
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 
FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA 

 

 
 

  

 
 
THERMOMECHANICAL PERFORMANCE OF FR-4 LAMINATES IN 

THE MANUFACTURING PROCESS OF PRINTED CIRCUIT 
BOARDS 

 
 
 
 

POR 
 

CARLOS ALFONSO RODRÍGUEZ VÁZQUEZ 
 
 
 
 

COMO REQUISITO PARA OBTENER EL GRADO DE 
DOCTOR EN INGENIERÍA DE MATERIALES 

 
 
 
 
 

AGOSTO, 2016 



UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 
FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA 

SUBDIRECCIÓN  DE ESTUDIOS DE POSGRADO 

 

 

 

 

THERMOMECHANICAL PERFORMANCE OF FR-4 LAMINATES IN THE 
MANUFACTURING PROCESS OF PRINTED CIRCUIT BOARDS 

 
 

POR 
 

CARLOS ALFONSO RODRÍGUEZ VÁZQUEZ 
 
 
 
 

COMO REQUISITO PARA OBTENER EL GRADO DE 
DOCTOR EN INGENIERÍA DE MATERIALES 

 
 
 
 
 
 
 

AGOSTO, 2016 



iii



Acknowledgment

This work is dedicated primarily to God and my family who has been at all times

to support me to meet each of the goals that, my father Alfonso Rodriguez and my

mother Patricia Vázquez they push me to reach my personnel targets being aware

of everything that needed.

I appreciate the support of Dr. Moisés Hinojosa for being an excellent advisor,

their support was very important for the research work, his collaboration is reflected

in the objectives and expectations reached, I appreciate his support for conferences

and congress participation.

I appreciate to Dr. Javier Morales, Dr. Jorge Aldaco and Dr. Roberto Cabriales

really for helping during the project meetings we had, making an excellent analysis

for knowledge contribution.

I thank Dr. Carlos Morillo and his team at the University of Maryland for enable

me and help me to realize experimentation during my stay at CALCE, I learned

everything necessary for PCB’s characterization and the state of the art.

The National Council of Science and Technology (CONACYT) for providing

economic support during these 3 years.

Thanks to Yazaki, especially for Ing. Luis Montes de Oca, EI (Electronic Instru-

ments) manager and Ing. Vı́ctor Salinas Fox who was an important member during

the project, Ing. Karla Peña my supervisor at Yazaki for their collaboration to carry

out this research, also the staff involved in PCB assembly process at YIM (Yazaki

Instruments Monterrey).

i



Contents

Acknowledgment i

Abstract x

1 Introduction 1

1.1 What is a Printed Circuit Board? . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Base Materials for Printed Circuit Board . . . . . . . . . . . . 2

1.2 Assembly Process of Printed Circuit Board . . . . . . . . . . . . . . . 3

2 Literature Overview 4

2.1 PCB’s Base Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Resins Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Reinforcements . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Conductive Material . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 PCB Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Reflow Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Thermal Properties of PCB Materials . . . . . . . . . . . . . . . . . . 15

2.4.1 Glass Transition Temperature . . . . . . . . . . . . . . . . . . 15

2.4.2 Decomposition Temperature . . . . . . . . . . . . . . . . . . . 16

2.4.3 Coefficient of Thermal Expansion . . . . . . . . . . . . . . . . 17

2.4.4 Time to delamination . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.5 Water Absorption . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 “Bow” and “Twist” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 State of the Art 26

3.1 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Reflow Oven Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Warpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



iv Contents

4 Motivation, General Objective, Specific Objectives and Hypothesis 30

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Experimental Methodology 33

5.1 Material Characterization . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 PCB configuration . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Reflow Oven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Temperature Profiles . . . . . . . . . . . . . . . . . . . . . . . 40

6 Results and Discussion 42

6.1 Glass Transition Temperature (Tg) . . . . . . . . . . . . . . . . . . . 42

6.2 Decomposition Temperature (Td) . . . . . . . . . . . . . . . . . . . . 46

6.3 Coefficient of Thermal Expansion . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Coefficient of Thermal Expansion in the “x” axis . . . . . . . 48

6.3.2 Coefficient of Thermal Expansion in the “y” axis . . . . . . . 50

6.3.3 Coefficient of Thermal Expansion in the “z” axis . . . . . . . 53

6.4 Time to Delamination . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5 Water Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 Bow and Twist Measurement . . . . . . . . . . . . . . . . . . . . . . 58

6.6.1 PCB “bow” after first reflow . . . . . . . . . . . . . . . . . . . 58

6.6.2 PCB “bow” after second reflow . . . . . . . . . . . . . . . . . 59

6.6.3 PCB “twist” after first reflow . . . . . . . . . . . . . . . . . . 60

6.6.4 PCB “twist” after second reflow . . . . . . . . . . . . . . . . . 61

6.7 Temperature Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.8 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusions and Contributions 68

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Heat Transfer for Base Materials 71

B PCB’s dimensions 72



Contents v

C Bow Results 73

C.1 Bow results after first reflow . . . . . . . . . . . . . . . . . . . . . . . 73

C.2 Bow results after second reflow . . . . . . . . . . . . . . . . . . . . . 73

D Twist Results 75

D.1 Twist results after first reflow . . . . . . . . . . . . . . . . . . . . . . 75

D.2 Twist results after second reflow . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 77



List of Figures

1.1 Sierra GMC indicators panel . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 PCB configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 PCB’s manufacturing process diagram . . . . . . . . . . . . . . . . . 3

2.1 Difunctional epoxy resin reaction . . . . . . . . . . . . . . . . . . . . 5

2.2 Brominated difunctional epoxy resin reaction . . . . . . . . . . . . . . 5

2.3 Tetrafunctional epoxy resin . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Multifunctional fenol novolac epoxy resin . . . . . . . . . . . . . . . . 6

2.5 Glass fiber styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 “Treating” fiberglass cloth with resin . . . . . . . . . . . . . . . . . . 10

2.7 Laminate pressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Reflow oven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9 Reflow oven stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.10 Sn-Ag-Cu Solder paste phase diagram [11] . . . . . . . . . . . . . . . 13

2.11 Sn-Pb Solder paste phase diagram . . . . . . . . . . . . . . . . . . . . 13

2.12 Cooling area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.13 PCB’s Electronic components failure due to PCB “warpage” . . . . . 14

2.14 Capacitor failure due to PCB “warpage” . . . . . . . . . . . . . . . . 15

2.15 Schematic representation to obtain Tg [19] . . . . . . . . . . . . . . . 16

2.16 Decomposition temperature chart for different FR-4 types . . . . . . 17

2.17 Representation to obtain coefficient of thermal expansion . . . . . . . 18

2.18 CTE axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.19 Representation to obtain time to delamination . . . . . . . . . . . . . 20

2.20 “Bow” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.21 “Twist” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.22 “bow” y “twist” areas identification . . . . . . . . . . . . . . . . . . . 23

2.23 PCB schematic representation of thickness, diagonals and lengths . . 24

vi



List of Figures vii

2.24 PCB schematic representation to obtain % of bow . . . . . . . . . . . 24

2.25 Schematic representation to obtain % of twist . . . . . . . . . . . . . 25

5.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 PCB cross sectional view showing PCB ayers configuration . . . . . . 34

5.3 Specimens at different areas of PCB . . . . . . . . . . . . . . . . . . . 35

5.4 Preheating oven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 DSC Netzch pegasus . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Specimens to obtain glass transition temperature . . . . . . . . . . . 37

5.7 Dynamic Mechanical Analysis (DMA) . . . . . . . . . . . . . . . . . . 38

5.8 Specimens to obtain decomposition temperature . . . . . . . . . . . . 38

5.9 TMA (Thermo Mechanical Analyzer) . . . . . . . . . . . . . . . . . . 39

5.10 Specimens to obtain coefficient of thermal expansion . . . . . . . . . 39

5.11 Specimens water absorption performed . . . . . . . . . . . . . . . . . 40

5.12 Device to obtain height of the PCB’s . . . . . . . . . . . . . . . . . . 40

5.13 PCB to measure oven temperatures . . . . . . . . . . . . . . . . . . . 41

5.14 Standard PCB reflow process profile . . . . . . . . . . . . . . . . . . . 41

6.1 Glass transition temperature chart top area . . . . . . . . . . . . . . 43

6.2 Glass transition temperature chart middle area . . . . . . . . . . . . . 43

6.3 Glass transition temperature chart bottom area . . . . . . . . . . . . 44

6.4 Decomposition temperature chart . . . . . . . . . . . . . . . . . . . . 46

6.5 Specimen 1 decomposition temperature chart . . . . . . . . . . . . . . 47

6.6 Specimen 2 decomposition temperature chart . . . . . . . . . . . . . . 47

6.7 Coefficient of thermal expansion “x” axis at top area . . . . . . . . . 48

6.8 Coefficient of thermal expansion “x” axis at middle area . . . . . . . 49

6.9 Coefficient of thermal expansion “x” axis at bottom area . . . . . . . 49

6.10 Coefficient of thermal expansion “y” axis at top area . . . . . . . . . 51

6.11 Coefficient of thermal expansion “y” axis at middle area . . . . . . . 51

6.12 Coefficient of thermal expansion “y” axis at bottom area . . . . . . . 52

6.13 Coefficient of thermal expansion “z” axis at top area . . . . . . . . . 53

6.14 Coefficient of thermal expansion “z” axis at middle area . . . . . . . 53

6.15 Coefficient of thermal expansion “z” axis at bottom area . . . . . . . 54

6.16 Time to delamination results at the top . . . . . . . . . . . . . . . . . 56

6.17 Time to delamination results at the middle . . . . . . . . . . . . . . . 57

6.18 Time to delamination results at the bottom . . . . . . . . . . . . . . 57

6.19 PCB “bow” results after first reflow . . . . . . . . . . . . . . . . . . . 59



viii List of Figures

6.20 PCB “bow” results after second reflow . . . . . . . . . . . . . . . . . 60

6.21 PCB “twist” results after first reflow . . . . . . . . . . . . . . . . . . 61

6.22 PCB “twist” results after second reflow . . . . . . . . . . . . . . . . . 62

6.23 TC 1 temperature vs time . . . . . . . . . . . . . . . . . . . . . . . . 63

6.24 TC 2 temperature vs time . . . . . . . . . . . . . . . . . . . . . . . . 63

6.25 TC 3 temperature vs time . . . . . . . . . . . . . . . . . . . . . . . . 63

6.26 TC 4 temperature vs time . . . . . . . . . . . . . . . . . . . . . . . . 63

6.27 Material science tetrahedron . . . . . . . . . . . . . . . . . . . . . . . 65



List of Tables

1.1 PCB base materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 PCB’s classification [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Glass fiber chemical composition . . . . . . . . . . . . . . . . . . . . . 7

2.3 Traditional woven glass fabric styles [8] . . . . . . . . . . . . . . . . . 8

2.4 Types of conductor material [3]. . . . . . . . . . . . . . . . . . . . . . 8

5.1 Thermal properties standards . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Material thermal properties . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Glass transition temperature results for the 3 areas . . . . . . . . . . 44

6.2 Thermal conductivity of base materials [3] . . . . . . . . . . . . . . . 45

6.3 Specimens mass to obtain decomposition temperature . . . . . . . . . 46

6.4 Results at 3 areas for “x” axis . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Results at 3 areas for “y” axis . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Results at 3 areas for “z” axis . . . . . . . . . . . . . . . . . . . . . . 54

6.7 CTE results at 3 areas . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.8 Water absorption results . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1 Heat transfer of base materials . . . . . . . . . . . . . . . . . . . . . . 71

B.1 PCB’s dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C.1 PCB bow results after first reflow . . . . . . . . . . . . . . . . . . . . 73

C.2 PCB bow results after second reflow . . . . . . . . . . . . . . . . . . . 74

D.1 PCB twist results after first reflow . . . . . . . . . . . . . . . . . . . . 75

D.2 PCB twist results after second reflow . . . . . . . . . . . . . . . . . . 76

ix



Abstract

Printed Circuit Boards (PCB’s) are an important component for any electronic de-

vice, they can be found in cell phones, computers, tablets, televisions, radios, remote

controls, among others. In automotive industry, PCB’s are incorporated into the

board containing tachometers, water, oil, gasoline levels and all signals displayed on

the board. PCB’s contain electronic components such as: electric motors, resistors,

capacitors, micro-controllers and LED’s, just to name a few. To join them, a solder

paste of tin, silver and copper alloy (Sn-Ag-Cu) is applied on the PCB surface; then

the PCB is processed into a reflow oven at temperature range of 24oC-250oC allow-

ing the solder paste to flow and join the electronic components with the PCB, an

operation called “reflow process”.

In 2006 the Restriction of Hazardous Substances (RoHS) prohibited the use of

lead (Pb) in solder paste, which has a melting temperature around 180oC, whereas

lead-free solder pastes have a melting point around 230oC, 30oC-40oC higher than

Pb solder paste, this has generated PCB thermo mechanical problems due to the

temperature increase at which the material is exposed. Typical problems are related

with deformations of the PCB in the reflow process, such as “warpage”, which is

a deformation along the “z” axis and is accompanied by other phenomena called

“bow” and “twist’, “bow” is characterized by a curvature of cylindrical shape on

both sides of the PCB whereas “twist” is characterized by the elevation of the cor-

ners. “Warpage”, “bow” and “twist” affect subsequent processes such as: assembling

engines, micro-controllers, improper electrical tests, false contacts, bending of elec-

tronic components and fractures at the interphase between electronic component and

the PCB.

