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Abstract

Diabetes mellitus is a worldwide pandemic, which prevalence has increased in
the last years. This disease is mainly characterized by increased basal blood glu-
cose levels, called hyperglycemia. According to the causes, diabetes mellitus can
be classified in three types: i) gestational, related to hormonal and metabolic
imbalances during pregnancy, ii) type 1 diabetes, which is an immune disease
characterized by the progressive death of pancreatic βcells, that produce insulin,
the principal hormone in glucose metabolism; and iii) type 2 diabetes, which is
a metabolic disease characterized by dysfunction use and production of insulin.
Type 2 diabetes mellitus is the most recurrent one, including more than 95 % of
the clinical cases. Some recent studies have shown that the implementation of
the automation of insulin dosage for type 2 diabetes patients can improve their
treatment. Based on this problem, the main objective of this thesis is to develop
a methodology to analyze the viability of having a closed-loop therapy for type
2 diabetes mellitus. The study includes the revision on two mathematical mod-
els of blood glucose metabolism useful to synthesize control schemes. Moreover,
a methodology to personalize this kind of models based on metabolic data from
continuous glucose monitoring of type 2 diabetic patients is presented. After that,
the analysis of some characteristics of the models, their role in closed-loop ther-
apy and a case of study using a conventional control scheme are presented.

Keywords:
Diabetes, glucose metabolism modeling, closed-loop therapy, virtual patient
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Resumen

La diabetes mellitus es una pandemia mundial, la cual ha incrementado su preva-
lencia en los últimos años. Esta enfermedad es principalmente caracterizada por
el aumento de los niveles basales de glucosa en sangre, llamado hiperglicemia.
De acuerdo a las causas, la diabetes mellitus puede ser clasificada en tres tipos:
i) gestacional, relacionada con desbalances hormonales y metabólicos durante el
embarazo, ii) tipo 1, la cual es una enfermedad autoinmune caracterizada por
la muerte progresiva de las células beta pancreáticas, las cuales se encargan de
producir insulina, la hormona principal en el metabolismo de glucosa; y iii) tipo
2, la cual es una enfermedad metabólica caracterizada por el uso y producción
disfuncional de la insulina. La diabetes mellitus tipo 2 es la más recurrente, in-
cluyendomás del 95% de casos clı́nicos. Algunos estudios recientes hanmostrado
que la implementación de la automatización en la dosificación de insulina para
pacientes con diabetes tipo 2 puede mejorar su tratamiento. Basándose en este
problema, el principal objetivo de esta tesis es desarrollar una metodologı́a para
analizar la viabilidad de tener una terapia en lazo cerrado para diabetes tipo 2. El
estudio incluye la revisión de dos modelos matemáticos del metabolismo de glu-
cosa en sangre de gran utilidad para la sı́ntesis de esquemas de control. Además,
se presenta una metodologı́a para personalizar este tipo de modelos basados en
información metabólica proveniente del monitoreo continuo de glucosa en pa-
cientes con diabetes tipo 2. Después, se muestra el análisis de algunas carac-
terı́sticas de los modelos, su rol en la terapia de lazo cerrado y un caso de estudio
usando un control convencional.

Palabras clave:
Diabetes, modelado del metabolismo de glucosa, terapia en lazo cerrado, paciente vir-
tual
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Chapter 1

Introduction

1.1 Health problem

According to the latest reports made by the International Diabetes Federation

(IDF), in 2017 there were 425 million people around the world living with any

type of diabetes, they expect that this figure increases up to 629 million people in

2045. According to the causes, diabetes mellitus can be classified in three types:

i) gestational, related to hormonal and metabolic imbalances during pregnancy,

ii) type 1 diabetes (T1DM), which is an immune disease characterized by the pro-

gressive death of pancreatic β-cells, that produce insulin, the principal hormone

in glucose metabolism; and iii) type 2 diabetes (T2DM), which is a metabolic dis-

ease characterized by dysfunction use and production of insulin. The one with

more prevalence is T2DM, in higher income countries the total of adults that

suffer from diabetes, near the 91% have T2DM, this is not considering the un-

diagnosed patients [1]. Observing the data by regions, in North America and the

Caribean 13% of the population, between 20 – 79 years old, is affected by some

type of diabetes. Also this region has the most elevated prevalence compared to

the other regions. In Mexico, according to the 2016 National Health and Nutri-

tion Examination Survey (ENSANUT, by its acronym in Spanish), the prevalence

of diabetes in people older than 20 years old in the country was 7.2% back in 2006

and 9.4% ten years later. Only 87.8% of the affected survey respondents said that

they take a treatment to control this illness; from the total of the polled diabetic

patients, 46.4% do not take preventive actions to delay or avoid diabetic derived
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complications [2].

Due to the impact of T2DM in public health, many methodologies have been de-

veloped to help medicine to have a better understanding this illness; one of them

is mathematical modeling. Depending on the purpose and the biological process

that is wanted to reproduce, the mathematical models can be classified as clini-

cal and non-clinical [3]. Clinical models are constructed by simple mathematical

structure and they emulate the clinical data considering just the systemic descrip-

tion of the human body ( [4], [5], [6]); meanwhile the non-clinical models are com-

posed by complex mathematical structure and they are based in the nature and

the mechanistic description of the physiological processes that contribute to the

glucose metabolism ( [7], [8], [9]). The clinical models are used in diagnosis tools

and they are focused in insulin sensitivity and secretion, glucose effectiveness and

beta cells functionality [10]. These have been developed by intravenous glucose

tolerant test (IVGTT), placing minimal models and their modifications [5]. Also,

there are models that focus in the illness progression based in beta cells function,

making them to be commonly used for T2DM models [11].

