
Universidad Autónoma de Nuevo León

Facultad de Ciencias F́ısico-Matemáticas
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Abstract
On Aerodynamics of Baseball Pitches: Reconstruction of Spinning Throws, and

a Lift Force Model for the Knuckleball

Baseball pitchers have a wide repertory of throws, which can be classified in two types:

spinning and non-spinning balls. Dynamics of spinning balls is widely understood while only

a few works about non-spinning balls are found in literature. On the other hand, there are

some methods to reconstruct baseball trajectories, however, these methods do not usually

deal with the movement equations, and if they do, its by knowing a lot of points of the real

trajectory.

This work consists of two parts, both of them focused on real baseball pitches. In the first

part, a method to reconstruct trajectories by obtaining the initial conditions (velocity and

angular velocity) from spinning throws is designed. It is based on considering Magnus effect

can be separate from rest of forces that define the dynamics of the ball, such assumption

is supporting by an energetic analysis. Thus, methodology consist in solving the two-point

boundary value problem (BVP) of the movement equations without the Magnus force and

then adding its effect. The second part deals with the lift force present in knuckleball pitches,

which is caused by the asymmetries on the ball morphology and has an oscillatory behavior

varying the seams orientation. We propose a model to compute said force for two-seams (2S)

and four-seams (4S) orientations, by means of a coefficient (lift coefficient) depending on the

positions of each stitch of the ball seams.

As a result from the knuckleball study, a lift coefficient model is constructed by fitting a

function to experimental data reported in literature. Deflections in knuckleball trajectories

are calculated as a complement. Regarding spinning pitches, analyses mentioned above lead

us to assume that only three points (ball position in function of time) for a trajectory to

reconstruct all it. This is applied in an algorithm based on shooting method, which obtains

the initial conditions of synthetic trajectories with a high accuracy in a low-time.
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Why Baseball?

About a year ago, I came back home thinking about a class project related to the use of ink-jet

systems in the printing expiration labels on bottled products. It consisted on measuring the

deflection of the ink drops passing through an electric field to correct the enlargement on the

ends of the label. Meanwhile, my brothers were watching a baseball game on TV, and then I

asked to myself: Isn’t that the same effect as when the pitcher throws a spinning ball?

This led me to the idea of analyzing baseball’s dynamics to design a method to reconstruct

trajectories with applicability on pitching machines.
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Chapter 1

Introduction

Appreciation for baseball is a matter of taste. A lot of people refer to it as a very boring game,

nevertheless it’s one of the most popular sports in North America (United States, Canada

and Mexico), the Caribbean (Cuba, Dominican Republic, Puerto Rico, among others), South

America (Venezuela and Colombia) and Asia (Japan and South Korea).

This is probably because for a non-fan, baseball may seem less dynamic in comparison with

other sports (i.e soccer, basketball). In fact, the prolonged nature of the game, along with

just a few moments of excitement through it and the interaction of apparently just two of

the players (pitcher and catcher) is what people who is not into this sport think baseball is

about.

But then, what makes people fall in love with baseball? A part of the answer is maybe related

to “the expectation”. On every pitch and every swing there is the expectation of a home run,

a base stealing, a strike, or simply to listen the sound of a hit ball. All in all, there are so

many emotion moments seem there are none.

Even so, baseball has a second aspect to win the heart of lots of people, this aspect inspired

Albert Einstein to rename the “American pastime” as the “king of the sports”, by saying:

“You teach me baseball and I’ll teach you relativity ... no we must not. You will learn about

relativity faster than I learn baseball”, after he seeing Major League Baseball game at the

Yankee Stadium. The fact is that at that game, he realized that there are a lot of variables

involved in this sport and how unpredictable it becomes, because nothing is solved until the

last out. This is the magic of the baseball.

In more detail, Einstein observations refer to both the structure of the game and the physics

involved in it. A small variation on the initial velocity, the direction or the orientation of

1
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the ball can cause it deviate from its original trajectory by millimeters and this could be the

difference between a strike, a foul ball or a even home run [1]. This is way people inside the

world of the baseball always have been aware of the physics behind this sport.

Now, we get to the main point of this thesis: the physics of pitching a ball. Pitching is one of

the most important events of the game, whereby pitchers must be very careful choosing their

repertory of throws. These throws can be classified in two groups, depending on the relative

motion of the ball in relation to its center of mass: throws with big spins - like curveballs,

sliders, change-ups and fastballs - and the only throw that doesn’t have an initial spin, the

knuckleball1.

Considering the baseball by its center of mass, the dynamics of both groups of pitches can be

represented by Newton’s second law [2, 3], so that

mV̇ = FB +

∮
S

σdS · n̂, (1.1)

where the first term on the right side represents the gravitational force (Fg), the Coriolis force

(Fcor) and the centrifugal force (Fcf),

FB = Fg + Fcor + Fcf, (1.2)

whereas the second term is the net force acting across the surface S of the ball, thus covering

the air-ball interaction of the throw [3].

In contrast with forces acting through the volume of the ball (those in equation (1.2)), it’s

difficult to write a general expression for aerodynamic forces, since the stress tensor σ change

significantly for rotating and non rotating balls so that we could say only drag force (Fd)

plays an important role to be considered in the aerodynamics of both types of pitches.

Moreover, high angular frequencies present in spinning throws originate a difference of pressure

on the sides of the ball, causing a movement of its center of mass towards the low pressure

region [1]. This phenomenon is connected to the existence of the so-called Magnus force (FM),

which is the distinctive effect of spinning pitches [4–6]. On the other hand, angular velocities

below ∼ 5 rad/s in knuckleballs [7] allow the seams of the ball to play the most important

role in the ball’s aerodynamics. As a consequence, asymmetric turbulent layers and laminar

boundary layers appear on different sides of the ball, which originate lift (FLf) and lateral

(FLt) forces that are not fully understood.

1Although in real life knuckleball pitches have an initial spin, the ball rotation is not enough for it to be
considered a rotating ball.
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1.1 Summary

As a general overview, baseball is played in a field with shape of diamond, which is divided in

two parts, outfield and infield. See the top schematic in Figure 1.1. The action of pitching is

carried out at a mound in the center of the infield, where the pitcher’s plate is located. The

pitcher throws the ball to the home plate (in mound-home direction) as the one represented

in the bottom schematic of Figure 1.1. In this way, the axes are defined as next: y-axis is

fixed in direction mound-home, being z-axis perpendicular to the Earth’s surface, and x-axis

orthogonal to both y and z axes, according to the right hand rule.

This thesis is focused on professional baseball pitches. Some assumptions strongly depend on

the initial conditions: velocity V ≡ (Vx, Vy, Vz) and angular velocity ω ≡ (ωx, ωy, ωz), inside

the range of a professional throw, namely, V ∈ [(−3, 30,−3), (3, 50, 3)] m/s, |ω| ∈ [100, 310]

rad/s for spinning pitches [8], and V ∈ [(−3, 20,−3), (3, 40, 3)] m/s, |ω| ∈ [0, 5] rad/s for

knuckleballs [7], taking the system of axes mentioned in last paragraph.

The research consists of two parts:

• The first part is about the design of a method to reconstruct trajectories by obtaining

the initial conditions of spinning throws, taking into account the movement equations

of the center of mass of the ball. The methodology used is the following: In accordance

to the studies shown in Section 1.2, approximation of the forces on the left-hand side

of Figure 1.3 are used to compute the movement equations (Section 2.1). They are

solved numerically to define some of the relations between the angular velocity and the

final position of the ball (Section 2.2 and 2.3). An energetic analysis of the equations of

motion is carried out in Section 3.1 to support those assumptions. All of this is compiled

in the design of the solution method in Section 3.2.