The present research work studies the relation between material thermal proper-

ties, PCB configurations and reflow conditions with “warpage” “bow” and “twist”

during the reflow process by the thermal characterization of base materials, deforma-

tions measurements and temperature reflow profiles. Thermal properties obtained

were: glass transition temperature (Tg), decomposition temperature (Td), Coef-

x



xi

ficient of thermal expansion (CTE), time to delamination and %water absorption,

deformations measurements were obtained on 30 PCB’s after exposure. Temperature

profiles were obtained by placing thermocouples on the PCB.

Our results suggest that there is a discrepancy between the thermal properties

obtained experimentally and data sheet provided by the supplier. PCB “bow” and

“twist” data obtained exceeds the values established by the IPC-2221B standard and

the temperature profiles met the requirements of the quality control in the company.

It is found that there is a mismatch between temperature profiles, it is speculated a

relationship with preferential deformations during reflow process.

The present work contribution consists in a whole study of PCB thermo-mechanical

performance during reflow process considering material thermal properties, reflow

conditions and the influence on PCB deformations.



Chapter 1

Introduction

1.1 What is a Printed Circuit Board?

Printed Circuit Boards (PCB’s) are an important component for any electronic de-

vice. They can be found in cell phones, computers, tablets, televisions, radios, remote

controls, among others [1]. PCB’s are used in the automotive industry, they are inte-

grated into the automobiles panel indicators which contains speed, RPM tachometers

and temperature, air bags, handbrake and safety signals on the board. Figure 1.1

shows the panel indicators of Sierra truck and figure 1.2 shows a PCB which it is

behind the panel of figure 1.1.

Figure 1.1: Sierra GMC indicators panel

Figure 1.2: Printed Circuit Board

The first PCB’s were developed in the 1900’s, Albert Hanson described flat foil

1



2 Chapter 1. Introduction

conductors laminated to an insulating board in multiple layers, also Thomas Edison

experimented with chemical methods of plating conductors in 1904. Arthur Berry

in 1923 patented a print and etch method, while Max Schopp in USA obtained a

patent. In the 1930’s Paul Eisler used a PCB for a radio and the PCB growing

was during the World War II due to USA began to use technology on high volume

applications [2].

PCB’s are made of different materials: resins, reinforcements, conductive ma-

terial, flame retardants, curing agents and coupling agents [3]. The next section

provides a general overview of how a PCB is made.

1.1.1 Base Materials for Printed Circuit Board

Figure 1.3 [4] is schematic representation of cross sectional view and shows how

the PCB is made, there are resin/fiberglass layers, copper and fillers. Each mate-

rial provides some specific property. Table 1.1 lists PCB base materials and their

function.

Figure 1.3: PCB configuration

Table 1.1: PCB base materials

Material Function
Reinforcement (glass fiber) Provide electrical and mechanical properties
Resins Acting to transfer thermal and mechanical loads
Coupled agents Glass fiber and resins interfaces improvement
Flame retardants Reduced flammability
Conductor material (copper) PCB interconnections
Cured agents Polymerization improvement
Accelerators Reduced cured time
Fillers Mechanical properties improvement

Chapter 2 describes in more detail these base materials, presenting glass fiber

styles, resins and conductive material options. To get a PCB functional, it is nec-

essary to place the electronic components, such as: capacitors, resistors, LED’s,
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motors, displays, micro-controllers among others. The next section explain briefly

the electronic components assembly.

1.2 Assembly Process of Printed Circuit Board

A flow chart of electronic components assembly is presented in figure 1.4, “Reflow

process” consists to processed the PCB into a oven to joint the electronics compo-

nents with the PCB by a solder paste.

Figure 1.4: PCB’s manufacturing process diagram

During reflow process PCB suffers dimensional changes, causing “bow” and “twist”

or PCB “warpage”. “Warpage”, “bow” and “twist” cause PCB defects such as: weld-

ing applied incorrectly, component placement incorrectly, false contacts, weak joint

between electronic component and PCB. “Warpage” become important since 2006

when the Restriction of Hazardous Substances (ROHS) prohibited the use of lead

in solders pastes [5], [6]. Materials have different properties and interacting between

them performed different. Chapter 2 presents the based materials for printed circuit

board.



Chapter 2

Literature Overview

2.1 PCB’s Base Materials

There are many types of PCB’s, resin and fiberglass must be considered depending

of the conditions to which the materials will be exposed. Table 2.1 shows a PCB

classification according with the type of resin and reinforcement.

Table 2.1: PCB’s classification [3].

PCB Resin Reinforcement Flame retardant
FR-2 Fenólic Cotton Yes
FR-3 Epoxy Cotton Yes
FR-4 Epoxy Glass fiber Yes
FR-5 Epoxy Glas fiber Yes
FR-6 Polyester Glas fiber wave Yes
G-10 Epoxy Glass fiber No
CEM-1 Epoxy Cotton/Glass fiber Yes
CEM-2 Epoxy Cotton/Glass fiber No
CEM-3 Epoxy Glass fiber Yes
CEM-4 Epoxy Glass fiber No
CRM-5 Polyester Glass fiber Yes
CRM-6 Polyester Glass fiber No
CRM-7 Polyester Glass fiber Yes
CRM-8 Polyester Glass fiber No

Flame retardant (FR-4) is the PCB most widely used in electronic industry with

applications in toys, controls, calculators and computers. In the automotive industry,

FR-4 is used in automobiles panel indicator, clocks, LCD’s, alarms, among others

electronics devices incorporated into the vehicle. According with table 2.1 FR-4 is

composed of epoxy resin and glass fiber as a reinforcement. Next sections provides

4



2.1. PCB’s Base Materials 5

in more detail these materials.

2.1.1 Resins Systems

Epoxy resins are the most efficient systems used for PCB’s due to the combination

of good physical, mechanical and electrical properties with it’s low cost fabrication

compared to high-performance resins systems. Epoxy resins systems are classified

as: difunctional, tetra-functional and multifunctional. The prefix “di”, “tetra” and

“multi” refers to the number of epoxy groups at the end of the molecular chain [7].

Difunctional Epoxy Resin

Bisphenol-A and epyclorodrine reaction is the most common epoxy resin systems

for PCB’s. Bisphenol-A brominated provides flame retardancy. The reaction is

schematically shown in figure 2.1.

Figure 2.1: Difunctional epoxy resin reaction

When the increase of flame retardancy becomes important, tetrabromobisphenol-

A is added in the reaction as figure 2.2 shows, this is another system of difunctional

epoxy resin called brominated epoxy resin doped.

Figure 2.2: Brominated difunctional epoxy resin reaction
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Epoxy resin molecular weight depends of the group repetitions at the center of

the molecule and final properties depends on: molecular weight, curing agents, glass

transition temperature (Tg) and decomposition temperature (Td).

Tetra and Multifunctional Epoxy Resins

Two or more epoxy functional groups per molecule increases higher glass transi-

tion temperatures and improve physical and thermal properties. These epoxy resins

systems are classified based on glass transition temperature ranges, 125oC-145oC,

150oC-165oC and above 170oC. There are epoxy resins systems with glass transi-

tion temperatures above 190oC, which has better properties, but they are expensive.

Figures 2.3 and 2.4 are examples of these type of epoxy resins systems.

Figure 2.3: Tetrafunctional epoxy resin

Figure 2.4: Multifunctional fenol novolac epoxy resin

2.1.2 Reinforcements

The reinforcement most used for PCB’s is fiberglass due to presents a good com-

bination of electrical and mechanical properties. Glass fiber types are related with

their chemical composition as table 2.2 shows. The use of woven glass fibers in PCB

substrates dates back to the 1960s where they were used a high performance replace-

ment for paper reinforcement. Woven glass fiber provided an ideal reinforcement to
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Table 2.2: Glass fiber chemical composition

Elements Style E Style NE Style S
Silicon dioxide 52-56 52-56 64-66
Calcium oxide 16-25 0-10 0-0.3
Aluminum oxide 12-16 10-15 24-26
Boron oxide 5-10 15-20 -
Sodium oxide and Potassium oxide 0-2 0-1 0-0.3
Magnesium oxide 0-5 0-5 9-11
Iron oxide 0.05-0.4 0-0.3 0-0.3
Titanium oxide 0-0.8 0.5-5 -
Fluorides 0-0.1 - -

complement the properties of epoxy resin systems which were being rapidly deployed

in electronics [8]. However, the most widely used as base material is “E” glass fiber,

offering good mechanical and chemical electrical properties for a reasonable cost.

Glass fiber is fabricated in different “styles” as figures 2.5a, 2.5b and 2.5c shows,

which are 1080, 2116 and 7628 styles respectively and they are the most commonly

used for PCB’s. Depending of the PCB thickness the number of layers of the style

must be selected.

(a) 1080 (b) 2116 (c) 7628

Figure 2.5: Glass fiber styles
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Table 2.3 shows the traditional arrangements available [8].

Table 2.3: Traditional woven glass fabric styles [8]

Style Glass thickness (mm) Weight (gsm) Threads per cm
7628 0.17 203 17.3 x 12.2
2116 0.095 104 23.6 x 22.8
2125 0.09 87 15.7 x 15.4
2113 0.079 78 23.6 x 22.0
1080 0.05 47 23.6 x 18.5
106 0.033 24 22.0 x 22.0

In the future PCB base materials will no doubt utilize even better fibers and resins

and will incorporate entirely new materials, including those on the nano scale. We

are indebted to the researches and developers worldwide who continue to advance our

knowledge and produce ever more advanced and functional materials to transform

the designers dreams into reality [8].

2.1.3 Conductive Material

The main conductive material used in PCB’s is copper. Table 2.4 shows the different

grades of copper.

Table 2.4: Types of conductor material [3].

Grade Foil Description
1 Standard electrodeposited (STD-Type E)
2 High-ductility electrodeposited (HD-Type E)
3 High-temperature elongation electrodeposited

(HTE -Type E)
4 Annealed electrodeposited (ANN-Type E)
5 As rolled-wrought (AR-Type W)
6 Light cold rolled-wrought (LCR-Type W)
7 Annealed-wrough (ANN-Type W)
8 As rolled-wrough low-temperature annealable (LTA-Type W)
9 Nickel, standard electrodeposited
10 Electrodeposited low temperature annelable

(LTA-Type E)
11 Electrodeposited annealable (A-Type E)
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The most used is electro deposited grade 1 and grade 3. They are produced by

electrochemical process where copper is first dissolved in a sulfuric acid solution.

Copper sulfate/acid solution is then used to electroplate copper. Grade 3 commonly

refers to the elongation at high temperatures, so it is a constituent for multilayer

printed circuit boards. The increase in ductility at elevated temperatures provides

resistance circuit when thermal stresses are generated and expands in the “z” axis.

As a fabrication process improvement there are surface treatments to obtain good

adhesion, some of them are described [3].

1. Bonding treatment: coatings of zinc, nickel or brass are introduced. Helps

to prevent heat and chemical degradation copper links with the resin during

manufacturing process. These coatings typically increase the thickness and

color variation.

2. Thermal barriers: A coating of zinc, nickel, or brass is usually applied over the

nodules. This coating can prevent thermal or chemical degradation of the foil

to resin bond during manufacture of the laminate, the printed circuit, and the

circuit assembly. These coatings typically measure several hundred angstroms

in thickness and vary in color due to the specific metal-alloy used, although

most treatments are brown, gray, or a yellow mustard color.

3. Antioxidants coatings: In contrast to the other coatings, these treatments are

virtually always applied to both sides of the foil. Although many of these treat-

ments are chromium based, organic coatings can also be utilized. The primary

purpose of these treatments is to prevent oxidation of the copper foil during

storage and lamination. These coatings are usually less than 100 angstroms

thick and are typically removed by the cleaning, etching, or scrubbing processes

normally used at the start of printed circuit manufacturing processes.

4. Coupled agents: The use of coupling agents, primarily silanes such as those

used to promote fiberglass to resin adhesion, can also be used on copper foils.

These coupling agents can improve the chemical bond between the foil and the

resin system and can also be used to help prevent oxidation or contamination.

Resins system, glass fibers and copper layers are incorporated together to form

a PCB, depending of customers requirements the systems resin, thickness of glass

fiber and copper layer are selected, next section provide a brief explanation of how

a PCB is fabricated.
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2.2 PCB Fabrication

The first step is coating a resin system onto the woven fiberglass cloth. Rolls of

fiberglass cloth are run through equipment called treaters. The fiberglass cloth is

drawn through a pan containing the resin system and then precise metering rolls

help control thickness, as figure 2.6 shows.

Figure 2.6: “Treating” fiberglass cloth with resin

Next the cloth is pulled through a series of heating zones, which utilize forced air

convection, infrared heating, or a combination of the two. In the first set of zones,

solvent used to carry the resin system components is evaporated off. Subsequent

zones are dedicated to partially curing the resin system. Finally, the prepeg is

rewound into rolls or cut into sheets.

Control of the resin/glass ratio, the degree of cure of the resin and cleanliness are

critical. Prepegs are stored in temperature and humidity controlled environments.

