Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Petrological and geochemical (major-, trace-, and rare earth element) data of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina

Uwe Jenchen

Uwe Jenchen, Universidad Autónoma de Nuevo León, Facultad de Ciencias de la Tierra, Carretera a Cerro Prieto, km. 8, C.P. 67700 Linares, Nuevo León, México

ARTICLE INFO

Article history: Received 21 September 2018 Received in revised form 9 November 2018 Accepted 12 November 2018 Available online 16 November 2018

ABSTRACT

From samples of the Middle to Late Triassic El Tranquilo Group (El Tranquilo anticline, Deseado Massif, Patagonia) petrographic (qualitative and modal) analyses and geochemical analyses (major, trace elements, and rare earth elements (REEs)) of 80 samples were carried out. The data presented here contain a broad overview of photomicrography, recalculated modal point-count data, geochemical raw data, and simple statistics of selected geochemical parameters. The data presented in this article are interpreted and discussed in the research article entitled "Petrography and geochemistry of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina: Implications for provenance and tectonic setting" (Jenchen, 2018).

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Earth Sciences
More specific subject area	Petrology, Geochemistry
Type of data	Microscopy images, tables, figures and graphs

https://doi.org/10.1016/j.dib.2018.11.062

2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: uwe.jenchen@gmail.com

How data was acquired	Major and trace element concentrations were determined on these sample tablets (Major elements as oxides in weight %, trace elements in ppm) using a sequentially operating, wavelength-dispersive X-ray fluorescence spectrometer (SIEMENS SRS 303 AS) on a volatile-free base. Rare Earth Elements was conducted by atomic emission spec- troscopy, using inductively coupled plasma excitation at an ICP-AES (Jobin YVON Model 38 plus; Tables 10-15). 35 samples were analyzed and pulverized and by ICP-ES (oxides, Ba, Ni, Sc), and ICP-MS (trace and rare-earth elements) at ACME Laboratories, Vancouver, Canada.
Data format	Raw (photos), Analyzed, processed and filtered
Experimental factors	Thin sections were prepared, point-counted and photographed. 34 samples were crushed, pulverized, LOI (loss on ignition, the pre- annealed material was mixed with lithium tetraborate (Li2B4O7) in the ratio 2:1, melted at 1,400 °C in a graphite crucible and poured into platinum pouring bowls.
Experimental features	Petrological and geochemical analysis of the rocks of The El Tranquilo Anticline
Data source location	El Tranquilo Anticline, Deseado Massif, Patagonia, Argentina
Data accessibility	Data available within this article
Related research article	Jenchen, U (2018).Petrography and geochemistry of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina: Implications for provenance and tectonic setting. Journal of South American Earth Sci- ences, 88: 530-550. – https://doi.org/10.1016/j.jsames.2018.09.007 [1]

Value of the data

- Determine to the lithological and geochemical characteristics of the working area.
- Tectonic activity, weathering, and provenance of the El Tranquilo Group.
- Data collection available for researches working in the Western Margin of Gondwana, and adjacent areas.
- Data collection available for sedimentologists, working with geochemical data.
- A most complete geochemical dataset for El Tranquilo Group.

1. Data

This article provides photomicrographies from sedimentary and igneous rocks, recalculated petrographic modal, analyses and geochemical analyses (major, trace elements, and rare earth elements (REEs)) of 80 samples. The sample location is given with the geographical coordinates of each sample and with its position in the stratigraphic column. The geochemical are presented as raw data, and simple statistic of selected geochemical parameters. Additional contains CIA, Ti/Nb-ratios, SiO₂/K₂O-ratios values of geochemical standards used for comparison in Figs. 10 and 16 (recalculated data from [8]).

2. Experimental design, materials and methods

Field work was carried out from -January 21 to February 4, 1991. Cartographic basis for the field work comprised Servicio Geológico Nacional topographical maps at a scale of 1:100,000; in 2016, the sample sites were located in Google Earth Pro (2016) sample sites were located in Google Earth Pro (2016) with a precision of +10 m. A detailed description of sampling and sample processing is given in [1] (Fig. 1 and Table 1).

Fig. 1. Position and simplified geological map with and sample location (right) displayed on a Google Earth image [2]; stratigraphic column and locations of the samples used for this data collection (modified after [1]; left).

Thin sections, documented in the Tables 2–7 are photographed using a LEICA DM2700P polarization microscope with a LEICA MC170HD Camera and a HC FL PLAN 2.5×0.07 Lens; each with parallel and crossed Nicols. Modal analyses were carried out on 37 samples, counting 300–500 points using the Gazzi–Dickinson technique to minimize the compositional dependence on grain size [17] (see Table 9, based on [3–6]; see also Figs. 2–6). The 95 confidence intervals for Student's *t*-test [18] were plotted in optically distinct shades (Tables 8,9).

Table 1Sample list and sample locations.

Sample	Lithology	m	Formation	UTM-E	UTM-N	Latitude (°N)	Longitude (°E)
ET-19	Т	2	Cañadón Largo	19-F-525.994	4.677.721	-48,05326 °N	– 68,65118 °E
ET-20	Cgl	19	Cañadón Largo	19-F-525.937	4.677.700	-48,05342 °N	- 68,65194 °E
ET-21	Т	40	Cañadón Largo	19-F-525.867	4.677.643	−48,05397 °N	— 68,65286 °Е
ET-22	U	37	Cañadón Largo	19-F-525.875	4.677.653	−48,05388 °N	— 68,65277 °Е
ET-23	U	75	Cañadón Largo	19-F-525.791	4.677.484	-48,05540 °N	-68,65388 °E
ET-24	S	105.5	Canadón Largo	19-F-525.729	4.677.384	-48,05000 °N	-69,20000 °E
E1-25 ET 26	U +S	98 100	Canadon Largo	19-F-525./42	4.677.220	-48,05606 °N	- 68,65454 °E
E1-20 FT-27		109	Canadón Largo	19-F-525.709	4.077.339	-46,03496 IN	- 08,00498 °E
FT-27	sT	110	Cañadón Largo	19-F-525.696	4.077.323	-48,05080 N -48,05703 °N	-68 65515 °F
ET-29	S	113.5	Cañadón Largo	19-F-525.700	4.677.290	-48.05715 °N	– 68.65509 °E
ET-29	Т	113.5	Cañadón Largo	19-F-525.700	4.677.290	-48,05715 °N	-68,65509 °E
ET-31	U	132,5	Cañadón Largo	19-F-525.722	4.677.260	−48,05742 °N	−68,65480 °E
ET-32	U	145.5	Cañadón Largo	19-F-525.724	4.677.200	−48,05796 °N	−68,65477 °E
ET-33	Т	156	Cañadón Largo	19-F-525.700	4.677.183	−48,05812 °N	— 68,65509 °Е
ET-34	S-Carb	160	Cañadón Largo	19-F-525.688	4.677.170	-48,05817 °N	-68,65525 °E
ET-35	T	180.3	Canadon Largo	19-F-525.649	4.677.136	-48,05854 °N	-68,65577°E
EI-38 ET 41	IUI	10 5	Voicanics Corro Loón	19-F-526.430	4.677.570	-48,05460 °N	- 68,64531 °E
E1-41 FT-47	B	- 12.5 - 10	Cerro León	19-F-526.545 19-F-526.527	4.077.734	-46,05512 N -48,05347 N	- 68 64402 °F
ET-42	B	-75	Cerro León	19-F-526 496	4 677 647	-48,05391 °N	-68 64443 °E
ET-44	Br	110	Cañadón Largo	19-F-526.278	4.677.634	-48,05403 °N	-68,64736 °E
ET-45	U		Cañadón Largo	19-F-526.320	4.677.610	-48,05425 °N	-68,64679 °E
ET-47	GS		Cañadón Largo	19-F-526.362	4.677.585	−48,05447 °N	-68,64623 °E
ET-53	Т		Cañadón Largo	19-F-525.811	4.677.527	−48,05502 °N	−68,65362 °E
ET-57	Т		Cañadón Largo	19-F-525.716	4.677.239	−48,05761 °N	−68,65488 °E
ET-59	Т	_	Cañadón Largo	19-F-525.708	4.677.223	-48,05775 °N	– 68,65498 °E
E1-60 ET C2	B	-5	Cerro Leon	19-F-526.290	4.6/7.757	-48,05293 °N	- 68,64/21 °E
E1-62 ET 62	F5 T	1.5	Canadon Largo Cañadón Largo	19-F-526.190	4.677.060	-48,05380 °N	- 68,64854 °E
ET-65	V	190.5	Volcanics	19-F-525.615	4.077.083	-48,05880 N -48,05902 °N	- 68 65622 °F
ET-66	Ů	198	Cañadón Largo	19-F-525.613	4.677.078	-48.05906 °N	-68.65625 °E
ET-67	v		Cañadón Largo	19-F-525.613	4.677.070	-48,05914 °N	-68,65625 °E
ET-68	U		Cañadón Largo	19-F-526.346	4.675.969	-48,06902 °N	-68,64634 °E
ET-70	U	188	Cañadón Largo	19-F-526.933	4.676.222	−48,06671 °N	−68,63848 °E
ET-71	S	189	Cañadón Largo	19-F-526.944	4.676.210	−48,06678 °N	−68,63833 °E
ET-72	S	192.5	Cañadón Largo	19-F-526.954	4.676.200	-48,06691 °N	-68,63820 °E
ET-74 ET-76	T	201.8	Cañadón Largo	19-F-526.938	4.676.167	-48,06720 °N	- 68,63841 °E
E1-70 FT-78	rs Ma	218	Calladioli Largo	19-F-526.852	4.676.162	-48,06725 °IN 48,06724 ∘N	- 08,03950 °E
ET-78 ET-79	MS	231.5	Cañadón Largo	19-F-526 739	4 676 154	-48,00724 N -48,06733 °N	– 68 64108 °E
ET-81	Т	255.9	Cañadón Largo	19-F-526.702	4.676.144	-48.06742 °N	-68.64158 °E
ET-84	FS	264	Cañadón Largo	19-F-526.674	4.676.144	-48,06742 °N	-68,64195 °E
ET-88	S	301.5	Cañadón Largo	19-F-526.536	4.676.121	−48,06764 °N	-68,64380 °E
ET-91	V	190	Roca Blanca	19-F-526.963	4.676.190	−48,06700 °N	-68,63808 °E
ET-92	Cgl-cl	205	Cañadón Largo	19-F-526.928	4.676.160	−48,06723 °N	−68,63854 °E
ET-93	S-Carb	210	Cañadón Largo	19-F-526.868	4.676.160	-48,06722 °N	- 68,63935 °E
E1-94 ET 06	S cT	259.5	Canadon Largo Cañadón Largo	19-F-526.653	4.676.140	-48,06746 °N	- 68,64223 °E
E1-90 FT-98	ST FC	352.5	Canadon Largo	19-F-526.780 19-F-526.720	4.070.145	-48,06741 N	- 68,64045 °E
ET-99	V	355	Roca Blanca	19-F-526.710	4.676.152	-48.06735 °N	- 68.64147 °E
ET-101	tS	361.5	Cañadón Largo	19-F-526.688	4.676.142	-48,06744 °N	-68,64175 °E
ET-102	Т	401	Cañadón Largo	19-F-526.276	4.675.844	-48,07014 °N	-68,64728 °E
ET-104	U	427.5	Cañadón Largo	19-F-526.058	4.675.795	−48,07059 °N	−68,65020 °E
ET-107	Т	438.5	Cañadón Largo	19-F-525.997	4.675.778	−48,07074 °N	—68,65102 °Е
ET-109	B	682	Cerro León	19-F-526.574	4.674.504	-48,08218 °N	-68,64319 °E
ET-110 ET 111	Г Т	678	Las Mercedes basalt	19-F-526.573	4.674.495	-48,08226 °N	- 68,64320 °E
EI-111 FT 112	I R	620 620	Las Mercedes basalt	19-1-526.573	4.675.020	-48,08232 °N	- 68,64320 °E
E1-113 FT-115	о sT	676 5	Las mercedes Dasalt	19-F-520.702	4.073.039	– 40,07728 °N – 48,07728 °N	– 00,04070°E – 68 64055 °F
ET-116	MS	665	Cañadón Largo	19-F-526 765	4.675.048	-48.07728 °N	- 68.64066 °F
ET-117	MS	662.5	Cañadón Largo	19-F-526.774	4.675.061	-48,07716 °N	-68,64054 °E
ET-118	S-Carb	650	Cañadón Largo	19-F-526.754	4.675.050	-48,07718 °N	-68,64081 °E
ET-119	FS	646	Cañadón Largo	19-F-526.752	4.675.071	−48,07707 °N	−68,64084 °E
ET-121	U	580	Cañadón Largo	19-F-526.245	4.674.951	−48,07817 °N	−68,64764 °E

