
RESEARCH ARTICLE

A Genetic Algorithm for the Bi-Level
Topological Design of Local Area Networks
José-Fernando Camacho-Vallejo1*, Julio Mar-Ortiz2, Francisco López-Ramos3, Ricardo
Pedraza Rodríguez1

1 Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, San Nicolás de los
Garza, Nuevo León, México, 2 Universidad Autónoma de Tamaulipas, Facultad de Ingeniería, Tampico,
Tamaulipas, México, 3 School of Transport Engineering, Pontificia Universidad Católica de Valparaíso,
Valparaiso, Chile

* jose.camachovl@uanl.edu.mx

Abstract
Local access networks (LAN) are commonly used as communication infrastructures which

meet the demand of a set of users in the local environment. Usually these networks consist

of several LAN segments connected by bridges. The topological LAN design bi-level prob-

lem consists on assigning users to clusters and the union of clusters by bridges in order to

obtain a minimum response time network with minimum connection cost. Therefore, the

decision of optimally assigning users to clusters will be made by the leader and the follower

will make the decision of connecting all the clusters while forming a spanning tree. In this

paper, we propose a genetic algorithm for solving the bi-level topological design of a Local

Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-

level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the fol-

lower’s problem cannot be optimally solved in a straightforward manner. The computational

results obtained from two different sets of instances show that the performance of the devel-

oped algorithm is efficient and that it is more suitable for solving the bi-level problem than a

previous Nash-Genetic approach.

Introduction
The design of computer and telecommunication networks is a hard constrained combinatorial
optimization problem that has received considerable attention from practitioners and research-
ers during the recent years. The telecommunication network design problem consists of decid-
ing the number, types, and locations of the network active elements (hubs, switches, and
routers), as well as the links and their capacities. Several conflicting and hierarchical objectives
such as monetary cost, network delay, and maximum number of hubs have to be optimized to
achieve a desirable solution. In the existing literature we can identify two kinds of problems
related to the telecommunication networks design: hub location [1] and topological design [2].
The hub location problem is concerned with locating hub facilities in a network and allocating
demand nodes to hubs in order to route the traffic between origin–destination pairs. The

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 1 / 21

OPEN ACCESS

Citation: Camacho-Vallejo J-F, Mar-Ortiz J, López-
Ramos F, Rodríguez RP (2015) A Genetic Algorithm
for the Bi-Level Topological Design of Local Area
Networks. PLoS ONE 10(6): e0128067. doi:10.1371/
journal.pone.0128067

Academic Editor: Lourens J Waldorp, University of
Amsterdam, NETHERLANDS

Received: June 26, 2014

Accepted: April 23, 2015

Published: June 23, 2015

Copyright: © 2015 Camacho-Vallejo et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available within the paper.

Funding: The work done by Camacho-Vallejo J. F.
and Pedraza R., was supported by the SEP-
CONACYT grant CB-2014-O1-240814.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0128067&domain=pdf
http://creativecommons.org/licenses/by/4.0/

problem of designing the networks topology consists on the selection of a subset of links which
optimize a predetermined performance criterion. In this paper we focus on a topological design
of local area networks (LANs).

LANs are commonly used as communication infrastructures which meet the demand for a
set of users in the local environment. Usually these networks consist of several LAN segments
connected by bridges. The topological design problem of a LAN consists on finding the best
configuration between users and clusters that optimizes a defined (or several) performance cri-
terion, such as, equipment costs, connection costs, response times, network reliability, among
others (see [3]). These performance criteria are very important and are significantly affected by
the network topology. The problem of optimal network design is a hard combinatorial problem
involving assignment and routing decisions. The assignment problem is to determine the best
way to assign users to clusters, while the routing problem determines the segments where the
clusters need to be interconnected through bridges leading us to a spanning tree. Typically the
design of communication networks requires the existence of a spanning tree, in which each
node must be able to communicate with every other node. However, [4] remarks that spanning
trees solutions do not provide a reliable design but a minimum cost design.

The LAN topology design has been a very active research area in the last two decades. Many
authors have proposed both exact methods (e.g. [5], [6] and [7]) and heuristics ([8], [9], [10],
[4] and [11]) for the design of LANs and its variants, where genetic algorithms have had a
strong preference over other meta-heuristics. One of the first descriptions of the operation and
structure of LANs is found in [12]. Particularly relevant to our research are [13] and [14]. The
former research proposes a model of nonlinear integer programming which minimizes the
average delay in the network as performance criteria and applies a genetic algorithm to solve it.
Starting with the approach presented in [13], in [14] a bi-level model is proposed and a Genetic
algorithm based on Nash-equilibrium to solve the problem is designed.

In this paper, a genetic algorithm that considers the Stackelberg equilibrium is proposed as
a solution method for the bi-level topological design of a Local Area Network. The Stackelberg-
Genetic procedure assumes that the follower rational reacts to a leader’s decision; this is, an
acceptable spanning tree is selected by the follower due to the difficulty of finding its optimal
response in an efficient way. This paper has two objectives: the primary objective is to investi-
gate the performance of the Stackelberg-Genetic algorithm for solving the bi-level problem,
and the secondary objective is to show the difference in solving bi-level problems with either
Stackelberg or Nash approaches. The remainder of this section describes the previous contribu-
tions consisting in metaheuristics developed for this and related bi-level problems. Section 2
presents the bi-level mathematical model. Section 3 is devoted to describe the solution method
proposed for obtaining high-quality bi-level solutions. Section 4 shows the computational
experiments carried out on previously reported instances and in new generated ones. Also, in
this section a Nash-Genetic algorithm similar to the one described in [14] is used for solving
the benchmark instances and the obtained results are discussed. The paper is finished with the
associated conclusions remarking the importance of solving the bi-level problems with the
appropriate methodology.

Related literature
In the last 25 years the field of bi-level optimization has received considerable attention
reflected in a wide variety of applications, where metaheuristic algorithms have been consid-
ered as a good alternative for finding high quality solutions to considerable size bi-level prob-
lems. There are papers in the fields of environmental studies (see [15]), humanitarian logistics
(see [16] and [17]), network design (see [18] and [19]), transportation (see [20] and [21]), toll

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 2 / 21

setting (see [22] and [23]), location (see [24] and [25]), production planning (see [26]), among
many others. For a description of more applications and solution methods we refer the reader
to [27] and [28]. Table 1 summarizes some relevant previous works ([29–38]) on metaheuris-
tics designed for solving bi-level problems. The main objective here is describing the interac-
tion strategy between leader and follower. Basically, three interaction strategies are identified:
A) for each leader decision it is necessary to solve the lower level problem, B) the lower level
problem is solved after a predetermined number of iterations, and C) both leader's and follo-
wer's populations cooperate or coevolves after a predefined number of iterations.

In Table 1, it can be observed that in the majority of the previous works that considered
metaheuristics for solving bi-level optimization problems; the follower’s problem is exactly
solved, i.e. an A appears in the second column. The main difficulty arising from the problem
considered in this paper is that the follower’s problem is a hard combinatorial problem. Hence,
we are not able to solve it optimally in a reasonable computational time due to the high number
of times that the follower’s problem needs to be solved. This is where the rational reaction of
the follower takes place in sense of not optimally solving its problem and conform its response
to a good quality solution. This fact is described in subsection 3.1.