Regarding non-clinical models, the approach is to model the physiological pro-

cesses of the main organs related to the glucose metabolism, to analyze the way

these organs interact among each other. Generally, in physiological modeling, it is

proposed to divide the human body into compartments, where each one of them

represents an organ and it is analyzed the time variance of the glucose concen-

tration in each compartment. For example, the model proposed by Tiran et al.

describes the glucose and insulin dynamics in the main organs involved in the

process: brain, heart, stomach, liver, kidneys and peripheral tissues (muscle and

lipid) and their interconnection through circulatory system [10]. Starting from

the latter, Sorensen proposed another model detailing the glucose metabolism

and insulin and glucagon regulation in the same eight organs and tissues involved

in the process [8]. By making modifications to the model proposed by Sorensen, it

is possible to adapt it in order to describe type 1 and type 2 diabetes mellitus, just

as it was proposed by Alvehag and Martin, who modeled the pancreas as a sep-

arated compartment and modified the model for it to be able to handle different

oral glucose supplies [8]. Recently, Vahidi et al. presented a new modification to

10



Sorensen’s model, in which, by solving optimization problems using clinical data,

they obtained the parametric estimation to model T2DM [9].

Non-clinical models allow the prediction of the dynamic behavior of glucose

metabolism, which can be used to improve diabetes treatments. For example,

in real practice insulin dosage is made by empiric rules that the diabetes spe-

cialist defines in function of the knowledge of the patients’ metabolism. The

use of mathematical models would allow calculating personalized doses for each

patient due its theoretical origin. This leads to the development of new thera-

pies to enhance the life quality of the patients, therefore it heads to automation

schemes for insulin dosage. This kind of therapies get developed in a conjunction

of mathematical models and controllers, where the main objective is to reduce

the variations of the glucose concentration and to keep it in a normal range (nor-

moglycemia) [10], considering the different factors involved in glucose regulation

(diet, exercise and metformin or insulin supply). An automated system for di-

abetes control requires three main parts: a blood glucose measuring system, a

control system that works with a measured input of glucose and that generates an

output response and a supply system for insulin release [11].

Nowadays, insulin dosage therapies have a major focus on T1DM patients. From

the different kinds of control algorithms that have been studied, model predic-

tive control (MPC) is the one that has have more development in this area; with

this control, the action is gathered by solving an optimal control problem in a

finite horizon for each sample point, using the actual state of the system as ini-

tial state [11]. Recently, Najafabadi and Shahrokhi performed a study where they

compared a linear model with a non-linear model, both using a MPC, they con-

cluded that the non-linear model presented better results in robustness in pres-

ence of noise in the measurements [10]. Betting for a more personalized control,

Zavitsanou et al. proposed a model for insulin delivery for T1DM patients, also

based in a MPC. This control is based in a state estimator and an optimization

problem solution for an open-loop for patient-specific therapy. If the patient’s

data is limited, this control strategy can be modified in order to make an approx-

imation [12].
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As told before, the usage of the existent models and controllers opens the devel-

opment of new tools for the improvement in diabetes treatments. Virtual patients

(or in silico models) and artificial pancreas are the tools that have a major impact

at the moment. An example of this is the virtual patient simulator, based on

plasmatic concentrations and glucose and insulin fluxes [13]. It was done by the

University of Virginia along with the University of Padova, and it was approved

by the U.S. Food and Drug Administration (U.S. FDA); this became a tool that

substitutes preclinical trials performed in animals [14]. Another simulator that

has been developed by the Illinois Institute of Technology as an educative tool is

GlucoSim [15].

Regarding the artificial pancreas, Medtronicr has developed a hybrid closed-loop

system that has been approved by the U.S. FDA [16]. This system adjusts the

insulin delivery automatically, the only interaction that it has with the patient is

the input of the carbohydrates intake (CHO intake) and the postprandial blood

glucose measurement [17].

Due to most of models and controllers are designed for T1DM and by looking at

the reported numbers, the goal of this research is to focus in T2DM because it is

the one that needs more attention and development of prediction and prevention

tools.

1.2 Problem definition

Even though treatments based on hypoglycemic drugs and long-acting insulin

in T2DM patients achieve the lowering of the blood glucose levels, it has been

observed that in some cases it is not enough to get them to the normoglycemic

levels. Because of that, it is proposed that a closed-loop control scheme handles

insulin release, in order to reach normal blood glucose levels.

1.3 Hypothesis

The use of personalized models and closed-loop control schemes allows enhanc-

ing T2DM treatment by considering the feedback of blood glucose concentration
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and insulin as control input signal, just as perturbations by food intake.

1.4 Objectives

1.4.1 General objective

The main objective of this thesis is to analyze the convenience of the use of closed-

loop control schemes in T2DM therapies, considering perturbations performed by

carbohydrate intake and insulin supply.

1.4.2 Specific objectives

The specific objectives of this research are:

1. Analysis of compartmental mathematical models of glucosemetabolism con-

sidering models of carbohydrate intake.

2. Parameter adjustment of a mathematical model of the glucose metabolism

in order to adapt it to data of a T2DM patient from continuous glucose mon-

itoring systems.

3. Design of a feedback control scheme for the supply of insulin.

1.5 Methodology

The methodology used to develop this research is divided in three stages. The

first stage considered the data analysis of an experimental protocol of the blood

glucose concentration monitoring of a study subject where the daily carbohydrate

intake (CHO intake) is recorded as well. The second stage was the mathematical

modeling interested in getting an algorithm that reproduces the glucose concen-

tration patterns obtained in the previous experimental protocol. In this stage, a

sensitivity analysis was proposed to make the parametric adjustment of the math-

ematical model. In the third stage a control scheme was designed in order to

implement a closed-loop control for insulin and metformin supply.
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Chapter 2

Modeling glucose metabolism in type

2 diabetes mellitus

In order to model the glucose metabolism of a T2DM patient, it is necessary to

previously understand how the glucose metabolism of a healthy person works.