• The second part deals with the aerodynamics of non rotating balls. We compiled ex-

perimental and analytic studies about lift force present in knuckleballs - Section 1.3 -

to construct a mathematical model that can compute this force for 4S and 2S ball ori-

entations by means of a coefficient (the lift coefficient) that considers the effect caused

by each stitch on the ball seams (Chapter 4). Thus, the lift coefficient can be computed

in function of the initial angle of the ball (see Figure 1.2). In turn, this permits us to

complete the movement equations of non rotating baseballs according to the diagram

of forces shown on the right-hand side of Figure 1.3 and consequently, to reproduce

knuckleball trajectories.
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Outfield

Infield Infield

Pitcher's plate

Home plate

Bases

x

y

z
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Ball contact

∼ 18.44 m
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the ball

∼ 17.05 m
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z
z
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Figure 1.1: Schematics of a baseball field (not scaled). Up: Plain view of a complete
baseball field. The layout indicates the division of the field as well as the positions of bases
and home and pitcher’s plates. Bottom: Sectional view of the mound-home zone. Distance
between the pitcher’s plate and the home plate is around 18.44 m, in accord to the Official
Baseball Rules [9], however, the distance between the point in which the pitcher release the
ball and that where the bat hits the ball is around 17.05 m [1].
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Figure 1.2: Schematic of knuckleball orientations. A ball is thrown to the right without
rotation at different angles θ. The angle is measured from the point of stagnation (red line)
to the point of reference of the ball (blue line). Up: Four seam (4S) orientation. Bottom:
Two seam (2S) orientation.

Forces on a spinning throw

Fd

Fcf

Fg

FM

~!
~V

x

y

z

Fd

Fcf

Fg

FLf

~V

x

y

z
Forces on a non spinning throw

Figure 1.3: Diagram of forces for rotating and non rotating baseballs. In both cases,
drag (Fd) and Earth forces (gravitational (Fg) and centrifugal (Fcf) forces) are present. In
addition, spinning throws (left) are affected by Magnus force (FM), whereas deflections in
the trajectory of non spinning throws (right) are caused by the air-seams interaction, which
is involved in the lift force (FLf). Note: The centrifugal force is a fictional force.
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1.2 Aerodynamics of Spinning Pitches

Drag Force

Drag (or friction) is maybe the most well-known consequence of the air-ball interaction. In

general, any object moving through the air receives a force in opposite direction of its motion

with magnitude in function of the velocity V of its center of mass, i.e.,

Fd = −Fd(V )V̂. (1.3)

Such phenomenon is explained by the conservation of momentum. The medium is non empty

since there are air molecules that oppose resistance to the pass of the ball in the manner of

tiny particles therefore, a difference of pressure between front side and back side of an object

is occasioned when it flies throughout the air. As shown in both diagrams of Figure 1.4,

stream lines on the back side of the ball are farther than on the front side (for both, rotating

and non rotating balls). This creates a low pressure region in the back side of the ball that

causes a momentum with reverse direction to its motion [1, 2, 10].

Now, the question is how are related the difference of pressure and the drag force magnitude

(Fd). At first, it’s not difficult to think that air conditions, and the shape and the speed of the

ball are involved in such ratio. Indeed, experimental data [1, 6, 11] suggest an approximation

proportional to the square of the ball speed, so that

Fd ≈
1

2
ρACdV

2 (1.4)

where factor 1
2
ρV 2 is the difference of pressure between the front side and the back side (with

ρ the air density) that exist considering the ball has a transverse section front area A [10].

In turn, Cd is a dimensionless coefficient that is introduced because the interaction between

the front area and the stream lines decreases when the speed of the ball V increases, i.e., the

effective front area decreases, making the ball more aerodynamic.

In this way, drag coefficient can be written in function of the ball speed (Cd ≡ Cd(V )), but

spiting this, it’s commonly taken like a constant [5, 6]. The values of the lift coefficient are

estimated by Adair [1] considering the average of experimental values for all types of pitches

and measures of baseballs in free fall, see the left-hand side of Figure 1.5.

Moreover, experimental measures, model (1.4) is supported by Reynolds number approxi-

mating Fd with a Taylor series. Baseballs with diameter d inside the limits established by

Professional Baseball Rules [9], d ∈ [7.27, 7.48] cm, moving at standard air conditions with
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initial velocities proposed in Section 1.1, V ∈ [30, 50] m/s, produce Reynolds numbers Re in

the order of 3.5× 103 − 6× 103 which correspond to the laminar-turbulent transition flow of

air [6]2.

Then, in order to approximate Fd in equation (1.3) by the Taylor series

Fd(V ) ≈ k1 + k2V + k3V
2 + · · ·+ kn+1V

n, (1.5)

Re ∈ [3.5 × 103, 6 × 103], the size of the ball and the boundary condition Fd(0, k) = 0 allow

the third term to be the only one remaining of the summation in (1.5), as in equation (1.4).

Additionally, according to Taylor [2], at standard air conditions it’s possible define a ratio

between linear flin and quadratic fquad terms depending on the velocity V and diameter d of

the ball, such that
fquad
flin

=
(

1.6× 103 s

m2

)
V d > 2000

which means that a quadratic drag force delay the flight of the ball approximately 2000 times

more than a linear drag force approximation. This result is reflected at the end of the trajec-

tory as is shown in Table 2.1 in Chapter 2, where the estimation of the deflection produced

by a quadratic drag approximation is around one-two meters; thus, a linear approximation

will produce deflections below one millimeter, which are considered negligible [1].

FM

Stream lines

~!

Low pressure region

High pressure region

Turbulent flow

Upward deflected

Anti-Magnus

turbulent wake

~V

Smooth sphere

Laminar flow

effect

Fd

FM

Stream lines

~!

Low pressure region

High pressure region

Turbulent flow

Downward deflected

Magnus force

turbulent wake Extra-velocity opposing

to wind direction

Rotating Baseball

~VFd

Figure 1.4: Schematic showing the stream lines of two spinning balls moving to the right
of the page with an angular velocity ω. Left: Laminar flow on the upside of a smooth
sphere produce a high pressure region and allows the ball to experiment the anti-Magnus
effect. Right: A baseball rotating in the same direction of the smooth sphere has an upward
motion (the normal Magnus effect) caused by the difference of velocities on its up-down
sides. Based on the schematic diagram of Robinson & Robinson [6].

2This result is applicable, considering the ball like a smooth sphere. Moreover, roughness of the baseball
and high spins increment the Reynolds number to values in the order of 106, which correspond to a more
turbulent flow [1].
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Magnus Force

Magnus force is the second main aerodynamic force present in spinning throws. All of us have

a clear empirical knowledge of its effect in any rotating ball (like in soccer [12], cricket [6, 13]

and tennis [14]): large changes in the trajectory of a moving ball are reached by increasing

the spin frequency. Although this assumption is true, the direction caused by the deflection

could vary in some cases. Indeed, a reverse direction of Magnus force (anti-Magnus effect) has

been reported for smooth balls like those used in soccer games [12], and in smooth spheres

simulating baseballs in Briggs experiments [4] and references therein.

According to Briggs [4], it is possible only for a range of Re when one side of the smooth ball

remains in a laminar flow while the opposite side becomes turbulent. Then, a low pressure

region is originated in the turbulent side because it is generally farther to the ball surface than

the laminar layer. Thus, the ball moves to the region with lower pressure by conservation of

momentum, see left-hand of Figure 1.4.
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Figure 1.5: Left: Drag (Cd) and Magnus (CM) coefficients. The red dashed line represents
the Adair estimation for Cd. The blue solid line approximates Adair curve by equation
(2.6), while black line fits to the Briggs experimental data using equation (1.6). Right: Lift
coefficient (CLf) measures of Borg & Morrisey as a function of the initial angles θ ∈ [0o, 360o]
for baseballs with 4S and 2S orientations. Equation (4.2) with a0 = 0.3 (red dashed line) is
plotted as a baseline. Both Adair and Borg & Morrisey data were extracted using tools of
Matlab R2013a program.