Moreover, from a game theory point of view, two-player problems may be approached by
either Nash (see [39]) or Stackelberg (see [40]) frameworks. Both approaches have been widely
studied in the literature. The kind of leader-follower problem resembles the Stackelberg games.
A Stackelberg game is composed of an upper-level vector of decision variables y for the leader,
and a lower-level vector of decision variables x for the follower. It is assumed that the leader is
given the first choice and selects a solution y in accordance with his constraints in order to opti-
mize his objective function; this decision is made while taking into account the rational reac-
tion of the follower. In light of such leader’s decision, the follower selects a feasible solution x
(y) for him aiming to optimize his own objective function; this is, the follower reaction depends
on the decision made by the leader. On the other hand, the Nash equilibrium occurs when mul-
tiple players simultaneously make a decision at the same level considering the others competi-
tors’ decisions as fixed. Therefore, any player can take into account possible changes regarding
the strategies of the others players. Hence, the Nash equilibrium can be appropriately applied
to multi-objective programming problems.

For the case of bi-level programming problems, the approach that seems to be more appro-
priated is finding the Stackelberg equilibrium, which considers the existence of a predefined
hierarchy among players. First, the leader makes his decision and based on that decision, the
follower chooses its decision and the leader knows exactly the follower's decision. Therefore,
the leader has the possibility to take into account the optimal response of the other player. In
[14], the authors justify their proposed approach by assuming that a bi-level problem may be
modeled as a Nash game if the players try to optimize their own benefit in a non-cooperative
way.

However, reducing a bi-level programming solution into the concept of classical Nash equi-
librium is not a simple and straightforward issue. In this regard, we refer the reader to [40–42].
First, [41] studied a bi-objective problem, where they compared both the Nash and Stackelberg
approaches. In both cases a genetic algorithm was employed, but in the Stackelberg case, the
authors define a leader and a follower for each experimental scheme. The experimental results
reveal that the Stackelberg approach attains better results (although it is more computationally
expensive). They conclude that Nash and Stackelberg frameworks are significantly different
and the correct approach depends on the particular problem. Also, [42] adapted multi-objec-
tive optimization techniques to solve a particular class of bi-level programming problems;
where the optimal bi-level solution is determined by the Pareto optimal points, corresponding
to the non-dominated points that belong to the intersection of the two efficiency sets. However,

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 3 / 21

Table 1. Relevant previous work.

Reference Type Description

Mathieu et al. [29] A To the best of our knowledge this is the first application in the literature of
genetic algorithms for solving bi-level programming problems. In this
paper, the initial population of solutions was leader solutions and the
follower responses were obtained by directly optimizing the linear lower
level problem. For each leader’s solution the follower’s problem is solved
exactly.

Oduguwa and Roy
[30]

C Propose a general scheme for a genetic algorithm capable of solving
different applications of bi-level programming problems. It is assumed that
the follower cooperates with the leader when the former obtains the lower
level optimal response. The cooperation is made at the end of each
iteration when a synchronization (interchange) between leader's and
follower's populations is conducted in order to preserve the interactive
nature of the problem.

Bhadury et al. [31] A Several variations of genetic algorithms are proposed to solve a wide
variety of location problems, including competitive location problems. In
order to solve the lower level problem they designed a greedy heuristic,
which was implemented every time a new leader's solution was
generated.

Yang et al. [32] A Propose a hybrid algorithm that combines the Simplex method, genetic
algorithms, stochastic and fuzzy simulations, to solve a bi-level location
problem where the flow from the lower level to the upper level is
stochastic. For each leader’s solution the lower level is solved exactly.

Aleekseva et al. [33] A Propose a memetic hybrid algorithm that combines the principles of
evolutionary algorithms with tabu search for a competitive p-Median
problem. For each leader evaluation they solve the lower level problem
through a commercial software.

Vasilyev and
Klimentova [34]

A Design a hybrid algorithm that combines the simulated annealing method
with the branch-and-cut method, in order to obtain upper bounds for the
facility location problem with users’ preferences. During the simulated
annealing method they solved the lower level problem for each leader’s
solution.

Gallo et al. [21] B Propose a scatter search algorithm to solve urban transportation network
design problem. The upper level can be seen as a model for solving the
topological network design problem. The lower level model aims to solve
the signal setting problem. In order to avoid the necessity of solving the
lower level at each iteration they propose to solve the signal setting
problem with a local approach. Accordingly, the signal setting problem
was formulated as an asymmetric equilibrium assignment problem, where
only the topological variables assume the role of decision variables, and
both, the signal settings and the equilibrium traffic flows, are descriptive
variables reducing the bi-level problem into a single-level one. Even
though, due to the size of the neighborhoods they use a random search
method for improving the solutions

Kücükaydin et al. [35] A Design a tabu search algorithm to solve a competitive facility location bi-
level problem. Both, the leader and follower, seek to maximize their own
profit considering the already existent facilities and the new ones. The
lower level is solved by a branch-and-bound algorithm with a non-linear
programming relaxation due to propositions introduced by them.

Calvete et al. [26] A Propose an ant colony optimization based algorithm to solve a bi-level
production-distribution planning problem, where the upper level consists
on a multi-depot vehicle routing problem, and the lower level model aims
to solve the problem of minimizing manufacturing costs. In the bi-level ant
colony optimization algorithm they exactly solved the lower level problem.

Legillon et al. [36] C Design a co-evolutionary algorithm to solve a bi-level production and
distribution planning problem. They propose two initial populations, one
for the leader and one for the follower which periodically exchange
information to improve the individuals. The individuals are created by the
union of leader-follower solutions. The fitness function is evaluated based
on the leaders’ objective function.

(Continued)

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 4 / 21

in order to find the efficient points, the cones must be convex and in most cases they are not.
Furthermore, the proposed methodology lies in independently solving two bi-objective prob-
lems interchanging the leader and follower; this experimentation was conducted in order to
validate the relationship between them. They conclude that multi-criteria techniques have not
proved to solve bi-level problems. Also, [43] studied the differences between bi-level and bi-
objective programming problems. The authors note that although there have been attempts to
establish a relationship between both types of problems a formal agreement has not been
reached. Furthermore, several counterexamples that refuse any relationship between them
could be found in the literature (e.g. [44], [45], [46] and [47]). The authors empirically (and
graphically) have shown that optimal solutions of a bi-level problem are not found into the
Pareto optimal solution of a bi-objective problem.

Problem Formulation
A bi-level programming problem is a mathematical programming problem which is composed
of an upper-level and a lower-level problem. In this paper, the upper-level problem aims to
minimize the connection cost, while the lower-level problem seeks to minimize the average
message delay time. When solving the bi-level problem both the decision maker of the upper-
level (hereafter referred to as the leader) and the decision maker of the lower-level (hereafter
referred to as the follower) interact to get the best solution. For a formal definition of the Bi-
level Local Area Network Design Problem (BLANDP) and based on the model proposed in
[14], let N = {1,2,. . .,n} be the set of users (e.g. routers) in the telecommunication network, and
let G = (V, E) be an undirected graph, where V = {v1, v2,. . ., vm} is the set of vertices (clusters)
and E = {(vp, vq): p< q} is the set of edges (bridges) that connect the clusters. For each cluster,
the maximum traffic capacity Cp that can flow through it is known. Also, for each bridge the
average response time bpq to route a package between the respective clusters is known. We
assume that the traffic characteristics between users are known and summarized in the users
traffic matrix S, where an element sij 2 S represents the traffic from user i 2 N to user j 2 N.
Two cost elements are considered in the problem: connection cost between clusters {wpq: (p, q)
2 E} and connection cost between users and clusters {αip: i 2 N, p 2 V}.