Then, by knowing how the illness affects the metabolism changes can be made.

In this section, two models that describe the glucose-insulin dynamics are pre-

sented. The first one, called meal-glucose-insulin model, considers the main pro-

cesses for glucose metabolism considering meal intake and the second one, which

is called physiological model, considers the mass balance between the main or-

gans involved in this process. Both of the models are based on compartmental

modeling. Also, a gastric emptying model is presented in order to adapt it to the

physiological model to represent the carbohydrate intake.

2.1 Mathematical models background

The mathematical model of T2DM commonly focuses in how the beta-cells work;

this is because in this illness their function is affected by the change in their mass.

In 2000, Topp et al. proposed a three equation model that described the dynamics

on the quantification of the beta-cells and the evolution of the basal blood glu-

cose and insulin. This model was based in the production and utilization of the

glucose and insulin, as well as, the born and death of the beta-cells. Because of

14



the different time that their action has, it is divided in a fast system (glucose and

insulin system) and a slow system (beta-cell system) [18].

Based on the models by De Gaetano and Arino [19], Silber et al. proposed a model

by analyzing simultaneous measurements of glucose concentration, glucose con-

centration with tracers and insulin concentration, this because glucose and in-

sulin have an interaction in the same system at the same time. They also incorpo-

rated a control mechanism to regulate glucose production, insulin secretion and

glucose absorption [20]. In order to do the modeling, they used intravenous glu-

cose provocation in healthy and T2DM patients. This model is of interested for

the data analysis for the development of hypoglycemic drugs and for the opti-

mization of protocol design. Recently, Vahidi et al. presented improvements to

their previous T2DM model (based on the healthy patient model by Sorensen),

where the input signal was limited to glucose injection [9]. The previous issue

was solved by adding a model of gastric glucose absorption such that variations in

plasmatic glucose concentration and food intake are considered. They also added

a model that represented the produced incretins in the gastrointestinal tract with

its hormonal effect that elevated the pancreatic insulin production [21]. In 2017,

Othman et al. proposed a proportional-derivative model of endogenous insulin

secretion and insulin dynamics to track T2DM progression [22]. This model is

of interest for the low cost methodologies for the analysis of the pathogenesis of

T2DM because this model describes the different stages of it.

Due to the available information and the technology evolution in the last decades,

new methods can be implemented in modeling; a clear example is the use of ar-

tificial intelligence [23]. Some of the latest applications of this technology are in

image analysis, drug design, biochemical analysis and diagnostic systems, where

the later has a major development in diabetes. In 2012, Karan et al. presented the

initial results of client-server architecture for mobile devices. This architecture

analyzes some certain patient data and can tell if the presented characteristics

are signal of a possibility of developing diabetes [24]. In this research, they use

a multilayer perceptron artificial neural network that consisted of 11 inputs, one

hidden layer and two outputs; it was trained with 228 healthy patient data and

228 diabetic patients. The required data to make the diagnosis are: age, physical
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activity, pregnancy, diabetes in the family, body mass index, skin fold thickness,

cholesterol level, diastolic blood pressure, 2-hour serum insulin, pedigree of dia-

betes and blood glucose concentration.

Most specifically for T2DM, Wang et al. developed a study to evaluate the risk of

T2DM in rural adults [25]. They implemented an artificial neural network model

(ANN) and amultivariate logistic regression (MLR)model. It was trained with the

random selection of the 75% out of 8640 subjects and there were 17 considered

variables based in demographic, anthropometric and lifestyle data. The results

showed a more exact prediction with the ANN model than with the MLR model,

the presented prevalence rate in the training was 8.66% for the ANN model and

9.21% for the MLR model. There is a technology called “electronic nose”, which

bases on simulating the mammal sense of smell with sensors and it allows repeti-

tively measurement gathering of mixtures of scents for identification and classifi-

cation by ANN [26]. With this technology, El et al. developed a predictive model

to predict T2DM based in urine samples of healthy and diabetic patients [27].

Conventional treatment for T2DM is based in hypoglycemic drugs, where met-

formin is the most commonly taken. Therefore, it is important to know what the

effects it has in T2DM patients. In 2004, Lee et al. ran an experiment to model

the effects of glucose lowering by metformin in healthy patients [28]. Later, Sun

et al. modeled metformin pharmacokinetics and pharmacodynamics in T2DM

patients, considering the model proposed in 2010 by Vahidi et al. The main mod-

eled effects were the increment on the consumption of the intestinal glucose rate,

the decrement on the hepatic glucose output and the increment on the muscular

cells and adipocytes uptake [29]. Based onmetformin pharmacokinetics andmass

balance, Chakraborty et al. proposed a deterministic model which can predict the

time history concentration in the stomach, intestine and periphery areas [30].

Some studies have been made in order to know the effects of the early insulin

administration in T2DM patients, added to an antihyperglycemic drug therapy.

Results have shown that the percentages of glycosylated hemoglobin (HbA1c) are

lower, just as the risks of mortal diabetes complications [31]. Nowadays new tests

are being developed in order to find more effective therapies, one of them is the
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insulinization therapy, which bases in continuous infusion of subcutaneous in-

sulin. Lian et al. reported eight experiments, one of them using the insulinization

therapy. It showed better results out of all the experiments by reducing the index

of patients that used oral antihyperglucemic drugs, also by reducing the time to

get to an optimal glycemic level and the severe incidence of hypoglycemia [32].

In order to make a more accurate model of diabetes, it is important to know the

effect of the nutrients contained on the food that is ingested. It was not found

any work focused in glucose absorption coming from a different nutrient source

than carbohydrates. Besides this issue, there are many models that consider car-

bohydrates absorption as an external source of glucose, such as Hovorka [33],

Cobelli [34] and Lehmann [35].