However, this is not the case of typical baseballs, whose seams don’t permit a constant laminar

flow on any side of it. Conversely, when a rough ball flies, spinning through the air, a side of

it opposes to the air force causing a bigger resistance than in the opposite side, i.e, air velocity

on the up side is lower than in the bottom side, according to the right-hand side of Figure

1.4. Then, since low velocities are associated with high pressure regions and vice versa [15],

a low pressure region is originated at the top of the ball, which leads to the normal Magnus

effect [1, 6].
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Similarly to drag force, experimental measures [4, 5] indicate that Magnus force acting in up-

ward direction can be written as FM ≈ 1
2
ρACMV

2 with the adaptive dimensionless coefficient

of area CM in function of ω and V [1, 5]. Even more, experimental studies of Nathan [5] show

that CM (the Magnus coefficient) depends mainly on the angular velocity, for ω and V values

inside the range mentioned in Section 1.1. This permits to complete the model expressing the

Magnus coefficient by the exponential relation

CM(ω) = 3.19× 10−1
[
1− e−2.48×10−3ω

]
(1.6)

which originally was employed to fit CM values for golf balls, but that is also close to ex-

perimental data reported by Briggs [4], as mentioned in Robinson & Robinson works [6, 17].

Expression (1.6) is plotted by the black curve in left-hand of Figure 1.5.

Furthermore, such model has been extended for any arbitrary directions of ω and V by means

of

FM ≈
1

2
ρACM sinφV 2û (1.7)

where direction of FM is given by the unit vector û = ω×V
|ω×V| , and sinφ is introduced by con-

sidering ω-component perpendicular to V is the effective component of FM, and that it varies

smoothly for angles 0o ≤ φ ≤ 90o between ω and V [6, 16].

Other Forces

Aerodynamics of rotating baseballs is computed with diverse forces like the lift and lateral

forces caused by the ball seams, and the friction force acting on the spin of the ball, however,

there are only few studies about these forces, which suggest such forces can be omitted. For

one hand, the existing information about lift and lateral forces in balls with high spinning

is that they decrease in magnitude, i.e., seams don’t play an important role, besides the

quick variation from positive to negative throughout the trajectory, which average their effect

[7, 18, 19]. On the other hand, some studies indicate that torque forces don’t affect the

angular frequency or the spin axis of the ball [11, 20].

Moreover, there are temporary phenomena that could modify the trajectory of the ball like

wind, rain, sudden changes in the air density, among others. However, as we have mentioned

before they are strange phenomena, therefore, the majority of works don’t consider them

[1, 6]. Strain forces inside the ball are commonly omitted because it’s clear that the ball does

not suffer any deformation when it is thrown.
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1.3 Concerning Knuckleballs

For many years, pitchers experiences were the main via of information about knuckleball

trajectories. Speed changes, unusual movements, diverse final positions of the ball with

apparent similar initial conditions and only a few studies about this phenomenon, led to

think someones that the knuckleball motion was a random process [21, 22].

Nevertheless, smoothness of lift force has been studied since the 70’s, when Watts & Sawyer

[23] found in their wind tunnel experiments the influence of the lift force on magnitude was

proportional to the square of the ball speed (similarly to others aerodynamic forces).

In addition, their measurements indicate that such force is an oscillatory force in dependence

on the angle θ relative to wind direction (see Figure 1.2) in an approximate sin(4θ− π) for a

4S orientation. On this regard, Borg & Morrisey [7] obtained measurements of the lift force

for real pitches with 4S and 2S ball orientations (right-hand of Figure 1.5) which indicate a

similar behavior to those of Watts & Sawyer [23].

The results of both works suggest the consideration of a coefficient CLf that fits the sinusoidal

difference of pressure produced by the ball seams at each angle θ and ball orientation, thus

computing the lift force.

In spite of all of these studies, it was not until this decade when a first model introducing

the lift force in the movement equations was computed (Nathan [22]). The model is based on

observations of Watts & Sawyer [23] about magnitude of lift force in dependence on the ball

velocity, and it’s written as

mV̇ = −kCdV
2V̂ + kCLfV

2(α̂× V̂) + g (1.8)

where the first term on the right side corresponds to the drag force, the second term to the lift

force, and Cd and CLf are their respective adaptive coefficients of area. Gravitational force

is represented by g, k is a numerical factor involving the air density ρ and the transverse

sectional area A of the ball with mass m (as in equations (1.4) and (1.7)), and α is a vector

perpendicular to both lift force and velocity that determines the orientation of the ball.

However, model (1.8) does not represent the true effect of lift force, since its sinusoidal nature

is not considered in the lift coefficient CLf [22].

As a final comment, motion of non rotating baseballs and balls rotating at low angular

velocities is briefly explained in Cross R. website [19]. There, Cross explains, among other

things, how the lift force magnitude decrease when angular frequency increase.
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1.4 Reconstruction of Trajectories: Background

Works on reconstruction of trajectories are mainly focused on either the replay of pitches on

broadcasts of baseball games [24–29] or the computing of trajectories for video games [30].

Maybe this is why existing methods to do this are only focused on tracking the ball, and

put aside the search of the initial conditions of the throw. Indeed, most works on tracking

trajectories use all available image processing tools to fill the trajectory using the movement

equations of the ball to justify their results. However, the majority of these methodologies

have been reported as feasible and to have good results, in spite of physical-mathematical

models are not used to reach the goal.

In more detail, the majority of tracking baseball methods consist of three parts. First, an

overlap of a lot of photos of the same pitch is carried out to obtain the position of the

ball at different times; also it is used to transform the 3D reality into a 2D image. Then,

several trajectories are proposed in some ways such as probabilistic methods [24], database

comparisons [25], and/or color and region filtering based on pixel analyses [26–28]. In this

part, some discrete trajectories are filled with the same methods or by parameter estimation

[29]. At last, chosen trajectories are generally compared with mathematical models.

Although, the above mentioned works are not the only reported methods to track a baseball.

Studies of passive optical approach have been carried out by Theobalt et.al. [16] in order to

capture the high-speed motion of baseballs. They use multiexposure images with still cameras

and a stroboscope to obtain a more complete study, however, the method is poorly viable for

its use.

As a reminder, our research is based on the use of the movement equations (to reconstruct

trajectories) so the methodology we will show is completely different to those mentioned in

this Section.



Chapter 2

Calculation of the Magnus Effect on

Spinning Pitches

Purpose of this chapter is to measure the deflection of the ball caused by Magnus force at the

end of its trajectory, for all possible initial conditions. In order to calculate those deflections

(Section 2.3), we begin by computing the movement equations in Section 2.1 and simulating

some trajectories of pitches in Section 2.2.

2.1 Equations of Motion

Accord to most of the works on spinning throws [1, 16, 31], and assumptions mentioned at

the end of Section 1.2, the dynamics of a rotating baseball can be approximated by the sum

of gravitational (Fg), drag (Fd) and Magnus (FM) forces, so that the movement equations of

the baseball center of mass are commonly written as

mV̇ = Fd + FM + Fg. (2.1)

where V̇ is the acceleration of the ball with mass m.

However, in order to be sure that model (2.1) reproduce spinning pitches close to the reality

and according to the purposes of this work, we have estimated the final deflection produced

by each force involved in the dynamics of a spinning throw. All forces that produced a final

deflection of more than one millimeter will be used to compute the movement equations.

12
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The forces involved affecting the pitches inside the initial conditions range mentioned in

Section 1.1, their expressions, their values of acceleration (α) and the final deflections (dξ)

they produce can be seen on Table 2.1, assuming the ball remains flying around a time t =0.5

seconds such that dξ = α/(2t2) (according to the kinematic equations of motion [2]).

Acceleration values are computed in the following way: gravitational force varies because of

the equatorial bulge [18]; values of centrifugal acceleration are computed by varying colatitude

angle ψ; Coriolis values are obtained by changing V values in throws where V ⊥ Ω so that

they are the maximum values that can produce such force. It’s a similar case to Magnus

acceleration, whose values are computed taking φ = 90o, i.e., ω ⊥ V and only varying

values of ω; in turn, drag acceleration considers values of initial velocity inside the limits of a

professional spinning throw (those mentioned in Section 1.1).

