UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS QUÍMICAS

SÍNTESIS, EVALUACIÓN DE LA ACTIVIDAD ANTICANCERÍGENA Y APLICACIÓN COMO MARCADORES FLUORESCENTES DE AZOLIL-OXADIAZOLES α,β-INSATURADOS

POR

JUANY CECILIA NAVA RAMÍREZ

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE MAESTRÍA EN CIENCIAS CON ORIENTACIÓN EN FARMACIA

DICIEMBRE, 2018

SÍNTESIS, EVALUACIÓN DE LA ACTIVIDAD ANTICANCERÍGENA Y APLICACIÓN COMO MARCADORES FLUORESCENTES

DE AZOLIL-OXADIAZOLES α , β -INSATURADOS

Aprobación de la Tesis

Dr. Eugenio Hernández Fernández Director de Tesis

Dra. Ivonne A. Camacho Mora

Dra. María del Rayo Camacho Corona

Dr. Isaías Balderas Rentería

RESUMEN

Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Título del Estudio:

Síntesis, evaluación de la actividad anticancerígena y aplicación como marcadores fluorescentes de azoliloxadiazoles α,β-insaturados **Candidato para el grado de Maestría en Ciencias con orientación en Farmacia**

Número de Páginas: 180

Área de Estudio: Farmacia

Propósito y Métodos de Estudio: Con el propósito de implementar una metodología para la síntesis de derivados del 1,3,4-oxadiazol y, considerando que éstos representan un área de oportunidad para el desarrollo de fármacos, en el presente proyecto se sintetizaron diez nuevos derivados de azolil-1,3,4-oxadiazol α , β -insaturados, se evaluó su actividad anticancerígena y su aplicación como marcadores fluorescentes en células.

Contribuciones y conclusiones: Se realizó la síntesis de los ésteres de benzotriazol 3a y b, mediante el empleo de sonicación, con rendimientos químicos del 29 y 70%. Además, se realizó la síntesis de la hidrazida 4 mediante irradiación de microondas con un rendimiento químico de 88%. Se sintetizaron los derivados del 1,3,4-oxadiazol 6a-j mediante calentamiento convencional, con rendimientos químicos del 16-53%. Los compuestos obtenidos fueron caracterizados por Espectroscopía de Infrarrojo, Resonancia Magnética Nuclear de ¹H y ¹³C, y por Espectrometría de Masas. La actividad anticancerígena de los 1,3,4-oxadiazoles fue evaluada, encontrándose que los compuestos 6a, 6c, 6d, 6f, 6g y 6i mostraron actividad en las líneas celulares MCF-7, MDA-MB-231 y 4T1, siendo el compuesto 6f el compuesto más activo. Por otra parte, los compuestos que mostraron actividad, se seleccionaron para su evaluación como marcadores fluorescentes en la línea celular MCF-7; encontrándose que los compuestos fueron capaces de teñir y penetrar las células.

Firma del director: _____

SÍNTESIS, EVALUACIÓN DE LA ACTIVIDAD ANTICANCERÍGENA Y APLICACIÓN COMO MARCADORES FLUORESCENTES DE AZOLIL-OXADIAZOLES α,β-INSATURADOS

Presentado por:

Juany Cecilia Nava Ramírez

El presente trabajo de investigación se realizó en el Laboratorio de Química Industrial, del Centro de Laboratorios Especializados (CELAES) de la Facultad de Ciencias Químicas, en el Laboratorio 6 de Inmunología y Virología de la Unidad C de Facultad de Biología de la Universidad Autónoma de Nuevo León, y en el laboratorio de Síntesis Orgánica C-437 del Departamento de Química y Bioquímica de Brigham Young University, UT, USA, bajo la dirección del Dr. Eugenio Hernández Fernández, con recursos otorgados por el Consejo Nacional de Ciencia y Tecnología (CONACYT) con el proyecto CB-2015/256359 y por la beca otorgada 781357/604897.

TABLA DE CONTENIDO

Capítulo

1.	INTR	ODUCCIÓN	1
	1.1. C	iclos Aromáticos	8
	1.1.1.	Generalidades del grupo oxadiazol	8
	1.1.2.	Generalidades del grupo benzotriazol	9
	1.2. C	áncer	10
	1.2.1.	Mecanismo de acción los derivados del 1,3,4-oxadiazol y benzotriazol en	
		cáncer	11
	1.3. M	larcadores fluorescentes	13
	1.3.1.	Mecanismo de acción para la generación de imágenes fluorescentes	14
2.	ANTE	CEDENTES	17
	2.1. A	ctividad anticancerígena	17
	2.2. M	larcadores fluorescentes	37
	2.3. A	nálisis crítico	42
	2.4. H	ipótesis	43
	2.5. O	bjetivos	44
	2.5.1.	Objetivo general	44
	2.5.2.	Objetivos particulares	44
3.	MATH	ERIALES Y MÉTODOS	46
	3.1. E	quipo y materiales	46
	3.2. R	eactivos	48
	3.3. Ju	ıstificación de las técnicas a utilizar	49
	3.3.1.	Espectroscopía de Infrarrojo (FT-IR)	49
	3.3.2.	Espectroscopía de Resonancia Magnética Nuclear de ¹ H y ¹³ C (RMN ¹ H y ¹³ C)	50
	3.3.3.	Espectrometría de Masas de Alta Resolución (ESI-MS)	51
	3.3.4.	Técnica de Resazurina	52

3.3.5.	Técnica de Hemólisis	53
3.3.6.	Técnica de Microscopía Confocal	54
3.4. N	Ietodología de síntesis	55
3.4.1.	Metodología general para la síntesis de los ésteres de benzotriazol 3a-b	55
3.4.2.	Metodología general para la síntesis de la hidrazida de benzotriazol 4	55
3.4.3.	Metodología general para la síntesis de los derivados del 1,3,4-oxadiazol	
	α,β -insaturados 6a-j	56
3.5. N	Ietodología de pruebas biológicas	56
3.5.1.	Actividad anticancerígena in vitro de los derivados del 1,3,4-oxadiazol	
	α , β -insaturados 6a-j en las líneas celulares MCF-7, MDA-MB-231	
	y 4T1 por el método de Resazurina	56
3.5.2.	Actividad citotóxica in vitro de los derivados del 1,3,4-oxadiazol	
	α,β -insaturados 6a-j en esplenocitos murinos por el método	
	de Resazurina	57
3.5.3.	Ensayo de hemólisis in vitro de los derivados del 1,3,4-oxadiazol	
	α,β -insaturados 6a-j sobre sangre periférica de humano	58
3.5.4.	Generación de marcadores fluorescentes en la línea celular MCF-7,	
	por microscopía confocal	59
3.6. N	Ianejo y disposición de residuos	59
		(1
4. KES U	LIADOS Y DISCUSIONES	01
4.1 0	· · · · ·	(1
4.1. S	intesis organica	61
4.1.1.	Sintesis y caracterización de los esteres de benzotriazol 3a-b	61
4.1.2.	Sintesis y caracterización de la hidrazida de benzotriazol 4	6/
4.1.3.	Sintesis y caracterización de los derivados del 1,3,4-oxadiazol	=0
4.0 D	α,β -insaturados 6a-f	73
4.2. P	ruebas biologicas	84
4.2.1.	Actividad anticancerigena <i>in vitro</i> de los derivados del 1,3,4-oxadiazol	
	α,β -insaturados 6a-j en las líneas celulares MCF-7,	0.4
4.0.1	MDA-MB-231 y 411	84
4.2.1	.1. Viabilidad relativa de las líneas MCF-/, MDA-MB-231 y 411 expuestas	05
121	al 1,5,4-0Xadiazol α,β -insaturado 6a	83 ol
4.2.1	1.3.4 ovadiazol α β insaturado 6b	87
421	3 Viabilidad relativa de las líneas MCF-7 MDA-MB-231 y 4T1 expuestas	
1.2.1	1.3.4-oxadiazol α B-insaturado 6	
4.2.1	.4. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas	al
	1,3,4-oxadiazol α , β -insaturado 6d	91
4.2.1	.5. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1	
	expuestas al 1,3,4-oxadiazol α,β-insaturado 6e	93
4.2.1	.6. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1	
	expuestas al 1,3,4-oxadiazol α , β -insaturado 6f	95
4.2.1	.7. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1	
4.2.1	expuestas al 1,3,4-oxadiazol α,β -insaturado 6g	97
4.2.1	.o. v labilidad felaliva de las lineas MCF-/, MDA-MB-251 y 411	00
4 2 1	9 Viabilidad relativa de las líneas MCE-7 MDA-MB-231 y 4T1	
7.2.1	expuestas al 1 3 4-oxadiazol α B-insaturado 6	101
4.2.1	.10. Viabilidad relativa de las líneas MCF-7. MDA-MB-231 v 4T1	101
	expuestas al 1.3,4-oxadiazol α , β -insaturado 6i	103
	- // U	

4.2.1.11	. Comparación de la viabilidad de la línea MCF-7 expuestas a los	
	derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j	105
4.2.1.12	2. Comparación de la viabilidad de la línea MDA-MB-231 expuesta	
	a los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j	106
4.2.1.13	B. Comparación de la viabilidad de la línea 4T1 expuesta a los	
	derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j	107
4.2.1.14	 Comparación de la viabilidad de las líneas celulares MCF-7, 	
	MDA-MB-231 y 4T1 expuesta a los derivados del 1,3,4-oxadiazol	
	α,β -insaturados 6a-j	108
4.2.2.	Actividad citotóxica in vitro de los derivados del 1,3,4-oxadiazol	
	α,β -insaturados 6a-j en esplenocitos murinos	114
4.2.3.	Ensayo de hemólisis <i>in vitro</i> de los derivados del 1,3,4-oxadiazol	
	α,β -insaturados 6a-j sobre sangre periférica de humano	118
4.2.4.	Aplicación de los derivados del 1,3,4-oxadiazol α , β -insaturados	
	6a, 6c, 6d, 6f, 6g, 6i y 6j como marcadores fluorescentes <i>in vitro</i>	
	en la línea celular MCF-7	121
CONCLUSIO	DNES	
BIBLIOGRA	.FÍA	
APÉNDICE.		

LISTA DE TABLAS

Lista de Tablas

Conjunto de fluoróforos y ligandos específicos de biomarcadores para la eración de imágenes fluorescentes	16
Inhibición (IC ₅₀) de EGFR y HER-2 quinasas con los derivados del éster de ronidazol.	19
Actividad inhibitoria de MetAP2 de los derivados del 1,3,4-oxadiazol -insaturado 21a-k	21
Actividad antiproliferativa en la línea celular MCF-7 y HT29 de los vados del 1,3,4-oxadiazol con benzotriazol 24a-q	23
Actividad inhibitoria de FAK de los derivados del 1,3,4-oxadiazol benzotriazol 9a-q	24
Actividad antiproliferativa en la línea celular MCF-7 de los derivados benzotriazolil-proxifilina 12a-b	26
Valores de IC ₅₀ de los compuestos evaluados contra las células A549, y NIH/3T3 a 24 h	29
Análisis de caspasa-3 positivas/negativas en las líneas celulares C6 549	31
Efecto inhibitorio sobre Akt	32
Valores de IC ₅₀ de los compuestos 18b, 18f, 18i y cisplatino frente a K (Phospho-Tyr397)	33
Derivados de oxadiazoles empleados como marcadores fluorescentes	38
Propiedades optoeléctricas del compuesto 22a	40
Propiedades optoeléctricas derivadas del benzotriazol	41
	Conjunto de fluoróforos y ligandos específicos de biomarcadores para la eración de imágenes fluorescentes

14.	Clasificación de residuos	60
15.	Datos de RMN ¹ H del éster de benzotriazol 3b	64
16.	Datos de RMN ¹³ C del éster de benzotriazol 3b	66
17.	Datos de RMN ¹ H de la hidrazida de benzotriazol 4	70
18.	Datos de RMN ¹³ C de la hidrazida de benzotriazol 4	72
19.	Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6a	78
20.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6a	80
21.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6a	82
22. expt	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6a	85
23. expt	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6b	87
24. expu	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6c	89
25. expu	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6d	.91
26. expu	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6e	.93
27. expt	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6f	.95
28. expt	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6g	.98
29. expt	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6h1	.00
30. expt	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6i1	.02
31. expt	Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 uestas al 1,3,4-oxadiazol α,β-insaturado 6j1	.04
32. MC	Valores de IC ₅₀ de los compuestos más activos en las líneas F-7, MDA-MB-231 y 4T1 1	.09
33.	Características de las líneas celulares MCF-7, MDA-MB-231 y 4T11	11
34. celu	Compuestos con actividad anticancerígena en las líneas lares MCF-7 y MDA-MB-231 1	.13
35. deri	Viabilidad relativa de esplenocitos murinos expuestos a los vados del 1,3,4-oxadiazol α,β-insaturados 6a-j1	.14

36. del	Viabilidad relativa de esplenocitos murinos expuestos al derivado 1,3,4-oxadiazol α , β -insaturado 6f	116
37. α,β-	Hemólisis relativa de los derivados del 1,3,4-oxadiazol -insaturados 6a-j sobre sangre periférica de humano	118
38. 6a, 6	Características optoelectrónicas de los compuestos 6c, 6d, 6f, 6g, 6i, 6j	124
39.	Datos de RMN ¹ H del éster de benzotriazol 3a	139
40.	Datos de RMN ¹³ C del éster de benzotriazol 3a	140
41.	Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6b	142
42.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6b	143
43.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6b	145
44.	Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6c	147
45.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6c	148
46.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6c	149
47.	Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6d	151
48.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6d	152
49.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6d	153
50.	Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6e	155
51.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6e	156
52.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6e	157
53.	Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6f	159
54.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6f	160
55.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6f	161
56.	Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6g	163
57.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6g	164
58.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6g	165
59.	Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6h	167
60.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6h	168
61.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6h	169
62.	Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6i	171
63.	Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6i	172
64.	Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6i	174

 Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6j	65.
 Datos de RMN ¹ H del 1,3,4-oxadiazol α , β -insaturado 6 j	66.
 Datos de RMN ¹³ C del 1,3,4-oxadiazol α , β -insaturado 6 j	67.

LISTA DE FIGURAS

Figura

 Tipos de cáncer sobresaliente por país en el 2018: a) por muertes b) por incidentes 	2
2. Tipos de cáncer sobresaliente en México en el 2018: a) por muertesb) por incidentes	3
3. Isómeros de oxadiazol	8
4. Estructura en resonancia del 1 <i>H</i> -benzotriazol	9
5. Modulación mediante FAK en el metabolismo de células cancerígenas.	12
6. Reacción del grupo amino con varios grupos funcionales activados	15
7. Modelos de unión del compuesto 9a con FAK	25
8. Acoplamiento (A) e interacciones (B) del compuesto 18f con GSK690693 en el sitio activo de Akt	.34
9. Acoplamiento (A) e interacciones (B) del compuesto 18f en el sitio activo de FAK	.35
10. Acoplamiento e interacciones del compuesto 18f en el sitio activo de la caspasa 3	.36
11. Cromatografía en capa fina para la síntesis del éster de benzotriazol 3a y 3b	.62
12. Espectro de RMN ¹ H (300 Hz, CDCl ₃) del éster de benzotriazol 3b	.65
13. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del éster de	
benzotriazol 3b	66
14. Cromatografía en capa fina para la síntesis de la hidrazida de	
benzotriazol 4	68

15. Espectro de RMN ¹ H (300 MHz, CDCl ₃) de la hidrazida de
benzotriazol 471
16. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) de la hidrazida de
benzotriazol 472
17. Cromatografía en capa fina para la síntesis del 1,3,4-oxadiazol
α,β -insaturados 6a
18. Estado físico de los derivados del 1,3,4-oxadiazol
$\alpha\beta$ -insaturados 6a-j
19. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6a79
20. Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol
α,β -insaturado 6a81
21. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol
α,β -insaturado 6a
22. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6a
23. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6b88
24. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6c90
25. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6d92
26. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6e94
27. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6f97
28. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6g99
29. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α , β -insaturado 6h101
30. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1
expuestas al 1,3,4-oxadiazol α,β-insaturado 6i103
31. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1

expuestas al 1,3,4-oxadiazol α , β -insaturado 6j10)5
32. Viabilidad relativa de la línea MCF-7 expuesta a los derivados	
del 1,3,4-oxadiazol α , β -insaturados 6a-j10)6
33. Viabilidad relativa de la línea MDA-MB-231 expuesta a los	
derivados del 1,3,4-oxadiazol α , β -insaturados 6a-j10)7
34. Viabilidad relativa de la línea 4T1 expuesta a los derivados	
del 1,3,4-oxadiazol α,β -insaturados 6a-j10)8
35. Derivados del 1,3,4-oxadiazol α , β -insaturado con mayor	
actividad anticancerígena10)9
36. Viabilidad relativa de esplenocitos murinos expuestos a los	
compuestos derivados del 1,3,4-oxadiazol α , β -insaturados 6a-j11	15
37. Viabilidad relativa de esplenocitos murinos expuestos al	
compuesto derivado del 1,3,4-oxadiazol α , β -insaturado 6f11	l 7
38 . Ensayo de hemólisis relativa de los compuestos derivados del	
1,3,4-oxadiazol α , β -insaturados 6a-j sobre sangre periférica de humano 11	9
39. Ensayo de hemólisis del fármaco doxorrubicina12	20
40. Fluorescencia de los derivados del 1,3,4-oxadiazol α , β -insaturados	
6a-j disueltos en (de izquierda a derecha) 1) CH ₃ CN, 2) MeOH, 3) acetona,	
4) AcOEt, 5) CH ₂ Cl ₂ , 6) THF y 7) Hex, bajo una lámpara UV de 365 nm12	22
41. Imágenes de transmisión de campo claro (izquierda) e imágenes	
de microscopía confocal fluorescente (derecha) de células MCF-7 incubadas	
con 1,3,4-oxadiazol α,β-insaturados 6a, 6c, 6d, 6f, 6g, 6i, 6j12	26
42. Éster de benzotriazol 3a13	<u> 59</u>
43. Espectro de RMN ¹ H (300 MHz, CDCl ₃) del éster de benzotriazol 3a1 4	10
44. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del éster de benzotriazol 3a1 4	11
45. Derivado del 1,3,4-oxadiazol α , β -insaturado 6b1 4	12
46. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6b1 4	13
47. Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β -insaturado 6b1 4	4
48. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β -insaturado 6b1 4	16
49. Derivado del 1,3,4-oxadiazol α , β -insaturado 6c1	17

50.	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6c	148
51.	Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6c	149
52.	Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6b	150
53.	Derivado del 1,3,4-oxadiazol α , β -insaturado 6d	151
54.	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6d	152
55.	Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6d	153
56.	Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6d	154
57.	Derivado del 1,3,4-oxadiazol α,β-insaturado 6e	155
58.	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6e	156
59 .	Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6e	157
60.	Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6e	158
61.	Derivado del 1,3,4-oxadiazol α,β-insaturado 6f	159
62.	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6f	160
63.	Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6f	161
64.	Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β	-insaturado 6f	162
65.	Derivado del 1,3,4-oxadiazol α , β -insaturado 6g	163
66.		
	Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6g	164
67.	Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6g Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	164
67. α,β	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6g Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g	164 165
67. α,β 68.	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6g Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	164 165
67. α,β 68. α,β	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6g Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g	164 165 166
 67. α,β 68. α,β 69. 	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6g Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g Derivado del 1,3,4-oxadiazol α,β-insaturado 6h	164 165 166
 67. α,β 68. α,β 69. 70. 	Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6g Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol -insaturado 6g Derivado del 1,3,4-oxadiazol α,β-insaturado 6h Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6h	164 165 166 167 168

α,β -insaturado 6h	169
72. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β -insaturado 6h	170
73. Derivado del 1,3,4-oxadiazol α , β -insaturado 6i	171
74. Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6i	172
75. Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β -insaturado 6i	173
76. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β -insaturado 6i	175
77. Derivado del 1,3,4-oxadiazol α , β -insaturado 6j	176
78. Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6j	177
79. Espectro de RMN ¹ H (300 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β -insaturado 6j	178
80. Espectro de RMN ¹³ C (75 MHz, CDCl ₃) del 1,3,4-oxadiazol	
α,β-insaturado 6j	180

LISTA DE ESQUEMAS

Esquema

1. Ruta de síntesis de derivados del 1,3,4-oxadiazol α , β -insaturados 6a-f	7
2. Síntesis de derivados de ésteres de metronidazol 3a-q	18
3. Síntesis de derivados del 1,3,4-oxadiazol α,β-insaturados 6a-k	20
4. Síntesis de derivados de 1,3,4-oxadiazol con benzotriazol 9a-q	22
5. Síntesis de derivados del benzotriazolil- proxifilina 12a-b	26
6. Síntesis de 1,3,4-oxadiazoles 18a-i	28
7. Síntesis de derivados del 1,3,4-oxadiazol 31a-f	
8. Síntesis de ésteres de benzotriazol 3a-b	62
9. Síntesis de hidrazida de benzotriazol 4	67
10. Síntesis de derivados del 1,3,4-oxadiazol α , β -insaturados 6a-f	74

NOMENCLATURA

4T1	Cáncer de mama de	C-arom	Carbono
	ratón		aromático
A549	Línea celular de	C6	Línea celular de
	adenocarcinoma de		glioma de rata
	pulmón humano		
AcOEt	Acetato de etilo	CELAES	Centro de
			Laboratorios
			Especializados
Akt	Serina/treonina	CICH ₂ COO	Ácido cloroacético
	quinasa 1	Н	
AT114	Anticuerpo policlonal	COX15	Citocromo C
			oxidasa homólogo
BrC2H4COOC2H	Bromopropionato de	CS ₂	Disulfuro de
5	etilo		carbono
c	Cuarteto		

CuSO ₄ •5H ₂ O	Sulfato de cobre (II)	ELISA	Ensayo de
	pentahidratado		inmunoabsorción
			ligado a enzimas
CH ₂ Cl ₂	Diclorometano	Eq	Equivalente
CH ₃ CN	Acetonitrilo	ESI-MS	Espectrometría de
			Masas de Alta
			Resolución
d	Doblete	EtO	Etoxi
dd	Doble de dobles	EtOH	Etanol
DMEM	Medio de águila	FAK	Quinasa de
	modificado por		adhesión focal
	Dulbecco		
DMF	N,N-dimetilformamida	FT-IR	Espectroscopía de
			Infrarrojo
DMSO	Dimetilsulfóxido	GluR	Receptor de
			glutamato
Downstream	Vía de aguas abajo	h	hora
EDTA	Ácido	H-arom	Hidrógeno
	etilendiaminotetraacétic		aromático
	0		
EGFR	Factor de crecimiento	H ₂ SO ₄	Ácido sulfúrico
	epidérmico		

HCl	Ácido clorhídrico	IGF-1R	Factor de
			crecimiento de
			insulina-1R
НЕК293Т	Células embrionarias de	J	Constantes de
	riñón humano 293		acoplamiento
HER-2	Factor de crecimiento	K ₂ CO ₃	Carbonato de
	epidérmico 2 quinasa		potasio
Hex	Hexano	кон	Hidróxido de
			potasio
HOAc	Ácido acético	L-929	Línea celular de
			fibroblastos de
			ratón
номо	Orbital molecular	LUMO	Orbital molecular
	ocupado de mayor		desocupado de
	energía		menor energía
НТ29	Línea celular de cáncer	m	Multiplete
	de colon humano		
HUVEC	Línea celular humana	<i>m-</i>	Meta
	endotelial de vena		
	umbilical		
Hz	Hertz		
		I	

IC50	Concentración		
	inhibitoria media		
m/z	Relación masa/carga	NH2NH2•H2	Hidracina
		0	monohidratada
MCF-7	Línea celular de cáncer	NHS	<i>N</i> -
	de mama de humano		hidroxisuccinimid
			a
MDA-MB-231	Cáncer de mama de	NIH/3T3	Línea celular de
	humano		fibroblastos
			embrionarios de
			ratón
Me	Metilo	nm	Nanómetro
МеОН	Metanol	0-	Orto
MeTAP2	Enzima metionina	°C	Grados Celsius
	aminopeptidasa 2		
MTT	3-(4,5-dimetiltiazol-2-	OMe	Metoxi
	il)-2,5-difeniltetrazolio		
MV4-11	Leucemia mieloide	OMS	Organización
	aguda humana		Mundial de la
			Salud
N(Me) ₂	Dimetilamino	<i>p</i> -	Para
		I	

NaHCO ₃	Bicarbonato de sodio	p53	Estado de la
			proteína tumoral
			p53
NaOH	Hidróxido de sodio	Ph	Fenilo
рН	Potencial de hidrógeno	SAR	Análisis de
			estructura-
			actividad
PI3K-Akt	Fosfatidil inositol 3-	Src	Receptor
	quinasa		coactivador
			esteroideo
PLA216	Fosfolipasa A2 adiposa	t	Triplete
	específica		
POCl ₃	Oxicloruro de fósforo	TBBi	4,5,6,7-
			tetrabromo-1H-
			benzimidazol
ppm	Partes por millón	ТЕА	Trietilamina
Pr	Propil	tert-BuOH	<i>tert</i> -butoxi
Ras/MAPK	Proteína G monomérica	THF	Tetrahidrofurano
	/proteína quinasas		
	activadas por mitógenos		
Rf	Factor de retención	TMS	Tetrametilsilano
		1	

RMN ¹³ C	Resonancia Magnética	TNBC	Cáncer de mama
	Nuclear de Carbono		triple negativo
	Trece		
RMN ¹ H	Resonancia Magnética		
	Nuclear de Protón		
S	Singulete		
TNP-470	o-cloroacetilcarbamoil		
	fumagillol		
v/v	Volumen/volumen		
μL	Microlitro		
μΜ	Micromolar		
μm	Micrómetro		

