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Copyright © 2015 Iván D. Dı́az-Rodŕıguez et al.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Themain focus of this paper is to analyze the robust stability property for a class of time-delay systems when parametric polynomic
uncertainty is considered. The analysis is made by replacing the time-delay part with an auxiliary equation and then using the sign
definite decomposition to deal with the polynomic parametric uncertainty. Also, it is shown that it is possible to verify the robust
stability property by first obtaining the Hurwitz matrix from the characteristic equation for this class of systems and then checking
the leading principal minors positivity using the sign definite decomposition. Finally, an algorithm codified in MATLAB is used to
evaluate and graphically show the robust stability property. This is shown by a series of points that were calculated using the sign
definite decomposition.

1. Introduction

Time-delay systems arose as a result of inherent delays in
system’s components and also due to the introduction of
deliberated delay in the system for control purposes; see [1–
3]. Over the years, time-delay systems interest and popularity
have grown steadily. In particular, in the last 10 to 15 years
there has been a surge in research and a proliferation of new
techniques and results. Many of these new results include
systems not only with time-delay analysis, but also with
uncertainty in the system to be considered. For example, in
[4–6] an analysis of robust stability for time-delay dynamical
systems with parametric uncertainty in the mathematical
model and in the time-delay is shown; in addition, the
value set concept and the zero exclusion condition are used
to verify the robust stability property of interval plants;
see also [7, 8]. In [9, 10] the robust stabilization problem
for a class of time-delay systems is considered where they

involve parametric affine perturbations; in [11], new results
to compute the time-delay of the hot-dip galvanizing control
system are considered. In [12, 13] the authors present a
robust model predictive control for systems represented by
Takagi-Sugeno models and this technique was applied to
the continuous stirred tank reactor (CSTR). They use Linear
Matrix Inequalities (LMI) to solve the optimization problem.
A technique based on a representation in the time domain
of a class of differential-difference systems is presented in
[14, 15]. Here, the authors make an application to the active
suspension systems with actuator delay using the aforemen-
tioned technique. In [16, 17] new robust stability results for
LTI systems with parametric uncertainty using sign definite
decomposition were developed. In [18] the robust stability
problem for a polynomial family was considered whose
coefficients are polynomial functions of the parameters of
interest. They used the sign definite decomposition for the
controllers design. In [19] the robust stability positivity of
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a real function 𝑓(𝑥) is considered while the real vector 𝑥
varies over a box. They determined Hurwitz robust stability
for a polynomial family using the sign definite decomposition
described in [16].

In 1981, the characteristic polynomial including a time-
delay, for a linear differential-difference system, considered
replacing the term 𝑒−𝑠𝜏 by a regular polynomial (1−𝑇𝑠)2/(1+
𝑇𝑠)2. After this, it was possible to verify the asymptotic
stability property for a class of time-delay systems; see [20].
Previously, a different approachwasmade in [21] by replacing
𝑒−𝑠𝜏 by (1 − 𝑇𝑠)/(1 + 𝑇𝑠). But, it was found in [20] that the
main problem with this substitution was that the two sets of
image points were not identical for all 𝑠 = 𝑗𝜔, 𝜔 > 0, 𝑇 > 0
and 𝜏 > 0. In the present paper we outline a new algorithm
to verify the robust stability property for a class of linear
time-delay systems including a special case of polynomic
parametric uncertainty, which one has not been considered in
systems involving a time-delay. This is by using sign definite
decomposition theory to verify the robust stability of the
system using the stability conditions of Hurwitz matrix. We
illustrate this using a numerical example.

This paper is organized as follows. In the preliminaries
section, the Hurwitz stability criterion, a special polynomic
parametric uncertainty case, and the sign definite decomposi-
tion are described.Then, the problem statement is presented.
After that, the methodology and proposed algorithm are
shown. An illustrative numerical example is presented to
show the effectiveness of this approach. Finally, we discuss
our results and future research.

2. Main Contribution

As itmay be seen from the section above, someof the previous
results use techniques based on a representation in the time
domain of differential-difference systems. Thus, to analyze
and design them it is necessary to use the Lyapunov tech-
nique. It should be also mentioned that the uncertainty that
they experiment should be represented by time functions.
However, there are many applications where the uncertainty
depends on variables other than time, such as resistors,
capacitors, and inductors in an electrical circuit, which
have parameters that are uncertain and whose uncertainty
depends mainly on temperature and therefore could not be
analyzed with these techniques. Also, in previous section
some other results were mentioned that consider uncertainty
structures like interval or linear affine and systems without
delay. However, the main result of this paper is to obtain
sufficient conditions to verify the robust stability property
of a class of quasi-polynomials that represent the charac-
teristic equation of differential-difference dynamics systems.
It considers polynomic parametric uncertainty structure
in the coefficients of quasi-polynomials and also interval
uncertainty in the time-delay. First of all, a transformation
of the delay’s operator is performed in order to get a two-
variable polynomial; after this, to obtain the robust stability
property, a result based on the Hurwitz matrix is applied, and
then checking the leading principal minors positivity using
the sign definite decomposition.