Approximation of centrifugal - in both radial and tangential components in relation to Earth

surface - and Coriolis forces are completed according to Taylor [2]. In these approximations,

the Earth is taken as a sphere rotating at constant angular velocity Ω and moving without

acceleration in its translational motion, R is the radius of the Earth, ψ is the colatitude angle

at which the ball is positioned, and ŝ represents the direction of the throw projected in the

x− y plane.

From the values of acceleration, it’s evident that the main forces are those caused by drag,

Magnus and gravitational effects. It is the reason why equation (2.1) is the most frequently

model used to determine the dynamics of spinning pitches. However, Table 2.1 indicates that

centrifugal force - in both radial and tangential components - can produce a final deviation

larger than two millimeters (∼ 6% of the radius of a baseball), thus we consider that this

distance is enough to introduce centrifugal force in the movement equations. This research

was limited to only consider forces producing deflections bigger than 1mm: the direction of a

hit ball in a model considering the centrifugal force will be very different from one that does

not take this force into account. However, the movement of the ball will match regardless of

the Coriolis force.

On the other hand, as is mentioned in Sections 1.2 and 1.3, cross forces (lift and lateral)

are poorly understood for spinning throws and consequently, it’s difficult to estimate the

maximum deflection produced by them. Nevertheless, according to Cross web site [19] and

Borg & Morrisey [7], they are periodic forces (see right-hand of Figure 1.5) whose average is

close to zero when the ball spins quickly, besides that their magnitude decreases when angular

velocity increase. This lead us to omit cross forces from the present study.
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Table 2.1: Estimation of acceleration (α) and deflection (dξ) of a baseball caused by forces
acting on a professional spinning throw.

Force Approximation α (cm/s2) dξ (cm)

Gravitational mg 978 - 980 ∼ 122
Centrifugal (rad) mΩ2R sin2 ψ ĝ 0 - 3.4 0 - 0.42
Centrifugal (tan) mΩ2R sinψ cosψ ŝ 0 - 1.7 0 - 0.21
Coriolis 2mV×Ω 0.4 - 0.7 0.05 - 0.09

Drag kCdV
2V̂ 650 - 1350 80 - 170

Magnus kCM sinφV 2û 140 - 850 18 - 105

Lift and/or Lateral kCLfV
2α̂× V̂ - -

This s also true for torque forces. It’s obvious that the baseball has a deceleration on its

angular frequency ω and also experiment changes on its spin axis ω̂, however, Ranger [20]

predicts that rotation rate of a curveball thrown with a speed of 31 m/s and rotating at 1800

rpm decrease only by 0.08%. Moreover, experiments of Daish [11] indicate that on a golf ball

more than 80% of the spin still remains after a flight of 5 seconds.

With all of this in mind, we consider the motion of a baseball is defined by

mV̇ = Fd + FM + Fg + Fcf, (2.2)

so that the angular velocity ω of the ball doesn’t change neither in magnitude ω nor in spin

axis ω̂.

Now, substituting approximations of each force on the right side of equation (2.2), it becomes

mV̇ = kCdV
2(−V̂) + kCM

V

ω
ω ×V +mg +mΩ2R sin2 ψ ĝ +mΩ2R sinψ cosψ ŝ (2.3)

= kV

[
−CdV +

CM

ω
ω ×V

]
+m

[
g + Ω2R sinψ (sinψ ĝ + cosψ ŝ)

]
, (2.4)

where k = 1
2
ρA, drag Cd and Magnus CM coefficients are functions of velocity V and angular

velocity ω, respectively, as shown on the left-hand side of Figure 1.5.

Thus, developing the cross product of the Magnus force term in (2.4) and defining γ as the

angle between a vector pointing West and the direction of y-axis, equations of motion into

components are written as
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V̇x =
k

m
V

[
CM

ω
(ωyVz − ωzVy)− CdVx

]
+ Ω2R sinψ cosψ sin γ

V̇y =
k

m
V

[
CM

ω
(ωzVx − ωxVz)− CdVy

]
+ Ω2R sinψ cosψ cos γ (2.5)

V̇z =
k

m
V

[
CM

ω
(ωxVy − ωyVx)− CdVz

]
+ Ω2R sin2 ψ − g.

where g ≡ |g| is a function of ψ because of the equatorial bulge [18].

2.2 Simulation of Throws

The equation (2.5) is a coupled system of three first order nonlinear equations. This is way

an analytic solution is difficult to obtain and, therefore, simulating pitches. However, it can

be solved via numerically. In order to guarantee the convergence of solutions, Runge-Kutta

four order method (RK4) has been employed [32].

To compute this model, the drag coefficient estimation of Adair [1] was fitted by a Boltzmann

function using reduced chi-squared statistic and simplex method in OriginPro 8 program.

The obtained expression is

Cd(V ) = 0.29 + 0.22
[
1 + e(V−32.37)/5.2

]−1
, (2.6)

which is plotted on the left-hand side of Figure 1.5 by the blue sigmoidal curve. Estimation

(2.6) gave a root-mean-square error under 7× 10−3 for all values of V .

Figure 2.1 shows the trajectory for balls thrown with different initial values of V and ω

at normal air density conditions (1.22 kg/m3), colatitude of 90o, gravity of 9.8 m/s2, and

considering the ball has a mass of 142 g and a diameter of 7.16 cm (according to the Official

Baseball Rules [9]), whereas the distance between home and pitcher’s plate is 17.05 m (see

Figure 1.1). Left-hand of Figure 2.1 shows the plan view of a ball pitched in direction to

home with a speed of V = 40 m/s, i.e. V = (0, 40, 0) m/s. As seen, z-component of ω causes

the largest x-axis deflections (more than 30 cm for |ωz| = 250 rad/s), y-component causes

deflections of only a few millimeters, while a straight line is generated by the x-component.

In turn, right-hand side of Figure 2.1 shows the sectional view of a throw with initial velocity

V = (0, 45, 0) m/s. In contrast to x-axis, ωx is the main responsible of deflection in z-axis,

while the effects of both y and z components on the trajectory are virtually non-existent.
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Final deflection

Final deflection

Figure 2.1: Ball trajectories, simulated by solving model (2.5). Left: A pitch deflects in
x-axis with velocity V = (0, 35, 0) at different spins - in direction and magnitude -. Right:
Final deflection in z axis of diverse throws with the same initial velocity V = (0, 40, 0) but
different spin.

2.3 Final Deflection as Function of the Angular Veloc-

ity Components

With the aim of learning more about the effect of each angular velocity component, final

deflection has been calculated for all possible throws in mound-home direction with initial

conditions inside the limits of professional pitches. Ball, Earth and medium parameters are

those used in simulations of Section 2.2.

Figure 2.2 shows the deflection at home plate produced by each component of angular velocity

ω for pitches with different initial velocities V = (0, Vy, 0), Vy ∈ [30, 50] m/s. Deflections

are calculated by subtracting final positions from those obtained from solving system (2.5)

without Magnus force terms, also via RK4. Deflections in the same direction of angular

velocity components aren’t plotted because they are zero for all values by construction of the

model [6], e.g., Magnus acceleration is zero on the first equation of system (2.5) when angular

velocity takes values distinct to zero only in x-component, such that ω = (ωx, 0, 0).
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Figure 2.2: Final deflection in function of velocity and angular velocity for balls thrown
with V = (0, Vy, 0), Vy ∈ [30, 50] m/s. Up: Spin of ω = (ωx, 0, 0). Center: Spin of
ω = (0, ωy, 0). Down: Spin of ω = (0, 0, ωz); ωx, ωy, ωz ∈ [−310, 310] rad/s.
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In the graphics, the importance of the system of axes defined in Section 1.1 concerning the

relations between V and ω components in system (2.5) can be seen. Values of ωz produce

larger deflections in x-axis (dx) than those caused by ωy in a proportion of dxωz ∼ 10dxωy .