SÍMBOLOS

)))	Ultrasonido
Δ	Calentamiento
δ	Flexión
δ	Desplazamiento químico
ф	Rendimiento cuántico
λ _{máx abs}	Longitud máxima de absorción
λ _{máx em}	Longitud máxima de emisión
λ _{máx ex}	Longitud máxima de excitación
ν	Estiramiento

ÍNDICE DE FIGURAS

3a

2-(2H-benzotriazolil)propanoato de etilo

2-(1H-benzotriazolil)propanoato de etilo

3b

2-(1H-benzotriazolil)propanohidrazida

4

6a

6b

6c

(E)-2-(1H-benzotriazoliletil)-5-estiril-1,3,4-oxadiazol

(E)-2-(1H-benzotriazoliletil)-5-(3-fluoroestiril)-1,3,4-oxadiazol

(E)-2-(1H-benzotriazoliletil)-5-(4-fluoroestiril)-1,3,4-oxadiazol

6d

Ν **6e**

6f

(E)-2-(1H-benzotriazoliletil)-5-(4-cloroestiril)-1,3,4-oxadiazol

(E)-2-(1H-benzotriazoliletil)-5-(3-cloroestiril)-1,3,4-oxadiazol

XXIV

6g

6h

6i

(*E*)-2-(1*H*-benzotriazoliletil)-5-(3-metoxiestiril)-1,3,4-oxadiazol (*E*)-2-(1*H*-benzotriazoliletil)-5-(4-metoxiestiril)-1,3,4-oxadiazol (*E*)-2-(1*H*-benzotriazoliletil)-5-(3,4-dimetoxiestiril)-1,3,4-oxadiazol

6j

(E)-2-(1H-benzotriazoliletil)-1,3,4-oxadiazol-2-ilvinil-*N*,*N*-dimetilanilina

CAPÍTULO 1

1. INTRODUCCIÓN

El cáncer es una enfermedad de gran importancia a nivel mundial, debido a que en el 2018 la Organización Mundial de la Salud (OMS) reportó 9,555,027 muertes a nivel global. De acuerdo a este reporte, los tipos de cáncer con mayor número de muertes (Figura 1) son el de pulmón (1,761,007), el colorectal (880,792), el de estómago (782,685), el de hígado (781,631), y el de mama (626,679); mientras que los casos con mayor número de incidentes son el de pulmón (2,093,876), el de mama (2,088,849), el colorectal (1,849,518), el de próstata (1,276,106), y el de estómago (1,033,701).¹

Número estimado de muertes causadas por cáncer en el 2018, ambos sexos, todas las edades

Figura 1. Tipos de cáncer sobresaliente por país en el 2018: a) por muertes b) por incidentes

En este mismo año, México es reportado como el país que ocupa el lugar número 23 en muertes por cáncer, con un estimado de 83,476 casos. De ello, los tipos de cáncer que destacan en número de muertes (Figura 2) son el colorectal (7,084), el de próstata (6,915),

el de mama (6,884), el de hígado (6,868), y el de pulmón (6,733); mientras que los casos con mayor número de incidencias son el de mama (27,283), el de próstata (25,049), el colorectal (14,900), el tiroideo (12,122), y el de cáncer de piel no melanómico (8,501).¹

Figura 2. Tipos de cáncer sobresaliente en México en el 2018: a) por muertes b) por incidentes

En la actualidad, los pacientes tienen la alternativa de emplear diversos tratamientos para contrarrestar el cáncer como lo son la cirugía, la radioterapia, y la quimioterapia, entre otras, las cuales son seleccionadas de acuerdo a la etapa de desarrollo del cáncer que posea el paciente.² Por ejemplo la cirugía es utilizada para extirpar completamente el tumor maligno que se encuentre en una zona específica, o en una zona de interés para evitar el daño de otros órganos.³ La radioterapia es implementada en pacientes donde el cáncer no ha sido propagado a lo largo del organismo, ya que esta técnica consiste en dirigir la

radiación desde el exterior del cuerpo hacia el tumor, o desde una exposición directa de la radiación hacia el interior o cerca del tumor; por lo tanto, esta técnica es empleada en una etapa temprana de la enfermedad para reducir el tamaño del tumor, o como tratamiento preventivo del retorno del cáncer en la zona afectada.⁴ Finalmente, la quimioterapia consiste en administrar diversos fármacos, que a diferencia de la cirugía y la radioterapia que son técnicas que solo pueden ser empleadas en zonas específicas del cuerpo, la quimioterapia permite el tratamiento a lo largo de la anatomía del paciente para erradicar las células cancerosas.⁵ Por ello, la quimioterapia es la técnica no selectiva, los fármacos empleados pueden interactuar tanto con células sanas como con células malignas, presentando efectos secundarios como lo son el cansancio, la caída de cabello, la anemia, las náuseas y el vómito, la diarrea, las úlceras, los problemas de fertilidad, el cambio del tono de piel y uñas, y el entumecimiento y dolor en músculos.⁶

Por todo lo anterior, es también de gran relevancia el contar con técnicas de detección temprana del cáncer de una forma sencilla, y en este sentido una de las técnica que sigue en vía de desarrollo y que es tema atractivo para la detección de células cancerígenas, es la generación de imágenes fluorescentes.⁷ Esta técnica ofrece muchas ventajas por encima de las técnicas tradicionales, ya que la obtención de las imágenes es rápida, no invasiva y emplea menor tiempo de trabajo que la patología y los ensayos químicos. A pesar de que permite obtener una imagen a nivel celular y molecular en animales vivos, en tiempo real y con un resultado cuantitativo, lo cual permite ofrecer un diagnóstico sensible y preciso para varias enfermedades por tener como objetivo diferentes epítopos expresados en una sola célula o de una amplia gama de enfermedades.⁸ No obstante, existen factores que

deben considerarse en el diseño de cualquier fluoróforo que sea empleado en imágenes celulares, como son las propiedades fotofísicas, la absorción y la toxicidad en los sistemas biológicos, y los factores físicoquímicos como la solubilidad. Entre las propiedades fotofísicas que debe contrarrestar un fluoróforo se encuentra la autofluorescencia, la cual puede evitarse mediante el uso de fluoróforos que posean grandes desplazamientos Stokes, es decir, gran diferencia entre la longitud de onda de la luz absorbida y la emitida, ya que los desplazamientos Stokes que presentan otras especies involucradas en la autofluorescencia son pequeños, y por lo tanto no habría interferencias significativas de otras especies fluorescentes en la imagen en estudio. Otro efecto que se debe evitar es la fotodecoloración, ya que genera la degradación fotoquímica de los fluoróforos durante la obtención de imágenes e impide observar correctamente la distribución del compuesto en las células. También es de gran importancia considerar la eficiencia del fluoróforo para ser absorbido, ya que las membranas celulares son lipídicas y, por lo tanto, las especies altamente polares no atraviesan la membrana, a menos que sean introducidas por un transporte activo. Así mismo, la solubilidad del fluoróforo tiene gran impacto en su absorción ya que el medio en el que se incuban las células es acuoso y, por ende, el fluoróforo debe ser soluble para internalizarse en las células. Otro aspecto que influye en la absorción del fluoróforo es que posea una carga positiva, ya que la carga negativa neta que poseen las células sanas internamente en comparación con el exterior, permite un transporte pasivo, es decir, la difusión simple a través de la membrana, lo cual, posteriormente permitirá que el fluoróforo se acumule dentro de la célula por interacciones electrostáticas, siendo impulsado por el potencial de membrana. Finalmente, es de gran importancia considerar que el fluoróforo posea baja toxicidad para no dañar las células, y que se localice en un sitio específico dentro de la célula, ya que un fluoróforo que resalta un determinado orgánulo es más útil que uno que se distribuye aleatoriamente en toda la célula; y para controlar la localización celular se puede emplear la reacción química del fluoróforo con una especie presente en el orgánulo objetivo, o haciendo coincidir la carga, la polaridad y la lipofilicidad con el sitio de interés.⁹ Por lo tanto, el desafío para el diseño de fluoróforos no solo involucran las propiedades fotofísicas de la molécula, sino que también se incluyan todas aquellas propiedades relacionadas a la permeación y localización de células, toxicidad y solubilidad en los sistemas biológicos. Por ello, el diseño de fluoróforos que permitan la generación de imágenes fluorescentes está en continuo desarrollo.

Debido a estas problemáticas, el desarrollo de nuevos compuestos con potencial actividad anticancerígena o que permitan el estudio de esta enfermad, sigue siendo un reto para los químicos sintéticos. Por lo tanto, diversos grupos de investigación siguen dedicado sus esfuerzos para obtener nuevos compuestos que incorporen en una misma estructura diversos grupos funcionales con la finalidad de incrementar la actividad biológica, presentar mejores propiedades y reducir los efectos adversos.¹⁰ Dos ejemplos de grupos funcionales que podrían ser empleados para la síntesis de compuestos dirigidos a la terapia anticancerígena, son el oxadiazol y el benzotriazol, los cuales son estructuras atractivas en síntesis orgánica debido a que estos compuestos heterocíclicos poseen átomos de nitrógeno y oxígeno que permiten la formación de puentes de hidrógeno con diversos sitios de interés^{11, 12} y, que a su vez, permite exhibir una amplia gama de aplicaciones tanto en el campo de la ciencia de los materiales como en la farmacéutica, siendo algunos ejemplos de ello la actividad antituberculosa,^{13,14} antidiabética,^{15,16} antifúngica,^{17,18}

Considerando que los derivados de oxadiazoles α , β -insaturados y los benzotriazoles representan un área de oportunidad para el desarrollo de fármacos, en este proyecto se plantea la síntesis de 10 nuevos oxadiazoles α , β -insaturados, la evaluación de su actividad anticancerígena y su potencial aplicación como marcadores fluorescentes (Esquema 1).

Esquema 1. Ruta de síntesis de derivados del 1,3,4-oxadiazol α,β-insaturados 6a-f

1.1. Ciclos Aromáticos

1.1.1. Generalidades del grupo oxadiazol

El oxadiazol es un heterocíclico aromático de cinco miembros, el cual está conformado por dos átomos de carbono, dos átomos de nitrógeno y un átomo de oxígeno. Debido a las diversas posiciones que toman los átomos en el anillo aromático, existen cuatro isómeros de oxadiazol, siendo estos el 1,2,3-, 1,2,4-, 1,2,5- y 1,3,4-oxadiazol (Figura 3).

Figura 3. Isómeros de oxadiazol

Estos isómeros de oxadiazol presentan una amplia gama de aplicaciones en el área biológica debido a su capacidad de formar puentes de hidrógeno, donde se puede encontrar que el 1,2,3-oxadiazol tiene propiedad antibacterial, analgésica, anti-inflamatoria²⁵ y antineoplástica.²⁶ Por otra parte, el 1,2,4-oxadiazol se ha encontrado como antagonista del anticuerpo policional (AT114), inhibidor de COX15 (ensamblaje de citocromo C oxidasa homólogo), inhibidor de la fosfolipasa A2 adiposa específica (PLA216) y como

moduladores del receptor de glutamato (GluR).²⁷ El 1,2,5-oxadiazol se ha reportado por su actividad biológica anticancerígena, antiagregante de plaquetas y vasodilatador, así como su propiedad antimicrobiana, antiparasitaria, mutagénica e inmunosupresoras.²⁸ Finalmente, el 1,3,4-oxadiazol es el isómero con mayor atracción farmacéutica debido a su favorable perfil metabólico el cual permite presentar actividad antiinflamatoria, hipoglucemiante, ansiolítica, antidepresiva, antifúngica, antibacteriana, antituberculosa y anticancerígena;¹⁹ además de que posee propiedades fotofísicas que son empleadas en la ciencia de los materiales.²⁹

1.1.2. Generalidades del grupo benzotriazol

Los azoles fusionados a benceno son una clase de compuestos heterocíclicos que contiene tres heteroátomos, un ejemplo de ello es el benzotriazol el cual posee tres átomos de nitrógeno (Figura 4).

Figura 4. Estructura en resonancia del 1*H*-benzotriazol

El 1*H*-benzotriazol puede actuar como electrodonador, como precursor de radicales o de carbaniones. Es fácilmente insertable en otras estructuras químicas a través de una serie de reacciones, como la de condensación, adición y alquilación.

Por otra parte, el principal interés de esta molécula se centra en el campo farmacéutico, ya que los derivados de benzotriazol pueden presentar una gama de propiedades como la regulación del crecimiento vegetal, antibacteriana, antiprotozoaria, antiviral y antiproliferativa.¹⁰

1.2. Cáncer

El cáncer es una enfermedad que se genera por alteraciones celulares. Comúnmente, las células del cuerpo humano requieren señales emitidas por ligandos, que están en forma de factores de crecimiento o como inhibidores, para estimular y finalizar su crecimiento. Cuando un ligando se une a las proteínas que se encuentran en la superficie celular conocidas como receptores, la señal generada va al dominio intracelular, activando la enzima asociada e iniciando una cascada de señales al núcleo, las cuales le indicarán a la célula su desarrollo. Sin embargo, en las células malignas se generan muchas señales que permiten múltiples réplicas del gen, lo cual conduce a la transcripción y producción excesiva de receptores; obteniendo con ello un gran potencial para el crecimiento tumoral.³⁰
1.2.1. Mecanismo de acción los derivados del 1,3,4-oxadiazol y benzotriazol en cáncer

Se han realizado diversos estudios para evaluar la actividad los derivados de 1,3,4oxadiazol y benzotriazol en líneas celulares cancerígenas, encontrando que uno de los mecanismos de acción que llevan a cabo las moléculas que contienen ambos grupos funcionales es mediante la inhibición de la quinasa de adhesión focal (FAK).³¹

FAK es una tirosina quinasa no receptora que fosforila tirosina en respuesta a la agrupación de integrinas, dando como resultado la transmisión de señales al núcleo celular, el cual desempeña un papel importante en la división celular, la motilidad, la proliferación celular, la supervivencia, la invasión, la metástasis y la angiogénesis. La integrina o la estimulación del factor de crecimiento promueve la interacción de FAK con el receptor coactivador esteroideo (Src), lo que conlleva a la activación de las vías "aguas abajo" (downstream) tal como la señalización de la proteína G monomérica /proteína quinasas activadas por mitógenos (Ras/MAPK), provocando el crecimiento invasivo. Así mismo, en cuanto a las integrinas, FAK también interactúa con el factor de crecimiento de insulina-1R (IGF-1R) fosforilando Y397, lo cual promueve la fosforilación de proteínas aceptoras incluyendo Src.

La activación FAK/Src puede estimular muchas otras vías de señalización de transducción como la de fosfatidil inositol 3-quinasa (PI3K-Akt), donde la activación

de esta cascada modula la motilidad y la supervivencia de las células. Por otra parte, FAK modula el metabolismo de la glucosa y los lípidos que es esencial para el rápido crecimiento de las células tumorales, la supervivencia y la invasión. Las interacciones de FAK con IGF-1R y las integrinas transmiten estas señales de crecimiento mediante la activación de efectores tales como PI3K/Akt, promoviendo el consumo de glucosa para alimentar el crecimiento rápido en las células tumorales que estimulan la proliferación celular (Figura 5).³¹

Figura 5. Modulación mediante FAK en el metabolismo de células cancerígenas.

1.3. Marcadores fluorescentes

Diversas interacciones biológicas entre ligandos y receptores median diversas vías metabólicas vitales en el cuerpo. Debido a que la interacción entre un ligando y un receptor celular es altamente específica, distintas biotecnologías han adoptado la afinidad ligando-receptor, incluyendo la aplicación de marcadores fluorescentes, como lo es el ensayo de inmunoabsorción ligado a enzimas (ELISA), la inmunotransferencia, los kits de diagnóstico y las imágenes de cáncer basadas en fluorescencia.

Muchos receptores específicos de las células cancerosas o moléculas diana están presentes en las superficies celulares y, por lo tanto, se han utilizado ampliamente para el diagnóstico y tratamiento de la enfermedad. Recientemente, para obtener mejores resultados, la cirugía guiada por fluorescencia, donde los fluoróforos son dirigidos a los ligantes específicos de cáncer para marcar la zona y llevar a cabo la cirugía, se ha utilizado ampliamente en el tratamiento del cáncer. Las imágenes fluorescentes muestran gran potencial como herramienta de diagnóstico para la monitorización celular *in vitro* e *in vivo*, ya que es altamente sensible, selectiva y es de bajo costo.

Se han reportado diversos trabajos centrados en las imágenes de cáncer basadas en fluorescencia, donde se han presentado diversos fluorocromos. Los factores que influyen en la selección de fluoróforos en sistemas biológicos son las longitudes de onda de excitación y emisión, la intensidad de emisión, la solubilidad y la estabilidad. De entre

ellos, es de gran importancia la longitud de onda máxima de absorción y emisión del fluoróforo, ya que es necesaria para obtener una alta resolución de la imagen fluorescente. Así mismo, la intensidad de la emisión depende del rendimiento cuántico que es calculado a partir de disoluciones del fluoróforo, por lo que se debe considerar la condición acuosa ya que muchos fluoróforos no emiten fluorescencia bajo esta condición en sistemas biológicos.³²

1.3.1. Mecanismo de acción para la generación de imágenes fluorescentes

Por otra parte, se han descrito estrategias de conjugación entre fluoróforos y ligandos cancerígenos, que están relacionadas con los principales grupos funcionales que incluyen tioles, ácidos carboxílicos, hidroxilos y aminas. Sin activación específica, un grupo amino se puede conectar con varios grupos funcionales activados como isotiocianato, isocianato, acil azida, *N*-hidroxisuccinimida (NHS), cloruro de sulfonilo, aldehído, epóxido, carbonato, fluorobenceno y anhídrido succínico (Figura 6).³²

Figura 6. Reacción del grupo amino con varios grupos funcionales activados

En la actualidad, se han reportan algunos compuestos nitrogenados que fungen como fluoróforos que se unen a ligantes específicos de cáncer y que fueron analizados para el diagnóstico de diferentes tipos de cánceres mediante imágenes fluorescentes. Algunos de ellos se presentan en la tabla 1. 32

Fluoróforo	Ligante cancerígeno	Receptor celular	λmáx abs λmáx em (nm)	Enfermedad
GI → N⊕ IR-780	-	-	633, 780	Célula de cáncer de próstata
	Octreotato	Receptores	740, 780- 900	Tumor neuroendócrino
Indodicarbocianina	dFMFdWK	somatostatina		
	Albúmina sérica humana, transferrina	Receptor de superficie celular para endocitosis a través del efecto EPR	690, 740	Célula de cáncer de colon humano (HT29)
Indotricarbocianina	Octreotato	Receptores para la somatostatina	740, 780- 900	Tumor neuroendócrino

Conjunto de fluoróforos y ligandos específicos de biomarcadores para la generación de imágenes fluorescentes

CAPÍTULO 2

2. ANTECEDENTES

2.1. Actividad anticancerígena

En el año 2010, Quian y col.¹⁰ realizaron la síntesis de derivados de ésteres de metronidazol **3a-q** en un solo paso (Esquema 2), evaluaron la actividad inhibitoria de los compuestos en los receptores del factor de crecimiento epidérmico (EGFR) y factor de crecimiento epidérmico 2 quinasa (HER-2), y determinaron la actividad anticancerígena en la línea celular de cáncer de mama (MCF-7).

Para la síntesis de los compuestos **3a-q**, se colocaron a reflujo los derivados de ácido cinámico y metronidazol en presencia de K_2CO_3 como base y *N*,*N*-dimetilformamida (DMF) como disolvente, a 80 °C durante un periodo de 24 h (Esquema 2).

Esquema 2. Síntesis de derivados de ésteres de metronidazol 3a-q

Después de la síntesis, se realizó la evaluación de la capacidad de los compuestos de inhibir la autofosforilación de EGFR y HER-2, utilizando el ensayo de ELISA en fase sólida empleando erlotinib como fármaco de referencia (Tabla 2). Los resultados de esta prueba mostraron que el compuesto **3h** presenta la mayor actividad inhibitoria, mostrando una concentración inhibitoria media (IC₅₀) de 0.62 μ M para EGFR y de 2.15 μ M para HER-2. En cuanto a los sustituyentes en posición *meta* **3o-q** y *orto* **3a-c**, **3i**, se observó que poseen mayor actividad que los sustituyentes en posición *para* **3j-n**; siendo el orden de contribución a la actividad F < Cl < Br. Los sustituyentes en posición *orto* **3d-g**, al igual que los sustituyentes en posición *para* **3j-n**, conducen a una pérdida de la actividad.

Además, se estudió la actividad antiproliferativa *in vitro* en la línea MCF-7 que estaba expresada por HER-2 y sobreexpresada por EGFR. Como resultado, los compuestos con mayor actividad fueron: **3b** (IC₅₀= 3.05 μ M), **3c** (IC₅₀= 2.45 μ M), **3h** (IC₅₀= 0.36 μ M), **3i** (IC₅₀= 0.98 μ M); siendo el compuesto **3h** el de mejor actividad. A pesar de ello, este compuesto no presenta una mejor actividad que la del fármaco de referencia erlotinib (IC₅₀= 0.02 μ M).

Inhibición (IC₅₀) de EGFR y HER-2 quinasas con los derivados del éster de metronidazol

Ensayo de enzimático, IC ₅₀ (µM)								
Compuesto	FCFR	HER-	Compuesto	FCFR	HER-	Compuesto	FCFR	HER-
Compuesto	LUIK	2	Compuesto	2		Compuesto	EUFK	2
3 a	4.12	5.84	3g	6.82	9.97	3m	25.00	40.00
3 b	3.62	4.77	3h	0.62	2.15	3n	32.00	>50.00
3c	3.24	4.65	3i	1.27	3.46	30	14.53	19.34
3d	7.83	10.78	3ј	26.74	41.26	3р	12.42	16.75
3e	8.11	9.65	3k	20.81	36.45	3q	13.87	18.82
3f	10.85	14.32	31	24.32	44.85	Erlotinib	0.03	0.16

En el año 2013, Sun y col.³³ realizaron la síntesis de derivados de 1,3,4-oxadiazol α,β insaturados **6a-k** en tres pasos de reacción (Esquema 3), evaluando además la actividad
inhibitoria de la enzima metionina aminopeptidasa 2 (MeTAP2) y la actividad
antiproliferativa en la línea celular humana endotelial de vena umbilical (HUVEC).

En la síntesis se hizo reaccionar el éster metílico **4** con hidrazina utilizando etanol como disolvente a 90 °C por 4 h para obtener la hidrazida **5**. Posteriormente, el compuesto **5** se hizo reaccionar con diversos derivados de ácido cinámico utilizando POCl₃ anhidro a 110 °C por 5 h, para generar los compuestos de interés **6a-k** (Esquema 3).

Esquema 3. Síntesis de derivados del 1,3,4-oxadiazol α , β -insaturados **6a-k**

Posterior a la síntesis, se realizó la evaluación inhibitoria de MeTAP2, empleando *o*cloroacetilcarbamoil fumagillol (TNP-470) como fármaco de referencia (Tabla 3). Los resultados de esta prueba mostraron que el compuesto **6a** presenta la mayor actividad inhibitoria con un IC₅₀ de 2.08 μ M. Además, los sustituyentes del compuesto mostraron que los grupos electroatractores generan una mayor actividad que los electrodonares, siendo el orden creciente de actividad inhibitoria: F > Cl > Br > NO₂.

Por otra parte, la evaluación de la actividad inhibitoria en HUVEC, mostro que los compuestos con mayor actividad corresponden al compuesto: **6a** (IC₅₀= 1.16 μ M), **6b** (IC₅₀= 3.53 μ M), **6c** (IC₅₀= 4.96 μ M) y **6d** (IC₅₀= 7.71 μ M); donde el compuesto **6a** mostró una mejor inhibición comparado con el fármaco de referencia TNP-470 (IC₅₀= 1.96 μ M).

Compuesto	MetAP2	Compuesto	MetAP2	Compuesto	MetAP2
Compuesto	(IC50, µM)	Compuesto	(IC50, µM)	Compuesto	(IC50, µM)
6a	2.08	<u>6</u> e	7.92	<u>6</u> i	22.03
6b	4.79	6f	8.41	6ј	18.24
6c	6.33	6g	10.71	6k	13.95
6d	10.04	6h	12.66	TNP-470	1.32

Actividad inhibitoria de MetAP2 de los derivados del 1,3,4-oxadiazol α,β-insaturado 21a-k

En el año 2013, Shuai y col.³⁴ realizaron la síntesis de derivados del 1,3,4-oxadiazol con benzotriazol **9a-q**, en cuatro pasos de reacción, obteniendo rendimientos químicos del 70-85% (Esquema 4), y evaluaron la actividad antiproliferativa en la línea celular MCF-7 y HT29. Así mismo, evaluaron los compuestos como inhibidores de FAK, realizaron un ensayo antiproliferativo y una simulación de la interacción del compuesto más activo con el sitio diana de FAK.

La síntesis inició con la esterificación del benzotriazol **7**, empleando cloroacetato de etilo y K_2CO_3 en acetona, durante un periodo de reflujo de 8 h. En seguida, se añadió hidrazina monohidratada en metanol (MeOH) a una temperatura de 4 °C durante 12 h, para obtener el *1H*-benzo-1,2,3-triazolilacetohidrazida **8**. Posteriormente, el compuesto **8** se colocó a reflujo por 24 h, junto con disulfuro de carbono/hidróxido de potasio (CS₂/KOH) en etanol, para sintetizar el derivado de oxadiazol, que posteriormente fue neutralizado con ácido clorhídrico (HCl) a un potencial de hidrógeno (pH) 5-6 y puesto a reflujo por 10 a

24 h con hidróxido de sodio (NaOH) en CH₃CN, para obtener los compuestos de interés 9a-q (Esquema 4).

