Cultured cells were washed and then fixed with
10 % neutral-buffered formalin (BDH Chemicals, Ltd, UK)
for 30 min. Fixed cells were incubated with 1 μg/ml DAPI
(Thermo Scientific, Waltham, MA, USA) at room
temperature for 5 min in dark. Cells were analyzed in a
Zeiss Axiovert 200 M fluorescence microscope (Carl Zeiss,
Göttingen, Germany).

Immunocytochemistry
DPSCs were plated onto 8-well chamber slides (Lab-Tek
Chamber Slide, Nunc, Germany) at a density ~2.5 x 103

per well and maintained in α-MEM, OM, OM+ EGF
and OM+ bFGF for 7 days. Cultured cells were fixed
with cold methanol for 10 min and then incubated in
PBS with 2 % BSA at room temperature for 30 min.
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Fixed cells were incubated with mouse anti-human
CD146-FITC (Miltenyi Biotech) and mouse anti-human
CD10-FITC (BD Biosciences) monoclonal antibodies,
counterstained with DAPI and then analyzed by fluores-
cence microscopy.

Osteogenic differentiation
DPSCs were plated onto 24-well plates (Corning-Costar)
at a density of ~6 x 103 cells per well and cultivated in
α-MEM for 24 h. The DPSCs were washed and then
maintained in different culture media: α-MEM, OM,
OM+ EGF and OM+ bFGF at 37 °C in a humidified
atmosphere with 5 % CO2 for 21 days. All media were
renewed every 3 days.

Alizarin red S assay
After 21 days of osteogenic induction, the cells were
fixed with 10 % neutral-buffered formalin for 30 min.
Fixed cells were washed and then incubated with 2 % ali-
zarin red S (ARS) (pH 4.2) (Sigma-Aldrich) at room
temperature for 30 min in dark with gentle shaking.
After staining, they were washed 4 times with PBS. The
cells were analyzed by light microscopy and then incu-
bated with cetylpyridinium chloride (CPC) 100 mM at
37 °C for 1 h to solubilize the extracellular calcium
deposits attached to ARS. Two hundred microliters
of each sample were transferred onto 96-well black plates
(Corning-Costar). The ARS concentration was determined
by absorbance at 495 nm in an iMark™ Absorbance
Microplate Reader (Bio-Rad, Hercules, CA, USA) [26].

Reverse transcriptase polymerase chain reaction (RT-PCR)
Total RNA from DPSCs, cultured in α-MEM, OM,
OM + EGF and OM + bFGF was isolated using the
TRIzol method (Invitrogen Corp, Carlsbad, CA, USA).
For the cDNA synthesis, the ImProm-II Reverse
Transcription System kit (Promega, Madison, WI, USA)
was used according to the manufacturer’s instructions.
PCR reactions to β-actin, alkaline phosphatase (ALP),
bone sialoprotein (BSP), osteocalcin (OCN) and
osteopontin (OPN) were performed in a MJ-Mini™
Staff Thermal cycler (Bio-Rad), following the protocol
previously described [27]. PCR products were re-
solved on 1.5 % agarose gel electrophoresis, running
at 100 V for 35 min. The gels were stained with
1 μg/ml ethidium bromide (Bio Basic Inc, Markham,
ON, Canada) and displayed in a UV Transilluminator
Doc™ Gel (Bio-Rad). All the reagents were used as a
negative control for PCR except cDNA. In our study,
all tests were performed three times (Table 1).

Statistical analysis
The ARS levels were analyzed using one-way analysis of
variance (ANOVA) and Tukey’s test for multiple

comparisons among groups and p-values < 0.01 were
considered statistically significant in all treatments. Data
analysis was performed with SPSS software (SPSS Inc,
Chicago, IL, USA).

Results
Isolation and phenotypic characterization of DPSCs
Adherent unsorted cells showed different sizes and
morphologies after 3 weeks under cell growth conditions
(Fig. 1a), in contrast, CD105+ magnetically-sorted cells
showed a relatively homogeneous morphology character-
ized by spindle-shaped appearance with oval-central nu-
clei. Additionally, several colony-forming unit fibroblasts
(CFU-F) were observed until passage 3 (Fig. 1b–d).
Sorted cells had positive or negative expression by flow
cytometry to the following surface markers: 99.47 %
CD105-FITC, 97.89 % CD73-PE, 85.03 % CD90-FITC,
86.76 % CD13-PE, 0 % CD45-FITC, 0.11 % CD34-PE,
0.02 % HLA-DR-PerCp, 0.38 % CD14-PE and 0.39 %
CD11b-PE (Fig. 1e). These results confirm that our cell
culture presented the typical MSC immunophenotype:
CD105+/CD73+/CD90+/CD13+/CD45−/CD34−/HLA-DR−/
CD14−/CD11b−.