Temperature affect the degree of cure of the resin and therefore its performance

in laminate or multilayer circuit pressing. Moisture can affect the performance of

many curing agents and accelerators, the performance of the resin system during

lamination, humidity it also important to control during prepeg storage. Absorbed

moisture that becomes trapped during lamination cycles can also lead to blisters or

delaminations within the laminate or multilayer circuit.

Once prepegs are done, they are combined with the desired copper foils to make

the finished laminate. Materials are laid up in the proper sequence to produce the

desired thickness forming stacks, these stacks are loaded into lamination presses,

where pressure, temperature and vacuum are applied, as figure 2.7 shows. Control

of the temperature rise during lamination will provide the desired amount of resin

flow, while control of the cool down rate can impact warp and twist [3].
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Figure 2.7: Laminate pressing

After laminates are finished next step is to print electronic designs on their sur-

face, also drilling and protection surface are applied ready to incorporate the elec-

tronics components by a reflow process, which is described in the next section.

2.3 Reflow Process

PCB’s are processed in a reflow oven in figure 2.8 to joint electronic components

with PCB by tin-silver-copper (Sn-Ag-Cu) solder paste application, it has 2.95 m of

length and the temperature range is from room temperature to 280oC, the average

time of reflow process is five minutes.

Figure 2.8: Reflow oven

During reflow process the PCB travels through nine stages, 1 to 5 are preheating

stages, 6 and 7 are heating stages and 8 and 9 are cooling stages, as shown in figure

2.9.

At 6 and 7 stages it is important to reach 250oC to ensure the solder paste welding

and get the joint between electronic components and PCB [9]. Let’s explain briefly
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Figure 2.9: Reflow oven stages

lead free solder paste.

Lead-free solder paste

In 2006 RoHS prohibited the use of lead (Pb) [10] on solder pastes the use of lead-

free solder pastes began. Pb-based solders were used for jewelry and making bonds

between metals including the ancient pipes and aqueducts. Nowadays Sn-based

solder alloys have replaced Pb-bearing solders in most applications, but replacing

the Pb with Sn was no sufficient for solder joints, so alloying elements such as Cu

and Ag to make Sn-Ag-Cu (SAC) alloys have brought performance necessary to

meet requirements. Figure 2.10 (a) shows the phase diagram of the lead free solder,

there are several invariant reactions. Fortunately, the ternary eutectic of primary

interest, consisting of β − Sn, Ag3Sn, and Cu6Sn5 phases, exists at the Sn-rich

corner. Because Al3Sn and Cu6Sn5 phases are thermodynamically independent

phases, a reduced ternary diagram consisting of β − Sn, Ag3Sn, and Cu6,Sn5, can

be constructed, meaning that other binary phases do not need to be included in the

phase equilibrium considerations at the Sn-rich corner [11].
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Figure 2.10 (b) shows this corner in the established diagram, which displays

the liquidus surface projected in a Cartesian plot where x-and y-axis represent the

Cu and Ag concentration, respectively, with scales that are not the same. The

liquidus surfaces merge at one point where the eutectic reaction occurs at 220oC

approximately.

Figure 2.10: Sn-Ag-Cu Solder paste phase diagram [11]

On the other hand the conventional solder paste used before is composed basically

of tin and lead (Sn-Pb) which has a melting temperature of 180◦C as figure 2.11

shows.

Figure 2.11: Sn-Pb Solder paste phase diagram

The drawback is that lead-free solder paste requires 35◦C- 40◦C above the melting

temperature of the conventional welding resulting the development and implemen-

tation of materials that will withstand higher temperatures.



14 Chapter 2. Literature Overview

After reflow process there are cooling area as shown in figure 2.12. The cooling

area has three stages, depending on the type of PCB and the side which it’s processing

is the exposure time for cooling, typically cooling time is 40 seconds. First and second

stages are at 24oC and third stage at 13oC; fans are installed trough the cooling area

to accelerate air flow on the PCB cooling.

Figure 2.12: Cooling area

PCB’s has components on both sides, so the PCB is processed twice in the reflow

oven. Once 2 sides are processed, electrical and functionality tests are performed,

also motors and micro-controller are included on the PCB, finally the PCB is stored.

During reflow process there are different failures due to PCB deformations, it

has been reported failures due to PCB “warpage” [12], [13]. Pecht and co-authors

studied the fracture resistance of welding and ceramic capacitors [14], figure 2.13

is a schematic representation of joint fracture between PCB and capacitor due to

“warpage”.

Figure 2.13: PCB’s Electronic components failure due to PCB “warpage”

Another example is shown in figure 2.14, which is a capacitor where total fracture

is observed. Due to components failures by PCB “warpage”, Finite Element Anal-

ysis (FEA) models and simulations were developed to predict thermo-mechanical

performance of PCB and electronic components; Xueren and co-authors [15] worked

on the thermo-mechanical prediction of Ball Grid Array (BGA) by finite element

analysis, also experimental methods were performed to compare it with simulations.
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Figure 2.14: Capacitor failure due to PCB “warpage”

Material thermal properties mismatch play an important role during reflow pro-

cess, thermal conductivity of common FR-4 epoxy resin systems is 0.2-0.34W/(moK),

whereas the thermal conductivity of the fiber glass is lower than that of PCB FR-4

epoxy systems (0.02-0.04 W/(moK). This mismatch can limit the heat transfer [16],

[17], there are other thermal properties that must be considered, such as: glass tran-

sition temperature, decomposition temperature, time to delamination, coefficient of

thermal expansion, water absorption among others. Engineers must consider ma-

terial thermal properties when a PCB is designed, the knowledge about material

properties becomes an important factor for PCB reliability during the process. Next

section provides an overview of material thermal properties.

2.4 Thermal Properties of PCB Materials

2.4.1 Glass Transition Temperature

Glass transition temperatures of typical PCB materials used in the electronic in-

dustry varies from 115oC to about 260oC [18]. Glass transition temperature (Tg)

has been the most common property used to classify FR-4 base materials. Tg is

the temperature at which a polymer starts to change from a rigid state to a “glassy

state”. The material is not in a liquid state when it is above the Tg, it is a temper-

ature at which physical changes take place due to the weakening of molecular bonds

within the material. It is important to understand Tg since the properties of base

materials are different above Tg than below Tg, as the temperature increases, more

of the bonds become weakened until for all practical purposes, all relevant bonds

are affected. Tg of a resin system has several important implications in thermal
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expansion and the degree of cure of the resin system [3].

Figure 2.15 is a schematic presentation to determine glass transition temperature,

which consists in draw two parallel lines, one under the transition zone and the other

above the transition, identifying the midpoint and intersecting with “x” axis, the

glass transition temperature is obtained [19].

Figure 2.15: Schematic representation to obtain Tg [19]

Several properties change as the Tg is exceeded, including the rate at which a

material expands vs. temperature. Young’s modulus also decreases significantly as

Tg is exceeded [20].

2.4.2 Decomposition Temperature

The material is heated at certain temperature, the resin system will begin to de-

compose. The chemical bonds will begin to break down and volatile components

will be driven off, reducing the mass of the sample. The decomposition tempera-

ture (Td), describes the point at which this process occurs. Traditional Td is where

5 percent of the original mass is lost to decomposition. 5 percent is a very large

number when multilayer PCB reliability is considered, however the reliability of tra-

ditional FR-4 becomes important when exhibits 1.5-3 percent of weight loss. This

level of decomposition can compromise long-term reliability or result in defects such

as delamination during assembly, particularly if multiple assembly cycles or rework

cycles are performed, when a material is tested for decomposition temperature 2%

and 5% is recorded. Temperatures with lower levels of decomposition are important

particularly for lead-free assembly [3].

Figure 2.16 shows the curves for two FR-4 materials.
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Figure 2.16: Decomposition temperature chart for different FR-4 types

The traditional FR-4 with 140oC of Tg material has a decomposition temper-

ature of 320◦C by the 5 percent weight loss definition. The enhanced FR-4 has a

decomposition temperature of 350oC by the 5 percent weight loss definition. Many

standard high-Tg FR-4 materials actually have decomposition temperatures in the

range of 290-310oC, while the 140oC Tg FR-4 materials generally have slightly higher

Td values. In figure 2.16 the shaded regions indicate the peak temperature ranges

for standard tin-lead assembly and lead-free assembly [3].

Resin decomposition can result in adhesion loss and delamination. A 5% level

of decomposition is severe, and intermediate levels are important for assessing re-

liability since peak temperatures in lead-free assembly can reach onset points of

decomposition [20].

2.4.3 Coefficient of Thermal Expansion

Coefficient of thermal expansion (CTE) of printed circuit boards have a great deal

of influence on the reliability of solder joints in microelectronic packages [21]. CTE

values above Tg are much higher than below Tg. Reflow process temperatures result

in more total expansion for a given material. However, several mature lead-free

compatible materials incorporate inorganic fillers that reduce CTE values [20].

A specimen thickness vs specimen temperature chart is recorded to calculate

CTE. Figure 2.17 is a schematic representation to obtain CTE, two values are de-

termined, CTE below glass transition temperature and CTE above glass transition

temperature.
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Figure 2.17: Representation to obtain coefficient of thermal expansion

CTE below glass transition temperature is obtained selecting two points before

the transition, in this case are “A” and “B”, they represents two temperatures (TA

and TB) and their thicknesses (LA and LB), values are substituted in the formula

2.1:

CTE(A−B) =
(LB − LA)10

6

L0(TB − TA)
(2.1)

Where:

• TA= temperature at “A” point in figure. 2.17.

• TB= temperature at “B” point in figure. 2.17.

• L0= thickness or initial length.

• LA= thickness or specimen length at point “A” in figure 2.17.

• LB= thickness or specimen length at point “B” in figure 2.17.

CTE above transition temperature is obtained selecting two points after the

transition, which are “C” and “D”, temperatures (TC and TD) and their thicknesses

(LC and LD) are substituted in the formula 2.2:

CTE(C−D) =
(LD − LC)10

6

L0(TD − TC)
(2.2)

Where:

• TC= temperature at “C” in figure 2.17.
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• TD= temperature at “D” in figure 2.17.

• L0= thickness or initial length.

• LC= thickness or specimen length at point “C” in figure 2.17.

• LD= thickness or specimen length at point “D” in figure 2.17.

CTE are determined in “x”, “y” and “z” axes, figure 2.18 shows the PCB direc-

tions. Coefficient of thermal expansion units are part per million over Celsius degrees

(ppm/oC).

Figure 2.18: CTE axes

2.4.4 Time to delamination

Time to delamination is when the PCB presents slip between glass fiber and epoxy

resin layers due to temperature exposures, this phenomena is common in polymer

matrix composite materials reinforced with fibers. We must remember that the PCB

is made of laminated resin and glass fibers, so analyze this property is important.

The test involves measuring the change in specimen thickness versus temperature

increase, specimens are heating from room temperature to 260oC at 20oC/min. Once

260oC is reached, an isothermal is applied for 10 minutes, if the specimen shows

no change in thickness during isotherm, is a guarantee that the material will not
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present delaminations in reflow process, which peak temperature is 245oC +- 5oC,

thats the main reason of tested the specimen at 260oC. However, if exhibits a change

in thickness means that the glass fibers are detaching of the epoxy resin. These

detachments are characterized by raising the glass fibers generating an increase in

specimen thickness represented as peaks in figure 2.19.

Figure 2.19: Representation to obtain time to delamination

First peaks correspond to a reversible change such as humidity, stresses release

or relaxation and second characteristic peaks represent irreversible changes of PCB

delamination [22]. Thermal expansion and moisture absorption can also influence

results. In multilayer PCB’s, the treatment of the internal copper surfaces is also

critical [20].
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2.4.5 Water Absorption

The reliability of printed circuit boards laminates is influenced by the presence of

moisture, which can be present in the epoxy glass prepeg absorbed during the wet

processes in the fabrication of the PCB’s or diffuse into the PCB during storage.

Moisture may reside in the resins, resin/glass interfaces and microcracks or voids

due to defects causing internal shorts through metal migration and changes in di-

mensional stability [23], it can generates failure mechanisms during electronic com-

ponents assembly, also reduces the glass transition temperature and increases the

dielectric constant [24], leading to a reduction in circuit switching speeds and an

increase in propagation delay times [25]. Percentage of water absorption determines

how sensitive the material it is when is exposed to moisture. Vapor pressure of water

is much higher at lead-free assembly temperatures. Absorbed moisture can volatilize

during thermal cycling and cause voiding or delamination. PCBs that initially pass

lead-free assembly testing may exhibit defects after storage in an uncontrolled en-

vironment, as a result of moisture absorption. This should be considered when

evaluating materials and PCB designs [20].

Percentage of water absorption was obtained by the formula 2.3:

%Water =
Mwater −Moven

Moven

· (100) (2.3)

Where:

• Mwater= mass after 24 hours distilled water inmersion.

• Moven= mass after oven.

Materials thermal properties described above are important factor for PCB reli-

ability, also plays an important role for “bow” and “twist” phenomena, which it will

describe in next section.