Table 1. (Continued)

Reference Type Description

Brotcorne et al. [37] A Design a tabu search algorithm to solve the bi-level toll setting problem in
a transportation network. The leader wants to maximize the profit
obtained from the tolls from a transportation network, while the follower
seeks to minimize their total travel cost. In order to obtain the followers’
optimal response they consider a lower level reformulation, then apply
column generation and solved the resulting problem by inverse
optimization.

Camacho et al. [38] A Propose a Stackelberg-Evolutionary algorithm to solve a facility location
bi-level problem with customers’ preferences. The upper level seeks to
minimize the location and distribution costs and the follower tries to
minimize a utility function based on the preferences. At each iteration of
the proposed algorithm a leader's solution is obtained, then it is provided
to the follower which directly optimizes the lower level allocation problem
in order to obtain its optimal response, finally the upper level objective
function is evaluated.

doi:10.1371/journal.pone.0128067.t001

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 5 / 21

Consider the following decision variables:

yip ¼
(
1; if user i is asigned to cluster p

0; otherwise

xpq ¼
(
1; if cluster p is conected to cluster q

0; otherwise

The decision variable xpq is defined as x 2 X, where X is a set of spanning trees. From these
decision variables other important elements related to the traffic in the network will be defined.
To define these terms the introduction of the following concept is needed. A path between 0 2
V and r 2 V, i.e., path(0, r), is a sequence of vertex without repetition (vi−1, vi) 2 E for all
i = 1,. . .,r. A vertex vk is called intermediate vertex in path(0, r), if {v0,. . ., vk,. . ., vr}. Similarly,
we define the concept of intermediate edge as the set of all edges (p, q) in path(0, r). With the
above definitions and concepts we precise the following terms, let:

Γ be the total offered traffic in the network, which can be computed as

G ¼
XN
i¼1

XN
j¼1

sij or by G ¼
X
p2V

X
q2V

tpq

T be the traffic matrix between clusters, which can be computed as T = YT SY, where Y is
the clustering matrix, which assigns users to clusters. An element tpq of this matrix represents
the traffic forwarded from cluster p 2 V to cluster q 2 V.

L(x)k be the total traffic at cluster k 2 V, this can be computed as

LðxÞk ¼
X

p2Vtpk þ
X

q2Vnfkgtkq þ
X

fp;q2Vjk2pathðp;qÞgtpq ð1Þ

F(x)(p.q) be the total traffic which flows on the bridge (p, q) 2 E'� E, computed as

FðxÞðp:qÞ ¼
X

fk;r2Vjðp;qÞ2pathðk;rÞgtkr ð2Þ

The leader's optimization problem consists in determining the best allocation of users to
clusters such that the connection costs are minimized. On the other hand, the follower's opti-
mization problem is to determine the subset of edges E'� E that while forming a spanning tree
T = (V, E') in G, minimize the average message delay time in the network. It should be noted
that L(x)k and F(x)

(p.q) strongly depend on the network’s configuration defined by the spanning
tree x. The bi-level mathematical model of the considered problem is given by:

Bi-level Local Area Network Design Problem (BLANDP)

min
y

X
ðp;qÞ2E

wpqxpq þ
Xn

i¼1

X
p2V

aipyip ð3Þ

subject to: X
p2V

yip ¼ 1 8i ¼ f1; . . . ; ng ð4Þ

yip 2 f0; 1g 8i ¼ f1; . . . ; ng; p 2 V ð5Þ

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 6 / 21

where x solves

min
x

1

G

X
p2V

LðxÞp
Cp � LðxÞp

þ
X
p2V

X
q2V

FðxÞðp;qÞbpq
" #

ð6Þ

subject to: X
ðp;qÞ2A

xpq ¼ m� 1 ð7Þ

X
ðp;qÞ2ðS;SÞ

xpq � jSj � 1 8S � V ð8Þ

LðxÞp < Cp 8p 2 V ð9Þ

xpq 2 f0; 1g 8p; q 2 V ð10Þ

The objective function in Eq (3) minimizes the total connection costs (leader's aim). The
first term refers to the connection cost between clusters determined by the spanning tree, while
the second term refers to the allocation cost between users and clusters. Eq (4) states that each
user can be connected only into a single cluster. The follower's objective function given in (6)
minimizes the average message delay time. The total average delay in the LAN is composed of
the delays of the clusters and the bridges (see [13]), and as a results it is a nonlinear function. It
should be noted that a tree must satisfy the following tree conditions: havem − 1 edges, be con-
nected and acyclic. Moreover, any two of these conditions imply the third one. Therefore Eq
(7) states that a tree must have exactlym − 1 edges, while Eq (8) enforce the constraint that the
edges in T cannot form cycles, where (S, S) denotes all edges that go from one vertex in the set
S to another vertex in the set S. Both equations imply a spanning tree. Constraint (9) states a
capacity condition for the traffic that flows at a given cluster. Finally, constraints (5) and (10)
indicate the binary nature of the decision variables.

In order to assure that the bi-level problem defined by (3)-(10) we assumed that if the fol-
lower have multiple optimal responses for any leader’s decision, then the follower’s decision
that is more convenient for the leader will be selected. This case is known as the optimistic ver-
sion of the bi-level problem.

Solution Algorithm
Bi-level programming problems are generally difficult to solve because evaluation of the upper
level objective function requires the solution of the lower level optimization problem. Further-
more, since the lower level considered in this paper consists of a nonlinear constraint, the bi-
level problem is inherently a non-convex programming problem. The lower level problem
aims to solve a minimum average message delay spanning tree problem at each step of the opti-
mizing process of the upper-level problem, which is basically an assignment problem. There-
fore, a Genetic Algorithm (GA) is proposed for solving the problem described above.

The motivation for using a GA in this particular application is based on the fact that it is a
very flexible technique which can be adapted in several ways to several optimization problems
by suitably defining the criteria used in the operators of the solution procedure. GAs use strate-
gies for diversification maintaining most of the good quality solutions; and have proved to be
efficient on solving a variety of multi-objective, robust optimization and bi-level problems.
Since GAs are population-based metaheuristics an efficient representation of the solutions in

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 7 / 21

the form of a chromosome is required. Prior of describing the proposed GA implementation,
we define the solution coding (chromosome) and the objective function evaluation (fitness
function).

Solution coding and objective functions evaluation
The purpose of our problem is to group users and assign them to clusters so that the clusters
form a spanning tree that does not violate the capacity bridge constraints. Therefore, the sim-
plest structure to represent a feasible solution might be to consider an array y = hy(1), y(2),. . .,
y(n)i, where n is the number of users in the network. Each position of y indicates the cluster p
to which the i −th user has been assigned (y(i) = p). A feasible solution must satisfy the require-
ment that each user must be assigned to only one cluster, which is easily satisfied here. On the
other hand, the spanning tree configuration is represented by a list of edges x = {(p, q) | (p, q) 2
E'} such that card(x) =m − 1. See example in Fig 1.

In Fig 1, it is shown a possible representation of a solution with five clusters and ten users.
For instance, y(4) = 3 means that user 4 has been assigned to cluster 3. In the graphical repre-
sentation of the network, the circles represent clusters while the squares represent users. Thick
lines represent the bridges linking two clusters, and arrows indicate the assignment of users to
clusters. The solution shown is feasible if the cluster capacity constraint is satisfied.