In this thesis, we are interested in mathematical models useful to study closed

loop therapy in T2DM, Thus we select two compartmental models. The first one

is the proposed by Dalla Man et al in 2007 [34], and the second one is the proposed

by Sorensen in 1985 [7]. Both models are described in the next sections.

2.2 Meal - glucose - insulin model

The meal - glucose - insulin model was proposed by Dalla Man et al. in [34],

which is divided in six subsystems. The first one is the glucose subsystem, which

describes the mass of glucose in plasma and rapidly equilibrating tissues (Gp(t))

and the mass of glucose in slowly equilibrating tissues (Gt(t)). This subsystem

takes endogenous (EGP(t)) and exogenous (Ra(t)) sources of glucose, as well as

the insulin-dependent (Uid(t)) and -independent (Uii(t)) glucose utilization and

renal excretion (E(t)):

dGp(t)

dt
= EGP(t) +Ra(t)−Uii(t)−E(t)− k1Gp(t) + k2Gt(t) (2.1)

dGt(t)

dt
= −Uid(t) + k1Gp(t)− k2Gt(t) (2.2)
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where k1 and k2 (min−1) are the rate parameters of distribution, and the equa-

tions that describe the processes involved in the modeling of Gp(t) and Gt(t) are

described bellow:

EGP(t) = kp1 − kp2G(t)− kp3Id(t)− kp4Ipo(t) (2.3)

Ra(t) =
f kabsQgut(t)

BW
(2.4)

Uii(t) = Fcns (2.5)

E(t) =



















ke1[Gp(t)− ke2], if Gp > ke2

0 if Gp ≤ ke2
(2.6)

Uid(t) =
Vm(X(t))Gt(t)

Km(X(t)) +Gt(t)
(2.7)

Vm(X(t)) = Vm0 +VmxX(t) (2.8)

Km(X(t)) = Km0 (2.9)

where kp1 (mg/kg/min) is the extrapolated EGP(t) at zero glucose and insulin, kp2
(min−1) is the rate of liver glucose effectiveness, kp3 (mg/kg/min per pmol/l) is the

parameter governing amplitude of insulin action on the liver, kp4 (mg/kg/min per

pmol/l) is the parameter governing amplitude of portal insulin action on the liver,

Ipo (pmol/kg) is the amount of insulin in the portal vein. f (dimensionless) is the

fraction of intestinal absorption that actually appears in plasma, kabs (min−1) is

the constant rate of intestinal absorption and BW (kg) is the body weight. Fcns
(mg/kg/min) is the constant glucose uptake by the brain and erythrocytes, ke1
(min−1) is the glomerular filtration rate, ke2 (mg/kg) is the renal threshold of glu-

cose. Vm(X(t)) and Km(X(t)) (mg/kg/min per pmol/l) are functions that depend

on the insulin in the interstitial fluid.

The blood glucose concentrationG(t) is the relationship of appearance of the mass

of glucose in plasma Gp(t) in a certain distribution volume VG, this is described

as follows:

G(t) =
Gp(t)

VG
(2.10)
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The second subsystem describes the mass of the insulin in liver (Il(t)) and in blood

(Ip(t)):

dIl(t)

dt
= −(m1 +m3(t))Il(t) +m2Ip(t) + S(t) (2.11)

dIp(t)

dt
= −(m2 +m4)Ip(t) +m1Il(t) (2.12)

where m1, m2, m3(t), m4 (min−1) are rate parameters of distribution and S(t)

(pmol/L/min) is the insulin secretion and is a function described as:

S(t) = γIpo(t), (2.13)

where Ipo(t) (pmol/kg) is the amount of insulin in the portal vein, which change

respect time is described in Equation (2.24) and γ (min−1) is the rate of transfer-

ence between the portal vein and the liver; m3(t) is described as:

m3(t) =
HE(t)m1

1−HE(t)
(2.14)

HE(t) = −m5S(t) +m6 (2.15)

where HE(t) (dimensionless) is the hepatic extraction of insulin.

The blood insulin concentration I(t) can be described in a similar way than blood

glucose concentration, where the plasmatic mass Ip of insulin is delivered within

a distribution volume VI , this process is described as follows:

I(t) =
Ip(t)

VI
(2.16)

EGP(t) in Equation 2.3 requires the dynamics of insulin described in the next

equations:
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dId(t)

dt
= −ki[Id(t)− I1(t)] (2.17)

dI1(t)

dt
= −ki[I1(t)− I(t)] (2.18)

where Id(t) is a delayed insulin signal, I1(t) is an auxiliary variable of Id(t) and

ki (min−1) is the rate parameter accounting for delay between insulin signal and

insulin action. Since this model considers meal intake, the fourth subsystem de-

scribes glucose rate of appearance due to this disturbance. The process considers

that glucose enters first in a solid phase and then it goes into a liquid phase in

stomach to finish the absorption in the intestine.

dQsto1(t)

dt
= −kgriQsto1(t) +Dd(t) (2.19)

dQsto2(t)

dt
= −kempt(Qsto)Qsto2(t) + kgriQsto1(t) (2.20)

dQgut(t)

dt
= −kabsQgut(t) + kempt(Qsto)Qsto2(t) (2.21)

Qsto = Qsto1(t) +Qsto2(t),

where Qsto1 and Qsto1 (mg) are the masses of glucose in stomach, one in solid

phase and other in liquid phase. Qgut (mg) is the mass of glucose in the intestine.

kgri (min−1) is the rate of grinding, kabs (min−1) is the rate of intestinal absorption

and kempt(Qsto) (min−1) is the rate of gastric emptying described by:

kempt(Qsto) = kmin +
kmax − kmin

2
{tanh

[

5

2D(1− b)
(Qsto(t)− bD)

]

− tanh
[

5

2Dc
(Qsto(t)− cD)

]

+2} (2.22)

where kmin (min−1) is the rate at which the stomach contains theminimum amount

of ingested glucose, kmax (min−1) is the rate at which the stomach contains the
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whole amount of ingested glucose, D (mg) is the amount of ingested glucose, b is

the percentage of the dose for which kempt decreases at (kmax-kmin)/2, and c is the

percentage of the dose for which kempt is back to (kmax-kmin)/2.