2.5 “Bow” and “Twist”

“Bow” is defined as any deviation of the material to the plane on which is supported,

is characterized by an elevation in cylindrical form in one area of the material [26] as

shown in figure 2.20. “Twist” refers to the elevation of a rectangular PCB generated

parallel or diagonally to the supporting surface, typically it characterized by elevated

corners [26], figure 2.21 is an example of “twist”. “Warpage” is any deformation

caused by thermo-mechanical stresses causing deformations at different PCB areas.
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Figure 2.20: “Bow”

Figure 2.21: “Twist”

“Bow” and “twist” becomes important for electronic industry, companies related

with PCB’s must take in consideration this phenomena and has to be measure,

very precisely method is the “Shadow Moiré technique” and consist in diffraction

patterns by light beams which hit the PCB and deformations are recorded in the

order of micrometers, another approach more practical and easily to performed is

the method described in IPC-TM-650 test methods manual 2.4.22c Bow and Twist

(Percentage) standard [26].

Formulas 2.4 and 2.5 are used to obtain “bow” and “twist” percentage, respec-

tively:

%Bow =
R

L
· (100) (2.4)

%Twist =
R

2D
· (100) (2.5)

Where:

• Bow: percentage of “bow”.
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• R: distance between plane and PCB surface at each side.

• L: PCB length.

• Twist: percentage of “twist”.

• R: distance between plane and PCB corners.

• D: PCB diagonal length.

First step is identify the PCB corners and PCB sides. Figure 2.22 represents the

identification of areas that will be measured to obtain “bow” and “twist”.

Figure 2.22: “bow” y “twist” areas identification

Figure 2.23 shows a schematic representation of PCB thickness, PCB diagonals

and PCB sides lengths. The first step is to get the lengths of the sides AB, BC,

CD and DA as figure 2.23a shows, the lengths of the diagonals AC and BD in figure

2.23b and the thicknesses of the PCB corners in 2.23c.

Vernier is used to lengths and diagonales measurements and a micrometer for

thicknesses. After PCB first reflow process, heights are measured, which is the

distance between the flat surface and PCB surface, the measurement is made at the

midpoint of each side PCB, as can be seen in figure 2.24.

This procedure is performed for each side of the PCB, obtaining four measure-

ments of “R” values are substitute in equation 2.4 described above and the result

for %bow is obtained.

For % twist, the procedure is the same, the height is obtained at PCB corners,

as shown in figure 2.25, then the PCB thickness is subtracted from height to obtain

the free space between the PCB and the surface.
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(a) PCB lengths (b) PCB diagonals (c) PCB thicknesses

Figure 2.23: PCB schematic representation of thickness, diagonals and lengths

Figure 2.24: PCB schematic representation to obtain % of bow

Electronic industry grows, however, there is a few literature about PCB’s per-

formance and it’s necessary to generate experts in the field [27]. According with

material properties overview, the materials involved to fabricated PCB’s and the

process. Chapter 3 present the state of the art about the study of PCB materials,

reflow oven and the latest advances related with PCB’s and it’s processing.
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Figure 2.25: Schematic representation to obtain % of twist



Chapter 3

State of the Art

Thermo-mechanical distortions during reflow process are present in the PCB’s. Trough

the years researches has been development studies to understand the interaction that

occurs with materials and the processes. Literature reviewed can be divided in 3 top-

ics:

• Materials properties

• Reflow oven

• Warpage

This chapter presents the literature reviewed in order to establish objectives,

hypothesis and experimental plan as well.

3.1 Material Properties

K. Azar in collaboration with AT&T Bell Laboratories [28] obtained thermal con-

ductivities “k” at each single PCB layers by infrared microscopy, concluding the

mismatch between glass fiber layers and Cu pattern. Yujun [29] in 2004 developed a

thermal stresses model under constant loads considering a orthotropic material, also

a “Shadow Moiré” technique was performed to validate his results, deformations

caused by thermal stresses were obtained experimentally and finally results were

validated by finite element analysis. H. Qi, M. Pecht and co-authors in 2005 [30]

compared high Tg FR-4 and Polyimide (PI) printed circuit boards in relation with

life time welding joints, where PI board provides a better solder joint durability. In

the same year, Ehrler [31], investigated the response of two different epoxies resins

and concluded they were not suitable for thermal stresses during reflow process.

26
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Ravikumar Sanapala in 2008 [32], characterized materials before and after tem-

perature exposures. Pradeep Lall [18] in 2012 based on Sanapala’s research, studied

PCB’s glass transition temperature changes. Jie Zhang and co-authors studied the

degradation of epoxy grupos of three different epoxy resin base material for Printed

Circuits Boards by TMA, DSC, although they established a correlation of curing

and thermal properties [33]. R. Polanský and coauthors in 2014 [16], determined

fiberglass and resin strength by thermal analysis performing tests under Tg values,

but increasing time exposure from 170oC to 200oC.

Shuo Xiao and co authors improve the thermal conductivity in the through-

thickness direction, it is possible to design vias into PCB’s. based on previous

researches, they placed a copper plate under the PCB and it was the best [34].

Ercan M. Dede and co-authors studied the anisotropic thermal conductivity in

PCB’S, where the flow of heat is manipulated through the informed layout of circuit

board electrothermal traces. Three representative circuit board configurations are

considered. Experimental results are verified through simulations explaining the

functionality of the heat flow control concept [35]. Also Michal B. and co-workers

[36] improved the heat dissipation using alternative materials.

Recently Eva and co-authors [37] tested materials to establish long-term relia-

bility data for PWB materiales for use in applications that requiere 20+ years of

operational life under different thermal conditions, teste were based on a 5000 hour

expected operation life of the electronic product. Therefore there is a need to de-

termine the dielectric breakdown/degradation of the composite PCB material and

mechanical structure over time and temperature for mission critical applications.

3.2 Reflow Oven Process

The reflow oven is an important factor of PCB thermo-mechanical performance PCB.

David C. Whalley in 1991 developed a reflow process simulation in two reflow ovens

adding the coefficient of convective heat transfer in the cooling stages [47]. Mo-

torola developed finite element analysis to validate their experimental results [38].

Farhad Sarvar [48] developed a transient state model varying PCB thermal prop-

erties, also generated experimental data to validate his model. David C. Whalley

improved his previous work considering radiation and thermal conductivity to pre-

dict PCB temperatures at each reflow oven stages [49]. Motohiro and co-authors

[50] studied the heat convection coefficient “h” with a new design of fans modifying

exit air diameters.Etsuko Iwasaki [51] optimized the heating, cooling, air collection
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and oxygen-nitrogen control systems by the improvement of holes configuration at

exit air flow, creating a stable air flow and a uniform heat transfer heat through the

PCB. Balázs Illés and co-authors [52] studied the thermal distribution analyzing the

convection heat transfer coefficient “h”, also performed a simulation in 3D showing

the uniformity of heat flow on the PCB.

Since 2010, most of the research is focus in thermo-mechanical prediction by

simulation models. Yasutada Nakagawa and Ryohei Yokoyama [53] in 2011 designed

a PCB to reduce “warpage” based on composite materials deformation theory [54],

[55]. Fuchs, G. Pinter and M. Tonjec [56] in 2012 compared mechanical behavior of

materials layers obtained experimentally with mechanical properties of each layer by

finite element analysis. Jabin Zhang and Paolo Emilio Bagnoli in 2013 [57] proposed

a methodology of PCB thermal analysis. Eric Monier-Vinard and co-authors [58] in

2014 compared thermal performance of multilayers model with materials properties

such as: heat transfer coefficient, thermal conductivities and number of layers.

3.3 Warpage

One of the first researches on “warpage” was developed by C.P Yeh in collaboration

with Motorola [38], where they approach a finite element model with 4 techniques:

ultrasonic, lasers, projection speckle and shadow moiré, PCB thermo-mechanical

simulations has been developed to predict deformations during reflow process [39],

[40], [41]. Then Yarom Polsky [42] in 1998 developed a model based on thermoelas-

tic theory considering material properties and temperature conditions, also “Shadow

Moiré” technique was developed to validate his model [43], which measurements are

based on light beams diffractions, also complementary researches reported measure-

ments by strain gauges [44]. Chi-Hui Chien and co-authors in 2006 [45] investigated

micro-controllers “warpage” used in PCB’s establishing a relationship between re-

sults and percentage of moisture absorption at different temperatures. Sung-Jun and

co-authors studied film warpage demonstrating the warpage dependence of temper-

ature with viscoelastic properties modification [46].

3.4 Summary

According with the literature reviewed, it can be concluded that PCB reliability

depends on:

• PCB material properties



3.4. Summary 29

• Reflow process

Researches of PCB materials properties involves thermal and mechanical prop-

erties in some cases, but mostly of the researches studied thermal properties, such

as glass transition temperature, decomposition temperature, coefficient of thermal

expansion, time to delamination, the interaction between them when the material is

exposed at high temperatures.

Reflow process literature is an important factor to understand the thermo-mechanical

performance of the PCB, because is the process which provides the thermal energy

and the responsable that the PCB suffers dimensional changes, causing “warpage”,

studied focused on temperatures distributions trough PCB, the homogeneity of the

flow air at the different stages, it has been study the mechanism of heat transfer, con-

duction, convection and radiation obtaining the coefficients of each mechanism. As

a consequence there many studies of “warpage” which consist in the measurements

of PCB distortions, different techniques has been used since basic gauges tools and

the use of refracted light beams or better know as Shadow Moiré, although differ-

ent researches were originated such as warpage prediction by finite element analysis,

incorporating material properties and conditions of process.

The customers expect from their PCB suppliers that the materials are fully char-

acterized and that qualification samples are available immediately. In many cases,

the process recommendations given to the PCB manufacturers are very generic (like

FR4) and data sheet are different in comparison with real values, it’s important to

ensure the reliability of base material properties [59].

It is important to mention that all the literature reviewed reported values after

thermal exposure, the experimental proposed in this research is taking in consider-

ation no reflow process for specimens tested.
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Motivation, General Objective,

Specific Objectives and Hypothesis

4.1 Motivation

Technological progress is growing in innovation and development of new materials,

this grow it is reflected in sophisticated electronic devices such as: smartphones,

electronic tablets, computers, radar systems, televisions, stereos, GPS systems in

automobiles among others, PCB’s are used in all of them. Companies are interested

in PCB’s research to get a better understanding of their performance [27], [60].

Automotive industry represents an important source of revenues and profits in

the world. In 2015 the Center for Automotive Research (CAR) reported there are 7

million jobs in the private sector. Additionally, 14 companies are focused on vehicles

development and research such as: engineering development, design, business facili-

ties and manufacturing operations [61]. Automotive requirements are becoming more

sophisticated causing the development of new technologies and the client preferences

are the main reason for companies to develop ideas and incorporate them to the

automobiles. The main areas are: fuel, emissions control, reducing vehicle weight,

aerodynamic design, engine improvement, transmission, and alternative materials

composition for electronic components [61].

In 2006, RoHS prohibited the use of lead (Pb) [10] on solder pastes which have

a melting temperature of 180◦C and the use of lead-free solder pastes began, with a

melting temperature around 220oC. The drawback is that the latter requires 35◦C-

40◦C above the melting temperature of the conventional welding resulting in the

development and implementation of materials that will withstand higher manufac-

turing temperatures.

30
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New challenges emerged in quality, production, and cost reduction areas [20].

As an example of this situation, Soonwan Chung and co-authors [62] developed a

“warpage prediction” during reflow process for flexible PCB’s used in smartphones.

The upcoming release of apple Inc’s iphone 6s series, which will feature Force Touch

Tehcnology, is expected to drive demand for flexible PCB’s [63].

The world market for PCB’s reached an estimated $60.2 billion value in 2014

[64]. Besides, according to IPC’s World PCB Production Report for the year 2014,

production growth in China, Thailand and Vietnam [64]. During PCB assembly

there is an estimated 2.4% of scrap due to causes related with “warpage”, “bow”

and “twist”, representing an important lost of money. Based on the state of the

art consulted an insufficient knowledge in the field is detected. Thus the motivation

for this research work is to know materials behavior when PCB’s are processed.

Additionally, the knowledge generated will help for any new models in future years

[65].

4.2 General Objective

Generate new technological and scientific knowledge about the thermo-mechanical

performance of FR-4 laminates for PCB’s during manufacturing in the reflow process

by studying the interplay among thermal properties, PCB distortions and the main

process variables.

4.3 Specific Objectives

1. Elucidate the relationship between the measured thermal properties of the

FR4-PCB composite material with the thermo-mechanical behavior observed

in the particular process studied.

2. Characterize and analyze PCB warpage in relation to material properties and

process conditions, by performing systematic measurements of bow and twist

after the first and second reflow processes.

3. Provide a basic conceptual framework that includes material properties, pro-

cess conditions and thermo-mechanical behavior for the overall reflow process.
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4.4 Hypothesis

It is possible to analyze the PCB reflow process in an integral manner in order

to generate a better understanding of the thermo-mechanical behavior of the FR4-

laminates and the interplay of the material properties and process conditions. This

strategy can generate new knowledge about the predominant factors associated to

bow and twist distortions that characterize the defect known as warpage, allowing

to eventually generate better strategies to control or avoid this condition.
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Experimental Methodology

Based on literature review and the objectives established, an experimental plan was

established as figure 5.1 shows.

Figure 5.1: Experimental procedure

33
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5.1 Material Characterization

5.1.1 PCB configuration

The PCB material was provided by STACY CORPORATION, is a FR-4 laminate

with seven layers of glass fiber, 40% brominated epoxy resin and two copper layers

at the top and the bottom, as figure 5.2 shows.