Morphological changes and expression of CD146 and
CD10 surface markers
After 7 days in α-MEM incubation, DPSCs showed a
fibroblastic-elongated morphology and tended to align
themselves in parallel lines (Fig. 2a). Similar cell morph-
ology was also observed in OM treated-cells (Fig. 2b).
However, DPSCs in OM+ EGF treatment showed clear
morphological differences, characterized by polygonal-
shaped appearance with spherical-peripheral nuclei and
low cytoplasm content (Fig. 2c); moreover, these changes
in OM+ bFGF treatment were not observed (Fig. 2d).
Additionally, the presence of EGF seems to induce a dif-
ferent organization pattern in cell culture, in comparison
to the OM group. The highest cell confluence was
observed in cells incubated with EGF or bFGF, in relation
to α-MEM and OM control groups. Immunofluorescence

Table 1 Primer sequences for osteogenic differentiation analysis
using reverse transcriptase-polymerase chain reaction (RT-PCR)

Gene Sequence of oligonucleotides (5’- 3’) Tm °C

β-Actin Forward: GGCATCCTGACCCTGAAGTA
Reverse: GGGGTGTTGAAGGTCTCAAA

51

OCN Forward: GAGCCCCAGTCCCCTACC
Reverse: CCGATAGAGGTCCTGAAAG

58

BSP Forward: CAGCGGAGGAGACAATGGAG
Reverse: TTCAACGGTGGTGGTTTTCC

58

OPN Forward: CAACGAAAGCCATGACCACA
Reverse: CAGGTCCGTGGGAAAATCAG

54

ALP Forward: GGTGAACCGCAACTGGTACT
Reverse: CCCACCTTGGCTGTAGTCAT

54

Del Angel-Mosqueda et al. Head & Face Medicine  (2015) 11:29 Page 3 of 9



analysis confirmed that cells cultivated in α-MEM for 7 days
were highly positive to CD146 and CD10 surface markers
(Fig. 2e, i). Although, the OM group was capable of decreas-
ing expression of both markers (Fig. 2f, j), EGF treated-cells
showed the strongest inhibitory effect (Fig. 2g, k). In
contrast, bFGF treated-cells seem to maintain expression
levels in relation to α-MEM group (Fig. 2h, l).

Extracellular calcium deposition by ARS assay
After 21 days under osteogenic induction, a complete cell
confluence in all treatments was observed. At this stage,
the α-MEM group was negative to ARS (18.81 μg/ml);

however, in OM, OM+EGF, and OM+ bFGF treatments,
calcium deposition were observed (Fig. 3a). Micro-
scopic analysis confirmed the absence of mineralized
nodules in α-MEM (Fig. 3b). DPSCs treated only with
OM showed high levels of ARS (792.64 μg/ml) and
prominent mineralization nodules (Fig. 3c). Interest-
ingly, OM supplemented with EGF induced a clear in-
crease in abundance and size of calcium deposits
(Fig. 3d), in addition to a significant increase in the
mineralization levels evaluated by ARS (1686.31 μg/ml),
in comparison to OM control group (Fig. 3f ). In contrast,
supplementation with bFGF showed a statistical

Fig. 1 Cell culture and flow cytometry analysis of isolated dental pulp stem cells (DPSCs). a Representative phase-contrast micrographs shows
unsorted-cells derived from human dental pulp tissue after 14 days of cell culture. b–d CD105+ magnetically-sorted DPSCs cultured in α-MEM
without osteogenic induction. Morphologically, cells appear as typical fibroblastic and spindle shape during 3 passages. Original magnification
10x, scale bar =100 μm. e Flow cytometric analysis presented as histograms that show cell fluorescence intensity on the horizontal axis and cell
frequency distribution on the vertical axis. Percentage results show positive expression to immunophenotype associated with mesenchymal stem
cell (MSC) lineage as well as a lack of expression for hematopoietic markers
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difference with ARS (174.87 μg/ml) with respect to
OM or OM + EGF, but the number of mineralized
nodules were fewer than OM, suggesting an inhibi-
tory effect (Fig. 3e).