3. Preliminaries

3.1. Hurwitz Stability Criterion

Theorem 1 (Hurwitz stabilty). Given a real polynomial 𝑝(𝑠) =
𝑎0 +𝑎1𝑠+𝑎2𝑠

2 + ⋅ ⋅ ⋅ +𝑎
𝑛

𝑠𝑛, the polynomial 𝑝(𝑠) is stable; that is,
all its roots lie in the open left half plane (LHP) of the complex
plane, if and only if, all of the leading principal minors, defined
by Δ
𝑖

, of the matrix𝐻 are positive; see [22]:

𝐻 =

[
[
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[
[
[
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𝑛−5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑎
𝑛

𝑎
𝑛−2 𝑎
𝑛−4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
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]
]
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]

. (1)

3.2. Uncertainty. There exists a case where the precise value
of the parameters of the mathematical model is unknown;
however, its lower and upper bounds are known 𝑞−

𝑖

, 𝑞+
𝑖

,
respectively. The collection of all 𝑙 parameters involved
in the mathematical model forms a vector of parameters
𝑞 = [𝑞1, 𝑞2, . . . , 𝑞𝑙]

𝑇 which is an element of a parametric
uncertainty box 𝑄:

𝑄 = {𝑞 = [𝑞1, 𝑞2, . . . , 𝑞𝑙]
𝑇

| 𝑞
𝑖

∈ [𝑞−
𝑖

, 𝑞+
𝑖

] , 𝑖

= 1, 2, . . . , 𝑙} .
(2)

For different lower and upper bound values, it is always
possible to make a coordinate transformation of the physical
parameters without losing their original properties. Such
transformation can be 𝜌

𝑖

= [𝑞
𝑖

− 𝑞−
𝑖

]/[𝑞+
𝑖

− 𝑞−
𝑖

], and in this
case 𝑞

𝑖

∈ [𝑞−
𝑖

, 𝑞+
𝑖

] is taken in 𝜌
𝑖

= [0, 1], where, for simplicity,
we can name 𝑞 to the new coordinate 𝑞

𝑖

= [0, 1]. When
we consider a parametric uncertainty, we have a polynomial
family defined as

𝑃 (𝑠, 𝑄) ≜ {𝑝 (𝑠, 𝑞) : 𝑞 ∈𝑄} . (3)

There exist a class of polynomialswith parametric uncertainty
𝑝(𝑠, 𝑞). It is called polynomic uncertainty structure; that is, it
has all of its coefficients where at least one parameter appears
with power greater than one. For example, 𝑝(𝑠, 𝑞) = (𝑞1 +
2𝑞21𝑞3)𝑠

2 + (𝑞1𝑞
3
2 + 𝑞1)𝑠 + (2𝑞2𝑞3).

Definition 2 (see [23]). Let 𝑃 be a positive convex cone in a
vector space R𝑙, for all 𝑥, 𝑦 ∈ R𝑙, it is said that 𝑥 ≥ 𝑦 (𝑥 > 𝑦)
with respect to 𝑃 if 𝑥 − 𝑦 ∈ 𝑃 (𝑥 − 𝑦 ∈ 𝑃0, the interior of 𝑃).

From this point, we will consider 𝑄 ⊂ 𝑃 and 𝑞−
𝑖

≥ 0. This
implies that 𝑞 ∈ 𝑄 ⊂ 𝑃.

Definition 3 (see [23]). 𝑓 : R𝑙 → R being a continuous
function and 𝑄 ⊂ 𝑃 ⊂ R𝑙 a convex subset, it is said that
𝑓(⋅) is a nondecreasing function in 𝑄, if 𝑥 ≥ 𝑦 implies
𝑓(𝑥) ≥ 𝑓(𝑦), ∀𝑥, 𝑦 ∈ 𝑄.
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Figure 1: Rectangle containing the function 𝑓(𝑞).

3.3. Sign Definite Decomposition

Definition 4 (see [16, 17]). 𝑓 : R𝑙 → R being a continuous
function and 𝑄 ⊂ 𝑃 ⊂ R𝑙 a convex subset, it is said that 𝑓(⋅)
has sign decomposition in𝑄 if there exist two nondecreasing
bounded functions 𝑓

𝑛

(⋅) ≥ 0, 𝑓
𝑝

(⋅) ≥ 0, such that 𝑓(𝑞) =
𝑓
𝑝

(𝑞) − 𝑓
𝑛

(𝑞) for all 𝑞 ∈ 𝑄. One will call those functions the
positive 𝑓

𝑝

(⋅) and negative 𝑓
𝑛

(⋅) parts of the function:

𝑓 (𝑞) = 𝑓
𝑝

(𝑞) −𝑓
𝑛

(𝑞) ∀𝑞 ∈ 𝑄

𝑓
𝑝

(⋅) ≜ Positive part of 𝑓 (⋅)

𝑓
𝑛

(⋅) ≜ Negative part of 𝑓 (⋅) .

(4)

The negative and positive parts (𝑓
𝑛

(⋅), 𝑓
𝑝

(⋅)) constitute a
representation (𝑓

𝑛

, 𝑓
𝑝

) of the function in R2 with a graphic
representation in the plane (𝑓

𝑛

(⋅), 𝑓
𝑝

(⋅)) according to Figure 1.

Definition 5 (see [16, 17]). It will be called minimum and
maximum euclidean vertex Vmin, Vmax to the vectors elements
of 𝑄 ⊂ 𝑃 ⊂ Rℓ with the minimum and maximum Euclidean
norm, respectively:

󵄩󵄩󵄩󵄩󵄩V
min󵄩󵄩󵄩󵄩󵄩2 = min

𝑞∈𝑄

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩2 ,

󵄩󵄩󵄩󵄩V
max󵄩󵄩󵄩󵄩2 = max

𝑞∈𝑄

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩2 .