The fifth subsystem is the glucose utilization (X(t)):

dX(t)

dt
= −p2UX(t) + p2U [I(t)− Ib] (2.23)

where Ib (pmol/L) is the basal insulin concentration and p2U (min−1) is the rate

constant of insulin action of the peripheral glucose utilization.

Finally, the last subsystem describes insulin secretion:

dIpo(t)

dt
= −γIpo(t) + Spo(t) (2.24)

dY (t)

dt
=



















−α[Y (t)− β(G(t)− h)], if β(G(t)− h) ≥ −Sb

−αY (t)−αSb, if β(G(t)− h) < −Sb
(2.25)

where Y (t) (mg/dl) is the insulin release threshold, h (mg/dl) is the threshold

level of glucose above which β-cells initiate to produce new insulin, α (min−1) is

the delay between glucose signal and insulin secretion, β (pmol/kg/min) is the

pancreatic responsivity to glucose, Spo(t) (pmol/kg) is the insulin secretion of the

portal vein and Sb (pmol/kg) is the basal insulin secretion.

In order to adapt this model to describe the glucose-insulin dynamics of a T2DM

patient, the structure of the model stays the same but the parameters change. The

parameters used to adapt it to a T2DM patient can be seen in Table 2.1.

21



Parameter Value Parameter Value

VG 1.49 dl/kg kmax 0.0465 min−1

k1 0.042 min−1 kmin 0.0076 min−1

k2 0.071 min−1 kabs 0.023 min−1

VI 0.04 l/kg kgri 0.0465 min−1

m1 0.379 min−1 f 0.092

m2 0.673 min−1 b 0.68

m4 0.269 min−1 c 0.00023 mg−1

m5 0.0526 min kg/pmol kp1 3.09 mg/kg/min

m6 0.8118 kp2 0.0007 min−1

HEb 0.6 kp3 0.005 mg/kg/min per pmol/l

γ 0.5 min−1 ke1 0.0007 min−1

kp4 0.0786 mg/kg/min per pmol/kg ki 0.0066 min−1

Fcns 1 mg/kg/min Vm0 4.65 mg/kg/min

Vmx 0.034 mg/kg/min per pmol/l Km0 466.21 mg/kg

p2U 0.084 min−1 K 0.99 pmol/kg per mg/dl

α 0.013 min−1 β 0.05 pmol/kg/min per mg/dl

ke2 269 mg/kg

Table 2.1: Parameters used in the meal-glucose-insulin model for T2DM.

2.3 Physiological model for type 2 diabetes mellitus

Based on the healthy human body model proposed by Sorensen [7], Vahidi et al.

developed a model for T2DM by using available clinical data [9]. This model de-

scribes the glucose dynamics in brain, heart, stomach, liver, kidneys and periph-

eral tissues. This model can be used to predict deficiencies in processes such as

pancreatic insulin production, impaired hepatic regulatory effect on glucose con-

centration and low peripheral glucose uptake. This model is divided into three

subsystems: glucose subsystem, insulin subsystem and glucagon subsystem.

The glucose subsystem is described with eight differential equations of each organ

and three differential equation of metabolic rates, as shown below:
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dGBV

dt
=













QG
B (GH −GBV )−

VG
BI

TG
B

(GBV −GBI )













/VG
BV (2.26)

dGBI

dt
=













VG
BI

TG
B

(GBV −GBI )− rBGU













/VG
BI (2.27)

dGH

dt
=

[

QG
BGBV +QG

LGL +QG
KGK +QG

PGPV −Q
G
HGH − rRBCU

]

/VG
H (2.28)

dGG

dt
=

[

QG
G(GH −GG)− rGGU

]

/VG
G (2.29)

dGL

dt
=

[

QG
AGH +QG

GGG −Q
G
LGL + rHGP − rHGU

]

/VG
L (2.30)

dGK

dt
=

[

QG
K (GH −GK )− rKGE

]

/VG
K (2.31)

dGPV

dt
=













QG
P (GH −GPV )−

VG
PI

TG
P

(GPV −GPI )













/VG
PV (2.32)

dGPI

dt
=













VG
PI

TG
P

(GPV −GPI )− rPGU













/VG
PI (2.33)

dM I
HGP

DT
= 0.04(M I∞

HGP −M
I
HGP ) (2.34)

df

dt
= 0.0154



























2.7tanh[0.39Γ
ΓB
− 1]

2















− f













(2.35)

dM I
HGU

DT
= 0.04(M I∞

HGU −M
I
HGU ) (2.36)

where GBV (mg/dl) is the brain vascular glucose concentration, GBI (mg/dl) is the

brain interstitial glucose concentration, GH (mg/dl) is the heart vascular concen-

tration, GG (mg/dl) is the gut glucose concentration, GL (mg/dl) is the liver glu-

cose concentration, GK (mg/dl) is the kidney glucose concentration, GPV (mg/dl)

is the peripheral vascular glucose concentration, GPI (mg/dl) is the peripheral in-

terstitial glucose concentration,M I
HGP is the hepatic glucose productionmetabolic

rate, f is a function related to the glucagon effect in the hepatic glucose produc-

tion rate and M I
HGU is the hepatic glucose production metabolic rate. Q (l/min)

represents the vascular blood flow rate of the respective organ and V (l) repre-

sents the volumes of the respective organ.
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The glucose subsystem has a set of metabolic rates which are described below:

rBGU = 70 (2.37)

rRBCU = 10 (2.38)

rGGU = 20 (2.39)

rPGU = M I
PGUM

G
PGU r

B
PGU (2.40)

rBPGU = 35 (2.41)