Figure 5.2: PCB cross sectional view showing PCB ayers configuration

5.1.2 Thermal Properties

The properties of interest in this research are: glass transition temperature (Tg),

decomposition temperature (Td), coefficient of thermal expansion (CTE), time to

delamination and water absorption. Table 5.1 shows the thermal properties studied,

the IPC standard and the equipment used. Specimens were prepared and tested

according to IPC-TM-650, three specimens were taken from top, middle and bottom

PCB areas as shown in figure 5.3, in order to know if there is a variation in thermal

properties depending on the PCB area.
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Table 5.1: Thermal properties standards

Property Units Standard Equipment
Glass transition temperature oC IPC-TM-650 2.4.25 DSC
Decomposition temperature oC IPC-TM-650 4.24.6 TGA
Coefficient of thermal expansion “z” ppm/oC IPC-TM-650 2.4.24.5 TMA
Coefficient of thermal expansion “x’ ppm/oC IPC-TM-650 2.4.24.5 TMA
Coefficient of thermal expansion “y” ppm/oC IPC-TM-650 2.4.24.5 TMA
Time to delamination min IPC-TM-650 2.4.24.1 TMA
Water absorption % IPC-TM-650 2.6.2.1 Balance
Bow and twist % IPC-TM-650 2.4.22 c Gages, vernier

Figure 5.3: Specimens at different areas of PCB

The nominal material properties according to the supplier data sheet are listed

in table 5.2.

All specimens were preheated in the oven shown in figure 5.4 at 105oC for two

hours to eliminate water or moisture.
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Table 5.2: Material thermal properties

Property Units Value
Glass transition temperature oC 140
Decomposition temperature oC 310
Coefficient of thermal expansion before Tg ppm/oC 64
Coefficient of thermal expansion after Tg ppm/oC 300
% Coefficient of thermal expansion 50oC-260oC % 4.5
Time to delamination min 15
Water Absorption % 0.15

Figure 5.4: Preheating oven

Glass Transition Temperature (Tg)

The equipment used was a Netzch DSC pegasus F4 shown in figure 5.5. Specimens

were prepared based on the IPC-TM-650 2.4.25 standard [19]. The test was run in

an argon atmosphere, the temperature range was from 24oC to 170oC at 20oC/min

of heating rate. Results were obtained by the procedure established in IPC-TM-

650 2.4.25 standard [19]. Figure 5.10 shows the specimens mounted to obtain glass

transition temperature, the dimensions were 4 mm x 2 mm and 22 mg approximately

of weight.

Decomposition Temperature

Specimens were prepared based on the IPC-TM-650 4.24.6 standard [66]. The Dy-

namic Mechanical Analysis (DMA) apparatus shown in figure 5.7 was used.

The test was run in an argon atmosphere from 24oC to 550oC at a heating rate
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Figure 5.5: DSC Netzch pegasus

Figure 5.6: Specimens to obtain glass transition temperature

of 10oC/min. Specimen mass vs temperature charts were recorded, Td is reached

when the specimen loses 5% of it’s initial mass. Figure 5.8 shows decomposition

temperature specimens, dimensions and weight are the same as for Tg specimens.

Coefficient of Thermal Expansion (CTE)

The thermal expansion coefficient is obtained based on IPC-TM-standard 350-2.4.25.5.

The equipment used was a Thermo-mechanical Analyzer (TMA) as figure 5.9 shows.

CTE was obtained in three directions (“x”, “y” and “z”), three specimens were

obtained for each zone (top, middle, bottom) of the PCB, obtaining a total of nine

specimens, three specimens for the top, three for the middle and three for the bottom.

Specimens dimensions were 6.5 mm x 6.5 mm, they were preheated for 1 hour at

105oC, tests were conducted in a nitrogen atmosphere from 30oC to 160oC at a

heating rate of 10oC/min. Copper was removed from all the specimens as established,

then they were identified according with the corresponding axis.
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Figure 5.7: Dynamic Mechanical Analysis (DMA)

Figure 5.8: Specimens to obtain decomposition temperature

Time to delamination

Time of delamination test was based on IPC-TM -650-2.4.24.1 standard [22], speci-

mens dimensions are 6.5 mm x 6.5 mm, a preheated for 2 hours at 105oC was applied.

The test started from room temperature to 260oC at a heating rate of 10oC/min,

a isotherm was applied for 10 minutes at 260oC. The delamination time is when a

irreversible change in thickness occurs during the isotherm. Dimensions and weight

specimens are the same with CTE specimens ones.

Water Absorption

Water absorption test were based on IPC-TM-650 2.6.2.1 [67]. Scales “OMRUS” of

figure 5.11a was used. Figure 5.11b shows the specimens were used, specimens di-

mensions were 2 in x 2 cm and 9.11 gr average weight, then specimens were preheated

at 105oC for two hours.

After preheated was completed specimens mass was recorded and immersed in
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Figure 5.9: TMA (Thermo Mechanical Analyzer)

Figure 5.10: Specimens to obtain coefficient of thermal expansion

distilled water for 24 hours. After 24 hours specimens mass was recorded and % of

absorption water was obtained by the formula 2.3 explained in Chapter 2.

“Bow” and “twist”

In chapter 2 and 3 it was mentioned that there are different techniques to obtained

PCB deformations, “Shadow Moiré” is one of the most precisely technique, however,

it was decide to obtained as IPC-TM-650 2.4.22 bow and twist (percentage) standard

[26] stated, due to we don’t have the necessary equipment to use Shadow Moire

technique, also its expensive, instead data collected approach a good approximation

of the PCB deformations with gage devices and measurement instruments.

3 lots were analyzed, 10 PCB per lot, giving a total of 30 PCB’s. Thicknesses,

sides and diagonals lengths were measured also they are required to use the formulas

of “bow” and “twist” and determine the results.

Chapter 2 explained the formulas to obtain “bow” and “twist”, values of PCB

sides, diagonals and thicknesses at each side and each corner are necessary.Vernier

and micrometer were used to obtained sides, thicknesses and diagonales measure-

ments, to obtain the deformation of the PCB, the device showed in figure 5.12

measure the height of the PCB from the surface.
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(a) Balance
(b) % Absorption water speci-
mens

Figure 5.11: Specimens water absorption performed

Figure 5.12: Device to obtain height of the PCB’s

5.2 Reflow Oven

5.2.1 Temperature Profiles

PCB was performed to obtain profiles temperature. Four thermocouples were placed

along the PCB in order to collect temperature data, also it was considered to place

thermocouples at 1cm from PCB surface to obtain environment temperature and

determine if there are a mismatch among PCB areas as figure 5.13.

PCB was exposed to reflow process 5 times and data of temperature vs time was

recorded for analysis.
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Figure 5.13: PCB to measure oven temperatures

Figure 5.14 is a standard profile temperature, Z1 to Z2 are preheated stages

during the first 60 seconds approximately then a isothermal is applied from stage Z3

to the beginning of stage Z6, after the isotherm the peak temperature occurs in Z6

and Z7 during 60 seconds to ensure the melting point of solder paste and finally a

cooling rate is applied in Z8 and Z9 stages.

Figure 5.14: Standard PCB reflow process profile



Chapter 6

Results and Discussion

This chapter shows the results obtained as follows:

• Glass transition temperature.

• Decomposition temperature.

• Coefficient of thermal expansion.

• Time to delamination.

• Absorption water.

• % “Bow” and % “twist”.

• Reflow oven.

6.1 Glass Transition Temperature (Tg)

It is important to mention that the specimens were tested before reflow process, no

thermal load was applied before, except when the PCB was fabricated. Figure 6.1,

figure 6.2 and figure 6.3 represents the results for top, middle and bottom areas,

respectively.

42
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Figure 6.1: Glass transition temperature chart top area

Figure 6.2: Glass transition temperature chart middle area
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Figure 6.3: Glass transition temperature chart bottom area

Table 6.1 shows the values for the 3 areas.

Table 6.1: Glass transition temperature results for the 3 areas

Area Temperature (oC)
Top 138.48
Middle 138.6
Bottom 136.47
Average 137.85

There is a reduction of Tg before thermal exposure, at the three areas average

value was 137.85oC, values are lower than 140oC, which is the glass transition tem-

perature that data sheet supplier establish. It is speculated that if the material is

processed by first and second reflow, this property decrease due to exposure temper-

ature, causing considerable distortions by resin relaxation, exposure temperatures

above Tg changes the properties of the laminate, coefficient of thermal expansion

and the elastic modulus thus changing the product reliability [68], [69].
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Material thermal properties are different at elevated temperatures, “warpage”

is originated due to thermal properties mismatch during reflow process, thermal

conductivity are different between glass fiber, epoxy resin and copper. Table 6.2

shows the thermal conductivity of base materials, the difference between them is

evident, glass fiber has the lowest value of thermal conductivity, whereas copper has

401 W
m·

oC
, that means, glass fiber restricted that heat flow and the copper allows the

heat transfer with more velocity that glass fiber and epoxy resin.

Table 6.2: Thermal conductivity of base materials [3]

Material Thermal Conductivity ( W
m·

oC
)

Fiber Glass 0.04
Cobre 401
Epoxy resin 0.35

If we determined the heat transfer individually considering conduction heat trans-

fer mechanism, values for base materials obtained individually are:

• Copper: 185,605.7 kW

• Epoxy resin: 52.018 kW

• Glass fiber: 6.89 kW

Calculation details are presented in appendix A. According with the results of

heat transfer, it is noticeable the difference between glass fiber and copper, glass

fiber is a barrier of heat transfer, and the epoxy resin transfer the energy slower than

copper.
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6.2 Decomposition Temperature (Td)

Decomposition temperature is when the material suffers irreversible changes. 2%

and 5% of mass loss is recorded.

Figure 6.4, shows decomposition temperature of the three specimens, “x” axis

represents temperature in degrees Celsius (◦C) and “y” axis the mass loss percentage.

Note that the three specimens have a mass loss at 300oC, approximately.

Figure 6.4: Decomposition temperature chart

To obtain more accurate results, specimen 1 and 2 data were fixed where mass

loss occurs. Table 6.3 summarized the results.

Table 6.3: Specimens mass to obtain decomposition temperature

Specimen Initial mass %2 mass lost / %5 mass lost/
(gr) temperature (oC) temperature (oC)

1 12.43 12.18/294.87 11.80/299.20
2 33.01 32.34/300.28 30.72/302.29

Figure 6.5 corresponds the specimen 1 mass loss. 2% mass loss is at 294.87oC as

the yellow point shows, also in figure 6.5 the red box indicates the 5% of mass loss

which is 299.20oC.

Figure 6.6 shows the decomposition temperature of specimen 2. 2% and 5% are

presented by yellow point and red box, respectively, which are 300.28oC at 2% and
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Figure 6.5: Specimen 1 decomposition temperature chart

302.29oC for 5% mass loss.

Figure 6.6: Specimen 2 decomposition temperature chart

Decomposition temperature results are lower than the values provided by sup-

plier, there is a decrease of 10oC, decomposition temperature plays an important rol,

this property tell us the temperature when the material starts a decomposed, there

are researches which investigates the release of brominated, phenolic compounds

when the material reaches certain temperature at different steps of resin decomposi-

tion [70]. The process of PCB fabrication becomes important, the process of cured

has to be controlled because if the epoxy resin is not full cured, when the material is

exposed in reflow process, there is a probability that the PCB complete the process

of cured and the resin flux or the decomposition of volatiles elements can be pre-
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sented. Also no full cured decrease decomposition temperature, in this case if the

temperature is lower than traditional temperature (300oC) during reflow process the

resin can be suffer a decomposition affecting the reliability of whole product.

6.3 Coefficient of Thermal Expansion

Coefficient of thermal expansion are presented as follows:

• Coefficient of thermal expansion results in the “x” axis.

• Coefficient of thermal expansion results in the “y” axis.

• Coefficient of thermal expansion results in the “z” axis.

6.3.1 Coefficient of Thermal Expansion in the “x” axis

Figure 6.7 shows the results of “x” axis at the top area, the behavior presented is a

typical for glass fiber/epoxy resin laminate, change of direction is observed as yellow

point marks.

Figure 6.7: Coefficient of thermal expansion “x” axis at top area
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Figure 6.8 shows the results of the coefficient of thermal expansion in the axis

“x”, but at the middle area. Clearly, the behavior is quite different in comparison

with figure 6.7, as yellow point indicates, when temperature approaches to the glass

transition a material contraction is observed, then at 140oC the material expansion

continues linearly.

Figure 6.8: Coefficient of thermal expansion “x” axis at middle area

Figure 6.9 shows the results of coefficient of thermal expansion at the bottom.

The behavior is similar to the coefficient of thermal expansion of the top area, yellow

point indicates the change in specimen thickness at 130.9oC.

Figure 6.9: Coefficient of thermal expansion “x” axis at bottom area

Mismatch values at middle area in comparison with top and bottom area it is

speculate due to a material heterogeneity at the middle, means an inadequate dis-

tribution of fiberglass and epoxy resin inducing thermal stress differences between

areas, it is believe there a major concentration of epoxy resin than fiberglass, oth-

erwise, the material do not present considerable contractions as shown in figure 6.8.
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This change of thickness is due to during the test a force of µN is applied when the

specimen reaches a temperature close to the glass transition, the material becomes in

a glassy state and with the force applied the material is contracted, this temperature

is around 129oC. The contraction observed can cause undesirable epoxy resin flow.