(5)

Since the negative 𝑓
𝑛

(𝑞) and positive 𝑓
𝑝

(𝑞) parts are
nondecreasing functions in a vector space, the graphic rep-
resentation of 𝑓(𝑞), ∀𝑞 ∈ 𝑄 in the plane (𝑓

𝑛

, 𝑓
𝑝

) is contained
in Figure 1, where if the lower right vertex (𝑓

𝑛

(Vmax), 𝑓
𝑝

(Vmin))

is above the 45∘ line, then the function 𝑓(𝑞) > 0, ∀𝑞 ∈ 𝑄.

Definition 6 (see [16, 17]). 𝑓
𝑝

(𝑞) and 𝑓
𝑛

(𝑞) are the elements
of a function 𝑓(𝑞) with sign definite decomposition in 𝑄.
𝑇 being the linear transformation described such that there

exists 𝑇−1, then it is called a representation of the func-
tion 𝑓(𝑞) in (𝛼, 𝛽) coordinates to the linear transformation
(𝛼(𝑞), 𝛽(𝑞)) = 𝑇(𝑓

𝑛

(𝑞), 𝑓
𝑝

(𝑞)) of the function:

𝑇 = [
1 1
−1 1

]

𝑇−1 = 0.5[
1 −1
1 1

]

[
𝛼 (𝑞)

𝛽 (𝑞)
] = 𝑇[

𝑓
𝑛

(𝑞)

𝑓
𝑝

(𝑞)
]

[
𝑓
𝑛

(𝑞)

𝑓
𝑝

(𝑞)
] = 𝑇−1 [

𝛼 (𝑞)

𝛽 (𝑞)
]

𝛼 (𝑞) = 𝑓
𝑝

(𝑞) +𝑓
𝑛

(𝑞)

𝑓
𝑝

(𝑞) = 0.5 (𝛼 (𝑞) + 𝛽 (𝑞))

𝛽 (𝑞) = 𝑓
𝑝

(𝑞) −𝑓
𝑛

(𝑞)

𝑓
𝑛

(𝑞) = 0.5 (𝛼 (𝑞) − 𝛽 (𝑞)) .

(6)

In order to define the positivity or negativity of a function
using the (𝛼, 𝛽) representation, when a polynomial uncer-
tainty set is included, we need to use the following theorem.

Theorem 7 ((rectangle) [16, 17]). 𝑓 : R𝑙 → R being a
continuous function with sign definite decomposition in𝑄 such
that 𝑄 ⊂ 𝑃 ⊂ R𝑙 is a box with euclidean minimum and
maximumvertex Vmin, Vmax then (a) the lower bound of𝑓(𝑞) is
0.5[𝛼(Vmin)+𝛽(Vmin)−𝛼(Vmax)+𝛽(Vmax)] and its upper bound
is 0.5[𝛼(Vmax) + 𝛽(Vmax) − 𝛼(Vmin) + 𝛽(Vmin)], respectively; (b)
the graphic representation of the function 𝑓(𝑞), ∀𝑞 ∈ 𝑄 in the
plane (𝛼, 𝛽) is contained in the rectangle with vertices: 𝛼𝑖𝑧𝑞 =
𝛼(Vmin), 𝛽𝑖𝑧𝑞 = 𝛽(Vmin), 𝛼der = 𝛼(Vmax), 𝛽der = 𝛼(Vmax);
𝛼inf = 0.5[𝛼(Vmin) + 𝛼(Vmax)] − 0.5[𝛽(Vmax) − 𝛽(Vmin)], 𝛽inf =
0.5[𝛽(Vmin) + 𝛽(Vmax)] − 0.5[𝛼(Vmax) − 𝛼(Vmin)], 𝛼sup =
0.5[𝛼(Vmin) + 𝛼(Vmax)] + 0.5[𝛽(Vmax) − 𝛽(Vmin)], 𝛽sup =
0.5[𝛽(Vmin)+𝛽(Vmax)]+0.5[𝛼(Vmax)−𝛼(Vmin)]; (c) if the lower
vertex (𝛼inf , 𝛽inf ) is above the 𝛼 axis in the (𝛼, 𝛽) plane, then
the function 𝑓(𝑞) < 0, ∀𝑞 ∈ 𝑄.

Theorem 8 ((box partition) [16, 17]). 𝑓 : R𝑙 → R being
a continuous function with sign definite decomposition in 𝑄

such that 𝑄 ⊂ 𝑃 ⊂ R𝑙 is a box with minimum and
maximum euclidean vertices Vmin, Vmax then the function is
positive (negative) in 𝑄 if and only if there exist a set of boxes
Γ, such that 𝑄 = ⋃

𝑗

Γ𝑗 and the lower bound ≥ 𝑐 > 0 for every
box Γ𝑗 (upper bound ≤ 𝑐 < 0 for every box Γ𝑗).

The determinant of the matrix 𝑀 is comprised of addi-
tions and subtractions of products of the elements of the
matrix and if those are formed of polynomial type, the
determinant det(𝑀) has sign definite decomposition. The
programming development in order to get the sign definite
decomposition of the determinant in the representation
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(𝑓
𝑛

, 𝑓
𝑝

) can be quite complicated; however, in the (𝛼, 𝛽)
representation there exists a less complicated way to do it.