This is because ωz is related to Vy, which takes the largest values of all velocity components.

A similar case occurs at z-axis where ωx is connected to Vy.

On the other hand, deflections in y-axis allow us to observe the role of Vz on throws: maxi-

mum deflections produced by ωx are slightly larger than those one by ωz because graphics are

computed with initial Vz equal to zero, therefore it reaches higher values than Vx by gravita-

tional force. However, difference between deflections would be lower or higher for the cases

in which Vz takes positive or negative initial values, respectively.

Moreover, this is connected to the inverse shape of up-left and center-left meshes in Figure

2.2, whose angular velocity terms are related to Vz in system (2.5); in turn, up-right and

bottom-left graphics are similar in relation to Vy, whereas center-right and bottom-right show

the same behavior to Vx.

Thus, for common pitches with Vz close to zero, deflection in x-axis is mainly caused by ωz

and in a lesser extent by ωy, while deflections in y and z axes are practically caused by ωx.

This means that if the purpose of this work was changed to simulate pitches with precision

of 10−2 m, system (2.5) could be rewritten as

V̇x =
k

m
V

[
CM

ω
(ωyVz − ωzVy)− CdVx

]
V̇y =

k

m
V

[
−CM

ω
(ωxVz)− CdVy

]
(2.7)

V̇z =
k

m
V

[
CM

ω
(ωxVy)− CdVz

]
− g,

where centrifugal force is also omitted. However, we keep the initial purpose of this work and

leave model (2.7) as an alternative for studies with different objectives.



Chapter 3

Reconstruction of Trajectories

3.1 Energetic Analysis of the Movement Equations

First we notice that equation (2.3) can be rewritten as

dV

dt
= αVV + V (β ×V) + Γ (3.1)

where α = −kCD

m
, β = kCM

mω
ω, and Γ = Fg+Fcf

m
. As a comparison, equation (3.1) is the anal-

ogous of the Lorentz equation of a charged particle in electromagnetism theory [33], so that

the first term (drag force) is the equivalent of the electric field, while the second one (Magnus

force) is related to the magnetic field.

The Equation of Work

Developing the scalar product between equation (3.1) and V,

dV

dt
·V = (αVV + V (β ×V) + Γ) ·V

= αVV ·V + V (β ×V) ·V + Γ ·V. (3.2)

Then, equation (3.2) can be simplified to

d

dt

(
V 2

2

)
= αV 3 + Γ ·V (3.3)

by definition of scalar product and orthogonality of vector product.

19
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Equation (3.3) indicates that angular velocity - involved in β - only changes the direction of

the ball but it doesn’t play a role in the work carried out by the system, like the action of

the magnetic field on a charged particle [33]. Such result will be very important in order to

support the trajectories reconstruction method on the following Section 3.3.

Now, with the purpose of having a comparison method of solution to main one of Section 3.2,

equation (3.3) is discretized to obtain the discrete scheme

∆Vj

∆tj
·Vj = αjV

3
j + Γ ·Vj (3.4)

where velocity Vj and acceleration ∆Vj/∆tj of the ball are known at n times tj, j = 1, . . . , n,

and αj varies in time because it is in function of magnitude of velocity Vj. Thus, a recursive

algorithm can be computed by knowing the values of V1, V2, ∆V1/∆t1 in equation (3.4),

and obtaining a similar discrete expression to the angular velocity, which is carried out below.

As a comment, equation (3.4) could be modified having in mind a parameter estimation, so

that

αj =
1

V 3
j

[
∆Vj

∆t
·Vj − γ ·Vj

]
,

however, such equation is not used in the present research.

The Effective Angular Velocity

The effective angular velocity of a pitch can be calculated by the vector product V×(3.1),

such that

V× dV

dt
= V× (αVV + V (β ×V) + Γ)

= αV (V×V) + V× V (β ×V) + V× Γ

= V [V× (β ×V)] + V× Γ,

since V×V = 0. Then, using the triple product expansion,

V× dV

dt
= V [β(V ·V)−V(V · β)] + V× Γ

= V [βV 2 −V(V · β)] + V× Γ

= V 3

[
β − V(V · β)

V 2

]
+ V× Γ, (3.5)

where it can be noted that β′ = β −V(V · β)/V 2 is the effective component of β since by

the meaning of the scalar product
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V(V · β)

V 2
=

V 2β cosφV̂

V 2

= β cosφV̂ (3.6)

Thus, equation (3.6) represents the projection of vector β in direction of V, where φ is the

minimum angle between vectors V and β, as in model (1.7).

Therefore, when substituting and solving equation (3.5) for β′, we have

β′ =
1

V 3

[
V× dV

dt
−V× Γ

]
=

V

V 3
×
[
dV

dt
− Γ

]
. (3.7)

Similarly to scheme (3.5), equation (3.7) can be discretized as

β′j =
Vj

V 3
j

×
[

∆Vj

∆tj
− Γ

]
(3.8)

which completes the recursive algorithm proposed above.

3.2 The Method for Reconstructing Trajectories

We begin this section citing Turing’s work [34] on the “Imitation Game” because the recon-

struction of trajectories problem must be re-defined in a similar way to that he proposes about

whether a machine can think. Turing dealt with rephrasing such question to answer it.

Regarding the reconstruction of trajectories problem in the way we propose, the first ques-

tion that comes to mind is: how many ball positions in function of time are necessary to

reconstruct a complete trajectory? This is a little misleading because the answer should be

related with both the method employed to complete them and the physics involved in a throw.

However, if we focus only on the nature of a pitch, leaving aside the methodology, our original

question could be replaced with “how many positions of the ball in function of time define a

throw?”, in other words, “how many positions of the ball in function of time are necessary to

obtain the initial conditions of a throw?”

New questions are namely more related to the purposes of this thesis. We answer them with

the analysis showed below, where we found the need of only knowing three points. Thus, the

task of developing an algorithm that requires such number of points comes up.
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Characterization of a Trajectory by 3 Points of It

As a starting point, we must thinking about movement equations (2.5) without Magnus force

terms,

ẍ = −kCd

m
V Vx + Ω2R sinψ cosψ sin γ

ÿ = −kCd

m
V Vy + Ω2R sinψ cosψ cos γ (3.9)

z̈ = −kCd

m
V Vz + Ω2R sin2 ψ − g,

where ẍ ≡ V̇x, ÿ ≡ V̇y, z̈ ≡ V̇z are the accelerations of the ball in x, y and z components,

respectively.

Resulting system (3.9) is significantly less complicated, but it’s still difficult to solve its initial

value problem (simulating pitches) by traditional analytic methods1 [35, 37] and even more

for its boundary value problem (reconstruction of trajectories) [37–39]. However, there are

numerical researches about this kind of problems. Their results are captured in some theorems

demonstrated via numerical methods [38], like Theorem 3.1, which we use to support the

methodology assumptions.

Theorem 3.1. [32, 38]

Assuming that function f in the boundary value problem (BVP)

y′′ = f(t, y, y′), for t1 ≤ t ≤ t2, with y(t1) = y1 and y(t2) = y2, (3.10)

is continuous in the set

D = (t, y, y′) | for t1 ≤ t ≤ t2, with −∞ ≤ y ≤ ∞ and −∞ ≤ y′ ≤ ∞, (3.11)

and that partial derivatives fy and fy′ are also continuous in D. If

(i) fy(t, y, y
′) > 0, for all (t, y, y′) ∈ D and

(ii) there exist a constant M such that

|fy′(t, y, y′)| ≤M, for all (t, y, y′) ∈ D, (3.12)

then the BVP has an unique solution.

1We have only found a research (Sayed [36]) in which a similar system to (3.9) is solved analytically.
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Now, we want to reconstruct the trajectory by solving the boundary value problem (BVP) for

system (3.9) assuming two points in function of time of a ball trajectory, namely ξ1 = ξ(t1)

and ξ3 = ξ(t3), with t1 < t3, are known.