Sample	Lithology	m	Formation	UTM-E	UTM-N	Latitude (°N)	Longitude (°E)
ET-122	S-Cgl	570	Cañadón Largo	19-F-526.209	4.674.960	-48,07801 °N	−68,64812 °E
ET-125	sT	554	Cañadón Largo	19-F-526.190	4.674.973	−48,07798 °N	−68,64838 °E
ET-126	U	555	Cañadón Largo	19-F-526.196	4.674.980	−48,07789 °N	— 68,64830 °Е
ET-127	U	542.8	Cañadón Largo	19-F-526.184	4.674.990	−48,07783 °N	—68,648458 °Е
ET-132	FS		Roca Blanca	19-F-526.416	4.674.848	-48,07909 °N	— 68,64533 °Е
ET-134	В	404	Cañadón Largo	19-F-525.844	4.675.784	−48,07070 °N	— 68,65307 °Е
ET-135	V	405	Cañadón Largo	19-F-525.836	4.675.782	−48,07071 °N	— 68,65318 °Е
ET-140	В	417	Cañadón Largo	19-F-525.780	4.675.775	−48,07078 °N	— 68,65393 °Е
ET-141	V	417.5	Cañadón Largo	19-F-525.773	4.675.769	−48,07083 °N	—68,65402 °Е
ET-143	S	458	Cañadón Largo	19-F-525.584	4.675.420	−48,07395 °N	— 68,65654 °Е
ET-145	U	465	Cañadón Largo	19-F-525.627	4.675.357	−48,07455 °N	— 68,65596 °Е
ET-147	S		Laguna Colorada	19-F-526.158	4.674.856	−48,07903 °N	— 68,64880 °Е
ET-149	S-Tuf		Laguna Colorada	19-F-526.022	4.678.410	-48,07942 °N	— 68,65062 °Е
ET-150	tS		Cañadón Largo	19-F-526.091	4.674.805	−48,07949 °N	— 68,64970 °Е
ET-151	Tuf		Roca Blanca	19-F-526.126	4.674.789	-48,07964 °N	— 68,64922 °Е
ET-153	GS	524	Cañadón Largo	19-F-525.807	4.675.135	−48,07654 °N	— 68,65353 °Е
ET-157	U		Laguna Colorada	19-F-525.996	4.674.944	−48,07825 °N	— 68,65098 °Е
ET-160	U	750	Laguna Colorada	19-F-530.885	4.677.103	-48,05860 °N	— 68,58550 °Е
ET-161	S	780	Laguna Colorada	19-F-530.929	4.677.052	-48,05906 °N	— 68,58490 °Е
ET-163	GS	805	Laguna Colorada	19-F-530.988	4.677.010	−48,05936 °N	−68,58411 °E
ET-164	MS	816	Laguna Colorada	19-F-531.053	4.676.988	−48,05963 °N	— 68,58323 °Е
ET-167	MS	835	Laguna Colorada	19-F-561.179	4.676.907	−48,06035 °N	−68,58154 °E
ET-168	U	845	Laguna Colorada	19-F-531.255	4.676.863	−48,06075 °N	−68,58051 °E
ET-172	GS	881.2	Laguna Colorada	19-F-531.213	4.677.154	−48,05813 °N	— 68,58110 °Е
ET-174	Т	856	Laguna Colorada	19-F-531.276	4.677.148	−44,05818 °N	−68,58025 °E
ET-175	Later	885	Laguna Colorada	19-F-531.542	4.676.950	-48,05991 °N	— 68,57667 °Е
ET-176	Mg	867.5	Laguna Colorada	19-F-531.557	4.676.946	-48,05998 °N	–68,57647 °E
ET-178	Т	869	Laguna Colorada	19-F-531.623	4.676.908	-48,06032 °N	−68,57558 °E
ET-179	S	881.2	Laguna Colorada	19-F-531.642	4.676.888	-48,06050 °N	–68,57532 °E
ET-180	MS	880	Roca Blanca	19-F-531.752	4.676.853	-48,06081 °N	−68,57384 °E
ET-181	FC	885	Roca Blanca	19-F-532.852	4.675.913	−48,06921 °N	– 68,55901 °E
ET-183	sT		Cañadón Largo	19-F-529.766	4.674.053	−48,08610 °N	−68,60030 °E
ET-185	Tuf		Roca Blanca	19-F-523.512	4.670.728	−48,11627 °N	— 68,68410 °Е

Table 1	(continued)
---------	------------	---

Abbreviations: B=basalt, Br=breccia, Cgl=conglomerate, Cgl-cl=conglomerate clast, FC=fine grained conglomerate, FS=fine grained sandstone, GS=coarse grained sandstone, Later=laterite, Mg=marl, MS=medium grained sandstone, S=sandstone, S-Carb=carbonate sandstone, S-Cgl= conglomeratic sandstone, sT=sandy claystone, S-Tuf=tuffitic sandstone, T=claystone, tS=muddy sandstone, Tuf=tuff, U=Silt, V=volcanics.

Table 2

Photmicrographies of thin sections from Section I (Cañadón Largo Formation).

Photomic	rography	Photomic	rography						
parallel nicols	crossed nicols	parallel nicols	crossed nicols						
ET-	-019	ET-019							

Photmicrographies of thin sections from Section II (Cañadón Largo Formation).

Table 4

Photmicrographies of thin sections from Section III (Cañadón Largo Formation).

Table 5

Photmicrographies of thin sections from Section IV (Laguna Colorada Formation).

Sixty samples of El Tranquilo Group sedimentary rocks in four stratigraphic sections (Sections I: 24 samples, Section II: 18 samples, Section III: 10 samples, and section IV), eight samples, underwent geochemical analysis, along with 17 samples of co-occurring volcanic rocks and three samples of the overlying Roca Blanca Formation. A detailed description of geochemical processing and analytic methods is given in [1]. The raw and processed data are listed in the Tables 10–15. The distributions of the elements in the random samples were described using the arithmetic mean and confidence limits (95% and 99%, respectively) supplied by Student's *t*-test [18] (Tables 16,17) (Table 18).

For the analysis of 45 samples, the material was crushed and dried to a constant weight at 105 °C. The loss on ignition (LOI) was determined after annealing for 1.5 h at 1,050 °C, than, the material was mixed with one part lithium tetraborate ($Li_2B_4O_7$) and melted at 1,400 °C in a graphite crucible and poured into platinum pouring bowls. Major and trace element concentrations were determined using a sequentially operating, wavelength-dispersive X-ray fluorescence spectrometer (SIEMENS SRS 303 AS, in the 1990s at the Geological Institute of Ludwig Maximilians University of Munich, Germany) on

PhotomicrographyPhotomicrographyparallel nicolscrossed nicolsparallel nicolscrossed nicols \sim </td

Table 6

Photmicrographies of thin sections from Section V (Roca Blanca Formation).

 Photomicrography
 Photomicrography

 parallel nicols
 crossed nicols
 parallel nicols
 crossed nicols

 Image: Construction of the second second

ET-185

Table 7 Photmicrographies of thin sections of acidic volcanic rocks.

a volatile-free base (major element concentrations as oxides in weight %, and trace element concentrations in ppm). In this method the measured values for Fe₂O₃ are total iron values. Rare earth elements (REEs) were analyzed using atomic emission spectroscopy, with inductively coupled plasma excitation on an ICP-AES (Jobin YVON Model 38 plus). Thirty-five samples were analyzed and pulverized by ICP-ES (for oxides of Ba, Ni, and Sc), and by ICP-MS (for trace elements and REEs) at ACME Laboratories, Vancouver, Canada. This samples are marked with an asterisk (*) in the Tables 10–15.

All the geochemical data were plotted separately for the different sections into the following diagrams SiO_2/Al_2O_3 after [9] (Fig. 7); K_2O/Na_2O [10], modified by [1] (Fig. 8); $K_2O/Na_2O-SiO_2/Al_2O_3$ [1] (Fig. 9); $Na_2O + CaO^*$ vs. Al_2O_3 vs. K_2O , after [11,19] modified by [1] (Fig. 10); Na_2O+K_2O+CaO vs. FeO+MgO vs. Al_2O_3 [12] (Fig. 11); K/Th [13] (Fig. 12); Th/Sc-Zr/Sc ratio [14] (Fig. 13); Th/Sc-Cr [1] (Fig. 14); Ti/Nb [15] (Fig. 15); Ti/Nb-SiO_2/K_2O [1] (Fig. 16); Nb/Y-Zr/TiO_2 [16] (Fig. 17).

Fig. 2. Petrographic modal analysis of El Tranquilo Group sandstones: Q-F-L after [3].

Fig. 3. Petrographic modal analysis of El Tranquilo Group sandstones: Qm-P-K after [4].

Fig. 4. Petrographic modal analysis of El Tranquilo Group sandstones: Q-F-L after [6].

Fig. 5. Petrographic modal analysis of El Tranquilo Group sandstones: Qm-F-Lt after [6].

Fig. 6. Petrographic modal analysis of El Tranquilo Group sandstones: Q-F-L diagram after [6].

Table 8

Photmicrographies of thin sections of basic igneous rocks.

Table 9Recalculated modal point-count data for analyzed sandstones.