M I
PGU = 2.788+1.915tanh

[

0.619

(

IPF
IBPF
− 3.719

)]

(2.42)

MG
PGU =

GPF

GB
PF

(2.43)

rHGP = M I
HGPM

G
HGPM

Γ

HGPr
B
HGP (2.44)

rBHGP = 35 (2.45)

M I∞
HGP = 0.691− 0.626tanh

[

0.998

(

IL
IBL
− 1.54

)]

(2.46)

MG
HGP = 1.42− 1.41tanh

[

0.62

(

GL

GB
L

− 0.497

)]

(2.47)

MΓ

HGP = 2.7tanh

[

0.39
Γ

ΓB

]

− f (2.48)

rHGU = M I
HGUM

G
HGU r

B
HGU (2.49)

rBHGU = 20 (2.50)

M I∞
HGU = 0.845+0.624tanh

[

0.894

(

IL
IBL
− 0.715

)]

(2.51)

MG
HGU = 2.201+2.232tanh

[

1.883

(

GL

GB
L

− 1.319

)]

(2.52)

rKGE =



















71+71tanh [0.11(GK − 460)] , if 0 ≤ GK ≤ 460

−330+0.872GK , if GK ≥ 460
(2.53)

In a similar arrangement, the insulin subsystem is described with seven differen-

tial equations and three differential equations for an insulin inhibitor.
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dIB
dt

=
[

QI
B(IH − IB)

]

/V I
B (2.54)

dHH

dt
=

[

QI
BIB +QI

LIL +QI
K IK +QI

PV IPV −Q
I
HIH

]

/V I
H (2.55)

dIG
dt

=
[

QI
G(IH − IG)

]

/V I
G (2.56)

dHL

dt
=

[

QI
AIH +QI

GIG −Q
I
LIL + rPIR − rLIC

]

/V I
L (2.57)

dIK
dt

=
[

QI
K (IH − IK )− rKIC

]

/V I
K (2.58)

dIPV
dt

=

[

QI
P(IH − IPV )−

V I
PI

T I
P

(IPV − IPI )

]

/V I
PV (2.59)

dIPI
dt

=

[

V I
PI

T I
P

(IPV − IPI )− rPIC

]

/V I
PI (2.60)

dm

dt
= Km0 −Km+γP − S (2.61)

dp

dt
= α(P∞ −P) (2.62)

dR

dt
= β(X −R) (2.63)

As well as the glucose subsystem, the insulin subsystem has a set of metabolic

rates, which are described as follows:

rLIC = 0.4
[

QI
AIH +QI

GIG + rPIR
]

(2.64)

rKIC = 0.3QI
K IK (2.65)

rPIC =
IPF

((

(1− 0.15) /0.15QI
P

)

−
(

20/V I
PF

)) (2.66)

rPIR =
(

S

SB

)

rBPIR (2.67)

And the inhibitor is modeled with the following equations:
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S =



















[N1Y +N2(X −R)]m, if X > R

N1Ym, if X ≤ R
(2.68)

P∞ = Y = X1.11 (2.69)

X =
G3.27
H

1323.27 +5.93G3.02
H

(2.70)

The glucagon subsystem is described with the next equation:

dΓ

dt
= rPΓR − rPΓC (2.71)

The metabolic rates for the glucagon subsystem are described below:

rPΓC = 9.1Γ (2.72)

rPΓR = MG
PΓRM

I
PΓRM

B
PΓR (2.73)

MG
PΓR = 1.31− 0.61tanh

[

1.06

(

GH

GB
H

− 0.47

)]

(2.74)

M I
PΓR = 2.93− 2.09tanh

[

4.18

(

IH
IBH
− 0.62

)]

(2.75)

rBPΓR = 9.1 (2.76)

And the values for the parameters of the model that were used are described in

Table 2.2.
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Parameter Value Parameter Value

VG
BV 3.5 dl QG

G 10.1 dl/min

VG
BI 4.5 dl QG

K 10.1 dl/min

VG
H 13.8 dl QG

P 15.1 dl/min

VG
L 25.1 dl QI

B 0.45 l/min

VG
G 11.2 dl QI

H 3.12 l/min

VG
K 6.6 dl QI

A 0.18 l/min

VG
PV 10.4 dl QI

K 0.72 l/min

VG
PI 67.4 dl QI

P 1.05 l/min
V I
B 0.26 l QI

G 0.72 l/min
V I
H 0.99 l QI

L 0.90 l/min

V I
G 0.94 l TG

B 2.1 min

V I
L 1.14 l TG

P 5 min
V I
K 0.51 l T I

P 20 min
V I
PV 0.74 l α 0.0482 min−1

V I
PI 0.74 l β 0.93 min−1

V Γ 99.3 dl K 0.00794 min−1

QG
B 5.9 dl/min N1 0.00747 min−1

QG
H 43.7 dl/min N2 0.0958 min−1

QG
A 2.5 dl/min γ 0.0958 U/min

QG
L 12.6 dl/min m0 6.33 U

Table 2.2: Parameters used in the physiological model.

In order to consider meal intake in this model, it was considered a function that

describes gastric emptying depending on the amount of carbohydrate intake. It is

described in the next subsection.