All equations of the system have the form (3.10) and (3.11), so Theorem 3.1 guarantees the

uniqueness of the solution for each one, if conditions (i) and (ii) of (3.12) are satisfied. We

need to prove it2.

First, it can be noticed that movement equations (3.9) don’t depend on the ball position ξ,

i.e, ξ̈ = f(t, ξ̇), therefore condition (i) doesn’t need be satisfied because it’s a trivial case,

although fξ = 0 for all (t, ξ̇) ∈ D. Regarding condition (ii), it’s clear fV is bounded for all

(t, ξ̇) ∈ D since all Cd, V , Vx and their derivatives are always bounded. Therefore constant

M exist, and thus the two-point BVP for the equations of motion without Magnus force has

an unique solution, i.e, ball trajectories computed with this model can be characterized by

two of their points.

This shouldn’t be surprising if we analyze it from the physics point of view of a typical ballistic

throw: a projectile thrown from point ξ1 at time t1 that goes over a second point ξ3 at t3.

It’s not difficult to think there is only one initial velocity (Vx, Vy, Vz) that can produce the

ball pass at positions (x2, y2, z2), (x3, y3, z3) in time t2 andt3, respectively3.

But, what if the Magnus force is introduced in system (3.9)? By equation (3.3), we know

the Magnus force only changes the trajectory of the ball but it’s not involved in the work

carried out (this result permitted us to omit such force momentarily at the beginning of this

Section). Furthermore, graphics of Figure 2.2 indicate those changes (deflection of the ball)

are not oscillatory for |ω|, in effect, final deflections components are monotonically increasing

(or decreasing). This motivates to think only another point ξ2, with t1 < t2 < t3, is necessary

to represent a complete trajectory.

Note: We don’t intend to say that the three-points boundary-value problem for system (2.5)

has a unique solution! Evidently this assumption would be wrong since the equations of

system (2.5) are coupled and the same effect can be produced by different ω-components,

which can be seen in Figure 2.2: Final deflections remain increasing (or decreasing) for |ω|,
but it’s not the same case for ω in all meshes. However, we suggest that one solution of the

problem can be found.

2We don’t develop a rigorous proof since there are other ways to prove only two-points are necessaries to
solve the BVP for model (3.9), like the physical analysis shown above.

3Indeed, there could be a small interval of possible initial conditions due to the behavior of drag coefficient,
however, it would be very small since speed of the projectile doesn’t changes significantly.
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The Method

Based on this proposal, initial conditions of any trajectory can be obtained by minimizing

the function

f(V,ω) =
3∑
i=1

||ξi − pi||, (3.13)

where pi ≡ pi(ti) are the ball positions at time ti of a possible trajectory, and || · || refers to

the euclidean distance. Moreover, position of the ball at point ξ1 is known, since is the origin

of the trajectory, thus equation (3.13) could be simplified to

f(V,ω) =
3∑
i=2

||ξi − pi||. (3.14)

Now, the question is how to minimize it. To answer this, we may point out that a more

accurate estimation of the velocity can be made at the beginnings of a throw because the

largest deflections occasioned by Magnus force occur at the end of the trajectory (and then

the dynamics of the ball at the points closest to the initial point is practically determined

by its initial velocity). Thus, minimization of distance ||ξ2 − p2|| in function (3.14) shall be

related with finding values of initial velocity, whereas the angular velocity shall be connected

to ||ξ3 − p3||.
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ξ2

ξ3

Minimization by

secant methodMinimization by

Newton's method

p
2

p
3

Plan View
Step 1

Step 2

Step 3
Step 4

Real Trajectory

Schematic Diagram

Figure 3.1: Schematic diagram of the algorithm. Newton-Raphson method is responsible
for minimizing the distance between data p2 and proposed point ξ2 by approximating V ,
while secant method does the same for points at time t3 by approximating ω. Colors are
according to steps in Algorithm 3.1.
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Algorithm 3.1.

Step 0

Input data: ξ(ti),

tolerance≡Tol

Step 1

Initialize V values

Step 2

Initialize ω values

Step 3

Approximate ω values by

using the secant method

Step 4

Approx. V values by the

Newton-Raphson method

Step 5

f(V,ω) <Tol

Initial conditions V, ω

k = 1

k = k + 1

Newton-Raphson Method

Vk = Vk−1 − p(t2,V
k−1)−ξ2

dp
dV

(t2,V
k−1)

Secant Method

ωkx = ωk−1x − (z(t3,ω
k−1
x )−z3)(ωk−1

x −ωk−2
x )

(z(t3,ω
k−1
x )−z3)−(z(t3,ωk−2

x )−z3)
,

ωky = ωk−1y − (x(t3,ω
k−1
y )−x3)(ωk−1

y −ωk−2
y )

(x(t3,ω
k−1
y )−x3)−(x(t3,ωk−2

y )−x3)
,

ωkz = ωk−1z − (x(t3,ω
k−1
z )−x3)(ωk−1

z −ωk−2
z )

(x(t3,ω
k−1
z )−x3)−(x(t3,ωk−2

z )−x3)

Such observation along with the commonly use of the shooting method to solve two-point

BVP of equations similar to (3.9), using Newton-Raphson method to obtain a solution for the

initial value problem (IVP) [32], leads to construct a method consisting of two interrelated

parts (or objectives), as it’s described in Algorithm 3.1 and either in Figure 3.1.
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The algorithm consist of five steps:

• Step 0. Data points and parameters of the method are defined.

• Step 1. Shooting method is applied to obtain the first velocity approximation V0, using

points ξ1 and ξ2, considering the assumptions mentioned in this Section. Additionally,

such assumptions permit us to use Newton-Raphson method to solve the IVP.

• Step 2. Initial values for angular velocity are defined. We suggest ω0 = (−50,−50,−50)

rad/s and ω1 = (50, 50, 50) rad/s (hoping to have initial approximations covering the

search space but inside the range of possible solutions).

• Step 3. The wide range of angular velocity solutions demands to solve the IVP by a

slower method in convergence than Newton-Raphson, this leads us to use the secant

method, where ωk− components are approximated according to the results of Section

2.3, with the restriction |ωk| < 310 rad/s to keep the solutions inside the search space.

• Step 4. New velocity Vk values are obtained in a similar way to that of Step 2 but

considering the obtained ωk values.

• Step 5. Steps 3 and 4 are repeated as in an iterative way until minimizing function

(3.14) below the tolerance (Tol) defined in Step 0.

3.3 Results

The Algorithm 3.1 is applied to some synthetic trajectories, which are generated by solving

(2.5) as in Section 2.2 and with the same parameters.

Table 3.1 shows the results for the reconstruction of a ball thrown at time t0 = 0 from the

origin ξ1 = (0, 0, 0), which reaches home at position ξ3 = (2.6 × 10−3, 17.05,−3.3 × 10−1)

measuring in meters, at time t3 = 0.388, and varying data ξ2. The stop rule consist on

minimizing the function (3.14) below tolerance Tol= 10−4 m. The test corresponds to the

pitch with initial conditions V = (0, 45, 0) m/s, ω = (300, 0, 0) rad/s. To complement it, the

distance between the obtained and the real trajectories throughout the flight of the ball is

plotted in Figure 3.2.

As can be seen on the same Figure, better solutions for such study are reached when used

y2 approximates to y1. This is because of the construction of the method: choosing a value

of ξ2 close to the initial point ξ1 allow us to obtain a better approximation of V in Step 1
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of Algorithm 3.1; in turn, a good first approximation of the ball velocity is very important

since it permit us to focus all the iterations to approximate ω and only improving V values.

In this way, better (regarding function f) and faster (low number of iterations) solutions are

obtained from the methodology of Newton-Raphson (V) and secant methods (ω) [32, 43].