Definition 9 (see [16, 17]). 𝑀(𝑞) being a square matrix with
elements 𝑚

𝑖,𝑗

(𝑞) with sign definite decomposition in 𝑄 with
representation (𝛼

𝑖,𝑗

(𝑞), 𝛽
𝑖,𝑗

(𝑞)), then it will be called 𝑀
𝛼

(𝑞)
to the matrix formed with the elements 𝛼

𝑖,𝑗

(𝑞) and it will be
called det

𝛼

(𝑀
𝛼

(𝑞)) = |𝑀
𝛼

(𝑞)|
𝛼

to the function similar to the
determinant of the matrix 𝑀

𝛼

(𝑞) but without applying the
sign rule (−1)𝑖+𝑗; it will be𝑀

𝛽

(𝑞) = 𝑀(𝑞) and det
𝛽

(𝑀
𝛽

(𝑞)) =
det(𝑀(𝑞)).

Lemma 10 (see [16, 17]). Let 𝑀(𝑞) be a square matrix with
elements 𝑚

𝑖,𝑗

(𝑞) with sign definite decomposition in 𝑄 with
(𝛼
𝑖,𝑗

(𝑞), 𝛽
𝑖,𝑗

(𝑞)) representation.𝑀
𝛼

(𝑞) being the square matrix
with 𝛼

𝑖,𝑗

(𝑞) elements, then the (𝛼, 𝛽) representation of the
matrix determinant𝑀(𝑞) is given by

𝛼 (𝑞) = det
𝛼

(𝑀
𝛼

(𝑞)) ,

𝛽 (𝑞) = det (𝑀 (𝑞)) .
(7)

4. Problem Statement

The main interest of this research is to analyze the robust
stability property of difference-differential dynamical systems
which are characterized by polynomic parametric uncer-
tainty and time-delay of the form:

𝑥̇ (𝑡) = 𝐴0 (𝑞) 𝑥 (𝑡) +𝐴1 (𝑞) 𝑥 (𝑡 − 𝜏) , (8)

where 𝐴0(𝑞), 𝐴1(𝑞) ∈ R𝑛𝑥𝑛 are matrices with dependent
parameters of 𝑞

𝑖

∈ 𝑄 and 𝜏 ∈ [0, 𝜏max]; for example,

𝐴0 (𝑞) = [
𝑞21𝑞2 𝑞43

𝑞1𝑞2 𝑞21𝑞
2
2𝑞

2
3
]

𝐴1 (𝑞) = [
𝑞23 𝑞21𝑞

3
2𝑞3

𝑞51𝑞2 𝑞3
] ,

𝑞 =
[
[

[

𝑞1

𝑞2

𝑞3

]
]

]

𝑞
𝑖

∈ [𝑞−
𝑖

, 𝑞+
𝑖

] .

(9)

The parameters 𝑞
𝑖

represent the polynomic structure uncer-
tainty and 𝜏 the uncertain time-delay. Then, system (8) is
asymptotically stable if and only if the following condition is
satisfied:

𝑝 (𝑠, 𝑞, 𝑒−𝜏𝑠) = det {𝑠𝐼 −𝐴0 (𝑞) −𝐴1 (𝑞) 𝑒
−𝜏𝑠} ̸= 0. (10)

One has ∀𝑠 ∈ C
+

, wWhere C
+

represents the RHP of the
complex plane. The quasi-polynomials that satisfy the last
condition are called stable quasi-polynomials.

5. Results

The robust stability property is determined by the analysis
of the characteristic equation (10). Such equation is called

characteristic quasi-polynomial with polynomic parametric
uncertainty. The following transformation is needed in order
to determine the robust stability condition for this class of
systems.

Definition 11. A polynomial 𝑝(𝑠, 𝑇) associated with a quasi-
polynomial 𝑝(𝑠, 𝑒−𝜏𝑠) will be defined as follows:

𝑝 (𝑠, 𝑇) =
𝑛

∑
𝑖=0
𝑝
𝑖

(𝑠) (1−𝑇𝑠)2𝑖 (1+𝑇𝑠)2𝑛−2𝑖

𝑝 (𝑠, 𝑒−𝜏𝑠) =
𝑛

∑
𝑖=0
𝑝
𝑖

(𝑠) 𝑒
−𝑖𝜏𝑠.

(11)

The roots of this associated polynomial have an important
relation with the roots of the quasi-polynomial. This relation
is presented in the following theorem.

Theorem 12 (see [20]). Suppose that 𝑠0 = 𝑗𝜔0 for some value
of 𝜔0 ≥ 0; then 𝑠0 = 𝑗𝜔0 is a matrix of the characteristic
equation 𝑝(𝑠, 𝑒−𝜏𝑠) for some value of 𝜏 ≥ 0 if and only if
𝑠0 = 𝑗𝜔0 is a root of 𝑝(𝑠, 𝑇) for some value of 𝑇 ≥ 0.