Sample	[3]			[3]			[4]			[5,6]			[5]		P/F	Lv/L	
	Q	F	L+Qc	Ls	Lv	Lm	Qm	Р	К	Q	F	L	Qm	F	Lt		
Lower Cañadón Lar	go Fo	rmati	on (Sec	tion I)													
ET-44	26	39	35	32	49	20	35	63	1	26	39	35	21	39	40	0.97	0.48
ET-44	26	39	35	32	49	20	35	63	1	26	39	35	21	39	40	0.97	0.48
ET-20	48	23	30	31	66	3	41	27	32	50	24	26	16	23	61	0.45	0.65
ET-24	51	43	6	57	43	0	26	29	45	52	44	4	15	43	42	0.39	0.42
ET-29	42	49	9	45	45	9	30	23	47	43	51	6	21	49	30	0.33	0.45
ET-34	51	43	6	57	43	0	26	29	45	52	44	4	15	43	42	0.39	0.42
EI-63	41	39	20	36	50	14	33	30	37	42	40	19	19	39	42	0.44	0.49
Mean (AM)	43.2	39.3	17.7	43.0	49.3	/./	31.8	33.5	34.5 16.2	44.2	40.3	15./	17.8	39.3	42.8	0.50	0.49
Confidence (+ 95%)	53.2	30.1 48.6	4.5 31.0	55.5	40.2 58.4	-0.9	25.0	10.1	10.5	54.6	20.0 ∕0.9	1.9 20 /	20.8	JU.I	52.5	0.25	0.59
connuence (+55%)	JJ.1	-0.0	J1.0		J0. 4	10.2	37.5	40.5	J2.7	J 4 .0	-15.0	23.4	20.0	-0.0	JJ. 1	0.74	0.50
Middle Cañadón La	rgo Fo	ormat	ion (Se	ction l	1)		20		~						45	0.07	0.50
E1-68	15	41	44	37	59	4	26	73	2	15	41	44	14	41	45	0.97	0.58
EI-/I	3U 40	43	27	50	49	1	39	60 17	0	31	43	26	28	43	30 40	0.99	0.48
E1-70 FT 72	48	30	16	41	59	0	38 10	1/	45	48	30	16	22	30	42	0.27	0.58
E1-72 ET 70	22 52	49	29 7	22	67	10	18	34 20	4ð 20	22 E C	21 42	27	11	49	40	0.4	0.68
E1-79 ET 99	33 70	40 25	/ E	20	40	40	42	20 12	30 22	30 71	42	4	20 10	40 25	32 27	0.40	0.05
E1-00 FT_02	11	20	58	20 18	40 80	40	16	38	22 46	11	23	4 56	40 6	20	62	0.30	0.35
ET-03	28	32	30	10	70	1	25	12	22	20	35	35	11	32	56	0.45	0.8
ET-93	20 57	33	10	1/	79	7	50	29	21	59	33	8	32	33	35	0.55	0.78
ET-98	32	27	41	3	94	3	49	7	43	32	28	40	27	27	46	0.14	0.70
ET-104	54	35	12	60	40	0	45	, 10	44	56	36	8	29	35	36	0.14	0.34
Mean (AM)	38.2	35.8	26.2	28.6	64.9	6.4	37.6	31.8	30.4	39.1	36.6	24.2	23.3	35.8	41.0	0.49	0.64
Confidence (– 95%)	25.3	31.1	14.3	17.2	53.2	-1.4	27.4	17.8	18.7	25.7	31.7	12.0	15.1	31.1	33.7	0.30	0.52
Confidence (+95%)	51.1	40.5	38.0	40.1	76.6	14.2	47.8	45.9	42.0	52.4	41.5	36.3	31.4	40.5	48.3	0.68	0.76
Upper Cañadón Lar	o for	matio	on (Sec	tion II	n												
ET-118	31	36	32	50	47	3	44	55	0	31	36	32	29	36	35	0.99	0.46
ET-122	26	32	42	43	53	4	43	56	1	26	33	41	25	32	43	0.98	0.53
ET-143	50	23	26	0	100	0	56	10	33	53	24	23	29	23	47	0.23	0.99
ET-116	40	34	26	32	68	0	34	14	52	42	35	24	17	34	49	0.21	0.68
ET-117	44	40	16	71	29	0	33	25	42	44	40	16	20	40	40	0.37	0.28
ET-121	46	38	16	4	96	0	37	13	49	46	38	16	22	38	39	0.21	0.95
ET-153	47	43	11	6	87	6	37	12	51	47	43	10	25	43	32	0.18	0.87
Mean (AM)	40.6	35.1	24.1	29.4	68.6	1.9	40.6	26.4	32.6	41.3	35.6	23.1	23.9	35.1	40.7	0.45	0.68
Confidence (-95%)	32.3	29.1	14.2	4.4	43.7	-0.4	33.2	7.5	11.4	32.5	29.9	13.3	19.7	29.1	35.0	0.11	0.43
Confidence (+95%)	48.8	41.1	34.1	54.5	93.5	4.1	47.9	45.3	53.7	50.1	41.2	32.9	28.0	41.1	46.4	0.79	0.93
Laguna Colorada Fn	n.																
ET-163	43	11	46	0	95	5	60	16	24	49	13	38	17	11	72	0.39	0.94
ET-172	51	27	22	11	89	0	41	11	48	52	27	21	18	27	55	0.18	0.88
ET-179	39	22	39	0	0	100	40	18	42	41	23	36	14	22	64	0.3	0
ET-160	35	30	35	31	61	7	35	11	55	36	30	34	16	30	55	0.16	0.61
ET-167	27	25	49	38	37	26	48	49	3	28	26	46	22	25	53	0.93	0.36
ET-174	57	36	7	0	100	0	45	12	43	57	36	6	30	36	34	0.21	0.99
Mean (AM)	42.0	25.2	33.0	13.3	63.7	23.0	44.8	19.5	35.8	43.8	25.8	30.2	19.5	25.2	55.5	0.36	0.63
Confidence (– 95%) Confidence (+ 95%)	30.6 53.4	16.3 34.0	16.3 49.7	-4.6 31.3	22.4 104.9	- 17.8 63.8	35.7 53.9	4.0 35.0	15.8 55.9	32.5 55.2	17.8 33.9	15.1 45.2	13.4 25.6	16.3 34.0	42.1 68.9	0.06 0.67	0.22 1.04
Dincón Planas F						=											=
ET 140	22	21	47	20	60	2	<i>1</i> 1	10	11	25	22	12	15	21	65	0.2	0.69
E1-149 FT_122	3∠ ∕0	21 20	4/ 21	20 14	86	0	41 51	10 16	41 22	50 50	20 20	42 21	10 21	21 20	30 20	0.5	0.00
ET-132 FT-147	49 79	29 10	∠ı 53	1 4 27	60	4	10	10	20 20	22 20	30 22	∠1 ∕\?	יר 18	29 10	23	0.51	0.00
E1-147 FT-180	∠o 52	38	О	27 5	81	+ 14	49 34	14 28	38	53 52	دے 38	4) 9	20	38	02 42	0.20	0.00
ET-185	32	23	45	88	6	6	53 53	43	4	32	23	45	26	23		0.42	0.06
Mean (AM)	38.6	26.0	35.0	32.4	62.2	5.4	45.6	23.8	30.8	40.6	27.4	32.0	22.0	26.0	52.0	0.44	0.61
Confidence (– 95%)	24.9	16.5	11.4	-8.0	22.1	-1.1	35.8	8.9	11.9	28.1	19.1	12.0	14.0	16.5	37.6	0.11	0.22
Confidence (+95%)	52.3	35.5	58.6	72.8	102.3	11.9	55.4	38.7	49.7	53.1	35.7	52.0	30.0	35.5	66.4	0.77	1.01

Table 10
Geochemical parameters of samples from Section I ($CaO^* = recalculated CaO$ free of CaO in Carbonates).

Sample	ET-19	ET-20*	ET-21	ET-22	ET-23	ET- 24*	ET-25	ET-26	ET-27	ET-28	ET-29*	ET- 29*	ET-31	ET-33	ET-34*	ET-35	ET-45	ET-47	ET-53	ET-57	ET-59	ET-62	ET- 63*	ET- 66
SiO2	70.4	65.05	74.45	72.23	71.37	72.86	70.14	74.97	72.92	65.58	71.05	71.58	75.51	72.27	71.09	76.21	78.05	78.23	76.7	75.75	77.94	74.91	74.06	75.31
TiO2	0.59	0.39	0.42	0.45	0.51	0.36	0.6	0.37	0.52	0.79	0.55	0.45	0.35	0.3	0.39	0.42	0.49	0.26	0.49	0.42	0.25	0.34	0.25	0.5
AI203	13.9	12.09	12.45	14.12	13.78	13.25	13.99	12.55	13.2	16.56	14.63	13.49	12.16	13.67	12.53	11.9	11.23	11.3	11.16	12.04	10.3	15.37	11.3	11.4
rezus MnO	5.38 nd6	2.22	2.72 nd3	5.01 n.d.3	5.69 n.d.2	1.54 n.d.5	2.05 n.d.7	2.09 n.d.3	5.5 nd2	5.51 nd6	2.17 nd3	5.51 nd4	2.07 p.d.5	4.05 nd5	2.57 n.d.6	1.7 nd4	1.11 n d 2	1.70 nd3	2.95 n.d.4	2.04 n.d.4	2.5 nd2	1.55 n.d.3	1.72 nd4	2.18 n.d.5
MgO	2.24	0.10	0.62	0.84	0.67	0.44	0.98	0.57	0.37	1.65	0.61	0.82	0.73	0.8	0.59	0.54	0.46	0.64	0.91	1.03	0.73	0.6	0.5	0.71
CaO	0.43	6.24	0.02	0.04	0.07	158	149	0.57	0.27	0.44	0.56	0.02	0.75	0.54	2.63	1	0.40	0.04	0.51	0.26	0.75	0.0	3.66	0.71
CaO*	n.d.7	4.97	n.d.	n.d.	n.d.	0.99	0.35	n.d.	n.d.	n.d.6	n.d.5	n.d.	n.d.	0.15	1.69	0.61	n.d.	n.d.	n.d.	n.d.	n.d.4	n.d.	2.99	n.d.
Na2O	1.1	2.79	1.17	2.48	1.55	3.42	1.82	0.73	2.57	1.9	3.3	2.42	1.73	1.08	3.89	2.35	0.4	1.58	2.05	1.92	0.98	3.01	2.76	1.84
K20	2.48	3.4	5.37	4.65	5.38	3.3	4.7	6.39	5.01	4.34	3.95	3.65	4.63	2.25	2.78	2.06	6	4.4	3.26	4.13	4.07	4.5	1.91	5.92
P205	n.d.6	n.d.9	n.d.7	0.12	0.11	n.d.4	0.13	n.d.3	n.d.7	0.15	0.1	n.d.8	n.d.5	n.d.4	n.d.8	n.d.6	n.d.8	n.d.5	0.13	n.d.7	n.d.4	n.d.7	n.d.5	0.13
LOI	3.44	6.7	2.38	1.62	2.43	3	3.5	2.09	1.79	3.26	2.7	3.5	1.89	4.29	3.2	3.8	1.98	1.47	1.92	1.7	3.12	1.39	3.6	1.61
CO2	0.46	4.47	n.d.	n.d.	n.d.	1.08	0.53	n.d.	n.d.	0.27	n.d.9	n.d.	n.d.	0.35	1.74	0.84	n.d.	n.d.	n.d.	n.d.	0.13	n.d.	2.79	n.d.
CaCO3*	0.12	8.87	n.d.	n.d.	n.d.	1.77	0.62	n.d.	n.d.	0.11	n.d.9	n.d.	n.d.	0.27	3.02	1.09	n.d.	n.d.	n.d.	n.d.	n.d.7	n.d.	5.34	n.d.
Cr	19	27	14	23	17	0	31	13	14	49	20	20	10	9	20	7	18	10	13	29	8	11	13	16
Ni	0	8	3	11	0	4	13	0	0	14	5	10	1	0	13	0	1	14	0	11	0	0	10	0
6	/	4	10	10	10	2	10	9	14	12	5	5	8	/	5	3 10	11	9	9	9	7	19 F	4	14
SC V	15	0 19	11	0 40	0 51	4	11	0 46	1Z 91	17	30	8 56	9 37	9 31	0 70	10	4 45	4 32	40	10	7	36	4	/
Ph	10 12	12	40	30	48	13	-47 68	40 56	83	52	15	28	52	30	15	37	45	14	36	38	20	<u>⊿</u> 0	13	4J 55
Zn	77	31	73	70	61	47	71	23	45	111	82	97	61	24	61	27	22	34	50 57	42	15	29	24	58
Rb	144	111	209	185	213	119	180	257	199	198	144	145	186	145	89	118	290	187	143	173	194	136	77	214
Ba	420	1428	896	1056	1177	671	1265	1743	1275	997	1049	962	1264	746	10053	1517	878	925	1230	1115	1065	1083	370	2284
Sr	139	302	127	186	121	179	200	115	181	148	203	155	134	210	248	374	217	364	171	180	129	180	283	146
Ga	22	13	17	16	19	15	18	16	17	22	15	15	16	21	10	14	15	9	16	16	15	13	10	15
Та	1.06	0.5	1.41	2.37	1.14	0.8	2.05	1.33	1.4	0.85	1	0.8	1.51	0.94	0.5	0.97	1.85	1.89	1.79	1.31	1.16	1.7	0.6	1.63
Nb	13.2	7.9	11.3	15.8	14.1	13.5	17.7	10.3	15.1	17.9	16.9	12.2	9.7	14.6	8.9	11.8	11.2	12.8	13.4	10.3	6.9	10.1	6.3	12.9
Hf	8.47	3.6	9.55	4.78	10.1	4.9	11.35	9.18	14.05	10.1	15.3	4.9	9	9.58	4.8	12.65	9.68	4.11	10.5	9.27	8.87	10.9	2.9	11.55
Zr	92	138	108	92	145	184	191	116	246	170	587	168	109	131	193	192	97	139	135	106	90	156	101	174
Y	19	14	21	29	33	21	40	21	23	35	30	21	21	25	15	25	33	17	28	18	17	20	16	28
	10.25	10.5	10.0	15.5	20.45	15.0	24.75	20.25	22.6	20.35	33.4 12	18.3	14.55	14.55	13.7	8.99	20.25	13.55	12.55	13.7	12.95	15.1	δ 10	23
U Ia	2.00 n d	1.0 37 <i>4</i>	2.49 n.d	2.94 46.43	5.62 n.d	2.5	2.01 n.d	2.01 n.d	2.94 n.d	5.70 nd	4.5 873	4.2 35.1	2.04 n.d	2.41 n.d	2.J 43.3	5.05 n.d	5.45 n.d	2.70 n.d	2.50 n.d	5.42 n.d	2.05 n.d	5.15 n.d	32.6	4.17 n.d
Ce	n d	76.2	n d	92 72	n d	1213	n d	n d	n d	n d	175 9	64.9	n d	n d	82.7	n d	n d	n d	n d	n d	n d	n d	58.9	n d
Pr	n.d.	8.29	n.d.	10.15	n.d.	12.74	n.d.	n.d.	n.d.	n.d.	18.78	7.38	n.d.	n.d.	8.62	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	6.59	n.d.
Nd	n.d.	29.9	n.d.	39.31	n.d.	44.1	n.d.	n.d.	n.d.	n.d.	71.9	24.7	n.d.	n.d.	31.1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	23.3	n.d.
Sm	n.d.	4.76	n.d.	9.47	n.d.	7.7	n.d.	n.d.	n.d.	n.d.	11.28	4.81	n.d.	n.d.	4.96	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3.76	n.d.
Eu	n.d.	0.81	n.d.	2.44	n.d.	1.3	n.d.	n.d.	n.d.	n.d.	1.81	1.04	n.d.	n.d.	0.98	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	n.d.
Gd	n.d.	3.98	n.d.	10.64	n.d.	5.66	n.d.	n.d.	n.d.	n.d.	9.05	4.28	n.d.	n.d.	3.83	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3.42	n.d.
Tb	n.d.	0.54	n.d.	1.41	n.d.	0.76	n.d.	n.d.	n.d.	n.d.	1.18	0.69	n.d.	n.d.	0.53	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.52	n.d.
Dy	n.d.	2.52	n.d.	8.35	n.d.	4.39	n.d.	n.d.	n.d.	n.d.	6.3	4.27	n.d.	n.d.	2.87	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2.86	n.d.
Но	n.d.	0.45	n.d.	n.d.	n.d.	0.74	n.d.	n.d.	n.d.	n.d.	1.01	0.85	n.d.	n.d.	0.55	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.54	n.d.