Gene expression by RT-PCR
After 21 days of cell culture, gene expression of OCN
was negative in the α-MEM group. In addition, the OM
group was positive for this osteoblast-phenotypic
marker; however, its expression level was superior due
to the presence of EGF in the culture medium, suggest-
ing its importance during osteogenesis. Contrary to
these effects, the addition of bFGF resulted in a decrease
in BSP, OCN and OPN expression with respect to OM
treated-cells (Fig. 3g).

Discussion
Growth factors are recognized for their active participa-
tion in many biological processes such as cell migration,
proliferation and differentiation [11, 28]. In the osteogenic
context, it is also known that some of these factors play an
essential role in bone regeneration since they are respon-
sible for triggering cell specific signalling pathways that

allow expression of bone morphogenetic proteins (BMPs),
which are molecules centrally involved in extracellular
matrix mineralization and damage bone repair [29–31].
Our results provide evidence that supplementation

with EGF enhances osteogenic mineralization on DPSCs
during cell differentiation, suggesting its important role
in favoring this cell fate. EGF and bFGF supplementation
is commonly used to ensure survival and proliferation of
MSCs cultured under serum-free conditions [32–34];
however, recent studies suggest that EGF added to
traditional osteogenic medium not only promotes cell
proliferation but also enhances mineralization of MSCs
derived from bone marrow [24, 25, 35]. We have found
that DPSCs are an excellent alternative to use instead of
bone marrow for cell therapy; however, a challenge to
overcome is the small amount of dental pulp tissue
obtained; it is for this reason that in our study the cells
were obtained from human premolars extracted for
orthodontic purposes.
It is known that growth factors such as IGF-1, TGF-β

and TNF-α enhance osteogenic differentiation of DPSCs
[36–38]. Additionally, a recent study showed that 12 or
24 h of EGF treatment enhanced chemokine IL-8 and

Fig. 2 Morphological analysis and expression of mesenchymal stem cell (MSC) markers on dental pulp stem cells (DPSCs). a–d Morphological
changes after 7 days of osteoblast differentiation. DPSCs begin to lose the typical spindle-shape MSC morphology and become osteoblast-like
cells. Original magnification 10x, scale bar =100 μm. e–h Stemness biomarkers were analyzed by immunocytochemistry. Representative
immunofluorescence images show changes in CD146 surface marker expression on DPSCs after osteogenic induction for 1 week. i–l Expression
levels of the CD10 marker. Cells were stained with primary antibodies: mouse anti-human CD146-FITC, mouse anti-human CD10-FITC. Original
magnification 40x, scale bar =50 μm
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BMP-2 expression in human periodontal ligament cells
(HPDLCs) [39]. Since BMPs play a critical role in the
mineralization process [40, 41], one can predict that the
supernatant cell culture of EGF-treated cells could pro-
mote osteogenic differentiation more efficiently. Based
on our findings, EGF can be used alone or in combin-
ation with any of these factors to achieve a synergistic
effect. It is noteworthy that previous studies with EGF
do not give similar results, but sometimes observations
can be antagonistic. In this respect, some studies have

reported an inhibitory effect induced of EGF on osteo-
genic differentiation of MSCs not derived from dental
pulp [42, 43]. A possible explanation for these heteroge-
neous results could be variation of cell origin of MSCs
used in each study. This strengthens the importance of
characterizing MSCs derived from dental pulp. Another
possible reason for this discrepancy is the use of primary
or immortalized cells as well as their heterogeneity. In
order to reduce this heterogeneity, our experiments were
performed using magnetically-labelled DPSCs CD105+