Esquema 4. Síntesis de derivados de 1,3,4-oxadiazol con benzotriazol 9a-q

Después de la síntesis, se realizó la evaluación de la actividad anticancerígena de los compuestos en las líneas celulares MCF-7 y HT29, utilizando cisplatino como fármaco de referencia (Tabla 4). Como resultado observaron que el compuesto **9a** presentó la mejor actividad en las dos líneas celulares (MCF-7: IC_{50} = 5.68 µg/mL, HT29: IC_{50} = 10.21 µg/mL), además de demostrar mayor actividad que el fármaco de referencia cisplatino (MCF-7: IC_{50} = 10.20 µg/mL, HT29: IC_{50} = 15.83 µg/mL).

Compuesto	MCF-7	HT29	Communito	MCF-7	HT29
Compuesto	IC50(µM)	IC50(µM)	Compuesto	IC50(µM)	IC50(µM)
9a	5.68	10.21	9j	28.92	38.50
9b	10.75	15.27	9k	24.22	36.22
9c	11.81	14.30	91	20.80	35.10
9d	18.89	26.81	9m	8.70	17.62
9e	16.24	25.10	9n	17.66	33.86
9f	15.60	19.35	90	30.23	42.30
9g	8.25	15.47	9p	25.82	37.62
9h	12.46	15.60	9q	21.49	34.80
9i	16.30	31.20	Cisplatino	11.20	15.83

Actividad antiproliferativa en la línea celular MCF-7 y HT29 de los derivados del 1,3,4-oxadiazol con benzotriazol 24a-q

Por otra parte, el análisis estructura-actividad (SAR) que realizaron indicó que los compuestos con grupos electroatractores mostraban fuerte actividad en comparación con aquellos que eran electrodonadores, siendo el orden $F > Cl > Br > NO_2 > OMe > Me$. Así mismo, los sustituyentes de las diferentes posiciones mostraron distinta actividad, siendo el orden *orto > meta > para*.

Posteriormente, evaluaron la actividad inhibitoria en FAK de los compuestos sintetizados (Tabla 5), donde nuevamente el compuesto **9a** presentó mejor actividad (IC₅₀= 1.2 ± 0.3 µg/mL) en comparación con el fármaco cisplatino (IC₅₀= 8.6 + 0.2 µg/mL).

Compuesto	IC50(µM)	Compuesto	IC50(µM)	Compuesto	IC50(µM)
9a	1.2 <u>+</u> 0.3	9h	8.3 <u>+</u> 0.7	90	33.8 <u>+</u> 1.4
9b	9.5 <u>+</u> 0.1	9i	14.2 <u>+</u> 0.4	9р	8.6 <u>+</u> 0.3
9с	9.8 <u>+</u> 0.2	9ј	15.8 <u>+</u> 1.1	9q	9.2 <u>+</u> 0.5
9d	12.1 <u>+</u> 1.3	9k	7.5 <u>+</u> 0.2	Cisplatino	8.6 <u>+</u> 0.2
9e	7.1 <u>+</u> 0.2	<i>91</i>	7.0 <u>+</u> 0.9		
9f	7.6 <u>+</u> 0.5	9m	9.1 <u>+</u> 0.5		
9bg	7.1 <u>+</u> 0.3	9n	23.7 <u>+</u> 2.1		

Actividad inhibitoria de FAK de los derivados del 1,3,4-oxadiazol con benzotriazol 9a-q

Posteriormente, realizaron el ensayo de apoptosis *in vitro* del compuesto **9a**, donde observaron que éste induce a la apoptosis de las células de MCF-7 de manera dependiente a la concentración de la dosis.

Finalmente, con la intención de conocer el posible mecanismo de acción del compuesto con mayor actividad, realizaron una simulación de la molécula con el sitio activo de unión, donde encontraron que el compuesto **9a** presentaba dos enlaces interactivos con la subunidad catalítica de proteínas FAK, siendo el átomo de nitrógeno del anillo del oxadiazol el que formaba puentes de hidrógeno con el grupo amino del CYS502, y el anillo del benceno formaba una interacción π -catión con LYS454 (Figura 7).

Figura 7. Modelos de unión del compuesto 9a con FAK 34

En el año 2018, Borowiecki y col.³⁵ realizaron la síntesis de derivados del benzotriazol incorporando en su estructura la proxifilina **12a-b** en un solo paso de reacción y con rendimientos químicos de 69-73% (Esquema 5). Además, evaluaron la actividad anticancerígena de los compuestos en la línea celular MCF-7.

La síntesis se inició colocando a 50 °C por 30 min la azida de benzotriazol correspondiente **10a** y/o **10b** con el alquino **11**, sulfato de cobre (II) pentahidratado (CuSO₄•5H₂O), ascorbato de sodio, ácido acético y una mezcla de DMF/*tert*-butoxi (*tert*-BuOH)/H₂O para obtener los compuestos de interés **12a-b** (Esquema 5).

Esquema 5. Síntesis de derivados del benzotriazolil- proxifilina 12a-b

Posteriormente a la síntesis, se realizó la evaluación de la actividad anticancerígena utilizando la línea celular MCF-7 empleando como referencia el 4,5,6,7-tetrabromo-1*H*-benzimidazol (TBBi) (Tabla 6), donde se observó que la posición 2*H* del benzotriazol **12b** exhibía mayor actividad antineoplásica en las cuatro concentraciones de dosis examinadas. La diferencia del comportamiento citotóxico del derivado **12b** podría estar relacionado a un diferente mecanismo de transporte activo transmembranal que lleva a cabo la molécula en la línea celular MCF-7.

Tabla 6

Actividad antiproliferativa en la línea celular MCF-7 de los derivados del benzotriazolil-proxifilina 12a-b

Communito	IC50	IC50	IC50	IC50
Compuesto	25 μΜ	50 µM	100 µM	200 µM
12a	74.5 <u>+</u> 6.7	29.7 <u>+</u> 5.4	2.0 <u>+</u> 1.8	4.1 <u>+</u> 1.6
12b	58.3 <u>+</u> 3.3	59.8 <u>+</u> 2.1	59.1 <u>+</u> 2.6	53.7 <u>+</u> 6.4
TBBi	19.6 <u>+</u> 4.3	24.6 <u>+</u> 2.0	9.0 <u>+</u> 1.4	1.7 <u>+</u> 0.4

En el año 2018, Altintop y col.³⁶ reportaron la síntesis de derivados de oxadiazol **18a-i**, en seis pasos de reacción y con rendimientos químicos del 77-90% (Esquema 6). La evaluación de la actividad anticancerígena de estos compuestos se llevó a cabo utilizando la línea celular de adenocarcinoma de pulmón humano (A549), glioma de rata (C6) y se evaluó la citotoxicidad de los compuestos en línea celular de fibroblastos embrionarios de ratón (NIH/3T3). Así mismo, evaluaron la actividad inhibitoria de los compuestos en la serina/treonina quinasa 1 (Akt), FAK y la caspasa-3. Finalmente analizaron el docking de la molécula con mayor actividad en los sitios activos de Akt, FAK y la caspasa-3.

En la síntesis se obtuvo inicialmente el derivado de ácido acético **14** empleando como precursor el 5,6,7,8-tetrahidronaftalen-2-ol con ácido cloroacético. Posteriormente, el compuesto **14** se hizo reaccionar con etanol en medio ácido para obtener el éster correspondiente **15**. A continuación, la reacción del compuesto **15** con hidracina monohidratada, utilizando etanol como disolvente y un tiempo de reacción de 2 h generó la hidracida **16**; la cual al hacerse reaccionar con CS_2 , KOH como base y EtOH como disolvente a reflujo por 6 h y un posterior tratamiento con cloruro de cloroacetilo en presencia de trietilamina (TEA), 2-cloro-*N*-(tiazol/benzotiazol-2-il)acetamida, KOH y el nucleófilo sustituido, generó los oxadiazoles de interés **18a-i** (Esquema 6).

Esquema 6. Síntesis de 1,3,4-oxadiazoles 18a-i

Posterior a la síntesis, se llevó a cabo la evaluación de la actividad anticancerígena, mediante el ensayo de bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio (MTT), empleando cisplatino como fármaco estándar (Tabla 7). Los resultados mostraron que los compuestos **18a-b**, **18d-g y 18i** presentaron mejor actividad citotóxica contra la línea celular C6 que con la línea A549, siendo en esta última línea donde los compuestos **18c** y **18h** fueron más efectivos. Cabe destacar que el compuesto **18f** presentó una mayor actividad de acuerdo a sus valores IC₅₀ de 4.63 \pm 0.85 μ M y 39.33 \pm 4.04 μ M para las líneas celulares C6 y A549, respectivamente; lo cual indicó que el sustituyente metoxi en el anillo de benzotiazol aumenta la actividad anticancerígena para ambas líneas celulares. Así mismo, los compuestos **18b** y **18i** mostraron una actividad citotóxica notable contra la línea celular C6 (IC₅₀= 89.33 \pm 14.47, IC₅₀= 66.67 \pm 12.58 μ M, respectivamente) y para

la línea celular A549 (IC₅₀= 91.67 \pm 7.64 IC₅₀=115 \pm 5 μ M, respectivamente). Ésto permitió demostrar que el sustituyente cloro del anillo de benzotiazol disminuyó la actividad anticancerígena en la línea celular C6, de igual manera que el sustituyente etoxi (EtO) disminuyó la actividad anticancerígena en la línea celular A549. Realizando una comparación de los compuestos **18h** y **18i** concluyeron que el compuesto que poseía el grupo nitro (NO₂) **18i**, aumentó la actividad anticancerígena contra ambas líneas celulares.

Tabla 7

Valores of	de IC ₅₀ (de lo	os compuestos eval	aluados contra l	as células	A549, C6	y NI	H/3T3	a 24	h
------------	-----------------------	-------	--------------------	------------------	------------	----------	------	-------	------	---

	Línea celular C6	Línea celular A549	Línea celular NIH/3T3
Compuestos	IC50 (µM)	IC50 (µM)	IC50 (µM)
18 a	153 <u>+</u> 35.12	246.67 <u>+</u> 50.33	96.67 <u>+</u> 12.58
18b	89.33 <u>+</u> 14.47	91.67 <u>+</u> 7.64	291.67 <u>+</u> 59.23
18c	236.67 <u>+</u> 23.10	263.33 <u>+</u> 47.36	246.67 <u>+</u> 50.58
18d	98.33 <u>+</u> 12.58	233.33 <u>+</u> 20.82	335.67 <u>+</u> 74.54
18e	108.33 <u>+</u> 16.07	210.00 <u>+</u> 10.00	> 403.00
18f	4.63 <u>+</u> 0.85	39.33 <u>+</u> 4.04	94.33 <u>+</u> 7.51
18g	93.33 <u>+</u> 15.27	283.33 <u>+</u> 15.28	> 403.00
18h	213.33 <u>+</u> 35.12	228.33 <u>+</u> 44.81	> 403.00
18i	66.67 <u>+</u> 12.58	115.00 ± 5.00	> 403.00
Cisplatino	40.67 <u>+</u> 3.79	70.67 <u>+</u> 1.15	> 403.00
Continuación			

GSK690693	14.5 <u>+</u> 3.54	105.33 <u>+</u> 5.03	ND

Por otra parte, para evaluar la toxicidad de los compuestos, se evaluó la viabilidad de las células de NIH/3T3 expuestas a cada compuesto utilizando el ensayo de MTT (Tabla 7). Los resultados mostraron que el compuesto **18f** presentó la menor toxicidad (IC₅₀ 94.33 \pm 7.51 μ M) en comparación con los demás compuestos y el fármaco de referencia.

Debido a la importancia de la activación de la caspasa-3 en el inicio de eventos celulares durante el proceso apoptótico temprano, en este estudio se determinó el efecto de los compuestos **18b**, **18f** y **18i** en la activación de la caspasa-3 (Tabla 8). Los porcentajes de células positivas de caspasa-3 de los compuestos **18b**, **18f** y **18i** y cisplatino (para dosis de IC₅₀) se determinaron como 11.7, 33.9, 11.3 y 9.6, mientras que los porcentajes de células negativas fueron 90.8, 69.8, 90.1 y 91.6 respectivamente, en la línea celular C6. Por otro lado, los porcentajes de células caspasa-3 (+) de los compuestos **18b**, **18f**, **18i** y cisplatino (para dosis de IC₅₀) se determinaron como 7.1, 25.0, 5.4 y 10.5, mientras que los porcentajes de células caspasa-3 (-) de los compuestos **18b**, **18f** y **18i** y cisplatino (para dosis de IC₅₀) se determinaron como 93.5, 76.4, 95.1 y 90.4, respectivamente, en la línea celular A549 (Tabla 8). Estos resultados demostraron que el compuesto **18f** fue el más efectivo en la activación de la caspasa-3 en ambas líneas celulares.

	Línea ce	elular C6	Línea celular A549		
	% Células	% Células	% Células	% Células	
Grupos	Caspasa-3 (-)	Caspasa-3 (+)	Caspasa-3 (-)	Caspasa-3 (+)	
Control	96.4	4.8	98.1	2.1	
Compuesto 18b	90.8	11.7	93.5	7.1	
Compuesto 18f	69.8	33.9	76.4	25.0	
Compuesto 18i	90.1	11.3	95.1	5.4	
Cisplatino	91.6	9.6	90.4	10.5	

Análisis de caspasa-3 positivas/negativas en las líneas celulares C6 y A549

Las células C6 y A549 fueron cultivadas por 24 h en un medio con los valores IC_{50} de los compuestos. Se analizaron al menos 10,000 células por muestra, y se realizó un análisis de cuadrante.

Así mismo, los compuestos **18b**, **18f** y **18i** fueron investigados por sus efectos inhibidores sobre la actividad de Akt, debido a su importancia en la señalización del cáncer (Tabla 9). El compuesto **18f** inhibió la actividad de Akt con un valor de IC₅₀ de 2.60 \pm 0.17 μ M, lo cual demostró una mejor actividad que el cisplatino (IC₅₀ = 39.00 \pm 1.41 μ M) y GSK690693 (IC₅₀ = 6.97 \pm 0.06 μ M), un potente inhibidor de la quinasa pan-AKT. De igual modo, el compuesto **18f** también mostró una actividad inhibitoria significativa de Akt con un valor de IC₅₀ de 27.50 \pm 0.71 μ M en la línea celular A549 cuando se comparó con cisplatino (IC₅₀= 34.00 \pm 1.73 μ M) y GSK690693 (IC₅₀= 17.33 \pm 2.87 μ M).

Tabla 9

	Línea celular C6	Línea celular A549
Compuestos	IC50 (µM)	IC50 (µM)
18b	165.00 <u>+</u> 5.00	98.33 <u>+</u> 2.89
18f	2.60 <u>+</u> 0.17	27.5 <u>+</u> 0.71
18 i	44.50 <u>+</u> 3.53	138.33 <u>+</u> 45.37
Cisplatino	39.00 <u>+</u> 1.41	34.00 <u>+</u> 1.73
GSK690693	6.97 <u>+</u> 0.06	17.33 <u>+</u> 2.87

Efecto inhibitorio sobre Akt

Por otro lado, los autores evaluaron los efectos inhibidores de los compuestos **18b**, **18f** y **18i** sobre la actividad de FAK (Fosfo-Tir397) (Tabla 10). De acuerdo al ensayo, el compuesto **18f** mostró actividad inhibitoria significativa (IC₅₀= 19.50 \pm 2.12 μ M) en la línea celular C6 en comparación con cisplatino (IC₅₀= 59.00 \pm 1.41 μ M). Sin embargo, los compuestos **18b** y **18i** no mostraron una inhibición significativa de FAK en las células C6. Esto demostró que el grupo metoxi es de gran importancia para la inhibición de Akt y FAK.

Compuesto	IC50 (µM)
18b	117.50 <u>+</u> 3.54
18f	19.50 <u>+</u> 2.12
18i	105.00 <u>+</u> 7.07
Cisplatino	59.00 <u>+</u> 1.41

Valores de IC₅₀ de los compuestos 18b, 18f, 18i y cisplatino frente a FAK (Phospho-Tyr397)

Finalmente, realizaron estudios de acoplamiento molecular para elucidar los posibles sitios de unión del compuesto **18f** en el sitio activo de Akt en comparación con GSK690693. Los resultados del acoplamiento mostraron interacciones π - π y puentes de hidrógeno entre el compuesto **18f** y el sitio activo de Akt (Figura 8). El fragmento del 6-metoxibenzotiazol del compuesto **18f** presentó interacciones π - π con los residuos Arg4, Phe442 y puentes de hidrógeno con el residuo Asp439.

Figura 8. Acoplamiento (A) e interacciones (B) del compuesto 18f con GSK690693 en el sitio activo de Akt

Por otra parte, debido a la inhibición de FAK que presentó el compuesto **18f**, se realizó el estudio de acoplamiento molecular del compuesto en el sitio activo de FAK. En la figura 9, se observa que el fragmento del 6-metoxibenzotiazol del compuesto **18f** forma interacciones π - π con el residuo Phe568, y su grupo acetamido y el ciclo del oxadiazol presentan formación de puente salino (combinación de 2 interacción no covalente: puente de hidrógeno y puente iónico) e interacción π -catión con el residuo Lys457 en el sitio activo de FAK (Figura 9).

Figura 9. Acoplamiento (A) e interacciones (B) del compuesto 18f en el sitio activo de FAK ³⁶

Finalmente, el compuesto **18f** también se analizó para detectar interacciones de acoplamiento molecular en el sitio activo de la caspasa-3. Los resultados indicaron que el segmento del 6-metoxibenzotiazol, el oxadiazol y el tetrahidronaftaleno del compuesto **18f**, presentaron interacciones π - π y puentes de hidrógeno con Arg207, Thr62 y Phe256, respectivamente. El grupo acetamido del compuesto **18f** formó puente salino y puentes de hidrógeno con Arg207 en el sitio activo de la caspasa-3 (Figura 10).

Figura 10. Acoplamiento e interacciones del compuesto 18f en el sitio activo de la caspasa 3³⁶

2.2. Marcadores fluorescentes

Por otra parte, los marcadores fluorescentes son sustancias específicas que contienen en su estructura un fluoróforo, el cual al ser incidido por un haz de luz de determinada longitud de onda los electrones son excitados a un nivel energético mayor y éstos al regresar a su estado basal liberan energía en forma de fluorescencia. Actualmente existen diversos compuestos que presentan diferentes gamas de colores, los cuales pueden ser empleados como marcadores fluorescentes en distintas células.³⁷ En la tabla 11 se muestran diversos derivados de oxadiazoles que han sido empleados como marcadores fluorescentes.

Autor Año	Molécula	Línea celular	Sitio de marcación	
Barnes, K; <i>et</i> <i>al</i> . 2008 ³⁸	$ \begin{array}{c} 0 - N \\ N \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Carcinoma de pulmón humano (A549)	Membrana	
Taldone, T; <i>et</i> <i>al</i> . 2011 ³⁹	$H_{2}N \xrightarrow{N \to N} H \xrightarrow{N \to 0} H \xrightarrow{N \to 0} N_{O_{2}}$	Leucemia mieloide aguda humana (MV4-11)	Blastos (células malignas)	
Baranczak, A; <i>et al.</i> 2015 ⁴⁰	F0 ₂ SO-CI	Células embrionarias de riñón humano 293 (HEK293T)	Mitocondria y retículo endoplasmático	
Liu, Z; <i>et al.</i> 2016 ⁴¹	$ = \left(\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	Células embrionarias de riñón humano 293 (HEK293T)	Proteína hERG (gen humano)	

Derivados de oxadiazoles empleados como marcadores fluorescentes

En el 2014, Saleem y col.²⁹ realizaron la síntesis de derivados del 1,3,4-oxadiazol **22a-f**, en 3 pasos de reacción, con rendimientos químicos de 71-80% (Esquema 7), y evaluaron las propiedades ópticas en fibroblastos de ratón (L-929).

En la síntesis se obtuvo el cloruro de acilo **20**, empleando diversos ácidos carboxílicos aromáticos **19** y POCl₃ en 1,2-dicloroetano por 3 h de reacción. Posteriormente, el compuesto **20** se colocó a reflujo por 3 h con hidrazina y trietilamina en acetonitrilo, para obtener la hidrazida aromática correspondiente **21**. Finalmente, el compuesto **21** se trató con POCl₃ y diversos ácidos aromáticos durante un periodo de 3 h para generar los compuestos de interés **22a-f** (Esquema 7).

Esquema 7. Síntesis de derivados del 1,3,4-oxadiazol 31a-f

La evaluación de las propiedades ópticas de los compuestos **22a-f** muestra que los espectros de absorción de **22a** y **22b** presentan un desplazamiento batocrómico, comparados con los otros compuestos (Tabla 12). Ésto se debe a la conjugación de la molécula que reduce la energía de banda prohibida entre los niveles del orbital molecular ocupado de mayor energía (HOMO) y el orbital molecular desocupado de menor energía (LUMO), lo cual facilita la rápida transición electrónica. Además, observaron los efectos de los disolventes polares sobre las bandas de absorción, obteniendo que el acetonitrilo y dimetilsulfóxido (DMSO) generan desplazamientos batocrómicos, mientras que el etanol y cloroformo hacen un desplazamiento hipsocrómico.

Por otra parte, se calculó el rendimiento cuántico de la fluorescencia, resultando que los grupos electrodonadores (OMe) presentan un mayor rendimiento cuántico, ya que inducen a una mayor deslocalización electrónica, lo cual disminuye la energía de banda prohibida y desplaza la banda de emisión a longitudes de ondas más grandes. Además de los sustituyentes, la polaridad del disolvente ejerce un ligero desplazamiento batocrómico de la máxima emisión del compuesto.

En cuanto a los grupos donadores de electrones, éstos generan desplazamientos de emisión que permiten generar imágenes fluorescentes en un microscopio confocal. El análisis de las bioimágenes en la línea L-929, mostraron que los derivados de oxadiazol se pueden utilizar para la tinción de objetos vivos, y con el aumento de conjugación en la molécula o la naturaleza del sustituyente del oxadiazol, el comportamiento fluorescente se puede cambiar en el espectro de emisión.

Tabla 12

	Cloroformo		Etanol		Acetonitrilo		DMSO	
λ máx aba	$\pi \rightarrow \pi^*$	n → π*	$\pi \rightarrow \pi^*$	n → π*	$\pi \rightarrow \pi^*$	n→π*	$\pi \rightarrow \pi^*$	n → π*
(nm)	230,	340	231,	343	239,	348	237,	348
(IIII)	272	540	272	545	272	540	271	540
$\lambda_{m\acute{a}x\ em}$	397		397		401		403	
(nm)								
φ	0.21		0.26		0.27		0.19	

Al igual que los oxadiazoles, lo derivados de benzotriazol han sido reportados en la literatura por sus propiedades optoelectrónicas, debido a que poseen altos valores de rendimiento cuántico, lo cual se debe principalmente a la conjugación π que confieren los sistemas aromáticos en las moléculas. En la tabla 13 se presentan algunos derivados de benzotriazol que presentan fluorescencia.

Tabla 13

Autor Año	Molécula			λ _{máx abs} (nm)	λ _{máx em} (nm)	Estado	ф
		R= H		397	503		0.65
Torres,	$R \xrightarrow{P_{1}} R_{1}$	R=	R ₁ = OMe	349- 408	513	Disolución en CH ₂ Cl ₂	0.57
I; et al. 2016 ⁴²		R=		372	522		0.82
Torres	F_3C F_3C F_3C		OMe OMe OMe	412	12 529		0.71
I; <i>et al.</i> 2017 ⁴³			S S	411	514	Disolución en CHCl ₃	0.78
2017	R	-		414	512		0.86
Ghosh,	$\bigwedge_{\substack{N' \\ N' \\ C_4H_9}} \bigwedge_{\substack{N' \\ C_4H_9}} \bigwedge_{N$			336	405	Sólido	0.90
S; <i>et al</i> . 2018 ⁴⁴						Disolución en benceno	0.82

Propiedades optoelectrónicas derivadas del benzotriazol

2.3. Análisis crítico

En la literatura se ha reportado la síntesis de derivados de oxadiazol empleando una metodología convencional, presentando rendimientos químicos que van del 69 al 90%, y utilizando tiempos de reacción desde 30 min hasta 24 h.

Por otra parte, se ha observado que los derivados de benzotriazol presentan actividad anticancerígena, donde el isómero 2H del benzotriazol presenta mejor actividad que el isómero 1H en la línea celular cancerígena. Así mismo, se han reportado diversas moléculas de benzotriazol que poseen propiedades luminiscentes, presentando altos valores de rendimiento cuántico (0.57-0.90), lo cual permite que sean candidatos para fungir como marcadores fluorescentes.

En cuanto a los derivados de oxadiazol, los sustituyentes halogenados, los grupos electroatractores y los grupos bencílicos presentan la mejor actividad anticancerígena, siendo el orden potencial de actividad inhibitoria de las sustituciones en anillos aromáticos de *orto, meta, y para*; mientras que el orden creciente para los sustituyentes halogenados es $F > Cl > Br > NO_2$. Así mismo, se ha observado que los sustituyentes que presentan baja citotoxicidad son los halogenados y el grupo metoxi. Respecto a las propiedades optoelectrónicas de los oxadiazoles, se ha reportado que presentan luminiscencia y por ende pueden emplearse como marcadores fluorescentes, principalmente aquellos compuestos con sustituyentes electrodonadores como metoxi y fenilo.