Two coefficients of thermal expansion are obtained, one before and one after the

glass transition temperature, two points are selected, before the transition “A” and

“B” temperature and thicknesses are recorded and substituted in the formula 2.1:

For the thermal expansion coefficient after the glass transition temperature same

procedure is repeated, except that two different points after the transition must be

selected. Table 6.4 summarizes “x” axis results, thermal expansion coefficients and

% thermal expansion at the three areas are showed.

Table 6.4: Results at 3 areas for “x” axis

Area thermal expansion(%) CTE before Tg (ppm/oC) CTE after Tg (ppm/oC)
Top 0.17 14.81 7.12
Middle 0.16 14.90 6.92
Bottom 0.18 15.30 9.00

It is observed bottom area presents an % expansion of 0.18% and the thermal

expansion coefficients obtained were 15.30 ppm/oC and 9.00 ppm/oC before and

after glass transition temperature, respectively.

Top and middle area values are similar, but the difference between top and bottom

area is 0.49ppm /oC for CTE before the glass transition temperature and 1.88 ppm

/oC after glass transition temperature.

6.3.2 Coefficient of Thermal Expansion in the “y” axis

Figure 6.10 represented the coefficient thermal expansion at top area in “y” axis,

the red point marks a material contraction at 127.75oC close to the glass transition

temperature, after tansition the material continue it’s deformation linearly.

The behavior of the coefficient of thermal expansion in the axis “y” at the top

is very similar to the coefficient of thermal expansion in the axis “y” in the middle

shown in figure 6.11 this contraction occurs at 128.62oC.
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Figure 6.10: Coefficient of thermal expansion “y” axis at top area

Figure 6.11: Coefficient of thermal expansion “y” axis at middle area

Figure 6.12 represents the results of “y” at the bottom, red point marks the

contraction at 130.20oC.

Coefficient of thermal expansion in “y” axis differs between top and middle area

with bottom area. Table 6.5 group the results of thermal expansion coefficient per-

centages and the thermal expansion coefficients in “y” axis for three three areas.

Results suggest that thermal expansion percentage and coefficient of thermal

expansion at the bottom area differs significantly compared to the values obtained

at the top and middle ones. There is is a difference of 0.039% for thermal expansion

percentage (0.157205569 to 0.117747654). Coefficient of thermal expansion at the

bottom is higher, 7.12 ppm/oC, compared with top and middle area which are 1.53

ppm/oC and 2.11 ppm/oC respectively after glass transition temperature.
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Figure 6.12: Coefficient of thermal expansion “y” axis at bottom area

Table 6.5: Results at 3 areas for “y” axis

Area % thermal expansion CTE before Tg CTE after Tg
Top 0.119486757 13.29 1.53
Middle 0.117747654 13.08 2.11
Bottom 0.157205569 13.77 7.12

Also comparing CTE’s for “x” and “y” axis, results differs after glass transition

temperature, see table 6.5 and table 6.4. The reason of that is because the glass fiber

arrangement is not the same, glass fiber styles are fabricated in 2 directions called

warp and fill, there are more yarns in one direction than the other one, it is speculated

that the axis with higher CTE is the axis with higher fiber glass yarns. Glass fiber

restricted the heat flow, there is major concentration of fiber glass in that specific

direction, the total heat flow is transfer to the resin and this phenomena cause a

thermal stresses by the heat trapped. If there are lower glass fiber, the restriction of

heat flow decrease, and the heat flows is transferred more rapidly to the environment.
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6.3.3 Coefficient of Thermal Expansion in the “z” axis

In industry, “z” axis is the major concern where deformations are generated and

“warpage” is observed. Results of the coefficient of expansion and thermal expansion

percentage in “z” axis were analyzed. Figure 6.13 shows the results of the coefficient

of thermal expansion in the axis “z” at the top. The behavior is normal according

with the standard [71], near the glass transition temperature an expansion is observed

at 136.79oC, after transition material continues it’s lineal expansion at a similar rate

before the glass transition temperature.

Figure 6.13: Coefficient of thermal expansion “z” axis at top area

Figure 6.14: Coefficient of thermal expansion “z” axis at middle area

Figure 6.14 shows the results of the coefficient of thermal expansion in “z” axis at

the middle area. The thermal expansion starts at 126.86oC as the black point marks,

this type of performance is not typical for materials with these characteristics.
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Figure 6.15: Coefficient of thermal expansion “z” axis at bottom area

Figure 6.15 represents the coefficient of thermal expansion at the bottom, the

results are similar with the top area, the transition at the bottom occurs at 134.82oC,

these values are similar to those reported in the literature so. Table 6.6 shows the

thermal expansion coefficients before and after the glass transition temperature and

thermal expansion percentages for “z” axis.

Table 6.6: Results at 3 areas for “z” axis

Area % thermal expansion CTE before Tg CTE after Tg
Top 1,74 75.12 283.15
Middle 5.27 353.82 327.68
Bottom 1.58 61.19 285.14

CTE’s values for “z” axis are in a range of 50-70 ppm/oC before glass transition

temperature [21], results at the middle area are 353.82 this value is higher, it is

speculated that there is a concentration of heat, the heterogeneity in that area is

predominant, copper, resin and glass fiber distribution is poor, generating thermal

stresses and deformations along the axis, one of the reasons is that the resin expands

with a higher rate of deformation in comparison with glass fiber.

Table 6.7 grouped the results of the coefficient of thermal expansion in “x”, “y”

and “z” axis for the three areas.
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Table 6.7: CTE results at 3 areas

Area Axis CTE before tg CTE after tg
“x” 14.81 7.12

Top “y” 13.29 1.53
“z” 75.12 283.15
“x” 14.90 7.12

Middle “y” 13.08 2.11
“z” 353.82 327.68
“x” 15.30 9.00

Bottom “y” 13.77 7.12
“z” 61.19 285.14

Thermal expansion coefficient at ”z” axis in middle area is not common according

with supplier data sheet, results obtained were 353.82 ppm/oC before the glass tran-

sition temperature and 327.68 ppm/oC after the glass transition temperature. There

is a considerable difference in material expansion, a posible heterogeneity between

glass fiber and epoxy resin it can be speculated. The mismatch of thermal expansion

coefficient at different PCB areas is a relevant factor generating deformations effect

by heat loads, known as “warpage”.
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6.4 Time to Delamination

Figure 6.16 is a thickness versus temperature chart of specimen took from the top

area. Blue line corresponds the thickness and the red line the temperature, inten-

tionally temperature above 260oC was raised in order to generate delaminations and

explain it. Green box represents the constant temperature and bracket in black in-

dicates a first elevation in thickness at 25 minutes. First peak represents a reversible

deformation where the material expands and contracts, however, as the isotherm con-

tinues, peaks are generate,this means that the material is undergoing delamination

and material suffers irreversible changes causing material disintegration.

Figure 6.16: Time to delamination results at the top

Figure 6.17 and 6.18 shows the results obtained for specimens at middle and

bottom area, respectively, both don’t present changes in thickness during isothermal.
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Figure 6.17: Time to delamination results at the middle

Figure 6.18: Time to delamination results at the bottom

The peak temperature during reflow process is 250oC, if the specimens stand the

test during the isothermal at 260oC and there is not delamination, it is a guarantee

that the material will not present delamination during reflow process, also the CTE

mismatch in the material during the soldering cycles together with poor adhesive

properties are the main reasons to delamination. This might occur in large solid Cu

planes (bad adhesive) and blind vias (large CTE mismatch in “z” axis). Absorbed

humidity causes high vapor pressure in the laminate, during the soldering process

this may also contribute. Another problem is moisture trapped between the board

layers occurring during PCB production. This will happened if moisture is not fully

evaporated or if the material is not correctly cured during production. Large copper

plane inside or on the board will raise the risk for delamination. The delaminations

reduce board integrity and can permit moisture to pervade its structure [72].
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Concluding specimens tested for time to delamination passed the test with no

delaminations presented.

6.5 Water Absorption

Acceptable values is 0.15% according with material supplier date sheet. Table 6.8

shows the percentages obtained.

Table 6.8: Water absorption results

Specimen Mass before (gr) Mass after (gr) % absorption water
1 8.45 8.47 0.17
2 8.80 8.81 0.13
3 9.37 9.39 0.19
4 9.81 9.83 0.16

Specimens 1, 2 and 4 are slightly above with values of 0.17%, 0.13% and 0.16%,

respectively, in the other hand specimen 3 with a value of % water absorption of

0.19%. This value is related with manufacturing laminated defects such as: in-

correct resin/fiber impregnation, poor curing, existence of gaps, micro fractures,

delaminations and weak fiberglass and epoxy resin interphase.

6.6 Bow and Twist Measurement

This section presents the “bow” and “twist” results as follows:

1. PCB “bow” after first reflow

2. PCB “bow” after second reflow

3. PCB “twist” after first reflow

4. PCB “twist” after second reflow

Initial data recorded are presented in appendix B.

6.6.1 PCB “bow” after first reflow

PCB’s were processed by the first reflow and data was recorded. Heights were

recorded, designed by “R” at the four sides “AB”, “BC”, “CD” and “DA”. “R”

is the distance between the surface and the PCB surface shown in figure 2.24.
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Substituting values in equation 6.1 and taking “L” values from table B, “bow”

after first reflow at each side were obtained the results are shown in figure 6.19. Data

is presented in appendix C.1

Figure 6.19: PCB “bow” results after first reflow

%Bow =
R

L
(100) (6.1)

According with figure 6.19 “BC” and “DA” sides presents higher elevations. “BC”

side present a range of deformations from 0.2 mm (PCB#22) to 1.86 mm (PCB#26).

PCB mean deformation in “BC” side is 1.26 mm. In the other hand “DA” side have

a range of deformations from 0.07 mm (PCB #22) to 1.79 mm (PCB #26). PCB

mean deformation in “DA” side is 1.15 mm.

Sides “AB” and “CD” presents less deformations as figure 6.19 shown, it is evident

that the elevations are very similar for all PCB’s. “AB” side has a deformation range

from -0.05 mm (PCB #18) to 0.68 mm (PCB #4), the mean deformation of “AB”

side is 0.19 mm. For “CD” side the deformation range is from -0.06 mm to 0.66 mm

and it’s mean deformation is 0.30 mm.

Concluding the sides susceptible to thermo-mechanical stresses are “BC” and

“DA” sides causing higher values of “bow” after first reflow in comparison with

“AB” and “CD” sides, which are more stable.

6.6.2 PCB “bow” after second reflow

Results of “bow” after second reflow was obtained as figure 6.20 shows. After second

reflow PCB recovery it’s initial shape, sometimes this deformation goes to the op-
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posite direction that’s the reason of negative values, data are presented in appendix

C.2. Now, as figure 6.20 shows.

Figure 6.20: PCB “bow” results after second reflow

“BC” and “DA” sides are more stable, mostly of the PCB’s in those sides recovery

almost it’s initial shape close to zero. “BC” side after second reflow present a range

of deformation from 0.01 mm (PCB #11) to 0.65 mm (PCB #6) and it’s mean

deformation is 0.14 mm; “DA” side has a range of deformation from -0.04 mm (PCB

#11) to 0.19 mm (PCB #23) and it’s mean deformation is 0.06 mm.

Sides “AB” and “CD” presents after second reflow significant deformations, as

figure 6.20 shows, it is evident that after second reflow process all the PCB’s deforms

different, there is no relation between them, “AB” side presents a range of deforma-

tion from -0.46 mm (PCB # 1) to 0.37 mm (PCB #24), the mean deformation is

-0.03 mm. For “CD” sides has a range of deformation from -0.48 mm (PCB #8) to

0.52 mm (PCB #24) with a mean deformation of 0.0014 mm.

After second reflow sides “AB” and “CD” deformations are unstable, apparently

second reflow affects those sides, in the case of “BC” and “DA” sides, they return

close to zero, recovering it’s initial shape, the major concerns after first and second

reflow process are the “AB” and “CD” because mostly of the PCB are far from

the zero or it’s original shape and can cause failures due to this deformations in

subsequent processes.

6.6.3 PCB “twist” after first reflow

Results of “twist” after first reflow was obtained as figure 6.21 shows.

Data are presented in appendix D.1. Figure 6.21 shows a chart of corners height
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Figure 6.21: PCB “twist” results after first reflow

for each PCB. After first reflow process corner “A” deformations has a range from 0

mm (PCB #22) to 3.5 mm (PCB #26) with an average of 1.38 mm, corner “B” has

varies from 0.41 mm (PCB #26) to 4.26 mm (PCB #26) and it’s average was 1.35

mm. In corner “C” the minimum value was 0.06 mm (PCB #21) and the maximum

value was 3.32 mm (PCB #26) and it’s average is 1.49 mm. Corner “D” presented a

range of deformations from 0.1 (PCB #22) mm to 3.31 mm (PCB #26) , the main

deformation in corner “D” is 1.24 mm.

After first reflow process based on main deformation at each corner, the corners

with higher deformation is corner “C”. Comparing the results, corner “A” and “B”

deforms very similar. Corner “D” has the lowest value of corner deformation average,

also it’s standard deviation is 0.73 mm, in contrast with the values o corners “A”,

“B”, “C”, which are 0.86 mm, 0.86 mm and 0.92 mm, respectively.