From an algorithmic point of view, a bi-level problem is solved as follows: in an iteration
t the leader proposes a solution yt; restricted to that solution, the follower obtains its response
x
�
(yt) aiming to minimize the lower level function fL(x

�
(yt)). This is, the follower rationally

reacts to the solution made by the leader and passes its solution to the leader which evaluates
the upper level objective function fu(yt, x

�
(yt)). Then, if it is necessary the leader changes its

decision by proposing a different solution yt+1. The procedure is repeated until some stopping
criterion is met. The difficulty in solving the bi-level programming problem arises from the
necessity of solving the lower level at each iteration of an algorithm that handles solutions for
the upper level. Hence the computational time consumed for solving the lower level needs to
be minimized. Typically, when it is possible, the lower level is optimally solved; in the cases
when the lower level problem is NP-hard or a strong combinatorial problem, it is assumed that
since the follower rationally reacts to a leader’s decision, an acceptable solution (good quality
in a low computational cost) will be made. By considering this approach an acceptable Stackel-
berg equilibrium is reached.

Fig 1. Solution coding.

doi:10.1371/journal.pone.0128067.g001

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 8 / 21

Now, that bi-level procedure is adapted for the BLANDP in the next manner: given a new
assignment in the y array, the minimum average message delay spanning tree x

�
(y) is attained

by solving a variant of the MST (Minimum-weight Spanning Tree). A greedy constructive algo-
rithm is proposed in order to build feasible solutions for the minimum average message delay
spanning tree problem. The constructive method accomplishes its task by adding, at each step,
exactly one edge to a current partial solution (i.e. adding a cluster to the current tree). Before
describing the algorithms it should be noted that in Eq (1), where the traffic at cluster k is com-
puted, only the third term depends of the spanning tree. Therefore, we define the partial traffic
at cluster k as L'k = ∑p2V tpk + ∑p2V\{k} tkq, and the partial traffic which flows on every pair of
bridges as F'(x)(p,q) = tpq + tqp. Also, the partial average message delay caused by the edge e(p,q)
2 E is defined as:

Qðeðp;qÞÞ ¼
1

G

L0
p

Cp � L0
p

þ L0
q

Cq � L0
q

þ F 0ðp;qÞbpq

" #
8ðp; qÞ 2 E ð11Þ

The proposed constructive algorithm is an iterative process that is similar to Kruskal's algo-
rithm. At iteration k, the algorithm selects an edge ek = e(p,q) with the minimum partial average
message delay value Q(ek) from the set of edges which have not been included in the tree, that
criterion can be used to augment the current tree while the feasibility is maintained (i.e. that
edge whose inclusion would not result in a cycle) and adds it to the current tree T = (V, Ek−1 [
{ek}) where Tv = {v 2 V: v is in the current tree T} and TE = {(p, q) 2 E: (p, q) is in the current
tree T}, note that TE � E'. The algorithm stops when |TE| =m−1. After an edge e(p,q) is added to
the tree, the current average message delay is updated with the following formula:

Qðeðp;qÞ;TÞ ¼
1

G

X
p2TV

L0ðxÞp
Cp � L0ðxÞp

þ
X

ðp;qÞ2TE
F 0ðxÞðp;qÞbpq

" #
ð12Þ

Once the tree is constructed, x
�
(y) is obtained and the evaluation of the lower level function

fL(x
�
(y)) is made. Then, considering the leader’s decision y and rationally follower’s reaction x

�

(y) the cost associated to the upper lever function fU(y, x
�
(y)) is computed as follows:

fUðy; x� ðyÞÞ ¼
X

ðp;qÞ2E0
wpq þ

Xn

i¼1

X
p2fV:yðiÞ¼pg

aipyip ð13Þ

Genetic algorithm
In this subsection the developed GA is described. Genetic algorithms operate on a set of indi-
viduals (solutions) which form a population for a determined generation, then either two indi-
viduals are selected and combined in a crossover operation or each individual is mutated.
These crossover and mutations are randomly performed in order to generate new solutions.
Then, based on a selection criterion, the strongest individuals (those with the best value of a
performance metric) survive and remain for the next generation. The process is repeated until
some stopping conditions are fulfilled. A general framework for GAs is shown in Fig 2. In
order to solve the BLANDP, an appropriate adaptation of the different components of the GA
needs to be described.

In order to perform the selection of the individuals in the GA a fitness value needs to be
defined. This fitness value measures the quality of the individuals and enables them to be

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 9 / 21

compared. Since we are solving a bi-level programming problem the fitness value considered
must be the leader’s objective function value, i.e. the value given by formula (13).

Initial population: In order to generate a diverse population the individuals are randomly
created. A particular individual yk is created in the following way: for each of the n users a ran-
dom number between 1 and |V|, where |V| represents the total number of clusters in the net-
work, is chosen and added to the current individual. This process is repeated until the initial
population is complete, i.e. k reaches the desired number for the size of the population. It is
important to mention that if individuals are created in the described manner, the feasibility is
guaranteed.

After the initial population is created, for each individual the follower’s rational reaction x
�

(y) is obtained. Then, the fitness value fU(y, x
�
(y)) is evaluated.

Selection: Due to the efficiency for ranking the solutions avoiding premature convergence, a
tournament selection strategy is selected to be implemented in the algorithm. A tournament
consists in selecting an individual and randomly matches it to another individual of the popu-
lation, then compare their respective fitness value and identify the winner. The winner will be
the individual with the best fitness value, i.e. the individual with lower connection cost. These
matches are made for all of the individuals in the current population. In order to allow that the
individuals with best fitness value remain in the population, a predefined number of tourna-
ments will be conducted. It is worthy to note that if very few tournaments are done, then the
ranking of the individuals tend to have a lot of randomness; on the other hand, if numerous
tournaments are done, the ranking will be biased to the better individuals eliminating the
diversity required for the GAs. After the population is ranked accordingly to the results
obtained from the tournaments an elitist selection is made. In other words, half of the individu-
als better ranked will enter to the genetic operators.

The algorithm considers two genetic operators: crossover and mutation. Hence, for each of
the individuals chosen in the selection phase a random number between 0 and 1 is generated.
If the random number is less or equal than a predefined parameter the individual will enter to
the crossover operator; otherwise, it will enter to the mutation one.

Crossover: This is the main genetic operator, so the probability to enter in this phase is
greater than 0.50. The crossover simulates the reproduction between two individuals, called the
parents. The procedure is as follows: the current individual is randomly matched with another
individual from the population (where population means the complete population not only the
half corresponding with the selected individuals). Then, both parents are combined in order to

Fig 2. Genetic Algorithm’s framework.

doi:10.1371/journal.pone.0128067.g002

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 10 / 21

produce two offsprings. A standard single crossover point is implemented; such point is ran-
domly selected for the first parent (P1) and also considered for the second parent (P2). One of
the offsprings will inherit the first part of P1 and the second part of P2; the other offspring will
be created in the opposite way.

Mutation: In the case when an individual had entered in this phase a small change in its cod-
ification occurs. This random change will gradually incorporate new characteristics to the pop-
ulation which allows exploring new regions of the solution space. Since the crossover produces
offsprings with the same characteristics than the parents, the mutation takes an important
place in the algorithm in order to have diverse individuals. The mutation is performed by
selecting a component of the current solution and randomly change it for another number
between 1 and |V|; i.e. an specific user is allocated to another cluster.

An illustration of the considered genetics operators is shown in Fig 3. It is important to
mention that crossover and mutation ensure feasibility of the new created individuals and for
each of the new solutions the rational reaction of the lower level needs to be computed again.