Finalmente, se ha observado que los derivados de benzotriazol presentan diversas propiedades biológicas, por lo que se podrían utilizar junto con derivados de oxadiazol y diversos sustituyentes electrodonadores y/o electroatractores para potenciar la actividad, anticancerígena y la aplicación como marcadores fluorescentes.

2.4. Hipótesis

La actividad anticancerígena *in vitro* de nuevos azolil-oxadiazoles α , β -insaturados sintetizados, es mayor que la del fármaco doxorrubicina frente a las líneas celulares de cáncer de mama de humano (MCF-7 y MDA-MB-231) y de ratón (4T1); además al menos uno de los compuestos es utilizado como marcador fluorescente mediante microscopía confocal.

2.5. Objetivos

2.5.1. Objetivo general

Sintetizar y estudiar la actividad anticancerígena *in vitro* de nuevos derivados de azoliloxadiazoles α , β -insaturados, además de su potencial aplicación como marcadores fluorescentes.

2.5.2. Objetivos particulares

- Sintetizar el benzotriazolil-acetato de etilo 3b.
- Sintetizar la hidrazida 4.
- Sintetizar en un paso de reacción 10 nuevos azolil-oxadiazoles α,β-insaturados 6aj mediante la reacción de los derivados de ácido cinámico 5 con la hidrazida 4.
- Caracterizar todos los compuestos obtenidos por espectroscopía de Infrarrojo (FT-IR), Resonancia Magnética Nuclear (RMN ¹H y ¹³C) y Espectrometría de Masas de Alta Resolución (ESI-MS).

- Evaluar la actividad anticancerígena de los azolil-oxadiazoles α,β-insaturados 9 en las líneas celulares MCF-7, MDA-MB-231 y 4T1 y comparar su actividad con el fármaco doxorrubicina.
- Evaluar la toxicidad de los compuestos más activos sobre esplenocitos murinos.
- Evaluar la factibilidad de utilizar los azolil-oxadiazoles α , β -insaturados como marcadores fluorescentes sobre la línea celular MCF-7.

CAPÍTULO 3

3. MATERIALES Y MÉTODOS

3.1. Equipo y materiales

La síntesis química de los derivados del 1,3,4-oxadiazol α , β -insaturado se realizó en las instalaciones del Laboratorio de Química Industrial ubicado en el Centro de Laboratorios Especializados (CELAES) de la Facultad de Ciencias Químicas de la Universidad Autónoma de Nuevo León y en el laboratorio de Síntesis Orgánica C-437 del Departamento de Química y Bioquímica de Brigham Young, Utah, EUA.

Las pruebas biológicas se realizaron en las instalaciones del Laboratorio 6 de Inmunología y Virología de la Unidad C de Facultad de Biología de la Universidad Autónoma de Nuevo León.
La síntesis química se realizó mediante el empleo de un microondas Anton Paar Monowave 300, ubicado en el Laboratorio de Química Industrial, además de un microondas CEM 909150 y un baño de ultrasonido VWR Scientific Aquasonic 250D, ubicados en el departamento de Química y Bioquímica de la Universidad Brigham Young.

La cromatografía en capa fina se llevó a cabo utilizando cromatofolios de gel de sílice TLC Silicagel 60 con un espesor de 0.2 mm sobre soporte de aluminio, utilizando como agente de revelado luz ultravioleta y vapores de iodo. La purificación de los compuestos se realizó por cromatografía en columna. Las proporciones de disolvente empleado como eluente se indican en cada caso.

La evaluación biológica se realizó mediante el empleo de un lector de placas Synergy HTTM (BioTek Instruments, Inc., Winooski, VT, USA) y un microscopio confocal Leica (TCS SP5), ubicados en el Laboratorio 6 de Inmunología y Virología de la Unidad C de Facultad de Biología.

3.2. Reactivos

A continuación, se presenta la lista de reactivos empleados para la síntesis de los derivados de los derivados de oxadiazol α , β -insaturados, así como los reactivos y las líneas celulares empleadas en la evaluación biológica:

 Sigma Aldrich 	2-bromopropionato de etilo 99%,		
	benzotriazol 99%, ácido cinámico 99%, ácido 3-		
	metoxicinámico 99%, ácido 4-metoxicinámico 98%, ácido 3,4-dimetoxicinámico 99%, hidracina		
	monohidratada 98%, sal sódica de resazurina		
	(BioReagent).		
 Oakwood Chemical 	Ácido 3-clorocinámico 95%, ácido 4-		
	dimetilaminocinámico 99%, ácido 3-flurocinámico 99%, ácido 4-flurocinámico 99%, ácido 4-clorocinámico 99%, ácido 3-clorocinámico 95%,		
	ácido 4-clorocinámico 95%, ácido 4-		
	trifluorometilcinámico 98%		

• **Fisher Chemical** Carbonato de potasio

Desarrollo de Etanol absoluto, acetonitrilo; acetato de etilo, hexano y metanol grado industrial (los cuales fueron destilados para su uso posterior).
 C.V., Fisher Chemical

 ATCC MCF7 (ATCC[®] HTB-22[™]), MDA-MB-231 (ATCC[®] HTB-26[™]), 4T1 (ATCC[®] CRL-2539[™])
 ThermoFisher DMEM (glucosa alta, sin glutamina) Scientific

3.3. Justificación de las técnicas a utilizar

3.3.1. Espectroscopía de Infrarrojo (FT-IR)

La espectroscopía de Infrarrojo se fundamenta en la absorción de la irradiación del infrarrojo medio (0.78-2.5 μ m), donde las moléculas presentan vibraciones de flexión y/o estiramiento características, permitiendo conocer los grupos funcionales presentes en la estructura química del compuesto sintetizado.⁴⁵

Por ello, el análisis de los espectros de FT-IR se realizó en placas de cloruro de sodio que fueron colocadas en un espectrómetro Thermo Scientific Nicolet IR100 FT-IR, ubicado en el edificio Ezra Taft Benson en la Universidad Brigham Young, Utah, EUA.

En la sección de resultados y discusión a manera de representación se ejemplifica el espectro obtenido para la síntesis del derivado del 1,3,4-oxadiazol α , β -insaturados **6a** y

los espectros de los demás compuestos se encuentran en la sección de apéndice. Además, se presentan los valores de las bandas características de estiramiento (v) y flexión (δ) de las moléculas, en 1/cm.

3.3.2. Espectroscopía de Resonancia Magnética Nuclear de ¹H y ¹³C (RMN ¹H y ¹³C)

La Resonancia Magnética Nuclear demuestra el comportamiento de los núcleos de los átomos al ser expuestos a un campo magnético y a energía de radiofrecuencia, generando a su vez un cambio de energía de los spines nucleares, lo cual permite obtener desplazamientos químicos, constantes de acoplamiento, multiplicidad e integrales, proporcionando la información necesaria para elucidar la estructura química de los compuestos sintetizados.⁴⁵

El análisis de los espectros de RMN ¹H y ¹³C se llevó acabo utilizando un equipo RMN Varian de 300 MHz, ubicado en el edificio Ezra Taft Benson en la Universidad Brigham Young, Utah, EUA.

En la sección de resultados y discusión a manera de representación se ejemplifica el espectro obtenido para cada ruta de síntesis y los espectros de los demás compuestos se encuentran en la sección de apéndice. Además, se indica el disolvente utilizado para

analizar las muestras, los valores de los desplazamientos químicos (δ) son reportados en partes por millón (ppm) respecto al patrón interno de tetrametilsilano (TMS), las constantes de acoplamiento (*J*) están dadas en Hertz (Hz) y la multiplicidad de las señales son denotas como s, d, dd, t y c que indican señales de singulete, doblete, doble de dobles, triplete, cuarteto y multiplete, respectivamente.

3.3.3. Espectrometría de Masas de Alta Resolución (ESI-MS)

La espectrometría de masas de alta resolución (ESI-MS) permite conocer la masa molecular exacta de la molécula, mediante un alto potencial eléctrico para dispersar la muestra en forma de spray formando pequeñas gotas cargadas, las cuales se evaporan rápidamente para ser medidos de acuerdo a la relación masa/carga (m/z).⁴⁵

El análisis de los espectros de ESI-MS se realizó en el equipo Agilent technologies 1260 infinity, ubicado en el edificio Ezra Taft Benson en la Universidad Brigham Young, Utah, EUA.

En la sección de resultados y discusión a manera de representación se ejemplifica el valor obtenido para un compuesto de cada ruta sintética y los valores de los demás compuestos se encuentran en la sección de apéndice. Todos los valores están expresados en unidades de masa (m/z).

3.3.4. Técnica de Resazurina

La resazurina es un indicador redox que es permeable a las células y es empleada para evaluar el número de células viables en diversas actividades biológicas. Las células viables con metabolismo activo pueden reducir la resazurina a resorufin, lo cual se observa con un cambio de vire de azul a rosa fluorescente; por lo que la cantidad de resorufina producida es proporcional al número de células viables en la evaluación.⁴⁶

La evaluación de la actividad anticancerígena y citotóxica *in vitro* se realizó en el equipo Synergy HTTM (BioTek Instruments, Inc., Winooski, VT, USA), ubicado en el Laboratorio 6 de Inmunología y Virología de la Unidad C de Facultad de Biología de la Universidad Autónoma de Nuevo León.

En la sección de resultados y discusión se presentan los datos obtenido para cada compuesto de acuerdo a la línea celular (MCF-7, MDA-MB-231, 4T1 y esplenocitos murinos) empleada en cada evaluación.

3.3.5. Técnica de Hemólisis

El ensayo de hemólisis *in vitro* se recomienda para los compuestos destinados a la administración intravenosa y consiste en evaluar la liberación de hemoglobina en el plasma, como indicador de la lisis de los glóbulos rojos, después de la exposición del compuesto a probar. Esto se puede observar por cambio de coloración de rosa a roja, la cual indica que los glóbulos rojos se encuentran lisados.⁴⁷

La evaluación de la actividad hemolítica *in vitro* se realizó en el Synergy HTTM (BioTek Instruments, Inc., Winooski, VT, USA), ubicado en el Laboratorio 6 de Inmunología y Virología de la Unidad C de Facultad de Biología de la Universidad Autónoma de Nuevo León.

En la sección de resultados y discusión se presentan los datos obtenido para cada compuesto de acuerdo a su exposición en sangre periférica de humano.

3.3.6. Técnica de Microscopía Confocal

El microscopio confocal permite obtener imágenes tridimensionales de diversas líneas celulares debido al uso de filtros espaciales que permiten eliminar la luz desenfocada, controlar la profundidad de campo, eliminar o reducir el ruido del fondo del plano focal (que conduce a la degradación de la imagen) y recopilar secciones ópticas en serie de especímenes gruesos; sin embargo, para observar estas imágenes es necesario que las células se encuentren teñidas con sustancias fluorescentes.⁴⁸

La toma de micrografías se realizó en el microscopio confocal Leica (TCS SP5), ubicado en el Laboratorio 6 de Inmunología y Virología de la Unidad C de Facultad de Biología de la Universidad Autónoma de Nuevo León.

En la sección de resultados y discusión se presentan las imágenes obtenidas para cada compuesto de acuerdo a su exposición en la línea celular MCF-7.

3.4. Metodología de síntesis

3.4.1. Metodología para la síntesis de los ésteres de benzotriazol 3a y b

La síntesis de los ésteres de benzotriazol **3a** y **b** se efectuó mediante sonicación a partir de benzotriazol **1** (1 Eq) y bromopropionato de etilo **2** (1.2 Eq), empleando carbonato de potasio como base (1.5 Eq) y acetonitrilo como disolvente. Posteriormente, los isómeros obtenidos se purificaron mediante cromatografía en columna, y se caracterizaron mediante RMN ¹H y ¹³C, y ESI-MS.

3.4.2. Metodología para la síntesis de la hidrazida de benzotriazol 4

La síntesis de la hidrazida de benzotriazol **4** se efectuó mediante irradiación de microondas a partir del éster de benzotriazol **3b** (1 Eq) sintetizada con anterioridad, hidrazina monohidratada (3 Eq) y empleando etanol como disolvente. Posteriormente, el producto obtenido se purificó empleando recristalización con etanol, y se caracterizó mediante RMN ¹H y ¹³C, y ESI-MS.

3.4.3. Metodología general para la síntesis de los derivados del 1,3,4oxadiazol α , β -insaturados 6a-j

La síntesis de los derivados de 1,3,4-oxadiazol α , β -insaturado **6a-j** se elaboró mediante calentamiento convencional con la hidrazida de benzotriazol **4** (2 Eq) sintetizada con anterioridad, el ácido cinámico correspondiente **5** (1 Eq) y oxicloruro de fósforo (1 Eq). Posteriormente, el producto obtenido se purificó empleando cromatografía en columna, y se caracterizó mediante FT-IR, RMN ¹H y ¹³C, y ESI-MS.

3.5. Metodología de pruebas biológicas

3.5.1. Actividad anticancerígena *in vitro* de los derivados del 1,3,4-oxadiazol α , β -insaturados 6a-j en las líneas celulares MCF-7, MDA-MB-231 y 4T1 por el método de Resazurina ⁴⁶ El ensayo para determinar la actividad anticancerígena *in vitro* se realizó en una placa de 96 pozos, donde se sembraron células de MCF-7, MDA-MB231 o 4T1, según el estudio, a una concentración de 5,000 células por pozo en medio de águila modificado por Dulbecco (DMEM) suplementado con 10% de suero fetal bovino. La placa se incubó por 24 h a 37 °C en una atmósfera de CO_2 al 5%. Posteriormente, se decantó el medio de cultivo y se trató a las células con el cual contenía las concentraciones seriadas del compuesto a analizar (0, 0.1, 0.5, 1, 2, 3, 4 y 5 mg/mL). Como control se utilizaron las células correspondientes en medio de cultivo sin tratamiento adicional.

Transcurridas 24 horas de tratamiento sobre las células, se decantó el medio de cultivo con el tratamiento y, posteriormente se adicionó a cada pozo 100 μ L de medio DMEM sin suplementar y resazurina al 10% (v/v). La placa se incubó durante 4 horas en condiciones estándar y una vez cumplido el tiempo de incubación, las placas fueron leídas a una longitud de onda de excitación de 535 nm y de emisión de 595 nm en el lector de placas Synergy HTTM (BioTek Instruments, Inc., Winooski, VT, USA).

3.5.2. Actividad citotóxica *in vitro* de los derivados del 1,3,4-oxadiazol α,βinsaturados 6a-j en esplenocitos murinos por el método de Resazurina ⁴⁶

El ensayo para determinar la actividad citotóxica *in vitro* se realizó en una placa de 96 pozos, donde se sembraron células de esplenocitos murinos a una confluencia de 20,000 células por pozo en medio DMEM suplementado con 10% de suero fetal bovino; y se incubó por 24 h a 37 °C en una atmósfera de CO_2 al 5%. En seguida, se reemplazó el

medio de cultivo con medio fresco, el cual contenía la concentración de 5 mg/mL del compuesto a analizar (mientras que el compuesto **6f** se evaluó a 0.05, 0.25, 0.75, 1, 2, 3 y 5 mg/mL), y se utilizó como control las células en medio de cultivo.

Transcurridas las 24 horas de tratamiento sobre las células, se decantó el medio de cultivo con el tratamiento y, posteriormente se adicionó a cada pozo 100 μ L de medio DMEM sin suplementar y resazurina al 10% (v/v). La placa se incubó durante 4 horas en condiciones estándar y una vez cumplido el tiempo de incubación las placas fueron leídas a una longitud de onda de excitación de 535 nm y de emisión de 595 nm en el lector de placas Synergy HTTM (BioTek Instruments, Inc., Winooski, VT, USA).

3.5.3. Ensayo de hemólisis *in vitro* de los derivados del 1,3,4-oxadiazol α , β insaturados 6a-j sobre sangre periférica de humano ^{46, 49}

El aislamiento de glóbulos rojos se realizó tomando 4 mL de muestra de sangre humana que se estabilizó con ácido etilendiaminotetraacético (EDTA). En seguida, para eliminar el plasma y la capa leucocitaria, la muestra estabilizada se centrifugó durante 5 minutos, y los glóbulos rojos remanentes se lavaron con 2 mL de PBS isotónico estéril. El ciclo de lavado se repitió cinco veces hasta que no se observó trazas de plasma.

El ensayo para determinar la actividad hemolítica *in vitro* se realizó en una placa de 96 pozos, la cual se preparó mediante la obtención de 4 mL al 5% de hematocrito de una dilución de 200 μ L de glóbulos rojos con PBS, para posteriormente tomar 0.2 mL de la

suspensión y mezclarlo con 0.8 mL del compuesto que se encontraba a una concentración de 5 mg/mL de PBS. Todas las mezclas se agitaron suavemente y se incubaron por 2 h a temperatura ambiente utilizando como control positivo Triton X-100 (1% v/v) y como negativo 0.8 mL de PBS con 0.2 mL de suspensión de glóbulos rojos. Finalmente, las mezclas se centrifugaron durante 5 min y se determinó la absorbancia del sobrenadante a 541 nm.

3.5.4. Generación de marcadores fluorescentes en la línea celular MCF-7, por microscopía confocal ⁴⁹

Para la generación de imágenes fluorescentes se tomó 200 μ L de células MCF-7 a una confluencia de 5x10⁶ células/mL y se mezclaron con 200 μ L del compuesto que se encontraba disuelto en 20 μ g/mL de PBS para obtener una concentración final de los compuestos a 10 μ g/mL. Posteriormente se incubaron a temperatura ambiente por 2 h y se tomó una alícuota que se colocó entre dos cubreobjetos para ser analizado mediante un sistema confocal Leica (TCS SP5).

3.6. Manejo y disposición de residuos

El manejo y la disposición de residuos se realizó de acuerdo a la clasificación expuesta en el documento PR–CLB–SRR/000 de la Facultad de Ciencias Químicas y la Facultad de Biología de la Universidad Autónoma de Nuevo León⁵⁰ (Tabla 14), y los lineamientos establecidos en la Universidad Brigham Young, Utah, EUA.

Tabla 14

Clasificación de residuos

Recipiente tipo:	Recipiente tipo:	Recipiente tipo:	
Α	С	D	
Soluciones salinas pH=	Tóxicos e inflamables,	Tóxicos e inflamables,	
6-8. Sales inorgánicas,	combinaciones orgánicas	combinaciones orgánicas	
ácidos inorgánicos,	no halogenadas líquidas,	halogenadas líquidas,	
ácidos orgánicos y bases	bases orgánicas y aminas,	bases orgánicas y	
inorgánicas.	disolventes orgánicos no	aminas, disolventes	
	halogenados.	orgánicos halogenados.	
Recipiente tipo:	Recipiente tipo:	Recipiente tipo:	
\mathbf{E}	\mathbf{E}	\mathbf{F}	
Muy tóxico, cancerígeno	Muy tóxico, cancerígeno	Sales de metales	
orgánico.	inorgánico.	preciosos.	
Recipiente tipo:	Recipiente tipo:	Recipiente tipo:	
G	В	Н	
Combinaciones	Sólidos inorgánicos, sales	Oxidantes.	
orgánicas sólidas.	inorgánicas.		
Vidrio impregnado de	Plásticos impregnados con	Basura industrial.	
sustancias peligrosas.	sustancias peligrosas.		

CAPÍTULO 4

4. **RESULTADOS Y DISCUSIONES**

4.1. Síntesis orgánica

4.1.1. Síntesis y caracterización de los ésteres de benzotriazol 3a-b

La reacción del benzotriazol **1** con bromopropionato de etilo **2**, empleando carbonato de potasio como base y acetonitrilo como disolvente, utilizando sonicación a una temperatura 50 °C por 4 h, generó los ésteres de benzotriazol **3a** y **3b** (Esquema 8).

Esquema 8. Síntesis de ésteres de benzotriazol 3a-b

El avance de la reacción se siguió por cromatografía en capa fina utilizando una mezcla de hexano:acetato de etilo (Hex:AcOEt, 2:1 v/v) para comprobar la formación del producto de interés (Figura 11).

Figura 11. Cromatografía en capa fina para la síntesis del éster de benzotriazol 3a y 3b

Una vez finalizada la reacción, se realizaron extracciones con acetato de etilo y la fase orgánica se secó con sulfato de sodio anhidro. En seguida el crudo de reacción se concentró por evaporación a vacío y se purificó por cromatografía en columna, utilizando gel de sílice como fase estacionaria y una mezcla de Hex:AcOEt (2:1 v/v) como fase móvil. Los compuestos **3a** y **3b** se obtuvieron como líquidos con rendimientos químicos de 29% y 70%, respectivamente.

Una vez efectuada la síntesis química y la purificación del compuesto, se procedió a realizar su caracterización estructural mediante RMN ¹H y ¹³C, y ESI-MS.

A continuación, se presenta a manera de ejemplo, los espectros obtenidos para el éster de benzotriazol **3b**, mientras que el éster **3a** sintetizado se encuentra en la sección de apéndice.

RMN ¹H (300 MHz, CDCl₃): δ 1.22 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.05 (d, J=7.5 Hz, 3H, CHCH₃), 4.23 (c, J= 7.1 Hz, 2H, OCH₂CH₃), 5.72 (c, J= 7.5 Hz, 1H, CHCH₃), 7.38-7.45 (m, 1H, H_{5-arom}), 7.48-7.59 (m, 2H, H_{6-arom}), 8.11 (d, J= 8.3 Hz, 1H, H_{7-arom}).
RMN ¹³C (75 MHz, CDCl₃): δ 14.2 (OCH₂CH₃), 16.7 (CH₃CH), 57.3 (OCH₂CH₃), 62.2 (CH₃CH), 109.9 (C_{10-arom}), 120.2 (C_{7-arom}), 124.1 (C_{9-arom}), 127.5 (C_{8-arom}), 132.5 (C_{6-arom}), 146.3 (C_{11-arom}), 169.2 (C=O).

ESI-MS (**ESI**⁺): calculado para $C_{11}H_{14}N_3O_2$ [M+H]⁺, *m/z* 220.10860; encontrando [M+H]⁺, *m/z* 220.10376.

El espectro de RMN ¹H que se muestra en la figura 12, corresponde al éster de benzotriazol **3b**, donde se identifican diversas señales características del compuesto que son analizadas a continuación y, además, son descritas en un análisis más detallado en la tabla 15. La señal del grupo metilo de OCH₂CH₃ se muestra como un triplete a 1.22 ppm e integra para 3H, mientras que para el CHCH₃ se presenta un doblete a 2.05 ppm e integra para 3H. El grupo metileno del OCH₂CH₃ se observa como un cuarteto en 4.23 ppm e integra para 2H. En 5.72 ppm se observa el grupo metino CHCH₃ como un cuarteto integrando para

1H. En las regiones 7.38-7.45 ppm y 7.48-7.59 ppm aparecen dos multipletes que integran para 1H y 2H que corresponden a los hidrógenos aromáticos H_{5-arom} y H_{6-arom} , respectivamente. Por último, en 8.11 ppm se muestra un doblete integrando para 1H que corresponde al hidrógeno aromático H_{7-arom} .

Tabla 15

Datos de RMN ¹	H del éster	de benzot	triazol 3b
---------------------------	-------------	-----------	------------

δ (ppm)	Señal	Integración	J (Hz)	Asignación
1.22	t	3	7.1	OCH ₂ CH ₃
2.05	d	3	7.5	СНС Н 3
4.23	С	2	7.1	OCH ₂ CH ₃
5.72	с	1	7.5	CHCH ₃
7.38-7.45	m	1	-	H5-arom
7.48-7.59	m	2	-	H ₆ -arom
8.11	d	1	8.3	H7-arom

Figura 12. Espectro de RMN ¹H (300 Hz, CDCl₃) del éster de benzotriazol 3b

Por otro lado, el análisis por RMN de ¹³C confirma la obtención del compuesto deseado **3b**, observándose que en un desplazamiento químico de 14.2 ppm se presenta el carbono del grupo metilo del grupo etoxi (OCH₂CH₃) y en 16.7 ppm el metilo del grupo CH₃CH. La señal que se observa en 57.3 ppm muestra al carbono del grupo metileno OCH₂CH₃ mientras que, a 62.2 ppm se encuentra una señal para el metino CH₃CH. En la región de 100 a 150 ppm se presentan las señales de los carbonos aromáticos. Por último, en 169.2 ppm se aprecia una señal que se asocia al carbono del grupo carbonilo C=O.

Tabla 16

Datos de RMN ¹³C del éster de benzotriazol 3b

δ (ppm)	Asignación	δ (ppm)	Asignación
14.2	OCH ₂ CH ₃	124.1	C9-arom
16.7	CH ₃ CH	127.5	C8-arom
57.3	OCH ₂ CH ₃	132.5	C6-arom
62.2	CH ₃ CH	146.3	C11-arom
109.9	C10-arom	169.2	C=0
120.2	C7-arom		

Figura 13. Espectro de RMN ¹³C (75 MHz, CDCl₃) del éster de benzotriazol 3b

Por otra parte, los datos obtenidos en ESI-MS para el éster de benzotriazol **3b**, mostraron una fórmula química de $C_{11}H_{13}N_3O_2$ donde el valor teórico de la relación masa/carga (*m/z*) del ion molecular del compuesto ionizado [M+H] ⁺ fue de 220.10860 y la relación *m/z* experimental del ion molecular [M+H]⁺ en ESI-MS fue de 220.10376, lo que confirma que se obtuvo el compuesto **3b**.