Table 3.1: Four trajectories are obtained by using method described in Algorithm 3.1,
varying the location of the ball position ξ2, e.g., the results in black are those obtained
by locating y2 at three-quarter parts of distance between y3 and y1. Initial velocity V
and angular velocity ω are obtained by minimizing the function f(V,ω) in a k number of
iterations. In addition, the obtained initial conditions by energetic-method are shown as
well.

Parameters Results
ξ2 location V (m/s) ω (rad/s) f(V,ω) k iter.
3
4
(y3 − y1) (−1.8× 10−3, 45.00, 1.2× 10−3) (300.8, 39.9,−2.8) 8.4× 10−5 27

1
2
(y3 − y1) (−1.2× 10−3, 45.00, 6.1× 10−4) (301.0, 39.8,−2.7) 6.4× 10−5 13

1
3
(y3 − y1) (−7.9× 10−4, 45.00, 5.7× 10−4) (301.1, 39.8,−2.6) 5.1× 10−5 9

1
4
(y3 − y1) (−5.9× 10−4, 45.00, 3.3× 10−4) (301.1, 39.7,−2.5) 2.5× 10−5 8

Energetic method (5.1× 10−5, 44.98,−5.9× 10−3) (224.0, 0.61,−2.6) 80 -

Initial Values: (0, 45, 0) (300, 0, 0)

0.0 0.1 0.2 0.3 0.4

0.
00

0.
04

0.
08

0.
12

Time of Flight (s)

E
rr

or
  (

m
m

)

0.0 0.1 0.2 0.3 0.4

0
20

40
60

80

Time of Flight (s)

E
rr

or
  (

m
m

)

Figure 3.2: Error between trajectories along the pitch. Left: Using the method proposed
in Algorithm 3.1. Right: Using the method proposed in Section 3.1. Colors are according to
data in in Table 3.1. Red vertical dashed lines tag the times t1 and t3 whereas other colors
tag times when the ball cross y2.

However, for all positions of ξ2, the obtained trajectories are always close to the real one

(err< 0.2 mm), although the error is not constant.This occurs because the method is designed

to search the values that minimize the distance at the intermediate time (tag with dashed-

color lines in Table 3.1) and at final time (tag with red-dashed line).

The second test consist of a throw with initial conditions V = (2, 39, 1) m/s, ω = (30, 80, 200)

rad/s, which makes the ball cross home-plate at ξ3 = (−3.1× 10−1, 17.08,−9.6× 10−1), with
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t3 = 0.461, taking ξ1 = (0, 0, 0) as the initial position. It shows the other side of choosing a

y2 point very close to y1: this could produce a slight divergence of the obtained trajectory at

the end of it, while trajectories with y2 points near to the midpoint remain in convergence,

see left-hand of Figure 3.3.

According to Table 3.2, the method seems to converge around with the same iterations of

the first case of study. More precisely, in both cases values of V are approximated with an

accurate of 10−3 m/s for all ξ2 points chosen.

Table 3.2: Results for the second test. Same notations as for Table 3.1.

Parameters Results
ξ2 location V (m/s) ω (rad/s) f(V,ω) k iter.
3
4
(y3 − y1) (2.002, 39.00, 0.999) (28.6, 49.9, 195.6) 8.8× 10−5 26

1
2
(y3 − y1) (2.001, 39.00, 0.999) (28.9, 58.6, 195.7) 9.3× 10−5 13

1
3
(y3 − y1) (2.000, 39.00, 0.999) (29.2, 64.2, 196.0) 9.1× 10−5 10

1
4
(y3 − y1) (2.000, 39.00, 0.999) (29.8, 67.0, 196.1) 9.8× 10−5 8

Energetic method (1.995, 38.99, 0.986) (23.7, 15.9, 170.0) 35 -

Initial Values: (2, 39, 1) (30, 80, 200)

0.0 0.1 0.2 0.3 0.4

0.
00

0.
04

0.
08

Time of Flight (s)

E
rr

or
  (

m
m

)

0.0 0.1 0.2 0.3 0.4

0
5

15
25

35

Time of Flight (s)

E
rr

or
  (

m
m

)

Figure 3.3: Error between trajectories along the pitch. Left: Using method proposed in
Algorithm 3.1. Right: Using energetic method proposed in Section 3.1. Colors are according
to data in Table 3.2.

Regarding ω approximations, even though this method doesn’t get solutions close that to

the data , it sufficiently approximates ωx and ωz to fit the real trajectory; in turn, ωy values

are very far from the optimum value but it’s not represented because of the role of ωy in the

meshes of Figure 2.2.

On the other hand, the method proposed in Section 3.1 is computed using all n position

values of the synthetic trajectory to obtain the Vj, ∆Vj/∆tj and βj, j = 1, . . . , n values
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in an explicit scheme [43]. Approximations using this method are very far from the real

initial conditions, which produce an erratic trajectory that moves away the real one in an

exponential way, as shown in right of Figure 3.2. These poor results are the outcome of

the strong dependence on the initial velocity we have mentioned along this work: It only

requires to calculate the initial velocity once but such approximation isn’t sufficiently good,

and consequently the obtained angular velocity values are wrong.

Tests were carried out by using R-Statistics program in a Lenovo 400 RAM, 250 GB, Intel-

Core i5 computer. Under this conditions, computing time are below 10 seconds for both study

cases, even for reconstructions with high numbers of iterations.
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The Knuckleball

4.1 Lift Force Model for 4S and 2S Ball Orientations

As mentioned in Section 1.3, lift force can be approximated by

FLf ≈ kCLfV
2(α̂× V̂) (4.1)

with the lift coefficient CLf in function of the ball seams. Specifically for 4S and 2S orientations,

such coefficient should have a similar behavior to the experimental data of Borg & Morrisey

shown on the right-hand side of Figure 1.5.

From Figure 1.5, it’s clear that the function

f(θ) = a0 sin(4θ − π), (4.2)

with the constant coefficient a0, is implied on its behavior as is hinted by Watts & Sawyer

[23] and mentioned by Borg & Morrisey [7].

In this way, equation (4.2) could be considered as the first model for the lift coefficient. It

coincides in period with the two ball orientations and fits better to the 4S orientation, mainly

when the seams are symmetrical in up-down sides of the ball, which corresponds to the angles

at which the value of the lift coefficient is zero or close to zero. However, it doesn’t represent

the extra-imbalance of forces occurring when the non-symmetry on the seams appears.

Then, to obtain a model that fits to the experimental data it’s important to understand and

complete the effect of the stitches on the lift force. The first logical assumption is to think

that the aerodynamics of the ball is modified by the distances between the position of each
30
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stitch and stagnation ball point (see Figure 1.2), so that the stitches close to the front of the

ball originate a turbulent boundary layer and a difference in pressure making the ball to move

in their direction, in a similar way as the wings of an airplane [40–42].

Thus, we propose a discrete scheme in which the seams are represented by a collection S of

n stitches with vector positions si, i = 1, · · · , n. Each stitch affects the magnitude of the

lift force as the sine function in equation (4.3), whereas the direction of disturbance is given

by the sign function inside it. In this way, since S ≡ S(θ), the total effect h(θ) of seams is

expressed as

h(θ) =
n∑
i=1

sin

(
||si − p||π

2d
+ π/2

)
· sgn (p∗ − s∗i ) (4.3)

where p is the stagnation point for the ball with diameter d, s∗i and p∗ are the components

of si and p in the axis of motion of the ball.

As seen in Figure 4.1, the scheme adjusts to the boundary conditions because stitches located

exactly at the front or back of the ball don’t produce an imbalance of forces, however as soon

as a stitch is close to p, it breaks the symmetry and a force is produced according to the fluid

mechanics theory [40, 42].
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Figure 4.1: Effect of stitches in cL as function of distances ||si − p||. Negative distances
represent negatives values of p∗ − s∗i .