Tab	le	10	(continued))
-----	----	----	-------------	---

Sample	ET-19	ET-20*	ET-21	ET-22	ET-23	ET- 24*	ET-25	ET-26	ET-27	ET-28	ET-29*	ET- 29*	ET-31	ET-33	ET-34*	ET-35	ET-45	ET-47	ET-53	ET-57	ET-59	ET-62	ET- 63*	ET- 66
Er	n.d.	1.36	n.d.	4.65	n.d.	1.79	n.d.	n.d.	n.d.	n.d.	2.97	2.4	n.d.	n.d.	1.67	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.66	n.d.
Tm	n.d.	0.24	n.d.	n.d.	n.d.	0.28	n.d.	n.d.	n.d.	n.d.	0.44	0.38	n.d.	n.d.	0.26	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.19	n.d.
Yb	n.d.	1.43	n.d.	4.85	n.d.	1.6	n.d.	n.d.	n.d.	n.d.	2.73	2.49	n.d.	n.d.	1.75	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.59	n.d.
Lu	n.d.	0.2	n.d.	0.84	n.d.	0.29	n.d.	n.d.	n.d.	n.d.	0.44	0.38	n.d.	n.d.	0.27	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.21	n.d.
Chem.	Psam.	CaO + +	Psam.	Rest + +	Psam.	Psam.	Psam.	Psam.	Psam.	Pelite	Rest + +	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.	Psam.
Lit																								
Zr/Ti	155.93	355.38	257.14	204.44	284.31	513.05	318.33	313.51	473.07	215.18	1068.54	374.44	311.42	436.66	496.66	457.14	197.95	534.61	275.51	252.38	360	458.82	404	348
Nb/Y	0.69	0.56	0.53	0.54	0.42	0.63	0.44	0.49	0.65	0.51	0.54	0.56	0.46	0.58	0.57	0.47	0.33	0.75	0.47	0.57	0.4	0.5	0.39	0.46
Th/Sc	0.68	1.75	1.5	2.55	2.55	3.9	2.25	3.37	1.88	1.19	6.68	2.28	1.61	1.61	2.28	0.89	5.06	3.38	2.09	1.37	1.85	3.02	2	3.28
Ti/Nb	268	296	223	171	217	160	203	215	206	265	195	221	216	123	263	213	262	122	219	244	217	202	238	232
CIA	73.5	53.8	60.2	59.2	61.3	56.6	58.6	60.	57.1	66.9	58.4	61.2	59.8	73.9	53.4	64.1	60.5	59.2	60.3	60.2	61.7	56.9	59.4	54
PIA	82.8	55.7	73.2	66	73.6	59.4	65	79.7	63.4	77.3	62.8	67.4	69.3	82.4	54.5	68.5	84.9	68.3	66.6	68.5	74.7	61.8	62	60.1
CIW	85.6	64.3	83.6	75.1	82.8	66.7	74.5	89.7	74.7	82.6	70.4	74.5	79.3	85.1	61.2	72.8	93	78.8	74.5	77.5	83.8	71.8	66.7	77.5
Eu/Eu*	n.d.	0.57	n.d.	0.74	n.d.	0.6	n.d.	n.d.	n.d.	n.d.	0.55	0.7	n.d.	n.d.	0.69	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.85	n.d.
REE	n.d.	17.67	n.d.	6.47	n.d.	25.68	n.d.	n.d.	n.d.	n.d.	21.61	9.53	n.d.	n.d.	16.72	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	13.85	n.d.
LREE	n.d.	4.95	n.d.	3.09	n.d.	4.97	n.d.	n.d.	n.d.	n.d.	4.87	4.59	n.d.	n.d.	5.49	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	5.46	n.d.
HREE	n.d.	2.26	n.d.	1.78	n.d.	2.87	n.d.	n.d.	n.d.	n.d.	2.69	1.39	n.d.	n.d.	1.77	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.74	n.d.
S-REE	n.d.	168.08	n.d.	231.26	n.d.	263.45	n.d.	n.d.	n.d.	n.d.	391.09	153.67	n.d.	n.d.	183.39	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	137.14	n.d.

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; $CaCO^* = maximum CaO$ in Carbonates recalculated from CO₂; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO + + : CaO enriched samples; Psam.: Psammite classified samples; Rest + + : enriched in SiO₂ and Al₂O₃; Rest-: impoverished in SiO₂ and Al₂O₃; $Eu/Eu^* = Eu_N/(Sm_N xGd_N)^{0.5}$ Samples are not LOI-free recalculated. Samples marked with (*) analyzed by ACME Laboratories, Canada.

Sample	ET-70*	ET-72*	ET-74*	ET-76	ET-78	ET-79*	ET-81	ET-84	ET-88*	ET-92*	ET-93*	ET-94*	ET-96	ET-98*	ET-101	ET-102	ET-104	ET-107
SiO ₂	73.18	48.3	54.56	71	74.78	60.9	75.34	70.44	52.33	64.07	47.97	68.94	79.38	71.61	74.9	68.04	64.56	67.99
TiO ₂	0.33	0.34	0.41	0.55	0.53	1.01	0.47	0.58	0.31	0.6	0.46	0.51	0.37	0.54	0.53	0.41	0.62	0.33
Al ₂ O ₃	13.27	10.72	13.18	14.06	13.15	16.01	11.67	13.8	12.41	15	11.68	14.7	11.3	13.33	12.44	15.15	13	8.91
Fe ₂ O ₃	2.51	2.29	3.05	4.48	2.34	8.04	3.53	2.89	2.11	3.96	3.37	4.19	1.86	4.03	4.14	3.48	7.98	12.94
MnO	0.04	0.61	0.02	0.03	0.02	0.08	0.04	0.05	0.39	0.11	0.45	0.06	0.01	0.06	0.03	0.03	0.08	0.09
MgO	0.75	0.52	0.95	1.13	0.91	2.22	1.06	1.41	0.67	1.26	0.82	0.93	0.75	1.26	1.52	1.63	2.27	4.51
CaO	0.3	16.31	0.89	0.51	0.32	1	0.28	1.95	12.8	3.03	14.98	0.7	0.27	0.69	0.18	0.12	2.38	0.33
CaO*	n.d.	15.86	n.d.	0.08	n.d.	0.11	n.d.	0.56	12.69	1.65	13.9	0.08	n.d.	0.06	n.d.	0.05	0.7	0.11
Na ₂ O	1.45	1.82	0.69	1.58	1.7	3.5	1.11	1.89	1.19	3.11	2.04	3.28	1.12	2.26	1.19	0.8	2.24	0.21
K ₂ O	5.35	3.64	3	3.37	3.61	2.05	3.62	3.07	5.15	2.98	3.8	3.72	2.34	1.61	2.15	5.7	1.32	0.18
P_2O_5	0.02	0.07	0.02	0.12	0.16	0.18	0.14	0.18	0.09	0.13	0.1	0.09	0.1	0.15	0.06	0.06	0.11	0.11
LOI	2.6	15.1	23.1	3.24	2.52	4.7	2.72	3.84	12.3	5.5	14	2.7	2.54	4.2	2.93	4.8	5.2	4.63
CO2	n.d.	13	n.d.	0.25	n.d.	0.35	n.d.	0.88	10.86	2.05	11.74	0.19	n.d.	0.16	n.d.	1.89	1.28	1.71
CaCO ₃ *	n.d.	28.31	n.d.	0.14	n.d.	0.2	n.d.	1	22.65	2.94	24.81	0.14	n.d.	0.11	n.d.	0.09	1.25	0.2
Cr	13	20	27	29	26	54	19	22	0	34	27	34	11	34	16	9	47	32
Ni	11	8	3	17	14	13	0	0	5	11	9	13	3	15	1	5	22	3
Со	10	8	2	12	10	18	9	11	5	13	12	9	5	10	6	12	17	12
Sc	7	6	11	13	15	17	8	11	5	13	8	9	14	7	11	10	10	10
v	40	57	78	72	72	197	48	55	30	108	82	147	62	86	50	39	82	73
Pb	18	8	22	54	36	6	53	40	10	14	8	14	32	17	33	52	13	15
Zn	56	35	38	86	46	87	45	47	34	52	46	88	18	67	54	97	74	71
Rb	229	126	139	159	159	79	163	136	181	119	126	128	129	76	103	153	51	9
Ba	1497	1765	510	904	1434	777	796	590	1110	898	1822	823	591	1079	393	512	806	134
Sr	135	348	139	136	134	225	86	352	206	301	372	187	92	325	88	79	400	65
Ga	17	12	13	21	16	21	22	21	13	18	13	17	18	15	19	20	15	18
Та	0.7	0.6	0.5	1.19	1.84	0.9	1.94	0.78	0.6	0.6	0.4	1	1.36	0.7	0.89	0.87	0.5	0.82
Nb	9.1	6	7	13.1	15.6	12.8	15	16.7	7.4	8.5	6.8	9.7	9.2	9.9	12	10.2	8.2	8.1
Hf	2.6	3.3	4.3	9.37	4.55	9.4	9.81	13.65	3.5	5	3.5	5.9	9.49	4.6	11.75	8.37	4.6	6.8
Zr	74	112	157	138	138	374	117	245	126	190	121	223	98	179	170	117	167	77
Y	12	17	29	24	20	28	25	31	12	16	20	18	20	22	22	26	18	14
Th	13.3	8.9	10.9	15.5	15.65	16.9	17	19.35	9.2	13.4	10.4	17.3	10.45	13.6	12.05	17.95	8.2	3.79
U	2.6	1.3	3.2	3.2	2.39	2.3	3.95	4.41	1.8	2.3	1.8	3	2.3	3.6	2.94	3.62	1.9	2.13
La	20.5	27.5	40.5	n.d.	n.d.	59.7	n.d.	n.d.	27	40.6	39	53.7	n.d.	65	n.d.	n.d.	32.7	n.d.
Ce	40.8	50.9	84.7	n.d.	n.d.	121.2	n.d.	n.d.	52.4	77.9	72.6	97.3	n.d.	128.9	n.d.	n.d.	65.4	n.d.
Pr	4.45	5.87	9.37	n.d.	n.d.	13.22	n.d.	n.d.	5.6	8.33	7.74	10.12	n.d.	13.24	n.d.	n.d.	7.13	n.d.
Nd	15.7	22.1	35.2	n.d.	n.d.	48.1	n.d.	n.d.	19.5	28.9	29.7	37.2	n.d.	47	n.d.	n.d.	27	n.d.
Sm	2.58	4.1	6.82	n.d.	n.d.	8.56	n.d.	n.d.	3.31	5.13	4.41	5.64	n.d.	7.74	n.d.	n.d.	5.07	n.d.
Eu	0.64	0.89	1.23	n.d.	n.d.	1.55	n.d.	n.d.	0.81	1.17	0.94	1.13	n.d.	1.54	n.d.	n.d.	1.06	n.d.
Gd	2.14	3.35	5.76	n.d.	n.d.	6.93	n.d.	n.d.	2.73	3.94	4.07	4.4	n.d.	6.14	n.d.	n.d.	4.14	n.d.