4.1.2. Síntesis y caracterización de la hidrazida de benzotriazol 4

La reacción del éster de benzotriazol **3b** con hidrazina monohidratada en etanol como disolvente, utilizando irradiación de microondas a una temperatura de 100 °C, por 20 min y 600 rpm, generó la hidrazida de benzotriazol **4** (Esquema 9).

Esquema 9. Síntesis de hidrazida de benzotriazol 4

El avance de la reacción se siguió por cromatografía en capa fina utilizando una mezcla de AcOEt:Hex (7:3 v/v) para comprobar la formación del producto de interés (Figura 14).

Figura 14. Cromatografía en capa fina para la síntesis de la hidrazida de benzotriazol 4

Una vez finalizada la reacción, el crudo de reacción se colocó en un baño de hielo y el sólido formado se filtró y lavó con etanol frío, obteniéndose el compuesto **4** como un sólido blanco con rendimiento químico del 88%.

Una vez efectuada la síntesis química y la purificación del compuesto, se procedió a realizar su caracterización estructural mediante RMN ¹H y ¹³C, y ESI-MS.

RMN ¹H (300 MHz, CDCl₃): δ 2.03 (d, J= 7.3 Hz, 3H, CHCH₃), 3.89 (sa, 2H, NHNH₂),
5.62 (c, J= 7.3 Hz, 1H, CHCH₃), 7.43 (t, J= 7.6 Hz, 1H, H_{7-arom}), 7.55 (t, 1H, H_{6-arom}),
7.65 (d, 1H, H_{5-arom}), 8.07 (d, J= 8.3 Hz, 2H, NHNH₂, H_{2-arom}).
RMN ¹³C (75 MHz, CDCl₃): δ 17.4 (CH₃CH), 57.8 (CH₃CH), 110.2 (C_{5-arom}), 120.1 (C_{8-arom}), 124.6 (C_{7-arom}), 128.1 (C_{6-arom}), 132.4 (C_{4-arom}), 146.2 (C_{9-arom}), 169.2 (C=O).
ESI-MS (ESI⁺): calculado para C₉H₁₁N₅O [M+H]⁺, *m/z* 206.10419; encontrando [M+H]⁺,

m/z 206.09588.

El espectro de RMN ¹H que se muestra en la figura 15, corresponde a la hidrazida **4**, donde se identifican diversas señales características del compuesto, las cuales son analizadas a continuación, y además, son descritas de una forma más detallada en la tabla 17. La señal del grupo metilo de CHCH₃ se encuentra como un doblete a 2.03 ppm e integra para 3H. En 3.89 ppm se encuentra la señal de NHNH₂ que integra para 2H y se observa como un singulete ancho, efecto que se debe principalmente a que el átomo de nitrógeno posee un número de espín de 1 provocando un momento cuadrupolar que ensancha la señal.⁴⁵ La señal del grupo metino de CHCH₃ se observa como un cuarteto en 5.62 ppm e integra para 1H. En 7.43 ppm y 7.55 aparecen dos tripletes que integran para 1H cada uno y que corresponden a los hidrógenos aromáticos H_{6-arom} y H_{7-arom}, respectivamente. En 7.65 ppm se observa un doblete que integra para 1H y corresponde al hidrógeno aromático H_{2-arom} y al hidrógeno de la amida (NHNH₂), ya que se encuentran traslapadas las señales.

Tabla 17

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.03	d	3	7.3	CHCH3
3.89	sa	2	-	NHN H 2
5.62	С	1	7.3	CHCH ₃
7.43	t	1	7.6	H7-arom
7.55	t	1	-	H _{6-arom}
7.65	d	1	-	H5-arom
8.07	d	2	8.3	NHNH2 H2-arom

Datos de RMN ¹H de la hidrazida de benzotriazol 4

Figura 15. Espectro de RMN ¹H (300 MHz, CDCl₃) de la hidrazida de benzotriazol 4

Por otro lado, el espectro de RMN de ¹³C del compuesto **4** se muestra en la figura 16, las señales que se presentan son descritas a continuación (Tabla 18). El desplazamiento químico del grupo metilo de CH_3CH_2 se presenta en 17.4 ppm y el del metino CH_3CH en 57.8 ppm. La región que comprende de 100 a 150 ppm, presenta la señal de los carbonos aromáticos. Por último, en 169.2 ppm se aprecia una señal que corresponde al carbono del grupo carbonilo **C**=O.

Tabla 18

δ (ppm)	Asignación	δ (ppm)	Asignación
17.4	CH ₃ CH	128.1	C6-arom
57.8	CH₃CH	132.4	C4-arom
110.2	C5-arom	146.2	C9-arom
120.1	C8-arom	169.2	C=O
124.6	C7-arom		

Datos de RMN ¹³C de la hidrazida de benzotriazol 4

Figura 16. Espectro de RMN ¹³C (75 MHz, CDCl₃) de la hidrazida de benzotriazol 4

Por otra parte, los datos obtenidos en ESI-MS para la hidrazida de benzotriazol **4**, mostraron una fórmula química de C₉H₁₂N₅O donde el valor teórico de la relación masa/carga (m/z) del ion molecular del compuesto ionizado [M+H]⁺ fue de m/z 206.10419 y la relación m/z experimental del ion molecular [M+H]⁺ en ESI-MS fue de 206.09588, lo que confirma que se obtuvo el compuesto **4**.

4.1.3. Síntesis y caracterización de los derivados del 1,3,4-oxadiazol α,β -insaturados 6a-f

Una vez obtenida la hidrazida **4**, el siguiente paso consistió en hacer reaccionar la hidrazida de benzotriazol **4** con los derivados de ácido cinámico **5** correspondientes, utilizando oxicloruro de fósforo, bajo condiciones de calentamiento convencional a una temperatura de 100 °C por 5-7 h, generándose los derivados del 1,3,4-oxadiazol α,β insaturados **6** (Esquema 10).

Esquema 10. Síntesis de derivados del 1,3,4-oxadiazol α,β-insaturados 6a-f

El avance de la reacción se siguió por cromatografía en capa fina utilizando una mezcla de Hex:AcOEt (1:1 v/v) y AcOEt:Hex (7:3 v/v) para comprobar la formación del producto de interés. A manera de ejemplo, en la figura 17 se presentan las placas cromatográficas utilizadas para observar la formación del compuesto **6a**.

Figura 17. Cromatografía en capa fina para la síntesis del 1,3,4-oxadiazol α , β -insaturados 6a

Una vez finalizada la reacción, ésta se neutralizó con una solución saturada de bicarbonato de sodio (NaHCO₃) y se realizaron extracciones con acetato de etilo. La fase orgánica se secó con sulfato de sodio anhidro y el crudo de reacción se concentró por evaporación a vacío. Se purificó por cromatografía en columna, utilizando gel de sílice como fase estacionaria y una mezcla de AcOEt:Hex (7:3 v/v) como fase móvil. Posteriormente, los compuestos **6a-c y 6h** se purificaron nuevamente por cromatografía en columna, utilizando una fase móvil de Hex:AcOEt (1:1 v/v), mientras que los compuestos **6d-g y 6i-j** se filtraron a vacío empleando etanol como disolvente. El compuesto **6a-c y 6h** se obtuvieron como aceites y los compuestos **6d-g y 6i-j** se obtuvieron como sólidos (Figura 18); con rendimientos químicos de 16-53%, respectivamente.

Figura 18. Estado físico de los derivados del 1,3,4-oxadiazol αβ-insaturados 6a-j

Como se puede observar en el esquema 10, se utilizaron diferentes derivados de ácido cinámico, los cuales incorporan en su estructura grupos electroatractores como flúor, cloro, trifluorometilo en la posición 3 y 4 del anillo aromático; y grupos electrodonadores tales como metoxi (OMe) y dimetilamino [N(Me)₂]. Es importante hacer notar que estos compuestos se obtuvieron con rendimientos químicos de 16 a 53%, siendo el rendimiento más bajo para el compuesto **6b** (16%); mientras que el mejor rendimiento químico se obtuvo para el compuesto **6d** con 53%.

Una vez efectuada la síntesis química y la purificación del compuesto, se procedió a realizar su caracterización estructural mediante FT-IR, RMN ¹H y ¹³C, y ESI-MS.

A continuación se presenta, a manera de ejemplo, los espectros obtenidos para el derivado del 1,3,4-oxadiazol α , β -insaturado **6a**, mientras que los oxadiazoles sintetizados **6b-j** se encuentran descritos en la sección de apéndice.

FT-IR (1/cm): 3062, 3028, 3001, 2945 v(C-H); 1711 v(C=N); 1645 v(C=C); 1165 v(C-O-C); 970 δ(C-H).

RMN¹**H** (**300 MHz**, **CDCl**₃): δ 2.31 (d, *J*= 7.2 Hz, 3H, CHCH₃), 6.51 (c, *J*= 7.2 Hz, 1H, CHCH₃), 6.92 (d, *J*= 16.5 Hz, 1H, CH=CHC₆H₅), 7.29-7.53 (m, 8H, H_{1-arom}, CH=CHC₆H₅), 7.65 (d, *J*= 8.3 Hz, 1H, H_{5-arom}), 8.09 (d, *J*=8.3 Hz, 1H, H_{6-arom}).

RMN ¹³**C** (**75** MHz, CDCl₃): δ 17.5 (CH₃CH), 50.8 (CH₃CH), 109.0 (C_{12-arom}), 109.7 (C_{15-arom}), 120.3 (CH=CHC₆H₅), 124.5 (C_{14-arom}), 127.6 (C_{3-arom}), 128.1 (C_{13-arom}), 128.9

(C2-arom), 130.2 (C1-arom), 131.9 (C11-arom), 134.2 (C4-arom), 140.3 (CH=CHC6H5), 146.4 (C16-arom), 162.8 (C8-arom), 165.5 (C7-arom).

ESI-MS (**ESI**⁺): calculado para C₁₈H₁₆N₅O [M+H]⁺, *m/z* 318.13549; encontrado [M+H]⁺, *m/z* 318.13512.

El espectro de FT-IR que se muestra en la figura 19, corresponde al 1,3,4-oxadiazol α , β insaturado **6a**, donde se identifican diversas bandas características del compuesto que son analizadas a continuación, y además, son descritas en un análisis más detallado en la tabla 19. Las bandas de absorción que se presentan en 3062, 3028, 3001 y 2945 1/cm corresponden a las vibraciones de estiramiento del enlace C-H del anillo aromático, del grupo metilo y metino, respectivamente. La banda de estiramiento localizada en 1711 1/cm, indica el enlace C=N del anillo de benzotriazol, mientras que el enlace C=C del alqueno se observa a 1645 1/cm. En 1165 1/cm se presenta una banda de estiramiento que corresponde al enlace C-O-C en el anillo del oxadiazol. Finalmente, la banda de flexión del enlace C-H que se observa en 1169 1/cm corresponde al grupo funcional del alqueno en posición *trans*.

Tabla 19

Datos de FT-IR del 1,3,4-oxadiazol α,β -insaturado 6a

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3062 3028 3001 2945	δ(С-Н)	Flexión asimétrica de C-H del grupo metilo	1449
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1711	δ(С-Н)	Flexión simétrica de C-H del grupo metilo	1382
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con el anillo aromático	1645	δ(С-Н)	Flexión C-H del grupo metino	1277
v(C=C)	Estiramiento C=C del anillo aromático	1614	ν(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1165
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1579 1528	δ(C-H)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	968

Figura 19. Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6a

Por otra parte, en la figura 20 se muestra el espectro de RMN ¹H del 1,3,4-oxadiazol α , β insaturado **6a**, donde se identifican diversas señales características del compuesto que son analizadas a continuación, y además, son descritas en un análisis más detallado en la tabla 20. La señal del grupo metilo de CHCH₃ se encuentra como un doblete en 2.31 ppm e integra para 3H, mientras que el grupo metino del CHCH₃ se encuentra en 6.51 ppm como cuarteto e integra para 1H. La señal del hidrógeno del alqueno CH=CHC₆H₅ se observa como un doblete en 6.92 ppm, integra para 1H y presenta una constante de acoplamiento de 16.4 Hz, valor que es característico de los alquenos en posición *trans*. En la región 7.29-7.53 ppm aparece un multiplete que integra para 8H, de los cuales, 1H corresponde al hidrógeno aromáticos H_{1-arom} y el otro protón corresponde al hidrógeno del alqueno CH=CHC₆H₅, el cual también presenta una constante de acoplamiento de 16.4 Hz. Por último, en 7.65 ppm y 8.09 ppm se encuentran dos dobletes que integran para 1H cada uno y que corresponden a los hidrógenos aromáticos H_{5-arom} y H_{6-arom}.

Tabla 20

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.31	d	3	7.2	CHCH3
6.51	С	1	7.2	CHCH ₃
6.92	d	1	16.4	CH=CHC ₆ H ₅
7.29-7.53	m	8	-	CH=CHC ₆ H _{5,} H1-arom
7.65	d	1	8.3	H5-arom
8.09	d	1	8.3	H _{6-arom}

Datos de RMN ¹H del 1,3,4-oxadiazol α , β -insaturado 6a

Figura 20. Espectro de RMN ¹H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α,β-insaturado 6a

En cuanto al RMN ¹³C del compuesto **6a** de la figura 21, las señales que se presentan son descritas a continuación (Tabla 21). En 17.5 ppm aparece el desplazamiento químico del grupo metilo de CH₃CH, mientras que la señal del metino CH₃CH aparece en 50.8 ppm. En 120.3 ppm y 140.3 ppm, aparecen las señales de los carbonos del alqueno CH=CHC₆H₅, respectivamente. Por último, la región que comprende de 124.5 ppm a 165.5 ppm, presenta la señal de los carbonos aromáticos.

Tabla 21

δ (ppm)	Asignación	δ (ppm)	Asignación
17.5	CH ₃ CH	128.9	C2-arom
50.8	CH ₃ CH	130.2	C1-arom
109.0	C12-arom	131.9	C11-arom
109.7	C15-arom	134.2	C4-arom
120.3	CH=CHC ₆ H ₅	140.3	$CH=CHC_6H_5$
124.5	C14-arom	146.4	C16-arom
127.6	C3-arom	162.8	C _{8-arom}
128.1	C13-arom	165.5	C7-arom

Datos de RMN ^{13}C del 1,3,4-oxadiazol α,β -insaturado 6a

Figura 21. Espectro de RMN 13 C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6a

Por otra parte, los datos obtenidos en ESI-MS para el 1,3,4-oxadiazol **6a**, mostraron una fórmula química de C₁₈H₁₆N₅O donde el valor teórico de la relación masa/carga (*m/z*) del ion molecular del compuesto ionizado [M+H] ⁺ fue de *m/z* 318.13549 y la relación *m/z* experimental del ion molecular [M+H]⁺ en ESI-MS fue de 318.13512, lo que confirma que se obtuvo el compuesto **6a**.

4.2. Pruebas biológicas

4.2.1. Actividad anticancerígena *in vitro* de los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j en las líneas celulares MCF-7, MDA-MB-231 y 4T1

La evaluación de la actividad anticancerígena de los derivados del 1,3,4-oxadiazol α , β insaturados **6a-b** se llevó a cabo mediante diluciones seriadas (0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 mg/mL) de cada compuesto, las cuales posteriormente fueron colocadas en las líneas celulares MCF-7, MDA-MB-231 y 4T1, empleando la técnica de rezasurina para posteriormente evaluar el porcentaje de viabilidad celular de los compuestos a las diferentes concentraciones.

Una vez obtenido el porcentaje de viabilidad, se realizó la curva de porcentaje de viabilidad-concentración y mediante una interpolación se determinó el valor de IC₅₀ para los compuestos más activos.

4.2.1.1. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6a

Los porcentajes de viabilidad relativa que se muestran en la figura 21, corresponde al 1,3,4-oxadiazol α , β -insaturado **6a** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además un análisis más detallado se presenta en la tabla 22.

Tabla 22

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6a

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	100.00 <u>+</u> 7.54	100.00 <u>+</u> 4.53	100.00 <u>+</u> 6.05
0.1	92.00 <u>+</u> 4.53	100.00 <u>+</u> 6.70	85.89 <u>+</u> 5.66
0.5	87.00 <u>+</u> 5.66	100.00 <u>+</u> 7.59	79.91 <u>+</u> 3.13
1	75.64 <u>+</u> 8.32	96.99 <u>+</u> 5.28	78.00 <u>+</u> 7.92
2	80.53 <u>+</u> 5.66	96.57 <u>+</u> 4.24	81.60 <u>+</u> 8.68
3	77.66 <u>+</u> 6.79	76.48 <u>+</u> 4.60	81.30 <u>+</u> 6.21
4	80.45 <u>+</u> 3.39	64.37 <u>+</u> 5.35	81.47 <u>+</u> 3.39
5	78.12 <u>+</u> 3.03	37.84 <u>+</u> 7.25	72.28 <u>+</u> 0.57

De acuerdo a la figura 22, se puede observar que el compuesto **6a** presenta el menor porcentaje de viabilidad relativa en la línea celular MCF-7 a una concentración de 1 mg/mL con un valor de 75.64 \pm 8.32 %, mientras que para las líneas MDA-MB-231 y 4T1, el menor valor se muestra a una concentración de 5 mg/mL con un valor de 37.84 \pm 7.25 % y 72.28 \pm 0.57 %, respectivamente. Es importante destacar que el compuesto **6a** tiene potencial actividad anticancerígena en la línea celular MDA-MB-231.

Figura 22. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado **6a**

4.2.1.2. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6b

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 23, corresponde al 1,3,4-oxadiazol α , β -insaturado **6b** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además un análisis más detallado se presenta en la tabla 23.

Tabla 23

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	100.00 <u>+</u> 7.84	100.00 <u>+</u> 9.82	100.00 <u>+</u> 6.54
0.1	98.11 <u>+</u> 3.74	90.00 <u>+</u> 1.80	90.91 <u>+</u> 3.39
0.5	94.58 <u>+</u> 0.57	97.00 <u>+</u> 11.49	93.00 <u>+</u> 5.85
1	91.69 <u>+</u> 1.52	96.00 <u>+</u> 4.19	98.00 <u>+</u> 10.81
2	91.17 <u>+</u> 0.09	95.00 <u>+</u> 5.01	96.00 <u>+</u> 4.81
3	88.77 <u>+</u> 0.14	94.00 <u>+</u> 4.55	92.00 <u>+</u> 1.74
4	88.73 <u>+</u> 0.08	91.00 <u>+</u> 4.93	94.00 <u>+</u> 3.61
5	85.14 <u>+</u> 0.14	91.95 <u>+</u> 3.28	93.99 <u>+</u> 1.97

α,β-insaturado 6b

De acuerdo a la figura 23, se puede observar que el compuesto **6b** presenta el menor porcentaje de viabilidad relativa en la línea celular MCF-7 a una concentración de 5 mg/mL con un valor de 85.14 ± 0.14 %, mientras que en las líneas MDA-MB-231 y 4T1 no muestran actividad. Por lo tanto, el compuesto **6b** no tiene potencial actividad anticancerígena significativa en estas líneas celulares, aún en la concentración más alta.

Figura 23. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado **6b**

4.2.1.3. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6c

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 24, corresponde al 1,3,4-oxadiazol α , β -insaturado **6c** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además un análisis más detallado se presenta en la tabla 24.

Tabla 24

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6c

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	100.00 <u>+</u> 4.68	100.00 <u>+</u> 6.79	97.57 <u>+</u> 3.86
0.1	95.58 <u>+</u> 1.50	100.00 <u>+</u> 3.03	93.53 <u>+</u> 11.28
0.5	91.84 <u>+</u> 0.73	100.00 <u>+</u> 1.98	91.36 <u>+</u> 10.01
1	86.18 <u>+</u> 1.94	87.65 <u>+</u> 5.76	93.41 <u>+</u> 9.55
2	89.40 <u>+</u> 5.29	67.30 <u>+</u> 5.66	55.30 <u>+</u> 1.03
3	82.31 <u>+</u> 3.72	25.13 <u>+</u> 0.56	26.46 <u>+</u> 4.14
4	70.74 <u>+</u> 10.06	8.24 <u>+</u> 5.31	7.48 <u>+</u> 2.80
5	40.74 <u>+</u> 2.39	1.14 <u>+</u> 2.26	4.18 <u>+</u> 0.55

De acuerdo a la figura 24, se puede observar que el compuesto **6c** presenta el menor porcentaje de viabilidad relativa en las líneas celulares MCF-7, MDA-MB-231 y 4TI a una concentración de 5 mg/mL con un valor de 40.74 ± 2.39 %, 1.14 ± 2.26 % y 4.18 ± 0.55 %, respectivamente. Así mismo, se puede observar que existe actividad significativa en las líneas celulares MDA-MB-231 y 4T1 a la concentración de 3 mg/mL con valores de 25.13 ± 0.56 % y 26.46 ± 4.14 %, respectivamente. Cabe destacar que el compuesto **6c** presenta la mejor actividad anticancerígena en la línea MDA-MB-231.

Figura 24. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6c

4.2.1.4. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6d

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 25, corresponde al 1,3,4-oxadiazol α , β -insaturado **6d** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además, un análisis más detallado se presenta en la tabla 25.

Tabla 25

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	100.00 <u>+</u> 5.23	100.00 <u>+</u> 5.66	100.00 <u>+</u> 6.54
0.1	100.00 <u>+</u> 8.02	89.64 <u>+</u> 7.92	100.00 <u>+</u> 4.26
0.5	99.67 <u>+</u> 4.25	89.00 <u>+</u> 4.56	92.00 <u>+</u> 4.35
1	96.95 <u>+</u> 7.63	95.32 <u>+</u> 4.53	89.88 <u>+</u> 6.93
2	95.00 <u>+</u> 1.08	89.00 <u>+</u> 4.88	79.61 <u>+</u> 8.38
3	90.62 <u>+</u> 0.42	94.00 <u>+</u> 7.87	60.67 <u>+</u> 5.08
4	76.42 <u>+</u> 5.08	95.00 <u>+</u> 3.39	30.31 <u>+</u> 1.35
5	51.17 <u>+</u> 2.96	99.00 <u>+</u> 7.92	20.57 <u>+</u> 2.48

α , β -insaturado 6d

De acuerdo a la figura 25, se puede observar que el compuesto **6d** presenta la mejor actividad en las líneas celulares MCF-7 y 4T1 a una concentración de 5 mg/mL con un valor de 51.17 ± 2.96 % y 20.57 ± 2.48 %, respectivamente; mientras que para la línea MDA-MB-231, no se observa actividad destacada aun a la concentración más alta. Así mismo, se puede observar que existe actividad importante en la línea celular 4T1 a la concentración de 4 mg/mL mostrando un porcentaje de viabilidad de 30.31 ± 1.35 %. No obstante, a esta misma concentración la actividad en la línea celular MCF-7 es baja (76.42 ± 5.08 %). Cabe destacar que el compuesto **6d** tiene la mejor actividad anticancerígena en la línea celular 4T1.

Figura 25. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6d

4.2.1.5. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6e

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 26, corresponde al 1,3,4-oxadiazol α , β -insaturado **6e** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además, un análisis más detallado se presenta en la tabla 26.

Tabla 26

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6e

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	92.63 <u>+</u> 3.27	100.00 <u>+</u> 10.99	100.00 <u>+</u> 6.54
0.1	98.00 <u>+</u> 5.19	91.00 <u>+</u> 6.02	95.00 <u>+</u> 3.39
0.5	99.00 <u>+</u> 4.21	98.00 <u>+</u> 1.63	89.26 <u>+</u> 6.76
1	99.00 <u>+</u> 2.05	92.00 <u>+</u> 4.25	94.00 <u>+</u> 5.66
2	99.00 <u>+</u> 4.28	94.00 <u>+</u> 2.98	94.00 <u>+</u> 0.96
3	94.57 <u>+</u> 3.08	95.00 <u>+</u> 2.65	97.00 <u>+</u> 4.27
4	97.03 <u>+</u> 7.06	92.00 <u>+</u> 4.57	93.07 <u>+</u> 2.75
5	86.36 <u>+</u> 1.39	89.28 <u>+</u> 7.15	100.0 <u>+</u> 6.95

De acuerdo a la figura 26, se puede observar que el compuesto **6e** no muestra actividad relevante, aún a la concentración más alta, con excepción de la línea celular MCF-7, la cual mostró un porcentaje de viabilidad de 86.36 ± 1.39 %. Por lo que se puede decir que el compuesto **6e** no tiene potencial actividad anticancerígena significativa en estas líneas celulares.

Figura 26. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6e

4.2.1.6. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6f

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 27, corresponde al 1,3,4-oxadiazol α , β -insaturado **6f** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además, un análisis más detallado se presenta en la tabla 27.