With this transformation we can get the relation between
𝜏 and 𝑇, which is valid in the imaginary axis 𝑗𝜔; see [20].The
time-delay 𝜏 and 𝑇 are related by the following equation:

𝑇 =
tan (𝜏𝜔

𝑖

/4)
𝜔
𝑖

, (12)

where 𝜔
𝑖

∈ 𝑊; the set of 𝑊 is defined as follows:

𝑊 ≡ {0<𝜔<𝜔∗ : 𝑝 (𝑗𝜔∗, 𝑇) = 0 para 𝑇> 0} , (13)

where 𝑝(𝑗𝜔, 𝑇) is a polynomial associated with 𝑝(𝑠, 𝑒−𝜏𝑠)
evaluated in the 𝑗𝜔 axis. Note that for each value of 𝜔

𝑖

,
there exists a direct relation 𝜏 and 𝑇; also, this relation is
a continuous function and strictly increasing in the range
𝑇 ∈ [0,∞). For this reason, for every fixed value of 𝜔

𝑖

, the
interval 𝜏 ∈ [0, 𝜏max] generates an interval𝑇 ∈ [0, 𝑇max]. Now,
it is clear that for all values of 𝜔

𝑖

∈ 𝑊 there exists a relation
between 𝜏 and𝑇; we will define𝑇max in the following relation:

𝑇max = min {𝑇
𝑖

} 𝑇
𝑖

=
tan (𝜏𝜔

𝑖

/4)
𝜔
𝑖

∀𝜔
𝑖

∈ 𝑊. (14)

Definition 13. TheHurwitz matrix is

𝐻[𝑝 (𝑠, 𝑞, 𝑇)]

=

[
[
[
[
[
[
[
[
[
[
[
[

[

ℎ1,1 (𝑞, 𝑇) ℎ1,2 (𝑞, 𝑇) ⋅ ⋅ ⋅ 0
ℎ2,1 (𝑞, 𝑇) ℎ2,2 (𝑞, 𝑇) ⋅ ⋅ ⋅ 0

0 ℎ3,2 (𝑞, 𝑇) ⋅ ⋅ ⋅ 0
0 ℎ4,2 (𝑞, 𝑇) ⋅ ⋅ ⋅ 0
...

... d 0
0 0 ⋅ ⋅ ⋅ ℎ

𝑛,𝑛

(𝑞, 𝑇)

]
]
]
]
]
]
]
]
]
]
]
]

]

,
(15)

where every element of the matrix depends of the values of
𝑞
𝑖

∈ 𝑄 ⊂ 𝑃 and 𝑇 ∈ (0, 𝑇max].
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Definition 14. The Hurwitz matrix being (15), then 𝑓
𝑝𝑖,𝑗
(𝑞, 𝑇)

and 𝑓
𝑛𝑖,𝑗
(𝑞, 𝑇) will be denoted to the positive and negative

parts, respectively, for every element of the Hurwitz matrix
such that

ℎ
𝑖,𝑗

(𝑞, 𝑇) = 𝑓
𝑝𝑖,𝑗
(𝑞, 𝑇) +𝑓

𝑛𝑖,𝑗
(𝑞, 𝑇) , (16)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛.

According to the (𝛼, 𝛽) representation, we can express the
following.

Definition 15. Let Δ
𝑖

[𝛼inf ], 𝑖 = 1, 2, . . . , 𝑛 be the matrices
with elements 𝛼inf

𝑖,𝑗

obtained from the leading principal
minors Δ

𝑖

of the Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)]:

Δ 1 [𝛼
inf] = [𝛼inf1,1]

Δ 2 [𝛼
inf] = [

𝛼inf1,1 𝛼inf1,2

𝛼inf2,1 𝛼inf2,2
]

...

Δ
𝑛

[𝛼inf] =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛼inf1,1 𝛼inf1,2 𝛼inf1,3 0 ⋅ ⋅ ⋅ 0

𝛼inf2,1 𝛼inf2,2 𝛼inf2,3 0 ⋅ ⋅ ⋅ 0

0 𝛼inf3,2 𝛼inf3,3 𝛼inf3,4 ⋅ ⋅ ⋅ 0

0 𝛼inf4,2 𝛼inf4,3 𝛼inf4,4 ⋅ ⋅ ⋅ 0
...

...
...

... d 0

0 0 0 0 ⋅ ⋅ ⋅ 𝛼inf
𝑛,𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(17)

where every element of thematrices𝛼inf
𝑖,𝑗

= 𝑓
𝑝

(Vmin)+𝑓
𝑛

(Vmax)

is formed by the addition of the positive and negative parts
taken from the corresponding element of the Hurwitz matrix
𝐻[𝑝(𝑠, 𝑞, 𝑇)].

Definition 16. Let Δ
𝑖

[𝛽inf ], 𝑖 = 1, 2, . . . , 𝑛, be the matrices
with elements 𝛽inf

𝑖,𝑗

obtained from the leading principal
minors Δ

𝑖

of the Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)]:

Δ 1 [𝛽
inf] = [𝛽inf1,1]

Δ 2 [𝛽
inf] = [

𝛽inf1,1 𝛽inf1,2

𝛽inf2,1 𝛽inf2,2
]

...

Δ
𝑛

[𝛽inf] =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽inf1,1 𝛽inf1,2 𝛽inf1,3 0 ⋅ ⋅ ⋅ 0

𝛽inf2,1 𝛽inf2,2 𝛽inf2,3 0 ⋅ ⋅ ⋅ 0

0 𝛽inf3,2 𝛽inf3,3 𝛽inf3,4 ⋅ ⋅ ⋅ 0

0 𝛽inf4,2 𝛽inf4,3 𝛽inf4,4 ⋅ ⋅ ⋅ 0
...