6.6.4 PCB “twist” after second reflow

Data obtained for “twist” after second reflow is presented appendix D.2. Results of

“twist” after second reflow was obtained as figure 6.22 shows.

After second reflow process corner “A” deformations has a range from -0.07 mm

(PCB #18) to 3.4 mm (PCB #25) with an average of 0.42 mm, corner “B” has

varies from -0.14 mm (PCB #6) to 2.27 mm (PCB #25) and it’s average was 0.34

mm. In corner “C” the minimum value was -0.1 mm (PCB #19) and the maximum

value was 2.81 mm (PCB #22) and it’s average is 0.46 mm. Corner “D” presented a

range of deformations from -0.06 (PCB #17) mm to 2.44 mm (PCB #25), the main
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Figure 6.22: PCB “twist” results after second reflow

deformation in corner “D” is 0.36 mm.

After second reflow process based on main deformation at each corner, the corners

with higher deformation is corner “C”. Comparing the results, corner “A” and “D”

deforms very similar. Corner “B” and “D” has a similar corner deformation average.

The lot with higher value of “bow” which is 0.56% means that presents 1.45 mm of

height for “twist” it was obtained a 0.20% representing 3.06 mm of height.
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6.7 Temperature Profile

Figure 6.23, 6.24, 6.25 and 6.26 represents data recorded of reflow oven obtained by

four thermocouples, PCB was processed five times and a temperature vs time chart

is obtained. There has been reported that temperature distributions during reflow

ovens are not constant when a PCB is processed [49], [50]. Results obtained suggest

that there is a difference in test 3 in comparison with the rest thermocouples, in test

1, 2, 4, and 5 profile temperature is very similar, concluding that the temperature

distribution from the oven can be consider constant.

Figure 6.23: TC 1 temperature vs time Figure 6.24: TC 2 temperature vs time

Figure 6.25: TC 3 temperature vs time Figure 6.26: TC 4 temperature vs time
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6.8 Summary of Results

Results obtained were analyzed and described in the previous sections. Thermal

properties were determined, which are: glass transition temperature, decomposition

temperature, coefficient of thermal expansion, time to delamination and % of water

absorption, “bow” and “twist” data was generated after first and second reflow

process, also a profile temperature was recorded in the reflow oven.

According with the thermal properties, the properties which do not correspond

with the supplier values are: glass transition temperature, decomposition tempera-

ture, coefficient thermal expansion in “z” axis, whereas, absorption water and time to

delamination pass the test performed. “Bow” and “twist” values exceeds the values

establish on the standard [73] which are the 0.75% of it’s largest dimension. Profile

temperature was determined by thermocouples, according with the data collected it

is considered that the profile temperature has a slightly discrepancy in test 3 respect

the rest of profiles.

The next section explain the conclusions and contributions of this research work,

but before start the chapter, it is consider to gather a summary of the research work

presented by one image shown in figure 6.27.
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Figure 6.27 shows the scope of the research work, relating thermal properties, ma-

terial structure and manufacture process, in this case, the reflow process. Figure 6.27

also is a representation of the contribution of this research work, there is no research

work which gathered the different areas of PCB study, mostly of the researches focus

only in thermal properties, reflow oven or simulations, but this a research work that

contains a whole literature discussing the areas of interest for PCB’s. Let’s explain

and detail what means each factor considered as warpage factor:

Structure

Structure means the characteristics of how the PCB is made, how many layers of

glass fiber, resin and copper are present. This research work present clearly to the

company, the different options of glass fiber that can be used according with:

• Chemical composition

• Glass fiber styles

• Glass fiber diameter

Literature consulted and provided allow a better understanding to PCB electrical

engineer when designs the Printed Circuit Board, the glass fiber diameter is a com-

plementary information, where it was demonstrated not in this research work but as

a training course that diameters are different and how affect the stability of mate-

rials. Information about the reinforcement improvement was included, such as the

addition of particles when the resin and glass fiber are fabricated, provides strength,

decrease thermal loads, structure stability and the decrease of warpage. Another

important constituent which was describe is the resins system, a whole information

was consulted to evidence the different options of resins systems that can be used

for PCBs since polyester resins to epoxy resins systems, which the latest is the resin

system studied in this research work, also a general information about glass fiber

styles was studied, some of them was described in Chapter 2, but in fact, there are

many options and because of this research work engineers can selected or asked to

the supplier the more convenient option depending of the PCB they are designing.

Finally, the structure becomes complex when a lot of combination of glass fibers

and resins systems are available to fabricate PCB’s and this study contains a clearly

information for consult this kind of information.
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Thermal Properties

The figure 6.27 shows some of the thermal properties considered relevant to warpage

phenomena, there are low, middle and high glass transition temperature resins sys-

tems, the elements at the end of the molecular chain is the factor which characterize

what kind of glass transition it is. This knowledge is very useful because, engineers

can gave an a idea just knowing the value of the Tg. Decomposition temperature is

related with the glass transition temperature, but engineers has to pay attention in

the decomposition temperature because is the temperature where the PCB starts a

process of decomposition, so this study are capable to provides the methods and the

knowledge to determined this property, also a typical range of decomposition tem-

peratures are was presented in order to compare it with reflow process. A hole study

of CTE was explained, defining CTE as one of the critical factors of warpage, it was

demonstrated the difference according with the PCB area, state of the art literature

was consulted showing different low CTEs but the cost of fabrication are higher that

conventional materials used in Printed Circuit Boards, also the fabrication of PCB

was investigated deeply and how the efficiency of this process affects PCB reliability.

Time to delamination property provides the time when the PCB is exposed at high

temperatures with no delaminations, the contribution was to presents the informa-

tion clearly and explanied the test to know the time to delamination depending of

the resin system.

Oven Conditions

The reflow oven is the latest factors that was studied, it was found a complete

kind of literature of reflow ovens. Contribution about reflow ovens was to explain

the factors that affects warpage, such as: non uniform temperature distributions,

mismatch of convection thermal coefficients between stages, a thermal shock due

to the sudden cooling after reflow process. Based on researches investigated it was

suggested to performed a slower cooling rate to allow the material recovery after

temperature exposures, ovens with additional cooling stages. The oven studied in

this research work as it shown in previous chapters has only two stages of cooling

and the temperature change between stage seven and eight is drastic.

This factors are the responsible which cause warpage, the contribution of this

research work is to involve all of them as entire study due to there is no literature

that that take in consideration together. A wide options can be suggest to improve

each factor individually to get a common objetive: no warpage.
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Conclusions and Contributions

7.1 Conclusions

PCB thermo-mechanical performance depends of material thermal properties and

reflow process conditions. Thermal properties are governed by the constituents ma-

terials such as: epoxy resin tg, glass fiber stack up, % of copper. In the other

hand based on the reflow oven analysis, an homogenous heat transfer allow a better

distribution trough PCB during reflow process. In the material studied:

• Glass transition temperature average was 138oC.

• Decomposition temperature average was 300oC.

• Coefficient of thermal expansion in 3 axis (“x”, “y” and “z”) were determined

at three different locations, top, middle and bottom.

“x” axis CTE below and after Tg are similar at the three areas, 15 ppm/oC

and 7.67 ppm/oC, respectively.

“y” axis CTE after Tg at the bottom differs considerably in comparison

with top and middle areas, 7.11 ppm/oC at the bottom and 2.11 ppm/oC for

top and middle areas, that means material expands at different rate at the

middle area along “y” axis.

“z” axis CTE before and after Tg at the middle is higher than top and

bottom areas, normal values are in a range 60-75 ppm/oC before Tg and 280-

300 ppm/oC after Tg. Results obtained at the middle area for “z” axis are

354.59 ppm/oC before Tg and 312.11 ppm/oC, this result is the most critical

factor for warpage, because when a thermal load is applied, the material starts

the expansión in “z” axis at the middle area, whereas the top and bottom

68
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areas needs expands slowly and with lowest values, this difference generates

mismatch coefficients and as a consequence thermal stresses represented as

mechanical distortions

• Time to delamination test was performed and materials used for PCB’s are

capable to be exposed at 260oC during reflow process with no presence of

delaminations by the influence of thermal stresses at glass fiber and resin in-

terphases.

• Absorption water measurements results was obtained and materiales accom-

plished standard values, which has a limit of percentage of absorption of 0.15%.

All the thermal properties corresponds with data sheet materials provided by

PCB supplier, except the CTE after Tg at the bottom in “y” axis, also in “z” axis

at the middle values are higher before and after Tg. “Bow” and “twist” conclusions:

• After first reflow “BC” and “DA” sides has higher values of “bow”; “AB” and

“CD” sides are more stable, but after second reflow “AB” and “CD” sides

are unstable, “BC” and “DA” sides return close to zero, recovering it’s initial

shape. The major concerns after first and second reflow process are the “AB”

and “CD” they are far from it’s original shape.

• Corner “C” has higher deformation after first and second reflow process. Cor-

ners “A” and “B” deforms very similar during reflow process, corner “D” has

the lowest value of deformation.After second reflow process corners “A”, “B”

and “D” deforms very similar.

Reflow oven studied:

• Reflow oven presents a constant temperature distributions across stages each

time when PCB is processed.

• Heat transfer trough PCB is slightly different at PCB areas, this changes are

not relevant for warpage generation.

CTE differences is one of the key factor which generates non uniform material ex-

pansions trough the PCB, these differences origins that the PCB deforms differently

at different areas, causing “bow” and “twist”.
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7.2 Contributions

The main contribution of this research work is to relate the structure, process and

material thermal properties determining warpage by thermo-mechanical study, also

this work consider real products of the company to obtain statistical data about

PCB distortions and predict preferential areas of “warpage”.

The present work provides a whole study of material thermal properties, reflow

conditions and bow/twist, which are the key factors of “warpage”. The informa-

tion generated is useful to establish a preliminary projection of the PCB thermo-

mechanical performance based on the thermal properties and the deformations data

collected during reflow process. This research work considered different PCB areas

of study, it is found that there are a mismatch between them, it is speculated a

relationship with preferential deformations during reflow process.

• This is the first research work focused in PCB thermo mechanical performance

during reflow process at Yazaki Monterrey. Generating knowledge about the

key factors of “warpage” during reflow process. The information developed

allows a guideline for engineers to design and process PCB’s.

• “bow” and “twist” data of materiales used for PCB’s are illustrated, a instruc-

tional manual was developed to obtain “bow” and “twist” measurements it can

be use for internal process.

• This is the first research work which gathered material properties, PCB defor-

mations and reflow ovens conditions in order to get a better understand about

thermo-mechanical performance.

• Research work suggests:

Material properties and characteristics must be requested to supplier, it

must contain: epoxy resin system, glass fiber style, stack up, a thermal charac-

terization details which contains the principal thermal properties: glass transi-

tion temperature, decomposition temperature, coefficient of thermal expansion,

time to delamination, absorption water.

Performed a PCB characterization to corroborate supplier information.

Thermal tests and “bow” and “twist” measurements must be made.

PCB thermal performance simulation is suggested as a complementary fac-

tor in order to predict PCB thermo-mechanical performance during reflow pro-

cess.



Appendix A

Heat Transfer for Base Materials

Base materials heat transfer were obtained considering materials as layers obtaining

the values individually, conduction is the heat transfer mechanism considered, which

formula is:

q =
kAδT

s
(A.1)

TableA.1 shows the results summarized

Material q(kW ) k(W/m ·
oC) Area(m2) δT (oC) s(m)

Copper 185, 605.7 401 0.072 225 3.5x10−5

Epoxy 52 0.35 0.072 225 1.09x10−4

Glass 6.9 0.04 0.072 225 9.4x10−5

Table A.1: Heat transfer of base materials

qcopper =
401( W

m·
oC

)(0.072m2)(225oC)

3.5x10−5m
= 185, 695.7kW (A.2)

qepoxy =
0.35( W

m·
oC

)(0.072m2)(225oC)

1.09x10−4m
= 52kW (A.3)

qglass =
0.04( W

m·
oC

)(0.072m2)(225oC)

9.4x10−5m
= 6.9kW (A.4)
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PCB’s dimensions