Computational Experiments
The computational testing can be divided in three main parts. First, we used the set of three
instances reported in [14] as benchmark. In this set of instances the users in the network vary
from 8 to 50, and the clusters vary from 4 to 10. Second, a discussion regarding the solution
reached by the Nash-Genetic algorithm in the instances existing in the literature is presented.
Finally, a new set of 10 instances was created varying in size. The new set of instances varies in
size from 60 to 300 users and from 15 to 50 clusters in the network. The parameter tuning for
the benchmark and the generated instances was conducted and it is showed in the correspond-
ing section. All instances considered in our experimentation are available upon request. Both
set of instances are used to analyze the performance of the solution method developed in this
paper. All the experimentation conducted in this paper was implemented in C++ using the
Microsoft Visual Studio 2010 programming environment via the Windows 7 operative system.
The experiments were conducted on an HP Compaq 6000 Pro PC with a Pentium Dual-Core
processor at 3.00 GHz and 2.00 GB RAM.

Experimentation on benchmark instances
As it is mentioned above, in the literature only exist three instances for this problem. However,
the instances are incomplete because some parameters are described without presenting the
exact data, this is, the probability distribution for the parameters is indicated. Hence, the

Fig 3. Genetic operators.

doi:10.1371/journal.pone.0128067.g003

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 11 / 21

missing information was generated with the same procedure reported in [48] and [14]. The
tested problems are specified in Table 2.

Before conducting the numerical experimentation, the tuning for the parameters involved
in the Genetic algorithm is done. The main parameters are: the number of generations (G), the
size of the population (P), the probability (π) of entering into the crossover or the mutation
phase and the number of tournaments in the selection phase. The latter is set to 5 because it is
a recommendable and common value in order to maintain a balance between diversification
and intensification of the solutions. For the other three parameters, i.e. G, P and π, preliminary
numerical tests are used to set the values of the required parameters. The preliminary tests con-
sist on conducting runs with different settings of the parameters and then making numerical
comparisons.

First, based on the size of the instances we established four different possible values for P,
those are 100, 150, 200 and 300. Then, we did the same for π selecting 0.50, 0.60, 0.75 and 0.90.
The value of G was set as 200, 300, 400 and 500 for the preliminary tests. As an example, the
numerical results for Benchmark 1 are plotted in Fig 4. This part of the experimental work was
carried out to analyze the behavior of each proposed combination of parameters in the three
considered instances. Due to the stochasticity presented in the methodology, for each one of
the different combination of parameters the genetic algorithm was run ten times.

In order to select the parameters for the genetic algorithm, a full factorial design was con-
ducted. The design consists in three treatments and four levels with 10 replications. Two
response variables are considered, the leader’s objective function and the required time. The
results of the experimental design showed that the three factors have significant effect in both
response variables. A maximum value for the required time was considered for discarding
some combinations of the treatments’ levels.

On the other hand, the results obtained from the computational tests described in the full
factorial design were graphically analyzed. In Fig 4 the average of the values obtained after the
ten runs of each of the parameters combinations for Benchmark 1 are plotted. It is important
to mention that for all the instances the same methodology was followed but in this paper we
only show the results for Benchmark 1 as an illustration. The axes correspond to the number of
generations and the leader’s objective function value. The results from varying the genetic
operators probability (π) can be seen in each of the plots. Also, one plot corresponds to a differ-
ent size of the population (P).

When comparing the different parameters combinations from Fig 4, it can be observed that
their efficiency is quite similar as far as solution quality and solution time is concerned (the
time is directly related with the number of generations). It seems difficult to identify some vari-
ants clearly dominating others. Therefore, considering that computing the rational reaction of
the follower is not straightforward but difficult due to its complexity, a smaller population is
desired. On the other hand, an intermediate value in the number of generations seems to be a

Table 2. Data for the benchmark instances.

Benchmark 1 Benchmark 2 Benchmark 3

Number of users 8 30 50

Number of clusters 4 6 10

Clusters’ connection cost (wpq) wpq * U(100,250)

Users’ connection cost (αip) αip * U(1,100)

Capacity (Cp) 50 300 500

Clusters’ response time (bpq) 0.1 0.1 0.1

doi:10.1371/journal.pone.0128067.t002

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 12 / 21

good one taking into consideration that long runs will incur in higher computational time.
Also, we can identify some critical points where the quality of the solution would not improve
any more.

After having analyzed the results obtained from the design of experiments and supported by
the graphical illustration, the parameters setting for Benchmark 1 is π = 0.75, P = 150 and
G = 300. It can be seen from Fig 4 that, when higher probability π was considered, the algo-
rithm reached better leader’s objective function values. Considering that the same leader’s solu-
tion may obtain different follower’s reaction, the probability of entering to the crossover or
mutation operators is π = 0.75. Also, as it is mentioned above, due to the size of the population
P negatively affects to the required time, then a smaller value of P is preferred, i.e. P = 150.

Fig 4. Parameter tuning for Benchmark 1.

doi:10.1371/journal.pone.0128067.g004

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 13 / 21

Finally, the number of generations also has an impact in the required time, so 300 generations
seemed to be an efficient value based on computational time and leader’s objective function
value. For example, the average time consumed for the 500 generations of the ten runs of each
configuration was 4.5, 6.7, 9 and 13.7 seconds for 100, 150, 200 and 300 individuals in the pop-
ulation, respectively. The parameters setting is presented on Table 3.

After have tuned the parameters for each benchmark instance, 50 runs of the code were per-
formed in order to assess the quality of the proposed genetic algorithm. In Table 4 the results
from the computational experimentation are shown. The “Best” column represents the best
value obtained from the 50 runs of each problem. In the “Average” column the average of the
50 runs is indicated and in the “Worst” column the higher obtained cost is indicated. Then, the

“Gap” column is calculated as Gap ¼ jbest�Averagej
best

� 100%. The sample standard deviation is pre-

sented in the “Std. Dev.” column. The “ Best” and “% Best” columns indicate the total number
of times and the percentage of times when the best value was reached, respectively. Finally, the
“Time” column indicates the average time (in seconds) for solving 50 times each problem.

From Table 4 it can be observed that for Benchmark 1 the algorithm reached the best value
in more than half of the 50 runs. Moreover, the average from all the runs is very near from the
best obtained value and the standard deviation indicates that the values are around the average;
the small gap obtained (1.20%) confirms the good performance of the developed algorithm in
this problem. The consumed average time is 4.23 seconds.

The results for Benchmark 2 indicate that despite the expected increase in the computa-
tional time (almost 14 seconds), the algorithm reached a very good gap between the best
obtained value and the average of the 50 runs. This gap is lower than 2%. Also, the best value
was obtained in almost the half of the experimentation (in 22 of the runs). Finally, the numeri-
cal experimentation conducted for Benchmark 3 was not as good as the previous ones but the
results are still reasonable. The best value was reached in 18 of the 50 runs, while the gap
increased to 3.18% and the consumed time was of 54.9 seconds. These results were clearly
affected by the difficulty of finding the follower’s rational reaction.

A comparison between the Stackelberg-Genetic and the Nash-Genetic
algorithms
In this subsection, the solutions obtained by the Genetic algorithm developed in this paper
(SG, hereafter) and by the Nash-Genetic algorithm (NG, hereafter) proposed in [14] are
discussed.

Table 3. Parameter setting for the benchmark instances.