2.3.1 Gastric emptying model

This model was proposed as part of a physiological model of glucose-insulin inter-

action of T1DM by Lehmann and Deutsch in 1992 [35]. It considers different rate

of gastric emptying depending on the carbohydrate intake, this is if it is greater

or equal than 10 CHO gr it is a trapezoidal function but if it is lower than 10 CHO

gr it is a triangular function.
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Gempt =











































(Vmax/Tasc)t, if t < Tasc

Vmax, if Tasc < t ≤ Tasc +Tmax

Vmax − (Vmax/Tdes)(t −Tasc −Tmax), if Tasc +Tmax ≤ t < Ttot

0, elsewhere

(2.77)

where Gempt (gr CHO/min) is the rate of gastric emptying, Vmax (gr CHO/min) is

the maximal rate of glucose emptying, Tasc (min) is the ascending time, Tmax (min)

is the maximal time, Tdes (min) is the descending time and Ttot = Tasc +Tmax +Tdes
(min) is the total time of the function. This carbohydrate intake consideration

modifies equation that represents the glucose in the gut, 2.29, where Gempt is

added. The new equation is stated as follows:

dGG

dt
=

[

QG
G(GH −GG)− rGGU+Gempt

]

/VG
G (2.78)

2.4 Parametric adjustment formodel personalization

Virtual patient interface is a tool that has rise as an application of mathemat-

ical models. In case of diabetes, this tool aims to simulate an specific patient

metabolism in order to provide a better vision of a person’s actual metabolism

[14]. Since mathematical models do not represent an specific patient, they need

to be adapted with data of a population of interest. To achieve this a parametric

adjustment is needed.

In this research an evolutionary algorithm was used to adapt the model to the

gathered data in the experimental study that was performed. More specifically, a

modified Evonorm algorithm was implemented. This algorithm originally takes

a randomly created group of population (parameters to be tested) to compute the

model (evaluation), the result of this calculation is compared to the reference data

so that the error can be calculated. After that, the best set of parameters are cho-

sen and then a new population group is created to start a new iteration [36].
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The parameters for the implementation of the Evonorm are the total of individu-

als I , the total of selected individuals Is and total of performed generations TG,

where Is has to be less than the 25% of I to have a good performance. The error

was calculated as a subtraction of the experimental data and the simulated data.

Also, the simulation was done by windows of data, this is that another external

iteration was perform to simulate the data point by point. This was done in order

to have a better approximation of the simulated data and because of the accumu-

lated energy of the model.

The pseudocode of the classical Evonorm algorithm is as follows [37]:

1.- Uniform random generation of population P of size m.

2.- Evaluation of the total of individuals m.

3.- Selection of the best n individuals (n < m).

4.- Calculation of mean and standard deviation from n selected individuals.

5.- Modify standard deviation if intensive exploration is active.

6.- Generation of a new population of size m from random variables with pa-

rameters calculated in 4 and 5.

7.- If a criterion is satisfied then end, else go to step 2.
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Chapter 3

Analysis of the closed-loop therapy

The aim of this work is to analyze the viability of the closed loop therapy in

T2DM. This implies the design of a feedback control system based in a mathe-

matical model able to reproduce the carbohydrate-insulin-glucose dynamics of a

T2DM patient. With this idea in mind, the following analyzes were made to the

selected mathematical models, in order to choose the most feasible for designing

feedback controllers. Regarding the meal simulation model of the glucose-insulin

systems, an scheme of parameter and state estimation must be development in or-

der to reproduce the effect of CHO intake in the model. Such effect is defined by

the process of rate of glucose appearance Ra, which depends of parameter f , an

uncertain parameter in such model. After that a sensitivity analysis of the same

model is carried out in order to select a set of parameters to proposed the person-

alization on the model based on continuous glucose monitoring data.

3.1 Analyzing models for feedback control

Properties of both models were required in order to perform an analysis that al-

lowed a better understanding of the model. With this, they could be adapted

to fulfill the objectives of this research. Among these characteristics were: the

estimation of uncertain parameters, the parameters sensitivity and equilibrium

points. In the next subsections the methodology used to analyze the models is

described.
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3.1.1 Parameter and state estimation of the meal - glucose - in-

sulin system

Estimation is a helpful tool in the biomedical field because of the lack of sensors

to measure many physiological signals. An example of this is in mathematical

modeling, where it is necessary to have enough sensed data to validate themodels.

Numerous applications of mathematical observers or estimators can be found in

many areas in order to overcome the lack of sensors; for example, in medical

images [38] and in oncology ( [39] and [40]).

Mathematical modeling of glucose metabolism has had a major development in

the last decades; including systemic models ( [41], [42]), black-box models ( [43],

[44]), and compartmental models ( [7], [33]); but not all models are useful in solv-

ing the automation of insulin dosage.

An appropriated model for this end must consider the full-relationship from

CHO intake to blood glucose concentration. [34] have contributed to solve this

problem, they presented a model of glucose metabolism including meal dynam-

ics; however, it depends on the rate of glucose appearance in the intestine (Ra),

which is an unmeasured process. In insulin dosage automation, the only avail-

able measured variable is glucose concentration; therefore, the model proposed

by [34] must be improved in order to provide the full-relationship from CHO in-

take to blood glucose concentration. For this reason, in this paper we propose

an approach to estimate the rate of glucose appearance in the intestine; that is,

a sensorless approach to know the effect of CHO intake in glucose metabolism.

This idea is sketched in Figure 3.1, we consider the gastric emptying model ( [45])

which input is the CHO intake (Dδ(t)) and it computes the rate of glucose appear-

ance in the intestine (Ra). In turn, Ra and Dδ(t) are the inputs of the proposed

adaptive observer, which is an state affine scheme with exponential convergence

to estimate states and uncertain constant parameters. In this case, the observer

estimates uncertain parameter f and the state related to mass of glucose in the

intestine (Qgut), both from the gastric emptying model. Once the parameter and

the state are estimated, the effect of CHO intake can be included in the glucose-

insulin metabolism model, which output is the measured blood glucose concen-
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tration (G(t)).