Table 11Geochemical parameters of samples from Section II ($CaO^* =$ recalculated CaO free of CaO in Carbonates).

Table 11 (continued)

Sample	ET-70*	ET-72*	ET-74*	ET-76	ET-78	ET-79*	ET-81	ET-84	ET-88*	ET-92*	ET-93*	ET-94*	ET-96	ET-98*	ET-101	ET-102	ET-104	ET-107
Tb	0.38	0.55	0.8	n.d.	n.d.	1.03	n.d.	n.d.	0.39	0.57	0.6	0.61	n.d.	0.88	n.d.	n.d.	0.61	n.d.
Dy	2.37	3.07	4.82	n.d.	n.d.	5.33	n.d.	n.d.	2.13	3.27	3.5	3.55	n.d.	4.68	n.d.	n.d.	3.39	n.d.
Но	0.47	0.62	0.91	n.d.	n.d.	1	n.d.	n.d.	0.42	0.61	0.72	0.69	n.d.	0.82	n.d.	n.d.	0.67	n.d.
Er	1.52	1.71	2.85	n.d.	n.d.	2.69	n.d.	n.d.	1.2	1.89	1.93	1.82	n.d.	2.32	n.d.	n.d.	1.96	n.d.
Tm	0.24	0.26	0.44	n.d.	n.d.	0.41	n.d.	n.d.	0.18	0.3	0.3	0.29	n.d.	0.33	n.d.	n.d.	0.29	n.d.
Yb	1.52	1.65	2.82	n.d.	n.d.	2.52	n.d.	n.d.	1.14	2.13	2.16	1.91	n.d.	2.32	n.d.	n.d.	1.96	n.d.
Lu	0.25	0.24	0.46	n.d.	n.d.	0.38	n.d.	n.d.	0.17	0.32	0.32	0.27	n.d.	0.31	n.d.	n.d.	0.32	n.d.
Chem.Lit	Psam.	CaO + +	Rest-	Rest + +	Psam.	Pelite	Psam.	Psam.	CaO++	Pelite	CaO++	Rest++	Psam.	Psam.	Psam.	Rest++	Rest-	Rest-
Zr/Ti	224.84	329.7	384.87	250.9	260.37	370.69	248.93	422.41	407.74	317.66	264.56	438.43	264.86	332.4	320.75	285.36	269.51	233.33
Nb/Y	0.71	0.34	0.23	0.54	0.78	0.44	0.6	0.53	0.57	0.5	0.32	0.53	0.46	0.43	0.54	0.39	0.45	0.57
Th/Sc	1.9	1.48	0.99	1.19	1.04	0.99	2.12	1.75	1.84	1.03	1.3	1.92	0.74	1.94	1.09	1.79	0.82	0.37
Ti/Nb	217	340	351	252	204	473	188	208	251	423	406	315	241	327	265	241	453	244
CIA	60.4	58.5	68.8	67.5	65.5	63.5	66.3	61.7	62.2	58.6	55.9	58.7	70.9	68	73.5	66.9	62.1	92.7
PIA	72.1	64.9	78.5	76.9	75.3	66.4	79.3	66.6	77.7	61.6	59.7	62.8	80.6	71.9	82.4	87.2	64	94.5
CIW	82.1	74.5	82.9	81.8	81.3	69.6	85.2	72.4	86.4	67.1	69.6	69.9	84.2	74.6	85.2	92	66.7	94.6
Eu/Eu*	0.83	0.73	0.6	n.d.	n.d.	0.62	n.d.	n.d.	0.82	0.8	0.68	0.69	n.d.	0.68	n.d.	n.d.	0.71	n.d.
REE	9.11	11.26	9.7	n.d.	n.d.	16.01	n.d.	n.d.	16	12.88	12.2	19	n.d.	18.93	n.d.	n.d.	11.27	n.d.
LREE	5	4.22	3.74	n.d.	n.d.	4.39	n.d.	n.d.	5.13	4.98	5.57	5.99	n.d.	5.29	n.d.	n.d.	4.06	n.d.
HREE	1.14	1.65	1.66	n.d.	n.d.	2.23	n.d.	n.d.	1.94	1.5	1.53	1.87	n.d.	2.14	n.d.	n.d.	1.71	n.d.
Σ REE	93.56	122.81	196.68	n.d.	n.d.	272.62	n.d.	n.d.	116.98	175.06	167.99	218.63	n.d.	281.22	n.d.	n.d.	151.7	n.d.

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; $CaCO^* = maximum CaO$ in Carbonates recalculated from CO_2 ; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO + + : CaO enriched samples; Psam.: Psammite classified samples; Rest + +: enriched in SiO₂ and Al₂O₃; Rest-: impoverished in SiO₂ and Al₂O₃; $Eu/Eu^* = Eu_N/(Sm_NxGd_N)^{0.5}$ Samples are not LOI-free recalculated. Samples marked with (*) analyzed by ACME Laboratories, Canada.

Fable 12
Geochemical parameters of samples from Section III ($CaO^* = recalculated CaO$ free of CaO in Carbonates).

Sample	ET-115	ET-116*	ET-117*	ET-119	ET-121*	ET-125	ET-126*	ET-127	ET-145	ET-153*
SiO ₂	67.5	45.72	66.56	70.71	78.21	68.01	67.55	71.39	66.14	68.8
TiO ₂	0.61	0.29	0.74	0.57	0.19	0.63	0.55	0.48	0.78	1.3
Al ₂ O ₃	14.66	9.39	14.75	13.89	12.78	14.87	15.61	14.61	14.48	11.29
Fe ₂ O ₃	4.44	2.69	5.95	4.89	0.58	6.64	5.27	4.6	7.78	2.68
MnO	0.05	0.3	0.06	0.05	0	0.05	0.03	0.03	0.09	0.08
MgO	1.12	0.5	0.93	1.2	0.43	1.25	1.26	1.1	1.75	1.16
CaO	1.78	19.1	0.87	0.52	0.34	0.44	0.38	0.25	0.93	3.58
CaO*	1.18	18.92	0.02	n.d.	n.d.	0.22	0.01	0.02	0.17	2.11
Na ₂ O	1.39	1.95	2.99	0.99	0.35	1.38	1.27	1.43	1.53	2.07
K ₂ O	3.88	2.79	2.73	3.96	3.4	2.83	3 66	2.98	2.86	3 34
P ₂ O ₅	0.08	0.15	0.21	0.34	0.03	0.16	0.05	0.06	0.27	02
1.01	4 65	17	39	2.88	3.6	3.82	42	3.12	3 46	52
CO2	1.73	16.19	0.04	n.d.	n.d.	0.86	0.05	0.13	0.48	2.4
CaCO ₂ *	2.11	33.77	0.04	n.d.	n.d.	0.39	0.02	0.04	0.3	3.77
Cr	29	20	41	23	0	23	34	16	46	41
Ni	1	7	14	3	0	4	13	0	17	10
Co	17	4	15	14	0	13	7	12	25	5
Sc	10	5	10	10	1	14	, 11	12	14	9
v	64	37	105	59	20	56	79	47	85	56
Ph	62	7	105	43	4	40	26	47	39	17
70	74	, , , , , , , , , , , , , , , , , , , ,	103	80	2	122	85	78	115	59
Rh	167	88	112	166	144	125	156	180	115	116
Ra	924	716	642	1011	540	476	987	536	800	1430
Sr	202	493	198	113	59	88	86	92	128	316
61	202	8	10	21	12	22	10	22	20	12
Ga Ta	0.87	05	13	12	0.6	0.08	15	113	104	12
Nh	13.9	62	15.7	13.4	10.0	131	116	1.15	16.9	26.8
Hf	11 15	3.1	14.4	0.28	3.4	0.38	11.0	0.63	10.5	10.6
7r	220	104	596	135	101	1/7	1/2	136	218	/10
ZI V	220	104	27	27	7	25	22	28	210	-115
Th	171	72	27	16.05	7 21.1	12.95	15 7	19 15	14.05	22 0
111	17.1	1.2	5	2 40	21.1	12.85	1J.7 5 2	2 76	2 96	20
0	4.47 n.d	1.7	J 72 5	2.49 n.d	2.1	2.77 p.d	J.J 42.5	3.70 715	2.00 n.d	120.5
La	n.u.	25.0	150	n.u.	20.9 52	n.d.	42.J 85.0	11 74	n.u.	2431
Dr	n.d.	5.08	16.03	n.u.	JZ 452	n.d.	9.64	nd	n.u.	2401
Nd	n.d.	15.00	575	n.u.	13.6	n.d.	373	8 87	n.u.	24.01 70.1
Sm	n.d.	2 78	0 70	n.u.	171	n.d.	672	136	n.u.	11 28
5m Fu	n.d.	0.50	156	n.u.	0.37	n.d.	137	0.21	n.u.	167
Cd	n.d.	2 /1	7.05	n.u.	15	n.d.	5.30	10	n.u.	7.69
Th	n.d.	0.37	1.03	n.u.	0.25	n.d.	0.79	0.69	n.u.	0.08
Dv	n.d.	186	5 33	n.d.	127	n d	4 31	171	n.d.	4.8
Но	n d	0.3	1	n d	0.3	n d	0.82	n d	n d	0.76
Fr	n d	0.93	2.84	n d	0.88	n d	2.56	0.66	n d	2 35
Tm	n d	0.55	0.45	n d	0.00	n d	0.36	n d	n d	0.36
Vh	n d	103	3.03	n d	129	n d	2.5	1.04	n d	2.24
In	n d	0.17	0.47	n d	0.19	n d	0.38	0.14	n d	0.38
Chem Lit	Delite	$C_{2}O \perp \perp$	Delite	Psam	Peam	Rest⊥⊥	Pelite	Rest⊥⊥	Delite	Psam
Zr/Ti	360.65	360	806.08	236.84	5321	233 33	260 54	283 33	279.48	322.46
Nb/Y	0 53	0 59	0.56	0.49	136	0.52	0.52	0.51	0.56	1 19
Th/Sc	171	144	2 21	16	211	0.91	142	151	1	3 65
Ti/Nb	263	280	283	255	110	288	284	200	277	291
CIA	66.4	601	62.2	694	72.7	73.4	70.2	713	693	54.9
PIA	76.5	66.5	66.2	83.9	89	83.5	814	812	774	576
CIW	82	74 5	711	883	919	86.5	855	84 7	814	667
Eu/Fu*	n d	07	0.57	n d	0.71	n d	07	04	n d	0.55
REE	n d	15 48	16 17	n d	15 14	n d	11 49	4 65	n d	39.07
LREE	n d	5 34	4 66	n d	10.64	n d	3 98	3 31	n d	723
HREF	n d	19	1.89	n d	0.94	n d	175	148	n d	2.78
Σ REE	n.d.	101.77	328.59	n.d.	106.95	n.d.	200.54	35.47	n.d.	508.22
	· ·								- · · ·	

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO^{*} = maximum CaO in Carbonates recalculated from CO₂; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO + +: CaO enriched samples; Psam.: Psammite classified samples; Rest+ +: enriched in SiO₂ and Al₂O₃; Rest-: impoverished in SiO₂ and Al₂O₃; Leu/Eu^{*} = Eu_N/(Sm_NxGd_N)^{0.5} Samples are not LOI-free recalculated. Samples marked with (*) analyzed by ACME Laboratories, Canada.