Benchmark 1 Benchmark 2 Benchmark 3

Genetic operators probability (π) 0.75 0.50 0.60

Size of the population (P) 150 200 200

Number of generations (G) 300 400 500

doi:10.1371/journal.pone.0128067.t003

Table 4. Numerical results for the benchmark instances.

Best Average Worst Gap Std. Dev. # Best % Best Time

Benchmark 1 493 498.94 502 1.20 4.31 27 54 4.230

Benchmark 2 1203 1226.30 1282 1.94 18.04 22 44 13.951

Benchmark 3 1602 1652.89 1738 3.18 38.60 18 36 54.877

doi:10.1371/journal.pone.0128067.t004

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 14 / 21

The solutions considered for the SG are the ones presented in subsection 4.1. On the other
hand, for obtaining the solutions from the NG we emulated the algorithm described in [14] in
order to solve the BLANDP. Next, a brief general description of the NG is shown. Let (y | x) be
the string representing the potential solution for a bi-objective optimization problem. Then y
denotes the subset of variables controlled by the leader and optimized accordingly to the con-
nection costs. Similarly x denotes the subset of variables controlled by the follower and opti-
mized with respect to the average delay in the network. According to the Nash perspective, the
leader optimizes (y | x) with respect to his objective function by modifying y while x is fixed by
the follower, i.e. the leader will find y

�
(x). Symmetrically, the follower optimizes (y | x) with

respect to his objective function by selecting x while y is fixed by the follower, i.e. the follower
will find x

�
(y). In the same way that in [14], two different populations are considered; the first

one is named pop1 corresponds to the assignments y associated with the connection of the
users to clusters and the second one is named pop1 corresponds to the spanning trees x result-
ing from connecting the clusters. In each population the fitness of the individuals is evaluated
with its corresponding objective function, i.e. the leader or follower’s objectives.

Let yk−1 be the best value found by the leader at generation k−1 and xk−1 be the best value
found by the follower at generation k−1. At generation k, the leader optimizes yk while using xk
−1 in order to evaluate (y | x). In the same way, the follower optimizes xk while using yk−1 in
order to evaluate (y | x). After the optimization process, the leader sends the best value yk to the
follower who will use it at generation k + 1; then the follower makes the same procedure. The
Nash equilibrium is reached when neither the leader nor the follower can further improve their
criteria without affect the other party interests. This procedure is illustrated in Fig 5.

It is important to mention that for the Nash-Genetic algorithm that we implemented the
genetic operators (crossover and mutation) and the selection phase are the same that the ones
described in the third section.

In order to show the performance of the NG, we solved the benchmark instances and com-
pared the obtained results. Each instance was run 50 times, as in the SG algorithm. Let (pop1,
pop2) denote the selected size for the leader’s and follower’s populations, respectively. For
Benchmark 1, the populations are (10,10) due to the fact that 16 spanning trees are possible.
For both problems, Benchmark 2 and Benchmark 3 the populations are (100,100). The algo-
rithm stops when the best individual for both populations is the same, this is, when no improve
in at least one objective function can be made. The values for both, SG and NG algorithms are
presented in Table 5. The description of the columns is the same than the one for Table 4.

The main comments about the values shown in Table 5 are concerned with the computa-
tional time and with the leader’s objective function. When the instance contains a number of
clusters that demands an evolutionary process in the follower’s population, the required time
for the NG is increased. This is clearly caused by the existence of two populations, which
require entering to the genetic operators for evolving.

Furthermore, there is no evidence for indicating whether the leader’s objective function
value increases or decreases. However, it is very important to note that we could find Pareto-
efficient solutions that lead us to better objective function values, but in most of the times these
solutions are not going to be in the inducible region of the bi-level problem. As it was men-
tioned in subsection of related literature, the optimal bi-level solution is not necessarily found
in the set of efficient solutions of a bi-objective problem. Then, we cannot make a valid com-
parison about the objective function reached by SG and NG algorithms since the NG solutions
will not be bi-level feasible ones (in general).

The important issue here is to show the significant difference in solving a bi-level program-
ming problem without properly consider the leader and follower roles. Also, the main detail in
considering the NG approach is that obtaining y

�
(x) in the follower’s population may not be

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 15 / 21

adequate for solving bi-level problems since finding the best assignment for a particular span-
ning tree does not concord with hierarchy considered in bi-level programming. Nash-Genetic
algorithms seem to fit better for solving multi-objective problems.

Table 5. Numerical results for the comparison between SG and NG.

SG NG

Best Average Gap Time Best Average Gap Time

Benchmark 1 493 498.94 1.20 4.230 635 635.00 0.00 0.751

Benchmark 2 1203 1226.30 1.94 13.951 1217 1234.74 1.44 27.655

Benchmark 3 1602 1652.89 3.18 54.877 1518 1716.82 11.58 170.469

doi:10.1371/journal.pone.0128067.t005

Fig 5. The process of the emulated Nash-Genetic algorithm is shown.

doi:10.1371/journal.pone.0128067.g005

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 16 / 21

Robustness of the SG algorithm
The objective of this section is to show that the performance of the algorithm is steady and effi-
cient. In order to do this, a new set of 10 larger-size instances was randomly generated main-
taining the same structure than the benchmark instances. We keep considering the user’s and
cluster’s connection cost as αip * U(1,100) and wpq * U(100,250), respectively. The cluster’s
response time is standardized as 0.1 for all the instances. The rest of the data for each instance
is given in Table 6.

Since the second set of instances contains larger size problems, more different possible val-
ues were considered for each parameter. This is, for P we considered 100, 200, 300, 400 and
500. Similarly for π we tested 0.50, 0.60, 0.70, 0.80 and 0.90. The number of generations G was
set to 500, 1000, 1500 and 2000, in order to select the more appropriate value for each instance.
Preliminary testing was conducted in the same manner than for the benchmark instances con-
sidered. An analogous full factorial design of experiments was conducted. Also, the results
were supported by the corresponding plots in the same manner than Fig 4. Then, the appropri-
ate parameters setting is presented on Table 7.

Then, in Table 8 the numerical results from the computational experimentation considering
the parameters described in Table 7 are presented. The headings of Table 8 are analogous to
Table 4. In the same manner than for the benchmark set of instances, 50 runs were conducted
for the set of generated instances.

From Table 8 it can be appreciated that the Stackelberg genetic algorithm has a steady per-
formance. The gap between the best leader’s objective function value reached and the average
from the 50 runs is less than 9% for all the instances. The standard deviation is small in 8 of the
10 instances; this indicates that in most of the runs the algorithm converges to a region that
contains good quality solutions. The percentage of times that the algorithm repeats the best
obtained solution is acceptable, from 18% to 42% of the runs. When the number of clusters
increases, such as, in GI-8 and GI-10, the algorithm decreases its performance reaching the
best value only in 6 and 3 runs, respectively. This behavior is due to the significant increase in
the follower’s decision space; and since the lower level solution’s method is an efficient heuris-
tic, larger variability appears. Increasing in the required time was expected, since the size of the
generated instances augmented. However, the required time seems to have a polynomial
increase. It is mainly affected by the number of generations and in a lower way by the size of
the population.

Finally, it is worth to remark that an increase in the number of clusters will exponentially
augment the number of possible trees (follower’s decision space). The well-known Cayley’s

Table 6. Data for the generated instances.