Tabla 27

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6f

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	99.27 <u>+</u> 7.84	100.00 <u>+</u> 2.35	100.00 <u>+</u> 6.54
0.1	96.61 <u>+</u> 3.74	29.39 <u>+</u> 2.22	94.42 <u>+</u> 4.87
0.5	75.05 <u>+</u> 0.57	26.74 <u>+</u> 4.14	5.95 <u>+</u> 4.31
1	34.25 <u>+</u> 1.52	28.41 <u>+</u> 1.94	0.00 <u>+</u> 0.87
2	0.19 <u>+</u> 0.09	18.40 <u>+</u> 1.98	0.00 <u>+</u> 2.17
3	0.17 <u>+</u> 0.14	3.22 <u>+</u> 1.77	0.00 <u>+</u> 2.89
4	0.12 <u>+</u> 0.08	0.04 <u>+</u> 0.16	0.00 <u>+</u> 0.50
5	0.33 <u>+</u> 0.14	0.00 <u>+</u> 0.11	0.00 <u>+</u> 2.94

De acuerdo a la figura 27, se puede observar que el compuesto 6f presenta una notable actividad en las tres líneas celulares. Por ejemplo, en la línea celular MCF-7 se observa que a la concentración de 1 mg/mL se tiene un 34.25 ± 1.52 % de viabilidad celular. Mejores resultados fueron obtenidos a concentraciones más altas (2, 3, 4 y 5 mg/mL), observándose un incrementó notablemente en la actividad al mostrar porcentajes de viabilidad de 0.19 ± 0.09 , 0.17 ± 0.14 , 0.12 ± 0.08 y 0.33 ± 0.14 %, respectivamente. Así mismo se puede observar que la actividad anticancerígena del compuesto 6f sobre la línea celular MDA-MB-231 mostró mejor actividad, observándose que a una concentración de 0.1 mg/mL se tiene un porcentaje de viabilidad de 29.39 + 2.22 %. Una mejor actividad anticancerígena se obtuvo al incrementar la concentración a 0.5, 1, 2, 3, 4 y 5 mg/mL observándose un 0.04 ± 0.16 y 0.00 ± 0.11 % de viabilidad a la concentración de 4 y 5 mg/mL, respectivamente. Es importante hacer notar que la actividad del compuesto 6f en la línea celular 4T1 mostró un porcentaje de viabilidad del 5.95 ± 4.31 % a la concentración de 0.5 mg/mL, y a la concentración de 1 mg/mL se observa 0.00 + 0.87 % de viabilidad celular. En ese sentido, podemos decir que el compuesto 6f tiene una notable actividad anticancerígena en las tres líneas celulares, destacando la mejor actividad en la línea 4T1, a una concentración de 1 mg/mL.

Figura 27. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6f

4.2.1.7. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6g

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 28, corresponde al 1,3,4-oxadiazol α , β -insaturado **6g** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además, un análisis más detallado se presenta en la tabla 28.

Tabla 28

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	97.59 <u>+</u> 6.79	100.00 <u>+</u> 9.05	100.00 <u>+</u> 2.64
0.1	97.00 <u>+</u> 2.62	100.00 <u>+</u> 6.96	86.88 <u>+</u> 5.97
0.5	90.00 <u>+</u> 4.42	100.00 <u>+</u> 5.22	81.76 <u>+</u> 7.92
1	98.00 <u>+</u> 1.59	100.00 <u>+</u> 6.40	59.51 <u>+</u> 1.13
2	93.00 <u>+</u> 1.18	96.11 <u>+</u> 5.39	54.55 <u>+</u> 4.53
3	99.00 <u>+</u> 7.42	80.30 <u>+</u> 4.53	53.87 <u>+</u> 3.39
4	99.00 <u>+</u> 11.24	67.97 <u>+</u> 4.79	36.66 <u>+</u> 4.57
5	88.38 <u>+</u> 4.92	43.27 <u>+</u> 7.87	22.15 <u>+</u> 6.06

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol

wp-moaturauo og	α,	β-insa	turado) 6g
-----------------	----	--------	--------	------

De acuerdo a la figura 28, se puede observar que el compuesto **6g** presenta el menor porcentaje de viabilidad relativa en las líneas celulares MCF-7, MDA-MB-231 y 4TI a una concentración de 5 mg/mL con valores de $88.38 \pm 4.92 \%$, $43.27 \pm 7.87 \%$ y 22.15 \pm 6.06 %, respectivamente. Así mismo, se puede observar que existe actividad significativa en la línea celular 4T1 a la concentración de 4 mg/mL con un valor de 36.66 \pm 4.57 %. Es importante mencionar que el compuesto **6g** muestra la mejor actividad anticancerígena en la línea celular 4T1.

Figura 28. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6g

4.2.1.8. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6h

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 29, corresponde al 1,3,4-oxadiazol α , β -insaturado **6h** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además, un análisis más detallado se presenta en la tabla 29.

Tabla 29

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	98.59 <u>+</u> 10.04	100.00 <u>+</u> 3.35	100.00 <u>+</u> 2.64
0.1	97.00 <u>+</u> 7.24	100.00 <u>+</u> 9.14	81.33 <u>+</u> 3.76
0.5	98.00 <u>+</u> 5.29	100.00 <u>+</u> 4.03	89.00 <u>+</u> 8.46
1	96.00 <u>+</u> 2.39	96.19 <u>+</u> 8.17	85.00 <u>+</u> 3.61
2	96.00 <u>+</u> 7.40	100.00 <u>+</u> 8.32	85.00 <u>+</u> 7.84
3	96.00 <u>+</u> 0.07	91.80 <u>+</u> 0.69	81.00 <u>+</u> 2.26
4	91.00 <u>+</u> 3.07	66.56 <u>+</u> 3.33	69.66 <u>+</u> 0.69
5	90.00 <u>+</u> 1.07	64.60 <u>+</u> 2.96	66.96 <u>+</u> 10.46

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol

α,β-insaturado	6h
----------------	----

De acuerdo a la figura 29, se puede observar que el compuesto **6h** muestra una baja actividad aún a la concentración más alta (5 mg/mL 90.00 \pm 1.07 %) en la línea celular MCF-7. Por otra parte, se puede notar que la actividad anticancerígena en las líneas celulares MDA-MB-231 y 4T1 presentaron moderada actividad a la concentración más alta evaluada, con porcentajes de viabilidad de 64.60 \pm 2.96 y 66.96 \pm 10.46 %, respectivamente.

Figura 29. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6h

4.2.1.9. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6i

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 30, corresponde al 1,3,4-oxadiazol α , β -insaturado **6i** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además, un análisis más detallado se presenta en la tabla 30.

Tabla 30

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	100.00 ± 2.40	100.00 <u>+</u> 4.66	100.00 <u>+</u> 2.64
0.1	62.11 <u>+</u> 1.68	100.00 <u>+</u> 7.45	83.68 <u>+</u> 6.49
0.5	55.63 <u>+</u> 4.02	100.00 <u>+</u> 14.59	87.00 <u>+</u> 6.11
1	55.57 <u>+</u> 4.11	93.00 <u>+</u> 0.38	82.00 <u>+</u> 5.66
2	50.87 <u>+</u> 2.03	94.00 <u>+</u> 0.10	80.00 <u>+</u> 6.79
3	44.87 <u>+</u> 2.89	91.00 <u>+</u> 9.76	89.00 <u>+</u> 3.39
4	31.71 <u>+</u> 2.41	93.00 <u>+</u> 2.08	69.05 <u>+</u> 6.34
5	36.42 <u>+</u> 1.56	43.49 <u>+</u> 5.67	56.26 <u>+</u> 5.19

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol

α,β-insaturado 6i

De acuerdo a la figura 30, se puede observar que el compuesto **6i** presenta el menor porcentaje de viabilidad relativa en la línea celular MCF-7 a una concentración de 4 mg/mL con un valor de 31.71 ± 2.41 %. Así mismo, se puede observar que existe actividad significativa en la línea celular MCF-7 a la concentración de 3 mg/mL con un valor de 44.87 ± 2.89 %. Por otro lado, la actividad anticancerígena en las líneas celulares, MDA-MB-231 y 4T1 no resultó ser mejor aún a la concentración más alta, mostrando porcentajes de viabilidad de 43.49 ± 5.67 y 56.26 ± 5.19 %, respectivamente. Por lo tanto, el compuesto **6e** es más activo en la línea celular MCF-7.

Figura 30. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6i

4.2.1.10. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α,β-insaturado 6j

Los valores del porcentaje de viabilidad relativa que se muestran en la figura 31, corresponde al 1,3,4-oxadiazol α , β -insaturado **6j** expuesto en las líneas celulares MCF-7, MDA-MB-231 y AT1; además, un análisis más detallado se presenta en la tabla 31.

Tabla 31

Concentración	MCF-7	MDA-MB-231	4T1
(mg/mL)	(% Viabilidad)	(% Viabilidad)	(% Viabilidad)
0	100.00 <u>+</u> 4.68	100.00 <u>+</u> 3.39	100.00 <u>+</u> 2.27
0.1	100.00 <u>+</u> 5.28	100.00 <u>+</u> 3.39	99.99 <u>+</u> 4.55
0.5	92.38 <u>+</u> 2.73	100.00 <u>+</u> 7.92	86.78 <u>+</u> 4.68
1	94.58 <u>+</u> 5.25	85.42 <u>+</u> 3.39	81.28 <u>+</u> 3.91
2	92.97 <u>+</u> 5.67	80.00 <u>+</u> 5.09	82.69 <u>+</u> 3.94
3	93.49 <u>+</u> 3.61	78.24 <u>+</u> 6.79	84.11 <u>+</u> 8.01
4	95.62 <u>+</u> 5.38	73.64 <u>+</u> 1.13	79.62 <u>+</u> 5.76
5	85.45 <u>+</u> 7.43	71.80 <u>+</u> 5.66	76.31 <u>+</u> 0.31

Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol

u,p-msatur aut oj

De acuerdo a la figura 31, se puede observar que el compuesto **6j** presenta el menor porcentaje de viabilidad relativa en las líneas celulares MCF-7, MDA-MB-231 y 4TI a una concentración de 5 mg/mL con un valor de $85.45 \pm 7.43 \%$, $71.80 \pm 5.66 \%$ y 76.31 $\pm 0.31 \%$, respectivamente. Estos resultados indican que el compuesto **6j** presenta una actividad anticancerígena baja.

Figura 31. Viabilidad relativa de las líneas MCF-7, MDA-MB-231 y 4T1 expuestas al 1,3,4-oxadiazol α , β -insaturado 6j

4.2.1.11. Comparación de la viabilidad de la línea MCF-7 expuestas a los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j

Los resultados de la actividad anticancerígena que presentan los derivados del 1,3,4oxadiazol α,β -insaturados **6a-j** al ser expuestos en la línea celular MCF-7, se presenta en la figura 32; donde se puede observar que los compuestos **6c**, **6f**, y **6i**, muestran la mejor actividad en comparación con los oxadiazoles **6a**, **6b**, **6d**, **6e**, **6g**, **6h** y **6j**. Observándose de forma clara que el compuesto **6f** es el más activo, alcanzando un 0.12 \pm 0.08 % de viabilidad celular a 4 mg/mL.

Figura 32. Viabilidad relativa de la línea MCF-7 expuesta a los derivados del 1,3,4-oxadiazol α,β -insaturados **6a-j**

4.2.1.12. Comparación de la viabilidad de la línea MDA-MB-231 expuesta a los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j

La actividad anticancerígena que presentan los derivados del 1,3,4-oxadiazol α , β insaturados **6a-j** al ser expuestos en la línea celular MDA-MB-231, se presenta en la figura
33; donde se puede observar que los compuestos **6a**, **6c**, **6f**, **6g**, y **6i**, muestran la mejor
actividad, encontrándose nuevamente que el compuesto **6f** resultó ser el más activo,
alcanzando 0.04 ± 0.16 % de viabilidad celular a 4 mg/mL.

Figura 33. Viabilidad relativa de la línea MDA-MB-231 expuesta a los derivados del 1,3,4-oxadiazol α , β -insaturados **6a-j**

4.2.1.13. Comparación de la viabilidad de la línea 4T1 expuesta a los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j

La actividad anticancerígena que presentan los derivados del 1,3,4-oxadiazol α , β insaturados **6a-j** al ser expuestos en la línea celular 4T1, se presenta en la figura 34; donde se puede observar que los compuestos **6c**, **6d**, **6f**, y **6g**, muestran la mejor actividad. Observándose nuevamente que el compuesto **6f** resultó ser muy activo, alcanzando un 0.00 ± 0.87 % de viabilidad celular a la concentración de 1 mg/mL.

Figura 34. Viabilidad relativa de la línea 4T1 expuesta a los derivados del 1,3,4-oxadiazol α,β -insaturados 6a-j

4.2.1.14. Comparación de la viabilidad de las líneas celulares MCF-7,
 MDA-MB-231 y 4T1 expuesta a los derivados del 1,3,4-oxadiazol
 α,β-insaturados 6a-j

Los derivados del 1,3,4-oxadiazol α , β -insaturados **6a-j** que destacan por su actividad anticancerígena al ser expuestos en las líneas celulares MCF-7, MDA-MB-231 y 4T1, son los compuestos **6a**, **6c**, **6d**, **6f**, **6g**, y **6i** (Figura 35), a los cuales fue posible determinar el IC₅₀, y los resultados se muestran en la tabla 32.

Figura 35. Derivados del 1,3,4-oxadiazol α , β -insaturado con mayor actividad anticancerígena

Tabla 32

Valores de IC₅₀ de los compuestos más activos en las líneas MCF-7, MDA-MB-231 y 4T1

Compuesto	MCF-7	MDA-MB-231	4T1
Compuesto	IC ₅₀ (mg/mL)	IC ₅₀ (mg/mL)	IC50 (mg/mL)
ба	-	4.52	-
6c	4.68	2.40	2.17
6d	-	-	3.35
6f	0.80	0.07	0.30
6g	-	4.71	3.22
6i	2.13	4.85	-
Doxorrubicina	5.35x10 ⁻⁶	6.74x10 ⁻⁴	7.07x10 ⁻⁴

En la línea MCF-7, se observa que los grupos electroatractores en posición *para* **6c** (*p*-F) y **6f** (*p*-Cl), al igual que el oxadiazol **6i** (*m*, *p*-OMe) disustituido con un grupo electrodonador en posición *meta* y *para*, presentan la mejor actividad. De acuerdo a los valores de IC₅₀ reportados en la tabla 32, se observa que el compuesto **6f** (IC₅₀= 0.80

mg/mL) presenta la mejor actividad seguido del compuesto **6i** (IC₅₀= 2.13 mg/mL) y el compuesto **6c** (IC₅₀= 4.68 mg/mL).

Por otra parte, en la línea celuar MDA-MB-231 se observa que la actividad anticancerígena se favorece con grupos electroatractores en posición *para* (**6c** y **6f**), grupos electrodonadores en posición *para* y *meta* (**6g** y **6i**), y en el oxadiazol sin sustitución (**6a**). Por lo tanto, el compuesto con mayor actividad es el sustituido con *para*cloro **6f** (IC₅₀= 0.07 mg/mL), seguido del *para*-flúor **6c** (IC₅₀= 2.40 mg/mL), el oxadiazol sin sustitución **6a** (IC₅₀= 4.52 mg/mL), el *meta*-metoxi **6g** (IC₅₀= 4.71 mg/mL) y finalmente, el *meta*, *para*-dimetoxi **6i** (IC₅₀= 4.85 mg/mL).

En cuanto a la mejor actividad anticancerígena obtenida en la línea celular 4T1, se observa que los sustituyentes electroatractores halogenados (**6c**, **6d**, **6f**) se presentan con mayor frecuencia que los compuestos electro donadores **6g**. De acuerdo a ello, el compuesto sustituido con *para*-cloro **6f** (IC₅₀= 0.30 mg/mL) presenta la mejor actividad, seguido del *para*-flúor **6c** (IC₅₀= 2.17 mg/mL), el *meta*-trifluorometino **6d** (IC₅₀= 2.35 mg/mL) y por último, el *meta*-metoxi **6g** (IC₅₀= 3.22 mg/mL).

De acuerdo a todo lo anteriormente señalado, se observa que el compuesto **6f** (*p*-Cl), presenta la mayor actividad anticancerígena en las tres líneas celulares MCF-7 (IC₅₀= 0.80 mg/mL), MDA-MB-231 (IC₅₀= 0.07 mg/mL) y 4T1 (IC₅₀= 0.30 mg/mL), destacando su actividad en la línea MDA-MB-231. Así mismo, cabe señalar que la actividad del compuesto **6f** es variable en cada línea evaluada, debido a que existen diferencias significativas entre cada una de ellas a pesar de ser líneas celulares de cáncer de mama.

Principalmente, la línea celular MCF-7 se encuentra clasificada como una línea celular poco agresiva y con bajo potencial metastásico,⁵¹ lo cual se debe principalmente a que existe expresión del receptor de estrógeno y de progesterona, pero no del receptor de HER-2 (Tabla 3),^{52, 53} lo cual permite el tratamiento con fármacos hormonales; y que además, da indicio a que el compuesto **6a** presente actividad de regulación hormonal. En cuanto a las líneas MDA-MB-231 y 4T1, éstas se encuentran en la clasificación de cáncer de mama triple negativo (TNBC), que se caracteriza por la falta de expresión del receptor HER-2 ^{54, 55} (Tabla 33); provocando que el TNBC muestre características muy distintas con otros tipos de cáncer de mama, presentándose como una enfermedad agresiva y con alto potencial metastásico, sin opciones de tratamiento específico para los tumores.⁵⁴

Tabla 33

Línea celular	Receptor de Estrógeno	Receptor de progesterona	HER-2	Estado p53
MCF-7	+	+	-	Silvestre
				Mutación:
				- Nucleótido
MDA-MB-231	-	-	-	$AGA \rightarrow AAA$
				- Cambio de residuo
				$\operatorname{Arg}(R) \to \operatorname{Lys}(K)$
4 T1	-	-	-	Nulo

Características de las líneas celulares MCF-7, MDA-MB-231 y 4T1

Por otra parte, una diferencia significativa entre las líneas celulares es el estado de la proteína tumoral p53 (p53), que de acuerdo a la tabla 33, se puede observar que en la línea MCF-7 la proteína posee una secuencia genética de tipo silvestre, mientras que la línea MDA-MB-231 muestra una mutación del residuo de arginina a lisina y, por otro lado, la línea 4T1 presenta supresión completa del gen. La importancia del estudio de p53 radica en que la proteína comúnmente se ve alterada por las células cancerígenas, provocando una alteración en la apoptosis y una aceleración en el crecimiento de tumores, sin importar que exista una expresión de HER-2 negativo.⁵² En células sanas, el nivel y la actividad de p53 son muy bajos, pero en caso de estrés, p53 se activa a través de una serie de modificaciones postraduccionales, incrementa la sobreexpresión de HER-2, y se vuelve capaz de unir a secuencias específicas de ADN. Por otro lado, AKT se encuentra involucrada en la proliferación y la supervivencia celular al inhibir la apoptosis. La activación de esta quinasa se lleva a cabo mediante células expuestas a diversos estímulos, como hormonas, factores de crecimiento epidérmico como HER-2, factores de crecimiento semejantes a la insulina I (IGF-I) y componentes de la matriz extracelular; por lo que sí existe un exceso de HER-2, la señalización de AKT incrementaría la proliferación celular y por lo tanto contribuiría a la progresión del cáncer.⁵⁶ De acuerdo a ello, el posible mecanismo de acción que podría presentar el compuesto 6f sería mediante su intervención en la vía de señalización de AKT, para erradicar el crecimiento cancerígeno.

Por otro lado, en la literatura se ha reportado la síntesis de derivados de oxadiazoles que han sido sintetizados para su posterior estudio en líneas celulares cancerígenas; algunas de estas moléculas se presentan en la tabla 34. Realizando una comparación de los

compuestos más activos reportados en la literatura con el compuesto **6f**, que fue sintetizado en el presente trabajo, se observa que los compuestos reportados presentan una mejor actividad anticancerígena debido a que los valores de IC_{50} que presentan, son más bajos en comparación con los estudiados en el presente trabajo.

Tabla 34

Compuestos con actividad anticancerígena en las líneas celulares MCF-7 y MDA-MB-231

Autor Año	Molécula	Línea celular	IC50 (μg/mL)
Zhang, S; <i>et al.</i> 2013 ³⁴	N-N F	MCF-7	5.68
Khalil, N; <i>et al.</i> 2015 ⁵⁷		MCF-7	0.010
Khalil, N; <i>et al.</i> 2015 ⁵⁷	N N N N N N N N N N N N N N N N N N N	MCF-7	0.012
Gu,W; <i>et al.</i> 2017 ⁵⁸		MDA-MB-231	0.61 <u>+</u> 0.07
Gu,W; <i>et al.</i> 2017 ⁵⁸		MDA-MB-231	0.75 <u>+</u> 0.05
Mochona, B; <i>et</i> <i>al</i> . 2015 ⁵⁹		MDA-MB-231	>17.5

4.2.2. Actividad citotóxica *in vitro* de los derivados del 1,3,4-oxadiazol α,βinsaturados 6a-j en esplenocitos murinos

La actividad citotóxica que presentan los derivados del 1,3,4-oxadiazol α , β -insaturados **6a-j** al ser expuestos sobre esplenocitos murinos, se presenta en la figura 36; además, se presenta un análisis más detallado en la tabla 35.

Tabla 35

Viabilidad relativa de esplenocitos murinos expuestos a los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j a una concentración de 5 mg/mL

Compuesto	%Viabilidad	Compuesto	%Viabilidad
6a	84.89 <u>+</u> 12.71	6f	54.94 <u>+</u> 0.08
6b	62.60 <u>+</u> 4.12	6g	66.96 <u>+</u> 3.42
6с	55.89 <u>+</u> 1.18	6h	87.66 <u>+</u> 14.20
6d	79.68 <u>+</u> 21.49	6i	65.36 <u>+</u> 1.30
6e	89.84 <u>+</u> 17.56	6ј	77.21 <u>+</u> 1.27

De acuerdo a la figura 36, se puede observar que el compuesto **6e** presenta el mayor porcentaje de viabilidad relativa ($89.84 \pm 17.56 \%$), seguido del compuesto **6h** ($87.66 \pm 14.20 \%$), y en última instancia el **6a** ($84.89 \pm 12.71 \%$). Por lo tanto, se puede determinar que el sustituyente en posición *meta* (**6e**-Cl) presentó la menor citotoxicidad, seguido del sustituido en posición *para* (**6h**-OMe) y por último se encuentra el compuesto sin sustituyente (**6a**).

Por otra parte, a pesar de que los compuestos **6c**, **6d**, **6f** y **6i** presentaron mejor actividad anticancerígena, éstos presentaron los porcentajes de viabilidad más bajo (más citotóxicos) en esplenocitos murinos con valores de 55.89, 79.68, 54.94 y 65.36%, respectivamente (Figura 36).

Figura 36. Viabilidad relativa de esplenocitos murinos expuestos a los compuestos derivados del 1,3,4-oxadiazol α , β -insaturados 6a-j

Debido a los datos obtenidos con anterioridad, y considerando que el compuesto **6f** presentó una mejor actividad anticancerígena, en las líneas MCF-7, MDA-MB-231 y 4T1, se decidió realizar la evaluación de la viabilidad relativa de esplenocitos murinos a concentraciones de 0.05, 0.25, 0.75, 1, 2, 3 y 5 mg/mL, para realizar un estudio más detallado (Tabla 36).

Tabla 36

Concentración	%Viabilidad	Concentración	%Viabilidad
(mg/mL)		(mg/mL)	
0.05	99.64 <u>+</u> 10.38	2	56.13 <u>+</u> 1.39
0.25	87.24 <u>+</u> 15.94	3	56.06 <u>+</u> 0.08
0.75	71.91 <u>+</u> 14.87	5	54.94 <u>+</u> 0.27
1	71.21 <u>+</u> 11.27		

Viabilidad relativa de esplenocitos murinos expuestos al derivado del 1,3,4-oxadiazol

En la figura 37 se puede observar que el compuesto **6f** presenta mejor viabilidad a menores concentraciones, por lo que a 0.05 mg/mL mostró escasa citotoxicidad; lo cual da indicios que a esta concentración el compuesto **6f** presentaría menores efectos adversos en comparación con la doxorrubicina. Además, el compuesto **6f** a la concentración 1 mg/mL resultó ser muy activo en las tres líneas celulares cancerígenas y poco citotóxico en esplenocitos murinos. Por lo tanto, el compuesto **6f** resulta ser un candidato idóneo para posteriores estudios en un modelo animal.

α , β -insaturado 6f

Figura 37. Viabilidad relativa de esplenocitos murinos expuestos al compuesto derivado del 1,3,4-oxadiazol α,β-insaturado **6f**

Por otra parte, está bien documentado que los pacientes que reciben tratamiento quimioterapéutico con doxorrubicina presentan diversos efectos adversos como leucopenia, neutropenia, anemia, trombocitopenia, disminución del apetito, conjuntivitis, insuficiencia cardíaca congestiva, taquicardia sinusal, inflamación de la mucosa, diarrea, vómitos, náuseas, esofagitis, dolor abdominal, alopecia, urticaria, erupción cutánea, hiperpigmentación de la piel y uñas, pirexia, astenia, y escalofríos, entre otros.⁶⁰ Por lo tanto, el desarrollo de nuevos fármacos con escasos y/o nulos efectos adversos resulta deseable.

4.2.3. Ensayo de hemólisis *in vitro* de los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j sobre sangre periférica de humano

La actividad hemolítica que presentan los derivados del 1,3,4-oxadiazol α , β -insaturados **6a-j** al ser expuestos sobre sangre periférica de humano, se presenta en la figura 38; además, se presenta un análisis más detallado en la tabla 37.