Table 13
Geochemical parameters of samples from Section IV ($CaO^* = recalculated CaO$ free of CaO in Carbonates

Sample	ET-160*	ET-161	ET-164	ET-167*	ET-168	ET-174*	ET-176	ET-178
SiO ₂	75.23	75.46	73.09	45.08	50.01	73.36	15.82	70.72
TiO ₂	0.37	0.48	0.57	0.27	0.22	0.36	0.11	0.55
Al ₂ O ₃	12.74	12.82	12.96	8.38	5.81	13.67	3.81	11.72
Fe ₂ O ₃	0.63	1.03	3.66	1.8	2.31	1.65	1.99	5.1
MnO	n.d.	0.02	0.06	0.46	0.61	0.02	0.61	0.06
MgO	0.23	0.34	1.14	0.6	2.71	0.8	0.35	2.61
CaO	0.15	0.16	0.82	21.06	21.02	0.85	49.88	1.11
CaO*	n.d.	n.d.	n.d.	18.94	17.74	0.08	41.59	0.39
Na ₂ O	0.28	0.35	1.43	2.68	0.37	3.88	n.d.	0.68
K ₂ O	8.34	8.04	3.9	0.94	0.64	2.06	1.1	3.01
P_2O_5	0.02	0.08	0.15	0.1	0.03	0.04	n.d.	0.15
LOI	1.8	1.22	2.23	18.5	18.68	3.1	34.47	4.24
CO2	n.d.	n.d.	n.d.	15.45	16.42	0.15	32.96	1.3
CaCO ₃ *	n.d.	n.d.	n.d.	33.8	31.66	0.14	74.23	0.7
Cr	n.d.	22	16	13	12	20	12	38
Ni	1	11	0	7	8	10	14	13
Со	0	6	10	4	40	2	14	13
Sc	5	5	11	5	13	5	9	9
V	36	54	70	47	48	42	58	55
PD 7	4	35	38	10	19	18	3/	45
Zn	3	42	61	15	27	26	31	59
KD De	316	339	168	45	55 287	78 225	92	185
Ba Su	14/3	1082	801 147	387	287	333	229	31Z 71
Sr Ca	95 11	00 14	147	508	449	371 12	045 10	71
Gd Ta	0.6	14	20	02	12	12	0.4	162
Nh	12.3	1.09	12 4	46	87	91	5.8	26.4
Hf	37	3 94	12.4	2.5	8 75	85	4.88	13.05
Zr	128	158	192	100	162	322	209	186
Y	19	30	25	31	56	18	93	39
Th	12.8	12.85	13.25	5.4	7.47	15.5	6.96	25.7
U	3.4	4.42	2.91	1.3	1.97	2.1	1.23	3.74
La	36.9	n.d.	31.9	31.5	52.46	48.9	51.73	n.d.
Ce	61.3	n.d.	66.18	46.9	78.59	88.9	129.2	n.d.
Pr	6.36	n.d.	9.25	6.89	n.d.	9.56	16.91	n.d.
Nd	21	n.d.	36.75	27.9	37.22	33.5	64.66	n.d.
Sm	3.63	n.d.	8.21	6.14	10.65	5.51	12.25	n.d.
Eu	0.61	n.d.	1.84	1.33	1.4	0.89	3.17	n.d.
Gd	3.31	n.d.	8.58	5.72	10.3	4.71	9.99	n.d.
Tb	0.48	n.d.	1.31	0.86	1.13	0.61	1.31	n.d.
Dy	2.89	n.d.	6.86	4.54	7.01	3.19	6.06	n.d.
HO	0.67	n.d.	n.d.	0.91	n.d.	0.63	n.d.	n.d.
Er	1.88	n.d.	3.72	2.32	1.14	1.7	2.3	n.a.
1m vh	0.34	n.a.	11.0. 2.01	0.33	11.0.	0.28	11.0. 2.42	n.d.
10	2.25	n.u.	0.49	2.2	0.25	1.9	2.42	n.a.
Lu Chom Lit	D.37	Dearm	Dcam	0.31 CaO + +	C20 + +	D.J	0.32	Dearra
Zr/Ti	346.48	329.16	336.84	37259	73636	895 27	1900 + +	73818
Nb/Y	0.64	0.38	0.49	0.14	0.15	0.48	0.06	0.67
Th/Sc	2.56	2.57	1.2	1.08	0.57	3.1	0.77	2.85
Ti/Nb	180	252	276	352	152	237	114	125
CIA	56.7	57.7	62.6	48	44.7	57.9	19	68.6
PIA	84.2	85.4	71.3	47.8	44	59.8	14.8	80.1
CIW	94.8	94.8	78.7	51	47.2	64	20.2	84.8
Eu/Eu*	0.54	n.d.	0.67	0.69	0.41	0.53	0.88	n.d.
REE	11.08	n.d.	5.66	9.68	11.7	17.39	14.44	n.d.
LREE	6.4	n.d.	2.45	3.23	3.1	5.59	2.66	n.d.
HREE	1.19	n.d.	1.83	2.11	2.76	2.01	3.35	n.d.
Σ REE	141.99	n.d.	178.89	137.85	203.28	200.58	300.32	n.d.

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO* = maximum CaO in Carbonates recalculated from CO₂; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO + +: CaO enriched samples; Psam.: Psammite classified samples; Rest + +: enriched in SiO₂ and Al₂O₃; Rest-: impoverished in SiO₂ and Al₂O₃; Eu/Eu^{*} = Eu_N/(Sm_NxGd_N)^{0.5} Samples are not LOI-free recalculated.

able 14
Geochemical parameters of samples from Section V ($CaO^* = recalculated CaO$ free of CaO in Carbonates)

Sample	ET-180*	ET-181	ET-185*
SiO ₂	74.69	76.5	71.01
TiO ₂	0.28	0.3	0.3
Al ₂ O ₃	13.35	11.1	13.26
Fe ₂ O ₃	1.78	2.47	1.64
MnO	0.01	0.02	0.05
MgO	0.25	0.34	0.53
CaO	0.18	0.23	1.86
CaO*	0.01	n.d.	1.06
Na ₂ O	4.88	1.63	1.55
K ₂ O	3.01	5.83	5.08
P ₂ O ₅	0.05	0.16	0.06
LOI	1.4	1.38	4.5
CO2	0.02	n.d.	1.16
CaCO ₃ *	0.02	n.d.	1.89
Cr	20	14	0
Ni	6	9	7
Со	8	11	2
Sc	4	4	4
V	35	105	27
Pb	12	123	21
Zn	30	13	26
Rb	88	230	153
Ba	775	1401	1113
Sr	200	104	153
Ga	12	11	14
Та	0.4	2.33	1
ND	8.5	15.2	12.8
Hf	4	5.47	5.I
Zr	141	200	197
I Th	10	22 15 25	12.6
111	9 7 2	13.25	13.0
	2.5	4.95 nd	2.5
La Ce	58.9	n.d.	40.2 89.8
Pr	648	n.d.	9.92
Nd	24.4	n d	351
Sm	4 2 7	n d	5 33
Eu	0.77	n d	0.97
Gd	3.56	n.d.	4.95
Tb	0.51	n.d.	0.65
Dy	3.28	n.d.	3.72
Но	0.65	n.d.	0.72
Er	1.83	n.d.	2.03
Tm	0.26	n.d.	0.35
Yb	1.8	n.d.	2.31
Lu	0.28	n.d.	0.35
Chem.Lit	Psam.	Psam.	Psam.
Zr/Ti	506.78	666.66	659.33
Nb/Y	0.52	0.69	0.58
Th/Sc	2.25	3.81	3.4
Ti/Nb	197	118	141
CIA	53.8	55	58.6
PIA	55.1	63.5	66.7
CIW	61.9	80.1	77.4
Eu/Eu*	0.6	n.d.	0.58
REE	11.34	n.d.	14.1
LREE	4.45	n.d.	5.69
HREE	1.6	n.d.	1.74
Σ REE	137.19	n.d.	204.4

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO^{*} = maximum CaO in Carbonates recalculated from CO₂; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO++: CaO enriched samples; Psam.: Psammite classified samples; Rest++: enriched in SiO₂ and Al₂O₃; Rest-: impoverished in SiO₂ and Al₂O₃; Eu/Eu^{*} = Eu_N/(Sm_NxGd_N)^{0.5} Samples are not LOI-free recalculated.

Table 15
Geochemical parameters of samples from El Tranquilo igneous rocks (CaO* = recalculated CaO free of CaO in Carbonates).

Sample	ET-38	ET-41	ET-42	ET-43*	ET-60	ET-64	ET-67	ET-91*	ET-99	ET-109	ET-113*	ET-134*	ET-135*	ET-140	ET-141*	ET-151	ET-175*
SiO ₂	80.92	51.8	57.11	52.19	50.48	69.74	72.82	69.22	73.91	51.01	52.75	50.12	48.21	52.72	45.79	74.89	15.99
TiO ₂	0.25	1.25	1.89	1.46	1.45	0.56	0.58	0.34	0.48	1.01	0.75	0.7	0.79	0.76	0.79	0.34	0.27
Al ₂ O ₃	12.1	16.21	13.38	16.9	16.5	14.45	13.4	14.14	12.81	16.08	15.15	14.56	16.06	14.87	16.15	10.95	9.61
Fe ₂ O ₃	0.62	9.82	10.27	9.97	9.58	2.58	3.73	2.52	4.66	8.53	9.99	9.66	9.16	9.79	9.23	1.81	67.38
MnO	0.01	0.14	0.17	0.14	0.23	0.03	0.04	0.05	0.02	0.14	0.18	0.17	0.14	0.15	0.14	0.06	0.48
MgO	0.34	5.47	2.77	3.74	4.19	0.59	0.91	1.03	1.68	5.95	5.41	5.13	3.24	4.29	3.44	0.82	0.06
CaO	0.02	8.98	5.25	8.24	8.76	1.13	0.55	2.36	0.37	3.97	9.16	9.65	7.27	9.07	8.4	3.07	0.34
CaO*	n.d.	n.d.	n.d.	0.05	1.46	0.15	n.d.	1.15	0.02	1.78	1.18	2.97	4.66	2.7	5.13	0.96	0.02
Na ₂ O	n.d.	2.56	3	3.19	2.09	3.84	2.05	2.59	1.17	3.51	1.66	1.2	2.65	0.9	2.36	2.21	0.11
K ₂ O	2.77	1.77	2.91	1.77	1.53	3.81	3.4	2.25	1.76	2.69	1.43	1.23	1.96	1.33	2	1.89	0.52
P_2O_5	0.05	0.42	1.03	0.39	0.52	0.12	0.15	0.06	0.11	0.38	0.1	0.08	0.11	0.1	0.11	0.1	0.15
LOI	3	1.59	2.25	1.7	4.82	3.2	2.4	5.3	3.12	7.12	3.1	7.2	10.2	6.35	11.3	3.98	4.8
CO2	n.d.	n.d.	n.d.	0.06	1.91	0.21	n.d.	1.45	0.13	4.32	1.69	4.05	5.92	3.51	6.32	1.03	0.02
CaCO ₃ *	n.d.	n.d.	n.d.	0.09	2.61	0.27	n.d.	2.05	0.04	3.18	2.11	5.3	8.32	4.82	9.16	1.71	0.04
Cr	11	121	5	34	141	16	30	13	19	161	136	136	136	153	143	19	27
Ni	6	56	0	27	73	0	14	7	13	50	18	55	66	74	67	11	28
Со	9	42	35	23	45	16	18	5	19	32	38	35	36	50	41	19	24
Sc	10	30	26	29	28	10	9	7	11	23	36	34	38	43	38	7	25
v	24	220	198	312	250	67	91	43	67	179	198	192	210	225	207	46	786
Pb	37	10	55	6	47	68	56	20	26	42	4	7	8	8	9	32	76
Zn	13	85	122	45	98	59	50	45	49	58	47	58	80	76	81	55	55
Rb	154	43	67	44	34	100	128	100	75	90	42	41	68	46	73	84	24
Ba	246	683	982	664	658	671	1564	757	872	1105	753	1010	325	1290	282	407	218
Sr	41	572	424	606	573	247	411	209	188	451	175	269	318	264	394	250	85
Ga	14	19	20	19	20	16	16	14	14	17	18	14	19	16	19	12	14
Та	1.79	1.15	1.51	0.3	1.64	1.49	1.3	0.4	1.22	1.25	0.5	0.4	0.7	0.17	0.6	1.44	0.2
Nb	16.6	13.2	24.4	10.4	14.8	10.4	14.7	9.1	12.2	15.5	6.3	5	5.9	7.6	6.2	12.9	6.2
Hf	8.34	4.77	14.5	5.3	6.43	10.6	5.15	4.4	6.03	6.88	4.3	3.5	4.5	3.8	4.3	5.24	3.4
Zr	240	211	376	221	253	172	206	145	176	127	155	138	154	152	162	160	185
Y	35	32	60	29	38	24	14	23	19	24	28	28	25	32	25	17	14
Th	15.45	5.32	6.28	3.4	4.22	10.58	14.9	12.4	12.3	6.11	5.5	6.6	6.8	8.68	6.8	13.95	7.6
U	1.88	1.26	1.76	0.8	1.45	3.59	3.89	2.5	2.36	2.29	1.8	1.6	2	1.04	1.9	1.51	12.9
La	n.d.	n.d.	79.31	30.4	n.d.	n.d.	n.d.	41.1	n.d.	34.32	18.5	19.4	17.4	n.d.	20.6	n.d.	8.8
Ce	n.d.	n.d.	115.1	68.8	n.d.	n.d.	n.d.	81.6	n.d.	42.37	42.8	38.6	39.7	n.d.	43.9	n.d.	78.5
Pr	n.d.	n.d.	15.46	8.52	n.d.	n.d.	n.d.	8.57	n.d.	1.17	4.94	4.5	4.52	n.d.	5.18	n.d.	2.81
Nd	n.d.	n.d.	50.13	36.4	n.d.	n.d.	n.d.	31.5	n.d.	64.01	20.5	19.2	19	n.d.	21	n.d.	12.5
Sm	n.d.	n.d.	8.22	7.11	n.d.	n.d.	n.d.	5.49	n.d.	2.18	4.31	3.92	4.29	n.d.	4.68	n.d.	3.59
Eu	n.d.	n.d.	1.89	1.83	n.d.	n.d.	n.d.	1.03	n.d.	1.24	1.18	1.09	1.13	n.d.	1.14	n.d.	0.88
Gd	n.d.	n.d.	6.09	6.66	n.d.	n.d.	n.d.	4.88	n.d.	1.69	4.71	4.11	4.12	n.d.	4.8	n.d.	4.1