Instance Users Clusters Capacity

GI-1 60 15 600

GI-2 70 20 750

GI-3 80 20 1000

GI-4 90 25 1000

GI-5 100 25 1500

GI-6 150 30 2500

GI-7 200 30 4000

GI-8 250 40 5000

GI-9 300 20 6500

GI-10 100 50 1200

doi:10.1371/journal.pone.0128067.t006

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 17 / 21

formula can be applied for computing the total number of feasible trees associated with the fol-
lower’s decision. Hence, the algorithm’s performance is negatively affected by this fact. The
heuristic considered for finding the follower’s rational reaction is a main topic for further
research.

Conclusions and Further Research
In this paper a bi-level programming model for analyzing a local network design problem was
proposed. In this problem, the leader decides the allocation of users to clusters in order to mini-
mize the connection costs; while the follower connects the clusters forming the spanning tree
that minimizes the average network delay. For efficiently solving this problem, a genetic algo-
rithm considering an acceptable Stackelberg equilibrium was proposed. This algorithm deals
with the fact the lower level problem cannot be optimally solved in a straightforward manner,
hence the follower’s rational reaction need to be defined. In order to solve the lower level, we
implemented a heuristic procedure that seemed to be efficient in sense of quality and required
time.

Numerical results were conducted taking as a basis benchmark instances in the literature for
this problem and a new set of randomly generated instances. The conclusions we can make
after having analyzed the results are that the best leader’s objective function value was found
several times and the computational consumed time is very acceptable for a problem from this
nature. The robustness of the proposed algorithm is showed by numerical experimentation
conducted to different size instances. The performance of the algorithm is stable without hav-
ing much variation due to the different instances’ components.

It is important to mention that, because no efficient algorithm for bi-level optimization
associated with large-scale network problems is available, an iterative optimization-assignment
algorithm has usually been used in network design problems (e.g., traffic signal setting and
expansions of link capacities). This algorithm consists of iterating between the upper-level opti-
mization problem with fixed lower-level decision variable values, and lower-level optimization
problem (average traffic delay time) with fixed upper-level decision variable values. However,
it is demonstrated theoretically and empirically that this iterative algorithm does not necessar-
ily converge to the exact solutions of Stackelberg games, but is rather an exact and efficient
algorithm for solving Cournot-Nash games, in which each player attempts to maximize his/her
utility or payoff noncooperatively and assumes that his actions will have no effect on the
actions of the other players (see [49] and [50]). Here, it should be particularly mentioned that
the iterative optimization-assignment algorithm presented in [14] obviously does not solve the

Table 7. Parameter setting for the generated instances.

Instance π P G

GI-1 0.70 100 500

GI-2 0.70 200 500

GI-3 0.80 200 500

GI-4 0.70 300 1000

GI-5 0.60 300 1000

GI-6 0.60 400 1000

GI-7 0.50 400 1500

GI-8 0.50 500 1500

GI-9 0.60 300 1000

GI-10 0.50 500 1500

doi:10.1371/journal.pone.0128067.t007

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 18 / 21

BLANDP considered in this paper because the optimal solution of upper-level problem is the
target one if the lower-level decision variable values are fixed. We can appreciate this fact by
looking at the discussion of the results presented in subsection 4.2.

As an area of opportunity, we identified that since the difficulty immersed in dealing with
the hard-combinatorial follower’s problem an alternative methodology needs to be proposed.
In this paper, a heuristic method was implemented for finding a follower’s rational reaction.
This methodology could give us different follower’s responses for the same leader’s solution
but not necessarily the best spanning tree. This issue affected the efficiency of the genetic algo-
rithm in the experimentation associated with the larger-size instances. Therefore, a methodol-
ogy that considers a pool of spanning trees and the evaluation of them in order to obtain the
best follower’s response for each leader’s decision seems to be a good option. It is evident that
this methodology could be very expensive in sense of computational time, so the use of parallel
computing it is necessary. Moreover, this alternative may lead us to design a co-evolutionary
algorithm where both populations improve in an independently fashion but always considering
the existing hierarchy, i.e. for each leader’s decision find the best follower’s response in the cor-
responding evolved population.

Acknowledgments
The research activity of the first and fourth authors was partially supported by the Mexican
National Council for Science and Technology (CONACYT) through grant SEP-CONACYT
CB-2014-01-240814. The authors would like to thank Rafael Muñoz, graduated student from
the School of Physics and Mathematics (FCFM-UANL) for his help for implementing the func-
tion that obtains the follower’s rational reaction. Also, we would like to express our gratitude to
the anonymous referees whose valuable comments and suggestions have helped us in improv-
ing this paper.

Author Contributions
Conceived and designed the experiments: JFCV JMO FLR RPR. Performed the experiments:
JFCV FLR RPR. Analyzed the data: JFCV JMO FLR. Contributed reagents/materials/analysis
tools: JFCV RPR. Wrote the paper: JFCV JMO FLR.

References
1. . Alumur S, Kara BY (2008) Network hub location problems: The state of the art, European Journal of

Operational Research. 190(1): 1–21.

Table 8. Numerical results for the generated instances.

Instance Best Average Worst Gap Std. Dev. # Best % Best Time

GI-1 2773 2927.62 3272 5.58 165.12 14 28 66.711

GI-2 3838 3940.85 4457 2.68 175.38 20 40 82.532

GI-3 3745 4018.69 4645 7.31 321.93 12 24 85.726

GI-4 4728 4972.73 5589 5.17 303.82 16 32 105.248

GI-5 5397 5662.83 6227 4.92 307.00 10 20 111.392

GI-6 7369 7891.67 9167 7.09 693.39 21 42 163.966

GI-7 9529 10353.87 11534 8.65 711.07 9 18 206.473

GI-8 14669 15189.88 16025 3.55 533.99 6 12 289.007

GI-9 12902 13236.83 14726 2.60 470.31 16 32 151.057

GI-10 10043 10484.02 11376 4.39 332.24 3 6 178.264

doi:10.1371/journal.pone.0128067.t008

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 19 / 21

2. Watcharasitthiiwat K, Wardkein P (2009) Reliability optimization of topology communication network
design using an improved ant colony optimization, Computers & Electrical Engineering. 35(5):730–
747.

3. Ersoy C, Panwar SS (1993) Topological Design of Interconnected LAN/MANNetworks, IEEE Journal
on Selected Areas in Communications. 11(8):1172–1182.

4. Estepa T, Estepa A, Cupertino T (2011) A productivity-oriented methodology for local area network
design in industrial environments, Computer Networks. 55(9): 2303–2314.

5. Gavish B (1991) Topological design of telecommunication networks-local access design methods,
Annals of Operations Research. 33(1): 17–71.

6. Rothlauf F (2009) On optimal solutions for the optimal communication spanning tree problem, Opera-
tions Research. 57: 413–425.

7. Mateus GR, Loureiro AAF, Rodrigues RC (2001) Optimal network design for wireless local area net-
work, Annals of Operations Research. 106(1–4): 331–345.

8. Glover JF, Lee M (1991) Least-cost network topology design for a new service: an application of a tabu
search, Annals of Operations Research. 33: 351–362.

9. Jan RH, Hwang FJ, Cheng ST (1993) Topology optimization of a communication network subject to a
reliability constraint, IEEE Transactions on Reliability. 42(1): 63–70.

10. Chao-Hsien Chu HC, Premkumar G (2000) Digital data networks design using genetic algorithms,
European Journal of Operational Research. 127(1): 140–158.

11. Khan SA, Engelbrecht AP (2012) A fuzzy particle swarm optimization algorithm for computer communi-
cation network topology design, Applied Intelligence. 36(1): 161–177.