...
...

... d 0

0 0 0 0 ⋅ ⋅ ⋅ 𝛽inf
𝑛,𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(18)

where every element of thematrices𝛽inf
𝑖,𝑗

= 𝑓
𝑝

(Vmin)−𝑓
𝑛

(Vmax)

is formed by the subtraction of the positive and negative parts
taken from the corresponding element of the Hurwitz matrix
𝐻[𝑝(𝑠, 𝑞, 𝑇)].

Definition 17. Let Δ
𝑖

[𝛼der], 𝑖 = 1, 2, . . . , 𝑛, be the matrices
with elements 𝛼der

𝑖,𝑗

obtained from the leading principal
minors Δ

𝑖

of the Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)]:

Δ 1 [𝛼
der] = [𝛼der1,1 ]

Δ 2 [𝛼
der] = [

𝛼der1,1 𝛼der1,2

𝛼der2,1 𝛼der2,2
]

...

Δ
𝑛

[𝛼der] =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛼der1,1 𝛼der1,2 𝛼der1,3 0 ⋅ ⋅ ⋅ 0

𝛼der2,1 𝛼der2,2 𝛼der2,3 0 ⋅ ⋅ ⋅ 0

0 𝛼der3,2 𝛼der3,3 𝛼der3,4 ⋅ ⋅ ⋅ 0

0 𝛼der4,2 𝛼der4,3 𝛼der4,4 ⋅ ⋅ ⋅ 0
...

...
...

... d 0

0 0 0 0 ⋅ ⋅ ⋅ 𝛼der
𝑛,𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(19)

where every element of the matrices 𝛼der
𝑖,𝑗

= 𝑓
𝑝

(Vmax) +

𝑓
𝑛

(Vmax) is formed by the addition of the positive and negative
parts from the corresponding element of the Hurwitz matrix
𝐻[𝑝(𝑠, 𝑞, 𝑇)].

Definition 18. Let Δ
𝑖

[𝛽der], 𝑖 = 1, 2, . . . , 𝑛, be the matrices
with elements 𝛽der

𝑖,𝑗

obtained from the leading principal
minors Δ

𝑖

of the Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)]:

Δ 1 [𝛽
der] = [𝛽der1,1 ]

Δ 2 [𝛽
der] = [

𝛽der1,1 𝛽der1,2

𝛽der2,1 𝛽der2,2
]

...
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Δ
𝑛

[𝛽der] =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽der1,1 𝛽der1,2 𝛽der1,3 0 ⋅ ⋅ ⋅ 0

𝛽der2,1 𝛽der2,2 𝛽der2,3 0 ⋅ ⋅ ⋅ 0

0 𝛽der3,2 𝛽der3,3 𝛽der3,4 ⋅ ⋅ ⋅ 0

0 𝛽der4,2 𝛽der4,3 𝛽der4,4 ⋅ ⋅ ⋅ 0
...

...
...

... d 0

0 0 0 0 ⋅ ⋅ ⋅ 𝛽der
𝑛,𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(20)

where every element of the matrices 𝛽der
𝑖,𝑗

= 𝑓
𝑝

(Vmax) −

𝑓
𝑛

(Vmax) is formed by the subtraction of the positive and
negative parts taken from the corresponding element of the
Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)].

Definition 19. Let Δ
𝑖

[𝛼𝑖𝑧𝑞], 𝑖 = 1, 2, . . . , 𝑛, be the matrices
with elements 𝛼

𝑖𝑧𝑞

𝑖,𝑗

obtained from the leading principal
minors Δ

𝑖

of the Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)]:

Δ 1 [𝛼
𝑖𝑧𝑞] = [𝛼

𝑖𝑧𝑞

1,1 ]

Δ 2 [𝛼
𝑖𝑧𝑞] = [

[

𝛼
𝑖𝑧𝑞

1,1 𝛼
𝑖𝑧𝑞

1,2

𝛼
𝑖𝑧𝑞

2,1 𝛼
𝑖𝑧𝑞

2,2

]

]

...

Δ
𝑛

[𝛼𝑖𝑧𝑞] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛼
𝑖𝑧𝑞

1,1 𝛼
𝑖𝑧𝑞

1,2 𝛼
𝑖𝑧𝑞

1,3 0 ⋅ ⋅ ⋅ 0

𝛼
𝑖𝑧𝑞

2,1 𝛼
𝑖𝑧𝑞

2,2 𝛼
𝑖𝑧𝑞

2,3 0 ⋅ ⋅ ⋅ 0

0 𝛼
𝑖𝑧𝑞

3,2 𝛼
𝑖𝑧𝑞

3,3 𝛼
𝑖𝑧𝑞

3,4 ⋅ ⋅ ⋅ 0

0 𝛼
𝑖𝑧𝑞

4,2 𝛼
𝑖𝑧𝑞

4,3 𝛼
𝑖𝑧𝑞

4,4 ⋅ ⋅ ⋅ 0
...

...
...

... d 0

0 0 0 0 ⋅ ⋅ ⋅ 𝛼𝑖𝑧𝑞
𝑛,𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(21)

where every element of the matrices 𝛼𝑖𝑧𝑞
𝑖,𝑗

= 𝑓
𝑝

(Vmin) +

𝑓
𝑛

(Vmin) is formed by the addition of the positive and negative
parts from the corresponding element of the Hurwitz matrix
𝐻[𝑝(𝑠, 𝑞, 𝑇)].