Fig. 3 Mineralization and gene expression of osteoblast markers. a–e Cells were treated with α-MEM, OM, OM + EGF and OM + bFGF for 21 days
and stained with alizarin red S (ARS), micrographs show extracellular calcium deposition. Original magnification 10x, scale bar =100 μm. f Calcified
areas were quantified. Total calcium content was significantly increased with EGF treatment compared to all groups (p < 0.001). Error bars indicate
mean ± SD (n = 3), asterisk indicate statistical significance (p < 0.001). g Total RNA was extracted from induced osteoblast-like cells. mRNA expression of
the osteogenic markers, alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN) and osteopontin (OPN), was examined by RT-PCR. The
housekeeping gene β-actin was used as a control for the PCR reaction. The results of this study confirm the participation of these genes in regulating
the mineralization process of the extracellular matrix. All treatments were performed in triplicate
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thus favoring the phenotype of primary cells, which could
be closer to an in vivo situation than the experiments
done with immortalized cells.
On the other hand, we also observed that bFGF was

not able to exert effects similar to EGF and was a signifi-
cant inhibitory factor for mineralization and differenti-
ation towards osteoblast-like cells. This confirms that
not all growth factors related to the proliferation and
expan- sion of DPSCs are capable of enhancing osteo-
genic mineralization. Similarly, these effects were also
observed by Li et al. [17–19] on SHED, although they
evaluated a higher bFGF concentration (100 ng/ml),
which is 10 times more concentrated than that of our
experiments.
Cell morphology has been used as an important in-

dicator to characterize and assess cell quality [44, 45];
we observed that morphological changes can also be
used to follow mesenchymal-osteoblast cell transition
from DPSCs at early stages (1 week). Here we found
typical osteoblast morphology in advanced stages of
cell differentiation (3 weeks) associated with high
levels of calcium deposits. During the odontogenic dif-
ferentiation, it is known that there is an up-regulation
of odontoblast-specific genes, including dentin sialo-
phosphoprotein (DSPP) and dentin matrix protein 1
(DMP1) [46, 47]. In our study due to dental origin of
the cells is possible an odontogenic differentiation too;
these results suggest that cell morphology in early
stages of cell differentiation can be an important com-
plementary data to assess cell lineage; however, in a
confluent cell culture it is technically complicated to
measure those morphological changes. It is note-
worthy that after 1 week in osteogenic conditions, the
DPSCs changed their colony-cell distribution; more-
over, a greater cell adherence can be observed. As a
general consensus, some surface markers are included
within the minimum criteria for defining MSCs [48];
however, others markers have been associated with
MSC lineage, such as CD146 and CD10, both
expressed on DPSCs [49, 50] but their biological im-
plication to the MSC lineage remains poorly known.
Furthermore, in vitro EGF treatment was enough to
reduce the expression of both cell markers, confirming
an osteogenic role by EGF on DPSCs. The cell differ-
entiation trigger changes in the immunophenotype of
DPSCs, a test that can be used to monitor cell differ-
entiation. We have found that there is a strong rela-
tionship between CD146 and CD10 expression levels
and the osteogenic differentiation of DPSCs because
these markers are related with the stemness of these
cells. After 7 days, we observed stronger surface
marker suppression with EGF but it is clear that this
criterion is not enough to consider it as osteogenic
differentiation; however, it can be useful to follow the

DPSC-osteoblast transition process. Nonetheless, it
would be necessary to enlarge this kind of assays to
characterize the behavior of other surface markers as-
sociated with the stemness of MSCs. Additionally,
osteogenic in vitro differentiation of MSCs is commonly
evidenced by early ALP activity, extracellular matrix
mineralization and expression of typical osteoblast
markers [51–53]. In agreement with our experiments, an
increase of mRNA expression of ALP was observed in
cells cultured with EGF. In addition, it is well known that
OCN is an important osteogenic marker which regulates
the formation of mineralization nodules and hence, leads
to osteogenesis [54]. In this context, the upregulation
of OCN expression as results from EGF treatment
strengthen this study, suggesting its osteogenic effect.
OPN, another important marker of late-stage osteoblast
differentiation [55], was also overexpressed when cells
were cultured with EGF, confirming its osteogenic role.
To our knowledge, this is the first report that evaluates

the osteogenic effects of EGF on DPSCs; however, to
elucidate the mechanism by which this occurs as well
as its efficacy in animal models, further studies are
required.
In conclusion, this study demonstrates that EGF

plays an enhancer role on osteogenic differentiation
of DPSCs because it is capable of increasing extracel-
lular matrix mineralization. A low concentration of
EGF (10 ng/ml) is sufficient to induce morphological
and phenotypic changes; however, bFGF at an equal
concentration exerts an inhibitory effect. These data
suggests that DPSCs in combination with EGF could
be an effective stem cell-based therapy to bone tissue
engineering applications in periodontics and oral
implantology.
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