12. Clark D, Pogran KT, Reed DP (1978) An introduction to local area networks, in Proceedings of the
IEEE. 68(6): 1497–1517.

13. Elbaum R, Sidi M (1996) Topological Design of Local-area Networks using Genetic Algorithms, IEEE/
ACM Transactions on Networking. 4(5): 766–778.

14. Kim JR, Lee JU, Jo JB (2009) Hierarchical spanning tree network design with Nash genetic algorithm,
Computers & Industrial Engineering. 56(3): 1040–1052.

15. Kara B, Verter V (2004) Designing a road network for hazardous materials transportation, Transporta-
tion Science. 44: 1595–1607.

16. Jing W, Jianming Z, Jun, Huang, Min Z (2010) Multi-level emergency resources location and allocation,
in Proceedings of the 2010 IEEE International Conference on Emergency andManagement Sciences
(ICEMMS). 202–204.

17. Feng ChM,Wen ChCh (2005) A Bi-level programming model for allocating private and emergency vehi-
cle flow in seismic disaster areas, in Proceedings of the Eastern Asia Society for Transportations Stud-
ies. 5: 1408–1423.

18. LeBlanc L (1973) Mathematical programming algorithms for large scale network equilibrium and net-
work design problems, Ph.D. Dissertation. Department of Industrial Engineering and Management Sci-
ences, Northwestern University.

19. Marcotte P, Mercier A, Savard G, Verter V (2009) Toll policies for mitigating hazardous materials trans-
port risk, Transportation Science, INFORMS. 43: 228–243.

20. Yang H, Bell MGH (2001) Transportation bilevel programming problems: Recent methodological
advances, Transportation Research, Part B. 35: 1–4.

21. Gallo M, D’Acierno L, Montella B (2010) A meta-heuristic approach for solving the Urban Network
Design Problem, European Journal of Operational Research. 201(1): 144–157.

22. Labbé M, Marcotte P, Savard G (1998) A bilevel model of taxation and its applications to optimal high-
way pricing, Management Science. 44:1608–1622.

23. Kalashnikov V, Camacho F, Kalashnikova N, Askin R (2010) Comparison of Algorithms Solving a Bi-
Level Toll Setting Problem, International Journal of Innovative Computing, Information and Control. 6:
3529–3549.

24. Hansen P, Kochetov Y, Mladenovic N (2004) Lower bounds for the uncapacitated facility location prob-
lem with user preferences, Tech. Rep. G-2004-24, GERAD-HEC, Montreal, Canada.

25. Eiselt HA, Laporte G (1996) Sequential location problems, European Journal of Operational Research.
96: 217–231.

26. Calvete HI, Galé C, Oliveros MJ (2011) Bilevel model for production-distribution planning solved by
using ant colony optimization, Computers & Operations Research. 38: 320–327.

27. Vicente L, Calamai H (1994) Bilevel and multilevel programming: A bibliography review, Journal of
Global Optimization. 5(3): 291–306.

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 20 / 21

28. Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization, Annals of Operations
Research. 153: 235–256.

29. Mathieu R, Pittard L, AnandalingamG (1994) Genetic algorithm based approach to bilevel linear pro-
gramming, R.A.I.R.O., Recherche Operationelle. 28: 1–21.

30. Oduguwa V, Roy R (2002) Bilevel Optimisation Using Genetic Algorithm, in IEEE International Confer-
ence on Artificial Intelligence Systems (ICAIS’02), 32.

31. Bhadury J, Jaramillo J, Batta R (2002) On the Use of Genetic Algorithms for Location problems, Com-
puters & Operations Research. 29: 761–779.

32. Yang J, Zhang M, He B, Yang C, () Bi-level programing model and hybrid genetic algorithm for flow
interception problem with customer choice, Computers & Mathematics with Applications. 57 (11):
1985–1994.

33. Alekseeva E, Kochetova N, Kochetov Y, Plyasunov A (2009) A hybrid memetic algorithm for the com-
petitive p-median problem, in Preprints of the 13th IFAC Symposium on Information Control Problems
in Manufacturing. 1516-1520X.

34. Vasilyev IL, Klimentova KB (2009) The Branch and Cut Method for the Facility Location Problem with
Client’s Preferences, Journal of Applied and Industrial Mathematics. 4(3): 441–454.

35. Kücükaydin H, Aras N, Altinel K (2010) A hybrid Tabu Search Heuristic for a Bilevel Competitive Facility
Location Model, Lectures Notes in Computer Science. 6373: 31–45.

36. Legillon F, Liefooghe A, Talbi EG (2012) CoBRA: A Coevolutionary Meta-heuristic for Bi-level Optimiza-
tion, in IEEE Congress on Evolutionary Computation (CEC 2012).

37. Brotcorne L, Cirinei F, Marcotte P, Savard G (2012) A tabu search algorithm for the network pricing
problem, Computers & Operations Research. 39(11): 2603–2611.

38. Camacho-Vallejo JF, Cordero-Franco AE, González-Ramírez RG (2014) Solving the Bilevel Facility
Location Problem under Preferences by a Stackelberg-Evolutionary algorithm, Mathematical Problems
in Engineering. 2014:14.

39. Nash J, Non-Cooperative Games (1951) The Annals of Mathematics, Second Series. 54(2): 286–295.

40. Stackelberg HV (1952) The Theory of the Market Economy, Oxford University Press.

41. Wang JF, Periaux J (2001) Multi-Point Optimization using Gas and Nash/Stackleberg Games for High
Lift Multi-airfoil Design in Aerodynamics, in IEEE Proceedings of the 2001 Congress on Evolutionary
Computation. 1: 552–559.

42. Pieume CO, Fotso LP, Siarry P (2009) Solving bilevel programming problems with multicriterio optimi-
zation techniques, OPSEARCH. 46(2): 169–183.

43. Calvete HI, Galé C (2010) A Multiobjective Bilevel Program for Production-Distribution Planning in a
Supply Chain, In: Ehrgot M., et. al. (Eds.), Multiple Criteria Decision Making for Sustainable Energy and
Transportation Systems, Lecture Notes in Economics and Mathematical Systems, 634. Springer-Ver-
lag. 155–165.

44. Candler W (1988) A linear bilevel programming algorithm: A comment, Computers & Operations
Research. 15: 297–298.

45. Clarke P, Westerberg A (1988) A note on the optimality conditions for the bilevel programming problem,
Naval Research Logistics Quaterly. 35: 413–418.

46. Haurie A, Savard G, White D (1990) A note on: an efficient point algorithm for a linear two-stage optimi-
zation problem, Operations Research. 38: 553–555.

47. Marcotte P, Savard G (1991) A note on the Pareto optimality of solutions to the linear bilevel program-
ming problem, Computers & Operations Research. 18: 355–359.

48. Kim JR, Jo JB, Yang H (2007) A Solution for bi-level network design problem through Nash genetic
algorithm, in: Szczuka M., Howard D., Slezak D., Kim H., Kim T., Ko I., Lee G., Sloot P. (Eds.),
Advances in Hybrid Information Technology, Lecture Notes in Computer Science. 4413: 269–280.

49. Fisk CS (1984) Game Theory and Transportation SystemModelling, Transportation Research Part B.
18: 301–313.

50. Friesz TL, Harker PT Freight network equilibrium: a review of the state of the art, in: Daughety AF.
(Ed.), Analytical studies in transportation economics, Cambridge University Press, New York.

GA for the BLANDP

PLOSONE | DOI:10.1371/journal.pone.0128067 June 23, 2015 21 / 21