Tb	n.d.	n.d.	0.54	0.95	n.d.	n.d.	n.d.	0.73	n.d.	n.d.	0.81	0.73	0.74	n.d.	0.8	n.d.	0.75
Dy	n.d.	n.d.	2.84	5.1	n.d.	n.d.	n.d.	3.83	n.d.	0.01	5.39	4.71	5.1	n.d.	5.26	n.d.	4.06
Но	n.d.	n.d.	n.d.	1.12	n.d.	n.d.	n.d.	0.81	n.d.	n.d.	1.02	0.96	1.07	n.d.	1.07	n.d.	0.79
Er	n.d.	n.d.	0.99	3.05	n.d.	n.d.	n.d.	2.3	n.d.	0.12	3.02	2.76	3.01	n.d.	3.13	n.d.	2.2
Tm	n.d.	n.d.	n.d.	0.44	n.d.	n.d.	n.d.	0.33	n.d.	n.d.	0.49	0.43	0.46	n.d.	0.46	n.d.	0.37
Yb	n.d.	n.d.	0.91	2.95	n.d.	n.d.	n.d.	2.25	n.d.	n.d.	3.18	2.81	3.18	n.d.	2.94	n.d.	2.53
Lu	n.d.	n.d.	0.12	0.5	n.d.	n.d.	n.d.	0.37	n.d.	0.03	0.5	0.45	0.44	n.d.	0.43	n.d.	0.4
Chem.Lit	Psam.	CaO++	CaO++	CaO++	CaO++	Rest++	Psam.	Rest + +	Psam.	Pelite	CaO++	CaO++	CaO++	CaO++	CaO++	Psam.	Rest-
Zr/Ti	960	168.8	198.94	151.5	174.48	307.14	355.17	426.76	366.66	125.74	207.33	197.14	195.94	200	206.07	470.58	686.29
Nb/Y	0.47	0.41	0.4	0.35	0.38	0.43	1.05	0.39	0.64	0.64	0.22	0.17	0.22	0.23	0.24	0.75	0.41
Th/Sc	1.54	0.17	0.24	0.11	0.15	1.05	1.65	1.77	1.11	0.26	0.15	0.19	0.17	0.2	0.17	1.99	0.3
Ti/Nb	90	568	464	842	587	323	237	224	236	391	714	839	803	600	764	158	261
CIA	80.1	42.9	46.5	44.3	48.9	54.7	63.4	61.7	75.2	57.6	44.9	48.8	59.4	51	57.9	54.1	90.6
PIA	100	42.1	45.5	43.7	48.8	56.8	70.6	64.9	82.4	59.6	44.4	48.7	61.1	51.1	59.3	55.1	95.4
CIW	100	45.2	52.2	46.7	51.4	64.8	76.8	69.1	84.6	64.3	47.1	51.1	64.4	53.7	62.7	60.2	95.7
Eu/Eu*	n.d.	n.d.	0.82	0.81	n.d.	n.d.	n.d.	0.61	n.d.	1.97	0.8	0.83	0.82	n.d.	0.74	n.d.	0.7
REE	n.d.	n.d.	58.89	6.96	n.d.	n.d.	n.d.	12.34	n.d.	n.d.	3.93	4.67	3.7	n.d.	4.73	n.d.	2.35
LREE	n.d.	n.d.	6.07	2.69	n.d.	n.d.	n.d.	4.71	n.d.	9.91	2.7	3.12	2.55	n.d.	2.77	n.d.	1.54
HREE	n.d.	n.d.	5.42	1.83	n.d.	n.d.	n.d.	1.76	n.d.	n.d.	1.2	1.19	1.05	n.d.	1.32	n.d.	1.31
Σ REE	n.d.	n.d	281.6	173.83	n.d.	n.d.	n.d	184.79	0	147.14	111.35	103.67	104.16	n.d.	115.39	n.d.	122.28

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO^{*} = maximum CaO in Carbonates recalculated from CO₂; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO + + : CaO enriched samples; Psam.: Psammite classified samples; Rest+ +: enriched in SiO₂ and Al₂O₃; Rest-: impoverished in SiO₂ and Al₂O₃; Eu/Eu^{*} = Eu_N/(Sm_NxGd_N)^{0.5} Samples are not LOI-free recalculated.

U. Jenchen / Data in Brief 21 (2018) 1970-2014

Table 16 Simple statistics of the selected geochemical parameters of the El Tranquilo Group, Cañadón Largo Formation, and Laguna Colorada Formation.

		SiO_2/AL_2O_3	K ₂ O/Na ₂ O	CIA	Ti/Nb	SiO ₂ /K ₂ O	Th/Sc	Zr/Sc
El Tranquilo group	Mean	5.26	3.35	61	288	23.38	2.01	21.91
	- 95%	4.99	2.11	59	254	19.32	1.5	18.03
	+ 95%	5.53	4.59	63	322	25.44	2.52	25.8
	- 99%	4.9	1.7	58	243	18.30	1.33	16.76
	+99%	5.62	5	64	333	26.45	2.68	27.06
Cañadón Largo Fm.	Mean	5.43	2.7	63	252	21.25	2.31	22.87
	- 95%	5.16	1.99	62	232	18.87	1.5	17.22
	+ 95%	5.69	3.41	65	273	23.63	3.11	28.53
	- 99%	5.07	1.76	61	225	18.05	1.23	15.33
	+99%	5.78	3.64	66	280	24.42	3.38	30.42
Laguna Colorada Fm. (Section IV)	Mean	5.87	8.93	52	211	29.59	1.84	26.95
	-95%	4.82	-2.32	39	142	9.74	0.98	13.43
	+ 95%	6.91	20.17	65	280	49.45	2.7	40.47
	- 99%	4.31	-8.11	33	109	0.21	0.57	6.94
	+99%	7.42	25.96	71	313	58.98	3.11	46.96

Table 17
Simple statistics of selected Trace and rare earth elements (REEs) of the El Tranquilo Group, Cañadón Largo Formation, and Laguna Colorada Formation.

		Rb (ppm)	Ba (ppm)	Sr (ppm)	La (ppm)	Ce (ppm)	Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	Eu/ Eu*	La _N / Yb _N	La _N / Sm _N	Gd _N / Yb _N	Σ REE (ppm)
El Tranquilo	Mean	134	1030	224	41.02	79.93	8.80	33.19	5.75	1.20	4.99	0.73	3.96	0.73	2.07	0.32	2.22	0.33	0.72	14.07	4.70	1.91	184.58
anticline	- 95%	148	1261	255	47.98	92.95	10.27	38.23	6.60	1.37	5.70	0.82	4.47	0.81	2.34	0.36	2.47	0.37	0.79	17.17	5.26	2.16	211.82
	+ 95%	153	1336	265	50.33	97.35	10.76	39.93	6.88	1.42	5.94	0.85	4.64	0.84	2.43	0.37	2.56	0.39	0.81	18.22	5.45	2.24	221.01
	- 99%	120	798	194	34.06	66.91	7.34	28.15	4.91	1.03	4.28	0.65	3.44	0.66	1.80	0.29	1.96	0.29	0.64	10.97	4.14	1.67	157.34
	+ 99%	115	723	184	31.71	62.51	6.85	26.45	4.62	0.98	4.04	0.62	3.27	0.63	1.70	0.28	1.88	0.27	0.62	9.92	3.95	1.59	148.14
Cañadón	Mean	147	1153	194	45.79	89.31	9.86	34.22	5.81	1.14	4.80	0.70	3.78	0.68	2.03	0.30	2.07	0.32	0.67	15.21	5.08	1.85	200.30
Largo Fm.	- 95%	162	1522	222	56.91	111.06	12.02	41.89	7.06	1.35	5.80	0.83	4.49	0.78	2.40	0.34	2.44	0.39	0.72	18.28	5.74	2.06	246.05
	+ 95%	166	1645	232	60.91	118.88	12.80	44.64	7.50	1.43	6.16	0.87	4.74	0.81	2.53	0.36	2.57	0.41	0.74	19.38	5.97	2.13	262.48
	- 99%	133	784	167	34.68	67.55	7.70	26.54	4.57	0.92	3.80	0.58	3.07	0.58	1.65	0.26	1.71	0.26	0.63	12.14	4.43	1.65	154.55
	+ 99%	129	661	157	30.68	59.74	6.92	23.79	4.13	0.84	3.44	0.54	2.82	0.54	1.52	0.24	1.58	0.23	0.61	11.04	4.20	1.57	138.12
Laguna Colorada	Mean	159	736	295	42.23	78.51	9.79	36.84	7.73	1.54	7.10	0.95	5.09	0.74	2.18	0.32	2.60	0.36	0.62	11.66	3.91	2.21	193.82
Fm. (Section IV)	-95%	255	1199	516	52.62	108.65	15.03	52.52	11.16	2.49	10.17	1.32	7.00	1.11	3.09	0.40	3.34	0.42	0.79	15.88	5.65	3.00	255.94
	+ 95%	302	1421	622	58.52	125.79	18.48	61.43	13.11	3.03	11.92	1.54	8.08	1.60	3.61	0.50	3.75	0.46	0.89	18.28	6.64	3.45	291.26
	- 99%	63	273	74	31.85	48.37	4.55	21.16	4.30	0.59	4.03	0.58	3.18	0.36	1.26	0.24	1.87	0.29	0.45	7.44	2.16	1.42	131.70
	+ 99%	17	51	-31	25.94	31.23	1.11	12.24	2.35	0.05	2.29	0.36	2.10	-0.13	0.74	0.13	1.45	0.25	0.35	5.04	1.17	0.97	96.38
Roca Blanca Fm.	Mean	153	1123	158	36.58	70.15	7.66	27.95	4.40	0.90	3.84	0.54	3.08	0.59	1.63	0.27	1.71	0.27	0.68	14.87	5.25	1.87	159.56
(Section V)	- 95%	206	1609	190	49.79	92.42	10.11	35.77	5.50	1.04	5.04	0.66	3.92	0.78	2.23	0.37	2.46	0.37	0.85	19.32	6.73	2.32	208.66
	+ 95%	230	1822	203	60.83	111.02	12.16	42.30	6.42	1.16	6.04	0.76	4.62	0.94	2.74	0.45	3.10	0.46	0.99	23.03	7.97	2.69	249.69
	- 99%	99	637	127	23.36	47.88	5.21	20.13	3.30	0.76	2.65	0.42	2.24	0.40	1.03	0.17	0.95	0.16	0.51	10.43	3.76	1.43	110.45
	+ 99%	75	425	113	12.32	29.28	3.16	13.60	2.38	0.64	1.65	0.31	1.53	0.25	0.52	0.09	0.31	0.07	0.37	6.72	2.52	1.05	69.42

CIA, Ti/Nb ratios, and SiO_2/K_2O ratio values of geochemical standards [8] used for comparison in Figs. 10 and 16.	Table 18
	CIA, Ti/Nb ratios, and SiO_2/K_2O ratio values of geochemical standards [8] used for comparison in Figs. 10 and 16.