Therefore, assuming that the forces involved in the lift of the ball act as an additive system,

the lift coefficient can be completed as the sum of (4.2) and (4.3), such that

CLf(θ) = a0 sin(4θ − π) + a1

n∑
i=1

sin

(
|si − p|π

2d
+ π/2

)
· sgn (p∗ − s∗i ) . (4.4)

where the constant coefficient a1 is joined to the stitches term for obtaining a weight function.
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And so, according to Nathan model (4.1), the lift force acting on an upward-direction is

derived by

FLf = kCLfV
2(β̂ × V̂) (4.5)

where CLf is taken from (4.4), and the vector β points outward the pictures in Figure 1.2 to

obtain the lift force in upward direction1.

4.2 Results and Knuckleball Trajectories

Values of the Lift Coefficient

A parameter estimation for a0 and a1 coefficients has been carried out in order to fit the

equation (4.4) to the experimental data shown on the right-hand side of Figure 1.5. We have

carried out it in two ways: trial and error and least-square method.

Least-square estimation conduce to minimize

G(a0, a1) =
m∑
j=1

[
a0κj + a1

n∑
i=1

λi,j − dj

]2
, (4.6)

taking κj = sin(4θj − π), λi,j = sin
(
|si,j−p|π

2d
+ π/2

)
· sgn

(
p∗ − s∗i,j

)
to compute the lift

coefficient as in equation (4.4), and with dj, j = 1, . . . ,m, the m Borg & Morrisey data [7].

According to the least-square theory [43], the equivalent system[ ∑m
j=1

[
κ2j
] ∑m

j=1 [κj
∑n

i=1 λi,j]∑m
j=1 [κj

∑n
i=1 λi,j]

∑m
j=1 [

∑n
i=1(λi,j)

2]

][
a0

a1

]
=

[ ∑m
j=1 [djκj]∑m

j=1 [dj
∑n

i=1(λi,j)]

]
, (4.7)

is solved by obtaining a0 = 0.058, a1 = 0.006 for 4S orientation, and a0 = 0.186, a1 = 0.006

for 2S orientation.

On the other hand, trial an error method has been developed having in mind that on the

equation (4.4) can be modified as the average of equation (4.2) and the average of the stitches

effect , so that

CLf(θ) =
1

2

[
b0 sin(4θ − π) +

1

n

n∑
i=1

sin

(
|si − p|π

2d
+ π/2

)
· sgn (p∗ − s∗i )

]
. (4.8)

1The reader could note we only mention a model to compute the lift force - the force that acts in upward
direction in a knuckleball throw - whereas the lateral force caused by the same effect is omitted. This is not
far from the reality since the lateral coefficient of throws with 4S and 2S orientations is always close to zero
by the symmetry of the seams [7].
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In this way, a0 = b0/2 whereas a1 = 1/(2n), and thus, we calculate b0 = 0.3 fits the Borg &

Morrisey data.

The results for both methods, equation 4.8 and least-square, are plotted in Figure 4.2. In

general, they are very similar between them and fit well to the experimental data. It can be

mentioned that when experimental data and/or results are above the sine function (4.2) it

means that there are more stitches close to the stagnation point from the down-side of the

ball, and vice-versa. Thus, we observe that ball seams of 4S pitches have more symmetry

than those with 2S orientation. In this way, the model shows the asymmetry of the front of

the ball by means of the value of the lift coefficient (larger values correspond to a high level

of asymmetry).
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Figure 4.2: Lift coefficient cL in function of the angle θ computed by (4.8), least-squares
method and experimental data of Borg & Morrisey for non-spinning balls. Equation (4.2)
with a0 = 0.3 (black dashed line) is plotted as a baseline. Left: 4S orientation. Right: 2S
orientation.

More precisely, both 4S models and experimental data look like the sine function (4.2) but

with a fast-growing in convex parts and a smooth fall in concave ones, see the left-hand side of

Figure 4.2. The models are very close to the data values, although a discrepancy is observed

every 45o at the peaks of the oscillatory function, and every 90o when the function falls around

the value of zero.

Such discrepancies can be explained by the effect of the stitches. We have computed them

as a set of points that simulate a continue curve, however, the stitches have a width of about

one centimeter, which represents 16o of the ball circumference, approximately. In this way,

we aren’t calculating the total effect of the seams since extra-turbulent flows are caused by

the width of the stitches.
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On the other hand, real data and results for 2S orientations indicate that the lift coefficient

depends on the seams position as a periodic function with the same periodicity of the 4S ori-

entation, but with different amplitudes, reflected and inverted about 180o. Both models seem

to smooth out the real data although the adjustment is less accurate than for 4S orientation.

Peaks of the least-square approximation are closer to the experimental data than the equation

(4.8), spiting that one around the 210o. Main discrepancies are observed every 90o when the

function grows, which also can be attributed to the pass of the stitches, see right-hand of

Figure 4.2.

We obtain the stitch positions S by modeling a baseball with a test version of Rhinoceros 5

program, following the tutorial video [44]. In this way, 2S and 4S models consider a set of

132 stitches (n = 132).

Knuckleball Trajectories

Simulation of knuckleball throws have been carried out for 4S and 2S ball orientations by

using the lift force model (4.5) in (1.8) with ball and Earth parameters as in Section 2.2, and

using equation (4.8) to compute the lift coefficient. We chosen the model (4.8) because it fits

to the Borg & Morrisey data with the same values of b0 for both ball orientations, although

least squares approximation is the main method to consider.
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Figure 4.3: Knuckleball with an initial speed of 30 m/s thrown from an height of 2 m at
different angles and orientations. Left: Four trajectories with different initial conditions.
Right: Distance at home between the position of the ball and the expected final position
(thinking on to compute equation (1.8) without lift force) for all angles in 4S and 2S orien-
tations.
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Figure 4.3 shows some trajectories with different initial angles in a sectional view (left-hand)

and the deviation of the ball at home caused by the lift force (right-hand). An example of how

the angle and the ball orientation determine a trajectory can be seen in left-hand graphic,

in which a batter would see the same trajectory for both 4S and 2S orientation of a ball

thrown with the initial angle of 270o, although the final position of the ball differs around 7

cm (approximately the diameter of the ball). Meanwhile, positions of a ball thrown with an

initial angle of 240o are totally different throughout the trajectory for 4S and 2S orientations,

which is also reflected at the final deflections with 30 cm of difference, approximately.

Moreover, 4S pitches can produce larger forces than balls with 2S orientations as seen in

right-hand of Figure 4.3. Indeed, the graphic shows that both 4S and 2S types of pitches have

the same oscillatory effect on a trajectory but differ only in larger deflections reached with 4S

orientation.
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Conclusions

A method to reconstruct trajectories of spinning baseballs was designed, which requires only

three ball positions. This is possible because the Magnus force can be separate from the rest of

the forces that define the dynamics of a throw. The method is applied in an algorithm based

on shooting method, which obtains the initial conditions of synthetic trajectories by mini-

mizing the distance between data points of the original trajectory and those of the proposed

trajectory. Results show the high accuracy of the algorithm in low computation time, even

if it converges better with taking midpoints between one-third and the half of the trajectory.

The methodology and the results of this research allow us to consider a possible comparison

with future experiments and its compatibility in other areas. Stability analyses over physic

and numerical parameters can be carried out in the future to justify the convergence of the

algorithm.

Regarding knuckleballs, we develop a mathematical model to compute the coefficient of the

lift force acting in upward direction for balls with 4S and 2S orientations. The model considers

the effect of each stitch throughout the ball seams. In this way, the lift coefficient is computed

in function of the initial angle of the ball. Computation is carried out in two ways, both of

them reproduce experimental data reported in literature with only some disturbances seen

every 45o and 90o for 4S and 2S orientations, respectively, which are due to the turbulent

flows that are not considered in this work. Even so, the results match with the experimental

data, which motivates us to compare the model with future experiments and to improve it

by considering the assumptions mentioned above. We also propose to extend the model for

different orientations and for balls spinning at low frequencies.

Finally, we mention that both works together contribute to understand the aerodynamics of

baseballs but even more of any kind of ball flying with or without an initial spin.

36
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