Definition 20. Let Δ
𝑖

[𝛽𝑖𝑧𝑞], 𝑖 = 1, 2, . . . , 𝑛, be the matrices
with elements 𝛽

𝑖𝑧𝑞

𝑖,𝑗

obtained from the leading principal
minors Δ

𝑖

of the Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)]:

Δ 1 [𝛽
𝑖𝑧𝑞] = [𝛽

𝑖𝑧𝑞

1,1 ]

Δ 2 [𝛽
𝑖𝑧𝑞] = [

[

𝛽
𝑖𝑧𝑞

1,1 𝛽
𝑖𝑧𝑞

1,2

𝛽
𝑖𝑧𝑞

2,1 𝛽
𝑖𝑧𝑞

2,2

]

]

...

Δ
𝑛

[𝛽𝑖𝑧𝑞] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
𝑖𝑧𝑞

1,1 𝛽
𝑖𝑧𝑞

1,2 𝛽
𝑖𝑧𝑞

1,3 0 ⋅ ⋅ ⋅ 0

𝛽
𝑖𝑧𝑞

2,1 𝛽
𝑖𝑧𝑞

2,2 𝛽
𝑖𝑧𝑞

2,3 0 ⋅ ⋅ ⋅ 0

0 𝛽
𝑖𝑧𝑞

3,2 𝛽
𝑖𝑧𝑞

3,3 𝛽
𝑖𝑧𝑞

3,4 ⋅ ⋅ ⋅ 0

0 𝛽
𝑖𝑧𝑞

4,2 𝛽
𝑖𝑧𝑞

4,3 𝛽
𝑖𝑧𝑞

4,4 ⋅ ⋅ ⋅ 0
...

...
...

... d 0

0 0 0 0 ⋅ ⋅ ⋅ 𝛽𝑖𝑧𝑞
𝑛,𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(22)

where every element of the matrices 𝛽𝑖𝑧𝑞
𝑖,𝑗

= 𝑓
𝑝

(Vmin) −

𝑓
𝑛

(Vmin) is formed by the subtraction of the positive and neg-
ative parts from the corresponding element of the Hurwitz
matrix 𝐻[𝑝(𝑠, 𝑞, 𝑇)]. Now, the main result is presented. This
presents the robust stability condition for the class of systems
described in (1).

5.1. Robust Stability Analysis Algorithm. In this subsection we
describe the steps to follow to analyze the robust stability
property of the system including time-delay and polynomic
parametric uncertainty. The algorithm is the following.

Step 1. Consider the time-delay system described in (8) and
the characteristic equation in (10).

Step 2. Determine the characteristic equation 𝑝(𝑠, 𝑞, 𝑇) using
(11).

Step 3. Define theHurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)] given by (15).

Step 4. For each element in the Hurwitz matrix, perform a
separation in positive and negative part. This is given in (16).

Step 5. With respect to the (𝛼, 𝛽) representation given in the
preliminaries, define the leading principal minors from the
(𝛼, 𝛽) representation taking theHurwitzmatrix𝐻[𝑝(𝑠, 𝑞, 𝑇)].
That is, Δ

𝑖

[𝛼inf
𝑖

], Δ
𝑖

[𝛽inf
𝑖

], Δ
𝑖

[𝛼der
𝑖

], Δ
𝑖

[𝛽der
𝑖

], Δ
𝑖

[𝛼
𝑖𝑧𝑞

𝑖

] and
Δ
𝑖

[𝛽
𝑖𝑧𝑞

𝑖

] given in (17), (18), (19), (20), (21), and (22), respec-
tively.

Step 6. Determine the points (𝛼inf
𝑖

, 𝛽inf
𝑖

), (𝛼der
𝑖

, 𝛽der
𝑖

),
and (𝛼

𝑖𝑧𝑞

𝑖

, 𝛽
𝑖𝑧𝑞

𝑖

) in the (𝛼, 𝛽) plane obtained by 𝛼inf
𝑖

=

det(Δ
𝑖

[𝛼inf
𝑖

]), 𝛽inf
𝑖

= det(Δ
𝑖

[𝛽inf
𝑖

]), 𝛼der
𝑖

= det(Δ
𝑖

[𝛼der
𝑖

]),
𝛽der
𝑖

= det(Δ
𝑖

[𝛽der
𝑖

]), 𝛼
𝑖𝑧𝑞

𝑖

= det(Δ
𝑖

[𝛼
𝑖𝑧𝑞

𝑖

]), and
𝛽
𝑖𝑧𝑞

𝑖

= det(Δ
𝑖

[𝛽
𝑖𝑧𝑞

𝑖

]).

Step 7. Verify the following:

(i) If the points (𝛼inf
𝑖

, 𝛽inf
𝑖

), (𝛼der
𝑖

, 𝛽der
𝑖

), and (𝛼𝑖𝑧𝑞
𝑖

, 𝛽
𝑖𝑧𝑞

𝑖

) are
located above of the 𝛼 axis, then the system described
in (8) is robustly stable. Stop the algorithm.