Standard	Rock type	CIA	Ti/Nb	SiO ₂ /K ₂ O	Standard	Rock type	CIA	Ti/Nb	SiO ₂ /K ₂ O
SARM40	Carbonatite	0.5	30	102	MK-1	Granodiorite	48.2	352	16
JH-1	Hornblendite	16.1	-	93	NIM-S	Syenite	48.6	66	4
WMG-1	Gabbro	23.7	-	410	SKD-1	Quartz-Diorite	48.6	430	20
WBG-1	Gabbro	24.6	-	54	T-1	Tonalite	48.6	-	50
MRG-1	Gabbro	24.8	1130	217	JG-3	Granodiorite	48.8	514	25
BE-N	Basalt	25	149	27	GS-N	Granite	48.9	194	14
BR	Basalt	25.6	159	27	MO-9	Anorthosite-Gabbro	48.9	839	107
SARM48	Granite	30.1	3	15	GOG-1	Gabbro	49	-	898
MO-3	Gabbro	31.5	-	184	JR-3	Rhyolite	49.1	-	16
SY-3	Syenite	31.7	6	14	MK-4	Granite	49.1	124	17
SY-2	Syenite	32.3	31	13	MO-13	Olivine-Basalt	49.2	766	52
SDG-1a	Gabbro	34.9	1281	15	MK-2	Granodiorite	49.3	252	20
SDG-2	Gabbro	35.4	1228	15	G-B	Granite	49.3	-	23
BHVO-1	Basalt	35.6	855	96	QLO-1	Quartz-Latite	49.4	363	18
BIR-1	Basalt	36.3	9592	1769	DVD	Hornblende Dacite	49.4	420	26
MO-7	Orthoklase-Gabbro	36.4	1694	54	GR	Granite	49.5	-	14
GSR-3	Basalt	36.9	208	19	BM	Basalt	49.6	-	247
JP-1	Peridotite	37	-	14130	NIM-G	Granite	49.9	10	15
MY-3	Hornblendite	37.5	-	99	JG-2	Granite	50	16	16
TDB-1	Diabase	37.8	-	55	GA	Granite	50.2	190	17
W-1	Diabase	38.4	648	82	SG-1a	albitized Granite	50.2	1	17
GV	Gabbro	38.4	-	190	JK-1	Rhyolite	50.4	39	1/
JB-1	Basalt	38.7	233	36		Diotitic Trachyrnyolite	50.5	/	16
SARM50	Dolerite	38.8	516	84	KGM-I	Knyolite Gauga diagita	50.6	180	1/
JB-Ia	Basalt	38.9	289	30	JG-I CCD 1	Granodiorite	50.6	124	18
VV-Z	Norite	39.2	804	83 210	GSK-I	Granite	50.7	43	14
NDCC99	Pacalt	39.0 40.1	1220	210	G-2 IC 15	Granodiorita	50.7	125	10
103000	Dasalt	40.1	9019	176	JG-1a DCC 1	Poridotito	50.7	60	5058
JD-2 MR_H	metabasic Rock	40.5	028	120		Crapite	50.7	6	15
BCR-1	Basalt	40.8	920	32	G.1	Granite	51	72	13
MO-12	Andesite-Basalt	41.7	689	44	IR-2	Rhyolite	511	28	17
MO-2	Basalt	41.8	-	50	GSP-1	Granodiorite	51.7	140	12
IB-3	Basalt	41.9	3779	65	GM	Granite	51.7	71	15
GL-O	Glauconite	42	113	6	DVR	albitized Rhyodacite	51.7	213	18
JGb-1	Gabbro	42.3	3469	181	MK-3	Granite	51.8	126	12
MO-5	Gabbro	42.4	4411	47	SG-2	Alaskite Granite	52	276	10
MO-14	Olivine-Basalt	42.7	883	101	DTS-1	Dunite	55.4	14	40409
MO-1	Diabase	43.5	885	28	MA-N	Granite	56.1	0	20
MO-8	Gabbro	43.5	1863	112	2B	Granitoid	57.5	1	25
MO-4	Gabbro	43.6	-	23	DVG	greisenized Granit	57.9	1	21
DNC-1	Dolerite	43.6	959	205	GSR-2	Andesite	62.2	458	32
NIM-P	Pyroxenite	43.8	-	567	SDC-1	Mica Shist	63	336	20
MB	Monzonite	44.9	-	12	MI	Chlorite-Muscovite-Shist	65.1	-	28
JA-2	Andesite	44.9	410	31	JSI-1	Slate	65.4	-	20
NS-1	Nepheline Syenite	45	32	8	JSI-2	Slate	66.7	-	20
DVB	bipyroxene basaltic Andesite	45	605	2/	MY-1 MO 15	Peridotite	66.9	-	1035
SINS-2	Nepneline Syenite	45.2	22	9 270	MU-15	porphyric Andesite-Basalt	60 1	//5	∠b 10
WPK-1 MDO-C	Trachuto	45.3	- 112	5/U 12	M3N-2	Shiet	09.I	91/ 221	10
ISH C	Trachyte	43./ /6	11Z 87	1.2 Q	JDU-I MV_J	Dunite	09.2 75 1	221	10
ICh-2	Cabbro	40 46	-	0 778	D7E-2	ultrabasic Rock	73.1 777	_	3775
JGD-2 IA-1	Andesite	461	3068	87	CnA	Greisen	78.7	1	27
JA-1 IA-2	Andesite	46.2	1350	44	SARM47	Sementinite	79.2	1 _	1814
5G-3	Granite	46.2	92	16	NIM-D	Dunite	79.2	_	3896
STM-1	Svenite	46.4	3	13	SSL-2	Shist	801	378	17
DVA	Hornblende Hvaloandesite	46.7	1049	68	SDU-1	Dunite	93.4	-	3957
AGV-1	Andesite	47.3	420	20	DZE-1	ultrabasic Rock	96.1	_	3434
DR-N	Diorite	47.5	934	31	SW	Serpentinite	96.9	_	_
AC-E	Granite	47.8	6	15	SARM44	Sillimanite Schist	99.1	114	193

Fig. 7. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: SiO₂-Al₂O₃ after [9] (modified).

Fig. 8. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: K₂O-Na₂O after [10] (modified).

Fig. 9. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: K₂O/Na₂O-SiO₂/Al₂O₃ after [1].

Fig. 10. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: $Na_2O + CaO^*/Al_2O_3/K_2O$ after [11] modified by [1].

Fig. 11. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: FeO+MgO/Na₂O+K₂O+CaO*/Al₂O₃ after [12].

Fig. 12. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: K/Th after [13].

Fig. 13. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Zr/Sc–Th/Sc diagram after [14] modified by [1].

Fig. 14. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Th/Sc-Cr after [1].

Fig. 15. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Ti-Nb after [15].

Fig. 16. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: SiO₂/K₂O-Ti/Nb after [1].

Fig. 17. Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Nb/Y-Zr/TiO₂ after [16].

Acknowledgements

The author is indebted to many colleagues and institutions: to Hubert Miller, Werner Loske, Klaus Weber–Diefenbach, and the staff of the Institute of General and Applied Geology of the Munich University in Germany, who made this data compilation feasible and carried out the geochemical analyses. The grant from the Deutsche Forschungsgemeinschaft (German Science Foundation: Az. IIC6-Ro179/12-1 and Az.IIC6-Ro179/16-1) are gratefully acknowledged. For the second part of the analyses did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/ 10.1016/j.dib.2018.11.062.

References

- U. Jenchen, Petrography and geochemistry of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina: implications for provenance and tectonic setting, J. South Am. Earth Sci. 88 (2018) 530–550. https://doi.org/10.1016/j. jsames.2018.09.007.
- [2] Google Earth Pro, (https://www.google.com/earth/download/gep/agree.html), 2018.
- [3] R.L. Folk, Petrology of sedimentary rocks, Hemphill's, Austin, TX., 182 p, 1973.
- [4] W.R. Dickinson, C.R. Suczek, Plate tectonics and sandstone composition, AAPG Bull. 63 (12) (1979) 2164–2182.
- [5] W.R. Dickinson, L.S. Beard, G.R. Brakenridge, J.L. Erjavec, R.C. Ferguson, K.F. Inman, R.A. Knepp, F.A. Lindberg, R.T. Ryberg, Provenance of North American Phanerozoic sandstones in relation to tectonic setting, GSA Bull. 94 (2) (1983) 222–235.
- [6] K.M. Marsaglia, J.A. Pavia, S.J. Maloney, Eocene–Albian sandstones and grainstones recovered during ODP Leg 210: implications for passive margin (rift-to-drift) sandstone provenance models, in: B.E. Tucholke, J.C. Sibuet, A. Klaus (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program, College Station, TX, 2007, pp. 1–47. https://doi.org/10.2973/odp.proc.sr.210.107.2007.
- [7] U. Jenchen, Fazies und Geochemie in kontinentalen Trias-Becken im westlichen Argentinien und in Patagonien (30°-50°), Münst. Forsch. Geol. Paläont 91 (2001) 441.
- [8] K. Govindaraju, Compilation of working values and description for 383 geostandards, Geostand. Newsl. 18 (1994) 1–158.
 [9] U. Jenchen, U. Rosenfeld, Geochemical investigations as a tool to sedimentary analyses demonstrated in Argentinean
- continental Triassic sediments Methods and aspects, Neues Jahrb. für Geol. und Paläontologie Abh. 246 (1) (2007) 37–61.
 [10] F.J. Pettijohn, Chemical composition of sandstones: excluding carbonate and volcanic sands: data of geochemistry, U. S. Geol. Surv., Prof. Pap. 440 (S) (1963) 1–21.
- [11] C.M. Fedo, H.W. Nesbitt, G.M. Young, Unraveling the effects of potassium metasomatism in sedimentary rocks and Paleosols, with implications for paleoweathering conditions and provenance, Geology 23 (10) (1995) 921–924.
- [12] J.O. Englund, P. Jørgensen, P. A chemical classification system for argillaceous sediments and factors affecting their composition, Geol. Foren. Stockholm Forhandlingar 95 (1) (1973) 87–97.
- [13] Schlumberger, Log Interpretation Charts. p. 207; Schlumberger, New York, USA, 1985.
- [14] S.M. McLennan, S. Hemming, D.K. McDaniel, G.N. Hanson, Geochemical approaches to sedimentation, provenance, and tectonics, in: J. Johnsson, A. Basu (Eds.), Processes Controlling the Composition of Clastic Sediments, GSA Special Paper, 1993, pp. 21–40.
- [15] C. Augustsson, U. Jenchen, Provenance of northeast Mexican sedimentary rocks during Pangea formation and the "hidden" volcanic source, GAEA heidelbergensis 18 (2011) 36.
- [16] J.A. Winchester, P.A. Floyd, Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chem. Geol. 20 (1977) 325–343.
- [17] R.V. Ingersoll, T.F. Fullard, R.L. Ford, J.P. Grimm, J.D. Pickle, S.W. Sares, The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method, J. Sediment. Res. 54 (1) (1984) 103–116.
- [18] D. Marsal, Statistische Methoden für Erdwissenschaftler. 152 p.; Stuttgart (Schweizerbart), 1967.
- [19] H.W. Nesbitt, G.M. Young, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature 299 (1982) 715–717.