PCB Thickness(mm) Diagonals(mm) Dimensions

A B C D AC BD AB BC CD DA

1 1.58 1.56 1.57 1.58 378.01 378.12 290.03 245.09 290.10 245.08
2 1.57 1.58 1.58 1.57 378.04 378.11 290.04 245.10 290.10 245.08
3 1.59 1.49 1.48 1.57 378.03 378.09 290.07 245.10 290.11 245.11
4 1.5 1.55 1.58 1.49 378.04 378.06 290.04 245.12 290.07 245.09
5 1.6 1.56 1.59 1.5 378.04 378.07 290.09 245.20 290.11 245.10
6 1.57 1.55 1.56 1.58 378.02 378.07 290.05 245.10 290.10 245.07
7 1.54 1.57 1.57 1.53 377.97 378.06 289.95 245.10 290.09 245.08
8 1.54 1.57 1.58 1.57 378.00 378.07 290.01 245.08 290.10 245.03
9 1.54 1.58 1.58 1.57 378.08 378.02 290.08 245.09 290.11 245.07
10 1.57 1.59 1.58 1.58 378.02 378.09 290.03 245.13 290.16 245.11
11 1.66 1.60 1.65 1.62 378.0 378.05 290.01 245.11 290.10 245.05
12 1.64 1.53 1.50 1.56 378.02 378.05 290.07 245.11 290.05 245.05
13 1.63 1.57 1.58 1.55 378.03 378.06 290.05 245.06 290.11 245.02
14 1.63 1.57 1.58 1.56 378.00 378.08 290.09 245.09 290.13 245.05
15 1.63 1.58 1.61 1.61 378.01 378.09 290.05 245.14 290.15 245.07
16 1.64 1.56 1.59 1.62 378.03 378.06 290.04 245.06 290.10 245.04
17 1.68 1.63 1.56 1.64 378.03 378.10 290.09 245.08 290.14 245.10
18 1.66 1.63 1.57 1.70 378.02 378.05 290.05 245.10 290.11 245.09
19 1.65 1.64 1.70 1.61 378.03 378.06 290.06 245.09 290.08 245.05
20 1.70 1.64 1.65 1.62 378.04 378.07 290.06 245.08 290.11 245.05
21 1.54 1.58 1.64 1.56 378.04 378.09 289.98 245.08 290.12 245.03
22 1.65 1.64 1.59 1.65 378.05 378.11 290.10 245.14 290.09 245.05
23 1.62 1.58 1.58 1.50 378.07 378.10 290.09 245.11 290.10 245.10
24 1.62 1.57 1.55 1.58 378.02 378.13 290.08 245.12 290.18 245.08
25 1.60 1.51 1.50 1.57 378.03 378.06 290.02 245.10 290.10 245.05
26 1.65 1.54 1.58 1.55 378.02 378.08 290.01 245.04 290.03 245.06
27 1.64 1.55 1.55 1.56 378.02 378.07 290.05 245.10 290.05 245.04
28 1.65 1.56 1.53 1.52 378.01 378.06 290.08 245.11 290.07 245.06
29 1.57 1.60 1.57 1.60 378.02 378.10 290.10 245.09 290.09 245.03
30 1.56 1.66 1.59 1.60 378.03 378.08 290.12 245.06 290.05 245.09

Table B.1: PCB’s dimensions
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Bow Results

C.1 Bow results after first reflow

PCB Height(mm) %bow

R(mm)AB R(mm)BC R(mm)CD R(mm)DA AB BC CD DA

1 0.23 1.45 0.37 1.15 0.08 0.59 0.13 0.47
2 0.17 1.13 0.31 1.05 0.06 0.46 0.11 0.43
3 0.22 1.47 0.27 0.74 0.08 0.60 0.09 0.30
4 0.68 0.86 0.32 1.08 0.23 0.35 0.11 0.44
5 0.28 1.33 0.30 1.45 0.10 0.54 0.10 0.59
6 0.57 1.55 0.64 1.41 0.20 0.63 0.22 0.58
7 0.41 1.59 0.57 1.24 0.14 0.65 0.20 0.51
8 0.24 1.45 0.37 1.29 0.08 0.59 0.13 0.53
9 0.34 1.52 0.42 1.25 0.12 0.62 0.14 0.51
10 0.26 1.27 0.37 1.03 0.09 0.52 0.13 0.42
11 0.29 0.97 0.16 0.76 0.10 0.40 0.06 0.31
12 0.04 1.23 0.30 1.14 0.01 0.50 0.10 0.47
13 0.11 1.21 0.32 1.11 0.04 0.49 0.11 0.45
14 0.19 1.18 0.15 0.77 0.07 0.48 0.05 0.31
15 0.27 1.09 0.30 0.95 0.09 0.44 0.10 0.39
16 −0.04 1.55 0.07 1.06 −0.01 0.63 0.02 0.43
17 0.05 1.74 0.32 1.34 0.02 0.71 0.11 0.55
18 −0.05 1.57 0.08 1.65 −0.02 0.64 0.03 0.67
19 −0.03 1.40 −0.06 1.47 −0.01 0.57 −0.02 0.60
20 0.01 0.93 0.13 1.10 0.00 0.38 0.04 0.45
21 0.13 0.99 0.03 0.81 0.04 0.01 0.40 0.33
22 −0.04 0.20 0.11 0.07 −0.01 0.04 0.08 0.03
23 −0.01 1.13 0.08 0.70 0.00 0.03 0.46 0.29
24 −0.02 0.73 0.07 1.02 −0.01 0.02 0.30 0.42
25 0.33 1.50 0.62 1.66 0.11 0.21 0.61 0.68
26 0.54 1.86 0.66 1.79 0.19 0.23 0.76 0.73
27 0.06 1.47 0.50 1.61 0.02 0.17 0.60 0.66
28 0.10 1.44 0.56 1.49 0.03 0.19 0.59 0.61
29 0.27 1.12 0.45 1.18 0.09 0.16 0.46 0.48
30 0.32 0.94 0.34 1.27 0.11 0.12 0.38 0.52

Table C.1: PCB bow results after first reflow

C.2 Bow results after second reflow
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PCB Height(mm) %bow

R(mm)AB R(mm)BC R(mm)CD R(mm)DA AB BC CD DA

1 −0.46 0.25 −0.17 0.15 −0.16 0.10 −0.06 0.06
2 −0.32 0.15 −0.37 0.05 −0.11 0.06 −0.13 0.02
3 −0.43 0.11 −0.32 0.05 −0.15 0.04 −0.11 0.02
4 −0.16 0.23 −0.40 0.03 −0.06 0.09 −0.14 0.01
5 −0.37 0.15 −0.46 0.17 −0.13 0.06 −0.16 0.07
6 0.20 0.65 −0.15 0.06 0.07 0.27 −0.05 0.02
7 −0.20 0.06 −0.13 0.04 −0.07 0.02 −0.04 0.02
8 −0.24 0.16 −0.48 0.04 −0.08 0.07 −0.17 0.02
9 −0.31 0.18 −0.15 0.04 −0.11 0.07 −0.05 0.02
10 −0.18 0.16 −0.34 0.02 −0.06 0.07 −0.12 0.01
11 −0.11 0.01 0.20 −0.04 −0.04 0.00 0.07 −0.02
12 0.08 0.11 0.18 0.04 0.03 0.04 0.06 0.02
13 −1.63 −1.57 −1.58 −1.55 −0.56 −0.64 −0.54 −0.63
14 0.11 0.10 0.12 0.05 0.04 0.04 0.04 0.02
15 −0.03 0.07 −0.01 −0.03 −0.01 0.03 0.00 −0.01
16 0.11 0.24 0.19 0.13 0.04 0.10 0.07 0.05
17 −0.03 0.11 0.04 0.04 −0.01 0.04 0.01 0.02
18 0.04 0.16 0.21 0.03 0.01 0.07 0.07 0.01
19 0.10 0.13 0.13 0.14 0.03 0.05 0.04 0.06
20 0.32 0.01 0.16 −0.03 0.11 0.00 0.06 −0.01
21 0.18 0.17 0.25 0.05 0.06 0.05 0.09 0.02
22 0.27 0.12 0.23 0.11 0.09 0.05 0.08 0.04
23 0.18 0.18 0.39 0.19 0.06 0.07 0.13 0.08
24 0.37 0.10 0.52 0.16 0.13 0.04 0.18 0.07
25 −1.60 −1.51 −1.50 −1.57 −0.55 −0.62 −0.52 −0.64
26 −0.21 0.09 −0.15 0.06 −0.07 0.04 −0.05 0.02
27 −0.02 0.07 0.19 0.07 −0.01 0.03 0.07 0.03
28 −0.02 0.12 0.16 0.10 −0.01 0.05 0.06 0.04
29 0.04 0.05 0.12 0.00 0.01 0.02 0.04 0.00
30 0.09 0.11 0.08 0.02 0.03 0.04 0.03 0.01

Table C.2: PCB bow results after second reflow
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Twist Results

D.1 Twist results after first reflow

PCB CornerHeightR(mm) %twist

R(mm)A R(mm)B R(mm)C R(mm)D A B C D

1 1.19 1.43 1.19 1.24 0.16 0.19 0.16 0.16
2 1.13 0.80 0.84 0.84 0.15 0.11 0.11 0.11
3 0.66 1.07 1.07 0.82 0.09 0.14 0.14 0.11
4 0.81 1.18 0.87 1.50 0.11 0.16 0.12 0.20
5 1.91 1.00 1.03 1.36 0.12 0.13 0.14 0.18
6 2.58 2.49 2.59 2.62 0.34 0.33 0.34 0.35
7 1.79 2.29 2.01 1.96 0.24 0.30 0.27 0.26
8 1.19 1.49 1.28 1.18 0.16 0.20 0.17 0.16
9 1.40 1.30 1.49 1.29 0.19 0.17 0.20 0.17
10 1.11 1.34 1.15 1.39 0.15 0.18 0.15 0.18
11 0.44 0.44 2.11 0.30 0.06 0.06 0.28 0.04
12 0.64 0.92 0.51 2.39 0.08 0.12 0.07 0.32
13 2.26 0.84 0.83 0.47 0.30 0.11 0.11 0.06
14 0.71 0.52 2.38 0.35 0.09 0.07 0.31 0.05
15 0.67 0.49 2.36 0.46 0.09 0.06 0.31 0.06
16 2.78 1.07 1.01 0.94 0.37 0.14 0.13 0.12
17 1.35 1.23 3.20 1.35 0.18 0.16 0.42 0.18
18 1.43 1.47 3.13 1.51 0.19 0.19 0.41 0.20
19 1.16 2.73 0.85 1.19 0.15 0.36 0.11 0.16
20 2.19 0.41 0.47 0.50 0.29 0.05 0.06 0.07
21 0.23 0.49 0.06 1.61 0.03 0.06 0.01 0.21
22 0.00 1.08 0.08 0.10 0.00 0.14 0.01 0.01
23 1.50 0.48 0.29 0.63 0.20 0.06 0.04 0.08
24 0.14 0.41 1.29 0.33 0.02 0.05 0.17 0.04
25 3.40 2.27 2.52 2.44 0.45 0.30 0.33 0.32
26 3.50 4.26 3.32 3.31 0.46 0.56 0.44 0.44
27 1.45 1.35 2.91 1.09 0.19 0.18 0.38 0.14
28 1.43 2.65 1.36 1.59 0.19 0.35 0.18 0.21
29 2.15 1.11 1.25 1.31 0.28 0.15 0.17 0.17
30 1.26 2.10 1.34 1.21 0.17 0.28 0.18 0.16

Table D.1: PCB twist results after first reflow

D.2 Twist results after second reflow
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PCB CornerHeightR(mm) %twist

R(mm)A R(mm)B R(mm)C R(mm)D A B C D

1 −0.04 0.16 0.22 0.24 −0.01 0.02 0.03 0.03
2 0.14 0.20 0.19 0.33 0.02 0.03 0.03 0.04
3 0.21 0.02 0.14 0.24 0.03 0.00 0.02 0.03
4 0.04 0.29 0.14 0.18 0.01 0.04 0.02 0.02
5 −0.06 0.27 0.05 0.20 −0.01 0.04 0.01 0.03
6 −0.02 −0.14 0.00 0.20 0.00 −0.02 0.00 0.03
7 0.07 0.06 0.04 0.18 0.01 0.01 0.01 0.02
8 0.26 0.26 0.03 0.13 0.03 0.03 0.00 0.02
9 0.06 0.22 0.03 0.00 0.01 0.03 0.00 0.00
10 0.14 0.31 0.02 0.14 0.02 0.04 0.00 0.02
11 0.78 0.23 0.32 0.25 0.10 0.03 0.04 0.03
12 0.56 0.17 0.33 0.19 0.07 0.02 0.04 0.03
13 −1.63 −1.57 −1.58 −1.55 −0.22 −0.21 −0.21 −0.20
14 0.73 0.25 0.09 0.26 0.10 0.03 0.01 0.03
15 0.21 0.25 0.65 0.23 0.03 0.03 0.09 0.03
16 0.42 0.02 0.04 0.11 0.06 0.00 0.01 0.01
17 −0.02 −0.03 0.03 −0.06 0.00 0.00 0.00 −0.01
18 −0.07 −0.02 0.06 0.43 −0.01 0.00 0.01 0.06
19 −0.01 0.03 −0.10 0.45 0.00 0.00 −0.01 0.06
20 0.02 0.08 0.62 0.02 0.00 0.01 0.08 0.00
21 0.52 0.52 1.82 0.08 0.07 0.07 0.24 0.01
22 1.52 1.68 2.81 1.52 0.20 0.22 0.37 0.20
23 0.54 0.96 1.92 0.14 0.07 0.13 0.25 0.02
24 0.47 0.28 0.15 1.25 0.06 0.04 0.02 0.17
25 −1.60 −1.51 −1.50 −1.57 −0.21 −0.20 −0.20 −0.21
26 −0.06 0.23 −0.03 0.03 −0.01 0.03 0.00 0.00
27 0.20 0.10 0.02 0.89 0.03 0.01 0.00 0.12
28 0.10 0.54 0.20 0.12 0.01 0.07 0.03 0.02
29 0.20 0.27 0.83 0.10 0.03 0.04 0.11 0.01
30 0.30 0.02 0.01 0.18 0.04 0.00 0.00 0.02

Table D.2: PCB twist results after second reflow
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