(ii) If the points (𝛼inf
𝑖

, 𝛽inf
𝑖

), (𝛼der
𝑖

, 𝛽der
𝑖

), and (𝛼𝑖𝑧𝑞
𝑖

, 𝛽
𝑖𝑧𝑞

𝑖

) are
located below the 𝛼 axis, then the system described in
(8) is not robustly stable. Stop the algorithm.

(iii) If we have at least one point (𝛼der
𝑖

, 𝛽der
𝑖

) or (𝛼𝑖𝑧𝑞
𝑖

, 𝛽
𝑖𝑧𝑞

𝑖

)
located below the 𝛼 axis, the analysis is concluded
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with the knowledge that the system described in (8)
is not robustly stable. Stop the algorithm.

(iv) If the points (𝛼𝑖𝑧𝑞
𝑖

, 𝛽
𝑖𝑧𝑞

𝑖

), (𝛼der
𝑖

, 𝛽der
𝑖

) are located above
the 𝛼 axis but the points (𝛼inf

𝑖

, 𝛽inf
𝑖

) are located below
the 𝛼 axis, then we can make a partition in a subset of
boxes Γ𝑖 as given inTheorem 8. Go to Step 5.

6. Example

Consider a first order system:

𝑥̇ (𝑡) = − 𝑥 (𝑡) − 2𝑥 (𝑡 − 𝜏) , 𝜏 > 0. (23)

Using Definition 11, we have that the system has the following
auxiliary equation:

𝑠 + 1+ 2(1 − 𝑇𝑠
1 + 𝑇𝑠

)
2
= 0. (24)

For this polynomial, we can find out that it has roots in the
LHP if and only if 𝑇 = 1/3 and they are located in 𝑠 = ±𝑗√3.
We can conclude that 𝑇max = 1/3 and by (12) the maximum
time-delay is 𝜏max = 2𝜋/3√3. This means that this is the
maximum value that can be taken by the time-delay before
the system becomes unstable. Now if we consider polynomial
parametric uncertainty involved in the parameters of the
model we have

𝑠 + 1𝑞1𝑞
2
2 + 2(

1 − 𝑇𝑠
1 + 𝑇𝑠

)
2
= 0. (25)

From (23) we have

𝑝 (𝑠, 𝑞, 𝑇) = 𝑇2𝑠3 + (2𝑇+𝑇2𝑞1𝑞
2
2 + 2𝑇

2) 𝑠2

+ (2𝑇𝑞1𝑞
2
2 − 4𝑇+ 1) 𝑠 + 2+ 𝑞1𝑞

2
2,

(26)

where the Hurwitz matrix𝐻[𝑝(𝑠, 𝑞, 𝑇)] is

[
[
[

[

2𝑇 + 𝑇2𝑞1𝑞
2
2 + 2𝑇2 2 + 𝑞1𝑞

2
2 0

𝑇2 2𝑇𝑞1𝑞
2
2 − 4𝑇 + 1 0

0 2𝑇 + 𝑇2𝑞1𝑞
2
2 + 2𝑇2 2 + 𝑞1𝑞

2
2

]
]
]

]

. (27)

We applied the definitions presented before to analyze the
positivity of the leading principal minors. Running the
algorithm, we took the values of 𝑞

𝑖

∈ [0, 1] and 𝑇 ∈ [0, 0.2];
Figure 2 was obtained.

We can see in Figure 2 that the (𝛼inf
𝑖

, 𝛽inf
𝑖

) points sym-
bolized with “+” and (𝛼der

𝑖

, 𝛽der
𝑖

), (𝛼𝑖𝑧𝑞
𝑖

, 𝛽
𝑖𝑧𝑞

𝑖

) symbolized with
“∗” are located above the 𝛼 axis, where according to Robust
Stability Analysis Algorithm, the system is robustly stable.

If we analyze a small variation in the time-delay with
values of 𝑇 ∈ [0, 0.4], we have Figure 3. We can see that
the points (𝛼inf

𝑖

, 𝛽inf
𝑖

) symbolized with “+” and (𝛼der
𝑖

, 𝛽der
𝑖

),
(𝛼
𝑖𝑧𝑞

𝑖

, 𝛽
𝑖𝑧𝑞

𝑖

) symbolized with “∗” take negative values below
the axis 𝛼, which—in relation to the Robust Stability Analysis
Algorithm—means that the conditions that guarantee the
robust stability of the system are not satisfied.

𝛼

0 0.5 1 1.5 2 2.5 3

𝛽
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0.8
Positivity analysis

Figure 2: Sign definite decomposition of the Hurwitz matrix for the
example.

𝛼

0 2 4 6 8 10 12

𝛽

−1.5
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0.5

1

1.5
Positivity analysis

Figure 3: Sign definite decomposition of the determinant of the
Hurwitz matrix for the example with a little variation in the time-
delay.

7. Conclusions

In this research it was shown that the robust stability
property of linear dynamical systems, which have polynomic
uncertain parameters and time-delay, can be verified by the
application of an algorithm based on the method of sign
definite decomposition. The positivity of the determinant of
the Hurwitz matrix is verified by checking the positivity of
all leading principal minors of the matrix in terms of (𝛼, 𝛽)
representation.This Hurwitz matrix contains the elements of
the polynomial from the transformation of the characteristic
quasi-polynomial in an auxiliary equation in terms of 𝑇. For
future research, the next step is to optimize the algorithm
to perform faster computation time and new methods to
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identify the positivity of the determinants of the Hurwitz
matrix.
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