Tabla 37

Hemólisis relativa de los derivados del 1,3,4-oxadiazol α,β-insaturados 6a-j sobre sangre periférica de humano

Compuesto	%Hemólisis	Compuesto	%Hemólisis
ба	1.01 <u>+</u> 1.13	6g	1.25 <u>+</u> 0.34
6b	1.20 <u>+</u> 0.09	6h	1.33 <u>+</u> 0.27
6с	1.67 <u>+</u> 0.55	<u>6</u> i	2.17 <u>+</u> 0.57
6d	0.79 <u>+</u> 0.79	бј	0.51 <u>+</u> 0.14
6e	4.25 <u>+</u> 4.66	Triton X-100	70.00 <u>+</u> 1.61
6f	0.82 <u>+</u> 0.14		

De acuerdo a la figura 38, se observa que todos los compuestos a una concentración de 5 mg/mL presentan un porcentaje de hemólisis menor al 5 %, de los cuales el compuesto **6j** presenta la menor lisis $(0.51 \pm 0.14 \%)$, seguido del **6d** (0.79 + 0.79 %) y por último el **6f** (0.82 + 0.14 %). Cabe señalar que estos compuestos se encuentran en su mayoría, sustituidos en posición *para* [**6j**-N(Me)₂ y **6f**-Cl] y poseen sustituyentes halogenados (**6f**-
Cl y **6d**-CF₃), sin embargo, también se presenta un sustituyente en posición *meta* (**6d**-CF₃) y con un grupo electrodonador [**6j**-N(Me)₂].

Figura 38. Ensayo de hemólisis relativa de los compuestos derivados del 1,3,4-oxadiazol α,β -insaturados **6a-j** sobre sangre periférica de humano

Por otra parte, es importante resaltar que en el 2015, Khan y col.⁶¹ realizaron un estudio donde evaluaron la actividad hemolítica de la doxorrubicina y encontraron que este fármaco causa lisis de eritrocitos de manera dependiente a la dosis, por lo que a una concentración de 20 μ g/mL presenta aproximadamente 20% de hemólisis (Figura 39).

Figura 39. Ensayo de hemólisis del fármaco doxorrubicina

Realizando un estudio comparativo entre la actividad hemolítica de los compuestos **6a-j** y el fármaco doxorrubicina, se puede observar que la capacidad hemolítica de la doxorrubicina es mayor a la de los compuestos, a pesar de la alta concentración utilizada en la evaluación de los compuestos **6a-j** (5 mg/mL); lo cual es de gran importancia ya que se ha reportado que diversos fármacos inducen a la hemólisis de eritrocitos, lo que se observa como efectos secundarios en el paciente.⁶² Así mismo, se ha reportado que este efecto se encuentra relacionado con la dosis-tiempo, donde las células afectadas pueden reestablecerse después de suspender el medicamento; sin embargo, en algunos casos el efecto adverso es irreversible y puede causar la muerte.⁶³ En cuanto a la doxorrubicina, este fármaco presenta un efecto adverso relacionado con su grado hemolítico, el cual se conoce como síndrome de lisis tumoral, donde la lisis rápida de células neoplásicas inducida por el fármaco puede provocar un catabolismo extenso de purina y finaliza en una hiperuricemia.⁶⁰

4.2.4. Aplicación de los derivados del 1,3,4-oxadiazol α,β-insaturados 6a, 6c,
6d, 6f, 6g, 6i y 6j como marcadores fluorescentes *in vitro* en la línea celular MCF-7

Para evaluar las propiedades luminiscentes de los derivados del 1,3,4-oxadiazol α , β insaturados **6a-j**, éstos fueron disueltos en siete disolventes comúnmente usados; de los cuales se empleó un disolvente polar prótico (MeOH), cinco disolventes polares apróticos (CH₃CN, Acetona, AcOEt, CH₂Cl₂ y THF) y un disolvente no polar (Hex). En seguida, las soluciones fueron irradiadas a una longitud de onda de 365 nm y se observó que los compuestos **6c, 6f, 6g, 6i y 6j** presentaron una mayor fluorescencia (Figura 36).

Figura 40. Fluorescencia de los derivados del 1,3,4-oxadiazol α,β-insaturados **6a-j** disueltos en (de izquierda a derecha) 1) CH₃CN, 2) MeOH, 3) acetona, 4) AcOEt, 5) CH₂Cl₂, 6) THF y 7) Hex, bajo una lámpara UV de 365 nm

En la figura 40 se observa que todos los compuestos presentan fluorescencia utilizando como disolvente tetrahidrofurano (THF), mientras que con otros disolventes puede no mostrarse el efecto luminiscente; esto se debe a que cuando una molécula aromática absorbe un fotón, sufre un cambio en su momento dipolar, siendo mayor el estado excitado y su energía; posterior a dicha excitación, el disolvente se relaja debido a una

reorganización del disolvente que depende del grado de viscosidad que posea. Si el disolvente posee una baja viscosidad, éste se puede reorganizar en un corto tiempo en comparación con el tiempo que emplea el soluto para relajarse, por lo que la fluorescencia emitida se deberá al equilibrio entre el soluto y el disolvente; pero si el medio es viscoso, no existe efecto alguno ya que no hay una reorganización del disolvente en un tiempo adecuado.⁶⁴

Cabe destacar que el compuesto **6j** presenta fluorescencia de color verde en la disolución donde se emplea MeOH, esto se debe al efecto solvatocrómico que le confiere el disolvente a la molécula, ya que cuanto mayor es la polaridad del disolvente, menor es la energía del estado relajado de la molécula y mayor es el desplazamiento hacia el rojo del espectro de emisión.⁶⁴

Por otra parte, se continuó con la evaluación de las propiedades optoelectrónicas midiendo la longitud de onda de máxima absorción ($\lambda_{máx abs}$), en un espectrofotómetro UV-Vis, y las longitudes de onda de excitación ($\lambda_{máx ex}$) y de emisión ($\lambda_{máx em}$), en un espectrofotómetro de fluorescencia, de los compuestos con mayor actividad biológica (**6a**, **6c**, **6d**, **6f**, **6g**, **6i**) así como del compuesto **6j**, debido al efecto solvatocrómico que presentó (Tabla 35).

Compuesto	λ _{máx abs} (nm)	λ _{máx ex} (nm)	λmáx em (nm)
6a	290	275	370
6c	289	332	385
6d	288	305	389
6f	294	383	401
6g	289	305	381
6i	334	341	394
6ј	371	342	445

Características optoelectrónicas de los compuestos 6a, 6c, 6d, 6f, 6g, 6i, 6j

De acuerdo a la tabla 38, se observa que los compuestos sustituidos en posición *para-* en el anillo aromático (**6c**, **6f**, **6j**) destacan por su fluorescencia, así mismo, otros sustituyentes que también destacan son los sustituidos en posición *meta* (**6g**) y disustituido en posición *para* y *meta* (**6i**). Además, estos compuestos emiten energía en la región del espectro visible y presentan un desplazamiento batocrómico, lo cual se debe a la conjugación presente en la molécula, permitiendo la reducción de la energía de banda prohibida entre los niveles HOMO y LUMO, facilitando la transición electrónica.

Para la generación de imágenes fluorescentes se utilizó la línea celular MCF-7 a una confluencia de 5x10⁶ células/mL cultivada en el medio DMEM/F12 suplementado con suero fetal bovino al 5%. Los compuestos (**6a**, **6c**, **6d**, **6f**, **6g**, **6i**, **6j**) se prepararon en medio de cultivo a una concentración de 5mg/mL. Posteriormente, las células se incubaron a temperatura ambiente por 2 h, y enseguida fueron analizadas por microscopía confocal, usando la longitud de excitación en un rango de 275 a 502 nm, previamente determinados

en un equipo de fluorescencia. Las bioimágenes obtenidas por microscopia confocal mostraron que los compuestos **6a**, **6c**, **6d**, **6f**, **6g**, **6i** y **6j** son capaces de teñir a las células (Figura 40). Los compuestos presentan la capacidad de penetrar la membrana celular y localizarse en el citoplasma, observándose que la morfología de las células se conserva a las 2 horas de incubación. También se puede notar que la emisión más intensa está localizada en distintos puntos de la célula fuera del núcleo, los cual sugiere que los compuestos penetran la membrana por endocitosis.

6a

6c

6d

Figura 41. Imágenes de transmisión de campo claro (izquierda) e imágenes de microscopía confocal fluorescente (derecha) de células MCF-7 incubadas con 1,3,4-oxadiazol α,β-insaturados **6a, 6c, 6d, 6f, 6g, 6i, 6j**

CONCLUSIONES

- Se llevó a cabo la preparación del éster **3b** e hidrazida **4** utilizando sonicación e irradiación por microondas con rendimientos químicos del 70 y 88%.
- Se llevó a cabo la síntesis de los derivados de 1,3,4-oxadiazol α,β-insaturados, utilizando diferentes derivados de ácido cinámico, mediante la técnica convencional del agitación y reflujo con rendimientos químicos de bajos a moderados (16 -53%).
- La caracterización estructural de cada uno de los compuestos obtenidos se llevó acabo utilizando Espectrometría de Infrarrojo (IR), Resonancia Magnética Nuclear de hidrógeno y carbono trece (RMN ¹H y¹³C) y Espectrometría de Masas de Alta Resolución, lo que permitió confirmar la estructura propuesta de cada uno de los compuestos.
- La evaluación de la actividad anticancerígena de los compuestos 6a 6j utilizando tres líneas celulares (MCF-7, MDA-MB-231 y 4T1) mostró que el compuesto 6f es el más activo en las tres líneas celulares, encontrándose porcentajes de viabilidad de 0% a concentraciones de 1mg/mL.

- La evaluación de la toxicidad empleando esplenocitos murinos demostró que el compuesto **6f** es selectivo hacia células cancerígenas. Por lo que se convierte en un compuesto potencial para ser probado en un modelo animal.
- Ninguno de los compuestos sintetizados resulto ser más activo que la doxorrubicina. No obstante, los compuestos sintetizados resultaron ser menos citotóxicos que la doxorrubicina, de acuerdo al estudio realizado empleando esplenocitos murinos.
- El compuesto **6f** es un candidato promisorio para ser evaluado en otras líneas celulares, además de que puede ser la base para realizar modificaciones estructurales y realizar un estudio más detallado de actividad biológica.
- Siete de los 10 compuestos sintetizados presentan la propiedad de luminiscencia, lo que permitió generar imágenes luminiscentes sobre la línea celular MCF-7 mediante microscopía confocal.
- Se requiere un estudio más detallado para conocer el mecanismo por el cual los compuestos son capaces de internarse en la célula.
- Hasta el momento no se tiene un mecanismo de acción por el cual el compuesto **6f** ejerce su actividad, por lo que es necesario realizar estudios más específicos.

PERSPECTIVAS DEL TRABAJO

- Llevar a cabo la evaluación de la actividad anticancerígena en las tres líneas celulares del compuesto 6f a concentraciones más bajas (menores a 0.5 mg/mL), lo que permitirá conocer de una manera más exacta el IC₅₀.
- Evaluar la actividad anticancerígena in vivo del compuesto 6f.
- Evaluar la actividad anticancerígena del compuesto **6f** utilizando otras líneas celulares cancerígenas.
- Llevar a cabo una síntesis más eficiente para mejorar los rendimientos químicos.
- Llevar a cabo una síntesis enantioselectiva para la preparación del compuesto 6f de forma enantiomericamente pura, y evaluar la actividad anticancerígena utilizando ambos enantiómeros por separado.
- Realizar un estudio más detallado para la generación de bioimagénes por microscopía confocal.
- Realizar modificaciones estructurales al compuesto 6f para generar sus correspondientes análogos y realizar un estudio más detallado de Estructura Química - Actividad Biológica.

BIBLIOGRAFÍA

- 1- World Health Organization: GLOBOCAN 2018. http://gco.iarc.fr/today (accesado el 20 de octubre de 2018).
- 2- American Cancer Society. https://www.cancer.org/es/tratamiento/tratamientosy-efectos-secundarios/tipos-de-tratamiento/cirugia/como-se-usa-lacirugia-contra-el-cancer.html (accesado el 02 de octubre de 2018).
- 3- American Cancer Society. https://www.cancer.org/es/tratamiento/tratamientosy-efectos-secundarios/tipos-de-tratamiento/cirugia/como-se-usa-lacirugia-contra-el-cancer.html (accesado el 02 de octubre de 2018).
- 4- American Cancer Society. https://www.cancer.org/es/tratamiento/tratamientosy-efectos-secundarios/tipos-de-tratamiento/radioterapia/conceptosbasicos.html (accesado el 02 de octubre de 2018).
- 5- American Cancer Society. https://www.cancer.org/es/tratamiento/tratamientosy-efectos-secundarios/tipos-de-tratamiento/quimioterapia/como-laquimioterapia-es-usada-para-tratar-el-cancer.html (accesado el 02 de octubre de 2018).
- 6- American Cancer Society. https://www.cancer.org/es/tratamiento/tratamientosy-efectos-secundarios/tipos-de-tratamiento/quimioterapia/efectossecundarios-de-la-quimioterapia.html (accesado el 02 de octubre de 2018).

- 7- Kim, H.; Cho, B. Small-molecule two-photon probes for bioimaging applications. *Chem. Rev.* **2015**, *115*, 5014-5055.
- 8- Ekinci, D. Medicinal chemistry and drug design; InTech: Croasia, 2012; pp IX.
- 9- Greenwood, F.; Balasingham, R.; Coogan, M. Organometallic complexes of transition metals in luminescent cell imaging applications. J. Organomet. Chem. 2012, 714, 12-21.
- 10- Ambekar, S.; Dhananjaya, M.; Shirahatti, A.; Kumar, M.; Rangappa, S.; Mohan, S.; Kotresh, K.; Rangappa, K. Synthesis of Coumarinbenzotriazole Hybrids and Evaluation of their Anti-tubercular. Activity. *Lett. Org. Chem*, **2018**, *15*, 23-31.
- 11- Janardhanan, J.; Chang, M.; Mobashery, S. The oxadiazole antibacterials *Curr. Opin. Microbiol.* **2016**, *33*, 13-17
- Briguglio, I.; Piras, S.; Corona, P.; Gavini, E.; Nieddu, M.; Boatto, G.; Carta,
 A. Benzotriazole: An overview on its versatile biological behavior. *Eur. J. Med. Chem.* 2015, *97*, 612-648.
- 13- Grau, M.; Valcarcel, I.; Early, J.; Gessner, R.; Melo, C.; Nava, E.; Korkegian, A.; Ovechkina, Y.; Flint, L.; Gravelle, A.; Cramer, J.; Desai, P.; Street, L.; Odingo, J.; Masquelin, T.; Chibale, K.; Parish, T. Synthesis and biological evaluation of aryl-oxadiazoles as inhibitors of *Mycobacterium tuberculosis. Bioorganic Med. Chem. Lett.* **2018**, *28*, 1758-1764.
- 14- Taj, T.; Raikar, S.; Kamble, R. Synthetic utility of sydnones to couple pharmacologically important heterocycles for antitubercular activity. *Arab. J. Chem.* 2014, 7, 900-905.
- 15- Nazir, M.; Abbasi, M.; Rehman, A.; Siddiqui, S.; Khan, K.; Salar, U.; Shahid, M.; Ashraf, M.; Lodhi, M.; Khan, F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. *Bioorg. Chem.* 2018, *81*, 253-263.

- 16- Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and onepot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. *Bioorg. Chem.* **2018**, *77*, 190-202.
- 17- Çavuşoğlu, B.; Yurttaş, L.; Cantürkb, Z. The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against *Candida species*. *Eur. J. Med. Chem.* 2018, 144, 255-261.
- 18- Lv, M.; Ma, J.; Li, Q.; Xu, H. Discovery of benzotriazole-azo-phenol/aniline derivatives as antifungal agents. *Bioorganic Med. Chem. Lett.* 2018, 28, 181-187.
- 19- Verma, G.; Chashoo, G.; Ali, A.; Khan, M.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. *Bioorg. Chem.* 2018, 77, 106-124.
- 20- Thakkar, S.; Thakor, P.; Doshi, H.; Ray, A. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, *in silico* molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. *Bioorganic Med. Chem.* 2017, 25, 4064-4075.
- 21- Triloknadh, S.; Rao, C.; Nagaraju, K.; Krishna, N.; Ramaiah, C.; Rajendra, W.; Trinath, D.; Suneetha, Y. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids. *Bioorganic Med. Chem. Lett.* 2018, 28, 1663-1669.
- 22- Carta, A.; Palomba, M.; Boatto, G.; Busonera, B.; Murreddu, M.; Loddo, R. Synthesis and antiproliferative activity of 3-aryl-2-[1*H*(2*H*)-benzotriazol-1(2)-yl]acrylonitriles variously substituted: Part 4. *II Farmaco.* 2004, *59*, 637-644.
- 23- Alikhani, R.; Razzaghi, N.; Ramazani, A.; Hosseinzadeh, Z. Insights into the structural/conformational requirements of cytotoxic oxadiazoles as potential chemotherapeutic target binding agents. J. Mol. Struct. 2018, 1164, 9-22.

- 24- Onar, G.; Karataş, M.; Balcıoğlu, S.; Tok, T.; Gürses, C.; Cıkla, I.; Özdemir, N.; Ateş, B; Alıcı, B. Benzotriazole functionalized *N*-heterocyclic carbene– silver(I) complexes: Synthesis, cytotoxicity, antimicrobial, DNA binding, and molecular docking studies. *Polyhedron.* **2018**, *153*, 31-40.
- 25- Sangshetti, J.; Nagawade, R.; Shinde, D. Synthesis of novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)1,2,4-oxadiazol-5(4H)-one as antifungal agents. *Bioorganic. Med. Chem. Lett.* 2009, 19, 3564-3567.
- 26- Anjos, J.; Filho, R.; Nascimento, S.; Srivastava, R.; Melo, S.; Sinou, D. Synthesis and cytotoxic profile of glycosyl-triazole linked to 1,2,4oxadiazole moiety at C-5 through a straight-chain carbon and oxygen atoms. *Eur. J. Med. Chem.* 2009, 44, 3571-3576.
- 27- Charton, J.; Poulain R.; Hennuyer, N.; Tailleux, A.; Staels, B.; Deprez, B. Novel non-carboxylic acid retinoids: 1,2,4-Oxadiazol-5-one derivatives. *Bioorg. Med. Chem. Lett.* 2009, 19, 489-492.
- Ogurtsov, V.; Shastin, A.; Zlotin, S.; Rakitin, O. Short and efficient synthesis of 1-(2-oxido-1,2,5-oxadiazol-3-yl)alkyl nitrates by unconventional nitrooxylation of 3-alkyl-1,2,5-oxadiazole-2-oxides. *Tetrahedron Letters*. 2016, *57*, 4027-4030.
- 29- Saleem, M.; Ali, A.; Park, B.; Choi, E.; Lee, K. Optical properties of some novel 2,5-disubstituted 1,3,4-oxadiazole derivatives and their application as an efficient cell staining azo dyes. *J. Fluoresc.* **2014**, *24*, 1553-1561.
- 30- Mechanisms in medicine http://mechanismsinmedicine.com/site/view/onco logy/onc-a4/an-introduction-to-cancer-biology-part-1-proliferation (accesado el 02 de octubre de 2016).
- 31- Bajaj, S.; Asati, V.; Singh, J.; Roy, P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. *Eur. J. Med. Chem.* 2015, 97, 124-141.
- 32- Ha, Y.; Choi, H. Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging. **2016**, *248*, 36-51.

- 33- Sun, J.; Li, M.; Qian, S.; Guo, F.; Dang, X.; Wang, X.; Xue, Y.; Zhu, H. Synthesis and antitumor activity of 1,3,4-oxadiazole possessing 1,4benzodioxan moiety as a novel class of potent methionine aminopeptidase type II inhibitors. *Bioorg. Med. Chem. Lett.* **2013**, 23, 2876-2879.
- 34- Zhang, S.; Luo, Y.; He, L.; Liu, Z.; Jiang, A.; Yang, Y.; Zhu, H. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity. *Bioorganic Med. Chem.* 2013, 21, 3723-3729.
- 35- Borowiecki, P.; Wińska, P.; Bretner, M.; Gizińska, M.; Koronkiewicz, M.; Staniszewska, M. Synthesis of novel proxyphylline derivatives with dual Anti-*Candida albicans* and anticancer activity. *Eur. J. Med. Chem.* 2018, 150, 307-333.
- 36- Altıntop, M.; Sever, B.; Çiftçi, G.; Zitouni, G.; Kaplancıklı, Z.; Özdemir, A. Design, synthesis, *in vitro* and *in silico* evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. *Eur. J. Med. Chem.* 2018, 155, 905-924.
- 37- Flores, M. *Parasitología médica* (4a. ed.) Mc Grawn Hill: México, 2014, 404-406.
- 38- Barnes, K.; Blois, J.; Smith, A.; Yuan, H.; Reynolds, F.; Weissleder, R.; Cantley, L.; Josephson, L. Fate of a bioactive fluorescent wortmannin derivative in cells. *Bioconjugate Chem.* 2008, 19, 130-137.
- 39- Taldone, T.; DaGama, E.; Zong, H.; Sen, S.; Alpaugh, M.; Zatorska, D.; Sabadell, R.; Guzman, M.; Chiosis, G. Synthesis of purine-scaffold fluorescent probes for heat shock protein 90 with use in flow cytometry and fluorescence microscopy. *Bioorg. Med. Chem. Lett.* 2011, 21, 5347-5352.
- 40- Baranczak, A.; Liu, Y.; Connelly, S.; Du, W.; Greiner, E.; Genereux, J.; Wiseman, L.; Eisele, Y.; Bradbury, N.; Dong, J.; Noodleman, L.; Sharpless, B.; Wilson, Y.; Encalada, S.; Kell, J. A Fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in *Caenorhabditis elegans. J. Am. Chem. Soc.* 2015, *137*, 7404-7414.

- 41- Liu, Z.; Jiang, T.; Wang, B.; Ke, B.; Zhou, Y.; Du, L.; Li, M. Environmentsensitive fluorescent probe for the human ether-a-go-go-related gene potassium channel. *Anal. Chem.* **2016**, *88*, 1511-1515.
- 42- Torres, I.; Carrillo, J.; Ortiz, A.; Gómez, M.; Stegemann, L.; Strassert, A.;
 Orduna, J.; Buendía, J.; Greciano, E.; Valera, S.; Matesanz, E.; Sánchez, L.; Prieto, P. Self-assembly of T-shape 2*H*-benzo[*d*][1,2,3]- triazoles. Optical waveguide and photophysical properties. *RSC Adv.* 2016, *6*, 36544-36553.
- 43- Torres, I.; Díaz, A.; Sánchez, L.; Orduna, J.; Blesa, M.; Carrillo, J.; Prieto, P. Tunable emission in aggregated T-Shaped 2*H*-Benzo[*d*][1,2,3]triazoles with waveguide behavior. *Dyes and Pigments.* 2017, *142*, 212-225.
- 44- Ghosha, S.; Patia, P.; Zade, S. Effect of the change of heteroatom on phenyl capped benzazole: Photophysical and electrochemical properties from the structural viewpoint. *J. Lumin.* **2018**, *194*, 164-169.
- 45- Yadav, L. Organic spectroscopy; Springer-Science+Business Media, B.V.: India, **2005**; 172-174.
- 46- Riss, T.; Moravec, R.; Niles, A.; Duellman, S.; Benink, H.; Worzella, T.; Minor, L. Assay Guidance Manual (Internet); Eli Lilly & Company and the National Center for Advancing Translational Sciences: 2004, 1-23, https://www.ncbi.nlm.nih.gov/books/NBK53196/
- 47- CYPROTEX. https://www.cyprotex.com/toxicology/mechanistictoxicity/hemolysis (accesado el 20 de septiembre de 2018).
- 48- OLYMPUS. https://www.olympus-lifescience.com/en/microscoperesource/primer/techniques/confocal/confocalintro/ (accesado el 20 de septiembre de 2016).
- 49- Joglekar, M.; Roggers, R.; Zhaoc, Y.; Trewyn, B. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. *RSC Adv*. **2013**, *3*, 2454-2461.

- 50- FCQ. http://www.fcq.uanl.mx/wp-content/uploads/2015/05/Clasificacion-Recoleccion-y-Disposicion-Residuos-Peligrosos-Biologico-Infecciosos.pdf (accesado el 20 de septiembre de 2016).
- 51-Comşa, Ş.; Cîmpean, A.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015, 35, 3147-3154.
- 52- Kao, J.; Salari, K.; Bocanegra, M.; Chooi, Y.; Girard, L.; Gandhi, J.; Kwei, K.; Boussard, T.; Wang, P.; Gazdar, A.; Minna, J.; Pollack, J. Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery. *Plos One.* 2009, *4*, e6146.
- 53- Matouk, I.; Mezan, S.; Mizrahi, A.; Ohana, P.; Abu, R.; Felling, Y.; deGroot, N.; Galun, E.; Hochberg, A. The oncofetal H19 RNA connection: Hypoxia, p53 and cancer. *Biochim. Biophys. Acta.* **2010**, *1803*, 443-451.
- 54- Kaur, P.; Nagaraja, G.; Zheng, H.; Gizachew, D.; Galukande, M.; Krishnan, S.; Asea, A. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. *BMC Cancer.* 2012, *12*, 1-12.
- 55- Chavez, K.; Garimella, S.; Lipkowitz, S. Triple Negative Breast Cancer Cell Lines: One Tool in the Search for Better Treatment of Triple Negative Breast Cancer. *Breast Dis.* 2010, *32*, 35-4.
- 56- Lacroix, M.; Toillon, R.; Leclercq, G. p53 and breast cancer, an update. *Endocr.-Relat. Cancer.* **2006**, *13*, 293-325.
- 57- Khalil, N.; Kamal, A.; Emam, S. Design, Synthesis, and Antitumor Activity of Novel 5-Pyridyl-1,3,4- oxadiazole Derivatives against the Breast Cancer Cell Line MCF-7. *Biol. Pharm. Bull.* 2015, *38*, 763-773.
- 58- Gu, W.; Jin, X.; Li, D.; Wang, S.; Tao, X.; Chen, H. Design, synthesis and *in vitro* anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. *Bioorganic Med. Chem. Lett.* 2017, 27, 4128-4132.

- 59- Mochona, B.; Mazzio, E.; Gangapurum, M.; Mateeva, N.; Redda, K. Synthesis of Some Benzimidazole Derivatives Bearing 1,3,4-Oxadiazole Moiety as Anticancer Agents. *Chem. Sci. Trans.* **2015**, *4*, 534-540.
- 60- Medsafe: New Zealand Medicines and Medical Devices Safety Authority. http://www.medsafe.govt.nz/profs/datasheet/a/adriamycininj.pdf (accesado el 1 de octubre de 2018).
- 61- Khan, M.; Aljarbou, A.; Aldebasi, Y.; Alorainy, M.; Khan, A. Combination of glycosphingosomes and liposomal doxorubicin shows increased activity against dimethyl-α-benzanthracene-induced fibrosarcoma in mice. *Int. J. Nanomedicine.* 2015, 10, 6331-6338.
- 62- Dausset, J.; Contu, L. Drug-Induced Hemolysis. Annu. Rev. Med. 1967, 18, 55-70.
- 63- Lumbran, M. Hematologic Side Effects of Drugs. Ann. Clin. Lab. Sci. 1989, 19, 114-121.
- 64- Valeur, B. *Molecular Fluorescence: Principles and Applications;* Wiley-VCHVerlag: París, **2002**; 2008-2013.

APÉNDICE

Figura 42. Éster de benzotriazol 3a

Tabla 39

Datos de RMN ¹H del éster de benzotriazol 3a

δ (ppm)	Señal	Integración	<i>J</i> (Hz)	Asignación
1.25	t	3	7.1	OCH ₂ CH ₃
2.09	d	3	7.5	CHCH3
4.25	с	2	7.1	OCH ₂ CH ₃
5.72	с	1	7.3	CHCH ₃
7.39-7.48	m	2	-	H _{6-arom}
7.87-7.98	m	2	-	H5-arom

Figura 43. Espectro de RMN ¹H (300 MHz, CDCl₃) del éster de benzotriazol 3a

Datos de RMN ¹³C del éster de benzotriazol 3a

δ (ppm)	Asignación	δ (ppm)	Asignación
13.9	OCH ₂ CH ₃	118.3	C7-arom
17.1	CH₃CH	126.7	C8-arom
62.3	OCH ₂ CH ₃	144.3	C6-arom
63.9	CH ₃ CH	168.9	C=O

Figura 44. Espectro de RMN ¹³C (75 MHz, CDCl₃) del éster de benzotriazol 3a

ESI-MS (**ESI**⁺): calculado para C₁₁H₁₄N₃O₂ [M+H]⁺, *m/z* 220.10860; encontrado [M+H]⁺, *m/z* 220.10573.

Figura 45. Derivado del 1,3,4-oxadiazol α , β -insaturado 6b

Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6b

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3065 2999 2946	δ(С-Н)	Flexión C-H del grupo metino	1274
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1711	δ(C-H)	Flexión fuera del plano de C-H del anillo aromático	1223
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1646	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1165
v(C=C)	Estiramiento C=C del anillo aromático	1612	v(C-F)	Estiramiento C- F del halógeno	1149
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1585 1528	δ(С-Н)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	962
δ(С-Н)	Flexión asimétrica de C-H del grupo metilo	1449	δ(C-H)	Flexión fuera del plano de C-H del benceno <i>meta</i> - disustituido	749 676
δ(С-Н)	Flexión simétrica de C- H del grupo metilo	1363			

Figura 46. Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6b

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.32	d	3	7.3	CHCH3
6.50	С	1	7.3	CHCH ₃
6.91	d	1	16.5	$CH=CHC_6H_4$
7 02 7 43	m	6		H _{1-arom} o-F H _{1-arom} m-F H ₁
7.02-7.43	111	0	-	H1-arom <i>p</i> -1 H1-arom CH=CHC ₆ H4
7.51	t	1	8.6	H6-arom
7.63	d	1	7.6	H5-arom
Continuación				

Datos de RMN ¹H del 1,3,4-oxadiazol α , β -insaturado 6b

Figura 47. Espectro de RMN ¹H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α,β-insaturado 6b

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	130.7	C13-arom
50.8	CH ₃ CH	131.9	C3-arom <i>m</i> -F
109.7	C14-arom	136.4	C5-arom <i>m</i> -F
110.5	CH=CHC ₆ H ₄	139.0	CH=CHC ₆ H ₄
113.7	C6-arom <i>0</i> -F	146.5	C ₁₀ -arom
117.0	C2-arom <i>0</i> -F	161.3	C1-arom <i>i</i> -F
120.4	C ₁₇ -arom	163.0	C _{18-arom}
123.6	C4-arom <i>p</i> -F	164.6	C1-arom <i>i</i> -F
124.5	C16-arom	165.2	C9-arom
128.1	C15-arom		

Datos de RMN ^{13}C del 1,3,4-oxadiazol α,β -insaturado 6b

Figura 48. Espectro de RMN 13 C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6b

ESI-MS (**ESI**⁺): calculado para C₁₈H₁₅FN₅O [M+H]⁺, *m/z* 336.12606; encontrado [M+H]⁺, *m/z* 336.12382.

Figura 49. Derivado del 1,3,4-oxadiazol α , β -insaturado 6c

Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6c

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
v(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3070 2999 2946	δ(С-Н)	Flexión simétrica de C-H del grupo metilo	1364
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1711	v(C-F)	Estiramiento C-F del halógeno	1277
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1646	δ(C-H)	Flexión C-H del grupo metino	1233
v(C=C)	Estiramiento C=C del anillo aromático	1600	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1162
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1571 1532	ν(C-H)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	970
δ(C-H)	Flexión asimétrica de C-H del grupo metilo	1453	ν(C-H)	Flexión fuera del plano de C-H del benceno <i>para</i> - disustituido	825

Figura 50. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6c

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.30	d	3	7.3	CHCH3
6.48	С	1	7.3	CHCH ₃
6.84	d	1	16.5	$CH=CHC_6H_4$
7.05	t	2	8.6	H1-arom <i>0-</i> F
7.52-7.34	m	5	-	H2-arom <i>m-</i> F H2-arom CH=CHC ₆ H4
7.61	d	1	8.3	H6-arom
8.08	d	1	8.3	H _{7-arom}

Datos de RMN ¹H del 1,3,4-oxadiazol α , β -insaturado 6c

Figura 51. Espectro de RMN ¹H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α,β-insaturado 6c

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	129.4	C3-arom <i>m</i> -F
50.9	CH ₃ CH	130.5	C4-arom <i>p</i> -F
108.8	C ₁₂ -arom	131.9	CH=CHC ₆ H ₄
109.7	C15-arom	139.1	C11-arom
116.1	C2-arom <i>0</i> -F	146.5	C ₁₆ -arom
120.4	CH=CHC ₆ H ₄	162.8	C8-arom

Datos de RMN ¹³C del 1,3,4-oxadiazol α,β-insaturado 6c

Continuación			
124.5	C14 array	162.7	C1 arom <i>i</i> -F
127.3	C14-a10m	164.8	C1-arom t-1
128.1	C ₁₃ -arom	165.4	C7-arom

Figura 52. Espectro de RMN 13 C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6b

ESI-MS (**ESI**⁺): calculado para C₁₈H₁₅FN₅O [M+H]⁺, *m/z* 336.12606; encontrado [M+H]⁺, *m/z* 336.12437.

Figura 53. Derivado del 1,3,4-oxadiazol α , β -insaturado 6d

Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6d

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C- H del grupo metilo, metino y del anillo aromático	3065 2983 2946	ν(C-F)	Estiramiento C- F del halógeno	1336
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1739	δ(C-H)	Flexión C-H del grupo metino	1247
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1651	δ(C-H)	Flexión fuera del plano de C-H del anillo aromático	1199
v(C=C)	Estiramiento C=C del anillo aromático	1615	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1166
v(C-C)	Estiramiento C- C del esqueleto del anillo aromático	1568 1531	δ(C-H)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	968
δ(C-H)	Flexión asimétrica de C-H del grupo metilo	exión imétrica de 1456 δ(C-H)		Flexión fuera del plano de C-H del benceno <i>meta</i> - disustituido	747 694
δ(C-H)	Flexión simétrica de C-H del grupo metilo	1373			

Figura 54. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6d

δ (ppm)	Señal	Integración	<i>J</i> (Hz)	Asignación
2.33	d	3	7.2	CHCH3
6.49	С	1	7.2	CHCH ₃
7.02	d	1	16.5	CH=CHC ₆ H ₄
7.37-7.75	m	8	-	Н1-агот <i>о</i> -ОСН3 Н1-агот <i>m</i> -ОСН3 Н1-агот <i>p</i> -ОСН3 СН=СНС6Н4
8.11	d	1	8.3	H5-arom

Datos de RMN	¹ H del 1,3,4-oxadiazol	α,β-insaturado 6d
--------------	------------------------------------	-------------------

Figura 55. Espectro de RMN 1 H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6d

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	129.6	C5-arom <i>p</i> - CF ₃
50.9	CH ₃ CH	130.5	C4-arom <i>m</i> -CF ₃
109.6	C14-arom	131.8	C2-arom <i>i</i> -CF3
111.0	CH=CHC ₆ H ₄	131.9	C6-arom <i>m</i> -CF ₃
120.4	C ₁₇ -arom	135.0	C13-arom
124.1-124.4	CF ₃	138.6	CH=CHC ₆ H ₄

Datos de RMN ¹³ C	del 1,3,4-oxadiazol	α,β -insaturado 6d
------------------------------	---------------------	-------------------------------

Continuación					
124.5	C16-arom	146.5	C18-arom		
126.5-126.7	C _{1-arom} <i>o</i> -CF ₃	163.1	C10-arom		
128.2	C _{15-arom}	165.1	C9-arom		

Figura 56. Espectro de RMN 13 C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6d

ESI-MS (**ESI**⁺): calculado para $C_{19}H_{15}F_3N_5O$ [M+H]⁺, m/z 386.12287; encontrado [M+H]⁺, m/z 386.12100.

Figura 57. Derivado del 1,3,4-oxadiazol α , β -insaturado 6e

Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6e

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
v(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3073 3053 3030 3001	δ(С-Н)	Flexión C-H del grupo metino	1276
ν(C=N)	Estiramiento C=N del anillo de benzotriazol	1655	ν(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1165
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1619	δ(С-Н)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	978
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1589 1574 1561	v(C-Cl)	Estiramiento C-Cl del halógeno	747
δ(C-H)	Flexión asimétrica de C-H del grupo metilo	1450	δ(С-Н)	Flexión fuera del plano de C-H del benceno <i>meta</i> - disustituido	677
δ(C-H)	Flexión simétrica de C- H del grupo metilo	1384			

Figura 58. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6e

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.32	d	3	7.3	СНСНз
6.48	С	1	7.3	CHCH ₃
6.95	d	1	16.5	$CH=CHC_6H_4$
				H1-arom <i>0</i> -Cl
				H _{1-arom} <i>m</i> -Cl
7.29-7.55	m	7	-	H _{1-arom} <i>p</i> -Cl
				H _{1-arom}
				CH=CHC ₆ H ₄
7.62	d	1	7.6	H5-arom
8.11	d	1	8.4	H6-arom

Datos de RMN ¹H del 1,3,4-oxadiazol α , β -insaturado 6e

Figura 59. Espectro de RMN ¹H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6e

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	130.1	C _{6-arom} <i>o</i> -Cl
50.9	CH ₃ CH	130.3	C3-arom <i>m</i> -Cl
109.6	C _{14-arom}	131.9	C13-arom
110.5	C17-arom	135.1	C1-arom <i>i</i> -Cl
120.4	CH=CHC ₆ H ₄	136.1	$CH=CHC_6H_4$
124.5	C ₁₆ -arom	138.8	C5-arom <i>m</i> -Cl

Datos de RMN ¹³C del 1,3,4-oxadiazol α , β -insaturado 6e

Continuación			
125.7	C15-arom	146.5	C18-arom
127.4	C4-arom <i>p</i> -Cl	163.0	C _{10-arom}
128.2	C2-arom <i>o</i> -Cl	165.2	C9-arom

Figura 60. Espectro de RMN ¹³C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α,β-insaturado 6e

ESI-MS (**ESI**⁺): calculado para C₁₈H₁₅ClN₅O [M+H]⁺, *m/z* 352.09651; encontrado [M+H]⁺, *m/z* 352.09490.

Figura 61. Derivado del 1,3,4-oxadiazol α,β -insaturado 6f

Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6f

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3065 2993 2942	δ(С-Н)	Flexión simétrica de C-H del grupo metilo	1373
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1736	δ(C-H)	Flexión C-H del grupo metino	1244
ν(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1645	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1165
v(C=C)	Estiramiento C=C del anillo aromático	1593	δ(С-Н)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	969
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1569 1527	δ(C-H)	Flexión fuera del plano de C-H del benceno <i>para</i> - disustituido	815
δ(C-H)	Flexión asimétrica de C-H del grupo metilo	1453	v(C-Cl)	Estiramiento C-Cl del halógeno	747

Figura 62. Espectro de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6f

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.32	d	3	7.3	CHCH3
6.48	С	1	7.3	CHCH ₃
6.92	d	1	16.5	$CH=CHC_6H_4$
7.33-7.45	m	6	-	H1-arom <i>o</i> -Cl H1-arom <i>m</i> -Cl H1-arom CH=CHC ₆ H4
7.51	t	1	7.7	H _{6-arom}
7.61	d	1	8.3	H5-arom
8.11	d	1	8.4	H7-arom

Datos de RMN ¹H del 1,3,4-oxadiazol α , β -insaturado 6f

Figura 63. Espectro de RMN ¹H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6f

δ (ppm)	Asignación	δ (ppm)	Asignación
17.8	CH ₃ CH	129.3	C2-arom <i>o</i> -Cl
51.9	CH ₃ CH	131.9	C4-arom <i>p</i> -Cl
109.6	C15-arom	132.8	CH=CHC ₆ H ₄
109.7	C12-arom	136.2	C11-arom
120.4	CH=CHC ₆ H ₄	139.0	C _{1-arom} <i>i</i> -Cl
124.5	C ₁₄ -arom	146.5	C _{16-arom}

Datos de RMN ¹³C del 1,3,4-oxadiazol α,β-insaturado 6f

Figura 64. Espectro de RMN ¹³C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α,β-insaturado 6f

ESI-MS (ESI⁺): calculado para C₁₈H₁₅ClN₅O [M+H]⁺, *m/z* 352.09651; encontrado [M+H]⁺, *m/z* 352.09410.

Figura 65. Derivado del 1,3,4-oxadiazol α , β -insaturado 6g

Datos de FT-IR del 1,3,4-oxadiazol α,β-insaturado 6g

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3064 2943 2941 2840	δ(C-H)	Flexión simétrica de C-H del grupo metilo	1374
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1735	δ(C-H)	Flexión C-H del grupo metino	1274
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1646	δ(C-H)	Flexión fuera del plano de C-H del anillo aromático	1242
v(C=C)	Estiramiento C=C del anillo aromático	1599	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1164
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1579 1528	δ(C-H)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	968
δ(C-H)	Flexión asimétrica de C- H del grupo metilo	1453	δ(C-H)	Flexión fuera del plano de C-H del benceno <i>meta</i> - disustituido	747 682

Figura 66. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6g

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.34	d	3	7.2	CHCH3
3.84	S	3	-	OCH3
6.50	С	1	7.2	CHCH ₃
6.89-7.06	m	3	-	H2-arom <i>o</i> -ОСН3 С H= СНС ₆ Н ₄
7.30	d	1	7.7	H4-arom <i>m</i> -OCH ₃
7.39-7.52	m	4	-	H3-arom <i>m</i> -OCH3 H3-arom CH=CHC6H4
7.64	d	1	8.3	H _{7-arom}
8.13	d	1	8.3	H _{8-arom}

Datos de RMN ¹ H del 1,3,4-oxadiazol α,β-insaturado) 6g
--	------

Figura 67. Espectro de RMN 1 H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6g

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	128.1	C ₁₆ -arom
50.9	CH₃CH	130.0	C4-arom <i>m</i> -CH ₃
55.3	OCH ₃	131.9	C14-arom
109.3	C7-arom <i>0</i> - OCH ₃	135.7	C6-arom <i>p</i> - CH ₃
109.7	C3-arom <i>0</i> - OCH ₃	140.4	$CH=CHC_6H_4$
112.5	C15-arom	146.5	C19-arom

Datos de RMN ¹³C del 1,3,4-oxadiazol α,β-insaturado 6g

Continuación			
116.2	CH=CHC ₆ H ₄	160.0	C _{11-arom}
120.2	C18-arom	162.8	C2-arom <i>i</i> -CH3
120.4	C5-arom <i>p</i> -OCH ₃	165.5	C10-arom
124.5	C17-arom		

Figura 68. Espectro de RMN ¹³C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α,β-insaturado 6g

ESI-MS (ESI⁺): calculado para C₁₉H₁₈N₅O₂ [M+H]⁺, *m/z* 348.14605; encontrado [M+H]⁺, *m/z* 348.14634.

Figura 69. Derivado del 1,3,4-oxadiazol α , β -insaturado 6h

Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6h

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3065 3002 2940 2839	δ(C-H)	Flexión simétrica de C-H del grupo metilo	1362
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1711	δ(C-H)	Flexión C-H del grupo metino	1257
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1645	δ(C-H)	Flexión fuera del plano de C-H del anillo aromático	1222
ν(C=C)	Estiramiento C=C del anillo aromático	1606	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1176
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1577 1531	δ(С-Н)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	970
δ(C-H)	Flexión asimétrica de C-H del grupo metilo	1456	δ(C-H)	Flexión fuera del plano de C-H del benceno <i>para</i> - disustituido	827

Figura 70. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6h

δ (ppm)	Señal	Integración	<i>J</i> (Hz)	Asignación
2.32	d	3	7.3	CHCH3
3.83	S	3	-	OCH3
6.49	с	1	7.3	CHCH ₃
6.79	d	1	16.4	$CH=CHC_6H_4$
6.90	d	2	8.8	H _{2-arom} <i>o</i> -OCH ₃
7.36-7.54	m	5	-	H3-arom <i>m</i> -OCH ₃
				y CH = C H C ₆ H ₄
7.63	d	1	8.3	H7-arom
8.11	d	1	8.3	H8-arom

Datos de RMN ¹H del 1,3,4-oxadiazol α,β-insaturado 6h

Figura 71. Espectro de RMN 1 H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6h

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	128.1	C14-arom
50.9	CH₃CH	129.2	C4-arom <i>m</i> -OCH ₃
55.4	OCH ₃	131.9	C ₁₂ -arom
106.6	CH=CHC ₆ H ₄	140.0	CH=CHC ₆ H ₄
109.8	C13-arom	146.5	C17-arom
114.5	C3-arom <i>0</i> - OCH ₃	161.3	C9-arom

Datos de RMN ¹³C del 1,3,4-oxadiazol α,β-insaturado 6h

Continuación			
120.4	C16-arom	162.5	C2-arom <i>i</i> -OCH3
124.5	C15-arom	165.9	C8-arom
127.1	C5-arom <i>p</i> - OCH ₃		

Figura 72. Espectro de RMN 13 C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6h

ESI-MS (**ESI**⁺): calculado para C₁₉H₁₈N₅O₂ [M+H]⁺, *m/z* 348.14605; encontrado [M+H]⁺, *m/z* 348.14712.

Figura 73. Derivado del 1,3,4-oxadiazol α,β -insaturado 6i

Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6i

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3062 2939 2839	δ(C-H)	Flexión C-H del grupo metino	1269
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1732	δ(C-H)	Flexión fuera del plano de C-H del anillo aromático	1246
ν(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1644	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1162
v(C=C)	Estiramiento C=C del anillo aromático	1599	δ(C-H)	Flexión fuera del plano de C-H del grupo alqueno en posición <i>trans</i>	969
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1585 1530	δ (C-H)	Flexión fuera del plano de C-H del benceno <i>para</i> - disustituido	806
δ(C-H)	Flexión asimétrica de C- H del grupo metilo	1454	δ(C-H)	Flexión fuera del plano de C-H del benceno <i>meta</i> - disustituido	748

Figura 74. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6i

δ (ppm)	Señal	Integración	J (Hz)	Asignación
2.31	d	3	7.2	CHCH3
3.90	S	6	-	OCH3
6.47	С	1	7.2	CHCH ₃
6.80	d	1	16.2	CH=CHC ₆ H ₃
6.86	d	1	8.3	H3- arom <i>m</i> -CHC ₆ H ₃
7.09-7.98	m	2	-	H2-arom <i>o</i> -CHC ₆ H ₃

Datos de RMN ¹H del 1,3,4-oxadiazol α , β -insaturado 6i

Figura 75. Espectro de RMN ¹H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6i

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	124.5	C18-arom
50.9	CH ₃ CH	127.3	C8-arom <i>i</i> -CHC ₆ H ₃
55.9	OCH ₃	128.1	C17-arom
56.0	OCH ₃	131.9	C ₁₅ -arom
106.8	C6-arom <i>0</i> - OCH ₃	140.3	CH=CHC ₆ H ₃
109.2	C16-arom	146.5	C20-arom
109.7	C3-arom <i>0</i> - CHC ₆ H ₃	149.3	C _{4-arom} <i>m</i> -CHC ₆ H ₃
111.1	CH=CHC ₆ H ₃	151.1	C5-arom <i>p</i> - CHC ₆ H ₃
120.4	C19-arom	162.5	C ₁₂ -arom
122.0	C7-arom <i>0</i> - CHC ₆ H ₃	165.9	C ₁₁ -arom

Datos de RMN ^{13}C del 1,3,4-oxadiazol α,β -insaturado 6i

Figura 76. Espectro de RMN 13 C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6i

ESI-MS (**ESI**⁺): calculado para $C_{20}H_{20}N_5O_3$ [M+H]⁺, *m/z* 378.15661; encontrado [M+H]⁺, *m/z* 378.15436.

Figura 77. Derivado del 1,3,4-oxadiazol α , β -insaturado 6j

Datos de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6j

Asignación	Asignación con comentario	Número de onda (1/cm)	Asignación	Asignación con comentario	Número de onda (1/cm)
ν(C-H)	Estiramiento C-H del grupo metilo, metino y del anillo aromático	3070 2999 2946	δ(С-Н)	Flexión simétrica de C- H del grupo metilo	1364
v(C=N)	Estiramiento C=N del anillo de benzotriazol	1711	v(C-F)	Estiramiento C- F del halógeno	1277
v(C=C)	Estiramiento C=C del grupo alqueno conjugado con anillo aromático	1646	δ(C-H)	Flexión C-H del grupo metino	1233
v(C=C)	Estiramiento C=C del anillo aromático	1600	v(C-O-C)	Estiramiento asimétrico de C-O-C del anillo del oxadiazol	1162
v(C-C)	Estiramiento C-C del esqueleto del anillo aromático	1571 1532	δ(C-H)	Flexión fuera del plano de C- H del grupo alqueno en posición <i>trans</i>	970
δ(C-H)	Flexión asimétrica de C-H del grupo metilo	1453	δ(C-H)	Flexión fuera del plano de C- H del benceno <i>para-</i> disustituido	825

Figura 78. Espectro de FT-IR del 1,3,4-oxadiazol α , β -insaturado 6j

δ (ppm)	Señal	Integración	<i>J</i> (Hz)	Asignación
2.30	d	3	7.3	CHCH3
3.01	S	6	-	N(CH ₃) ₂
6.46	с	1	7.3	CHCH ₃
6.62-6.72	m	3	-	H2-arom <i>o</i> -N(CH ₃) ₂ CH=CHC ₆ H ₄
7.32-7.52	m	5	-	H3-arom <i>m</i> -N(CH ₃) ₂ H3-arom CH=CHC ₆ H4
7.62	d	1	8.3	H _{6-arom}
8.10	d	1	8.3	H7-arom

Datos de RMN	¹ H del 1,3,4-ox	adiazol α,β-iı	1saturado 6j
			J

Figura 79. Espectro de RMN 1 H (300 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6j

δ (ppm)	Asignación	δ (ppm)	Asignación
17.6	CH ₃ CH	128.1	C15-arom
40.1	N(CH ₃) ₂	129.2	$CH=CHC_6H_4$
51.0	CH ₃ CH	131.9	C14-arom
103.4	C13-arom	140.7	C ₁₂ -arom
109.8	C ₁₆ -arom	146.5	C ₁₇ -arom
111.8	C3-arom <i>0</i> -N(CH ₃) ₂	151.6	C2-arom i-N(CH ₃) ₂
120.3	C4-arom <i>m</i> -N(CH ₃) ₂	162.0	C9-arom
122.1	CH=CHC ₆ H ₄	166.6	C8-arom
124.43	C5-arom <i>p</i> -N(CH ₃) ₂		

Datos de RMN ^{13}C del 1,3,4-oxadiazol α,β -insaturado 6j

Figura 80. Espectro de RMN 13 C (75 MHz, CDCl₃) del 1,3,4-oxadiazol α , β -insaturado 6j

ESI-MS (ESI⁺): calculado para $C_{20}H_{21}N_6O [M+H]^+$, *m/z* 361.17768; encontrado [M+H]⁺, *m/z* 361.17537.