Figure 3.1: Block diagram of the approach to include the effect of CHO intake in
glucose-insulin metabolism models. An adaptive observer with exponential con-
vergence is proposed to estimate the rate of glucose appearance in the intestine.

The gastric emptying submodel presented in subsection 2.3.1 is used to model

the rate of glucose appearance Ra, which is described in Equation 4.7. The dis-

advantage of this function is that parameter f is uncertain. Therefore the gastric

emptying submodel was disconnected from the glucose-insulin model and by us-

ing the adaptive observer proposed by [46], which was used in a cascade system

of anaerobic digestion for wastewater, the parameter f and the three states of the

submodel were estimated.

For estimation purposes, the process model must be structured as the following

state affine system:















ẋ = A (y,u)x + β (y,u) +ϕ (y,u)θ +Bg(y,u,x,θ)

y = Cx
(3.1)

where x ∈ℜn is the state vector, θ ∈ℜq is the unknown constant parameter vec-

tor, u ∈ℜl is the input vector, y ∈ℜr is the measurable output. A (y,u), β (y,u),

ϕ (y,u), g(y,u,x,θ), B and C are matrices of appropriate dimensions. Further-

more, n, q, l and r are the state space, parameter space, control space, and output

space dimensions of system (3.1), respectively.

Considering that A (y,u), β (y,u), ϕ (y,u) and g(y,u,x,θ) satisfy the Assumptions

A1-A3 from [46], an adaptive observer for (3.1) is given by:
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

























































˙̂x = A (y,u) x̂ + β (y,u) +ϕ (y,u) θ̂ +Bg(y,u, x̂, θ̂)

+{S−1L CT +ΛΓ
−1
Λ

TCT }Q(y −Cx̂)

ṠL = −ρSL −A
T (y,u)SL − SLA (y,u) +CTQC

Λ̇ = {A (y,u)− S−1L CTQC}Λ +ϕ (y,u)

Γ̇ = −λΓ +Λ
TCTQCΛ

˙̂θ = Γ
−1
Λ

TCTQ(y −Cx̂)

(3.2)

where x̂ and θ̂ are estimations of x and θ, respectively. The parameters ρ ∈ ℜ

and λ ∈ℜ modify the gains SL ∈ℜ
n×n, Λ ∈ℜn×q and Γ ∈ℜq×q, of the observer

for n states, l inputs, r outputs and q unknown parameters. Q ∈ ℜr×r , SL and Γ

are positive definite symmetric matrices. The exponential convergence proof of

the adaptive observer (3.2) to system (3.1) is demonstrated in [46]. By means of

some algebraic manipulation, the system (2.23)-(2.25) and (4.7) can be written as

(3.1) with:

x =























x1
x2
x3























= f























Qsto1(t)

Qsto2(t)

Qgut(t)























(3.3)
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θ = f , u =Dδ(t), y = Ra(t),

A (y,u) =























−kgri 0 0

kgri −kmax 0

0 kmax −kabs























,

β (y,u) =























0

0

0























, ϕ (y,u) =























Dδ(t)

0

0























,

B =























0

−
(kmax−kmin)

2
(kmax−kmin)

2























,

g (y,u,x,θ) = [tanh(w)− tanh(v)]x2,

w =
5(x1+x2)
2Df (1−b) −

5b
2(1−b) ,

v =
5(x1+x2)
2Dcf −

5
2 ,

and C =
[

0 0 kabs
BW

]

.

Then, the adaptive observer (3.2) and the scalar mapping (3.3) allow the estima-

tion of Q̂sto1(t), Q̂sto2(t), Q̂gut(t) and f̂ of the states Qsto1(t), Qsto2(t), Qgut(t) and

parameter f , respectively; if the next assumptions hold:

(i) The system (2.23)-(2.25) is completely observable.

(ii) The Assumptions A1-A3 from [46] are satisfied.

Then, the estimation of Ra(t) is computed as:

R̂a(t) =
kabsx̂3
BW

. (3.4)

3.1.2 Sensitivity analysis

Since one of the objectives is to describe the glucose-insulin dynamics of a T2DM

patient, it is necessary to do a parametric adjustment. Before that adjustment can

be done, it is important to know the change of the states of the model respect
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of each parameter. For this purpose, a sensitivity analysis with nominal values

was proposed for the meal simulation model. For this analysis, the model was

written in its state-space form such that x1 = Gp, x2 = Gt , x3 = Il , x4 = Ip, x6 = Id ,

x7 = Qsto1, x8 = Qsto2, x9 = Qgut , x10 = X, x11 = Ipo and x12 = Y . The sensitivity

equation used to make this analysis is proposed in [47] as follows:

Ṡ(t) = A(t,P)S(t) +B(t,P) (3.5)

where:

A(t,P) =
∂f (x,P)

∂x
|P0 (3.6)

B(t,P) =
∂f (x,P)

∂P
|P0 (3.7)

where x are the states of the model, P are the total of the parameters, P0 are the

nominal values of the parameters, A is the matrix of the partial derivative of the

model equations with respect of the states of size (n × n), where n represents the

total number of states; B is the matrix of the partial derivative of the model equa-

tions with respect of the parameters of size (n ×m), where m represents the total

number of parameters, and finally, S(t) represents the sensitivity function (n×m).

3.1.3 Equilibrium points and model linearization

In order to analyze the dynamics of the model in equilibrium, it is necessary to

know at which value each equation rests, for this purpose, equilibrium points

come in hand. An equilibrium point x∗ satisfies the expression dx
dt = 0⇔ x = x∗,

where the value of x∗ is a constant. The physiological model for T2DMwas written

in its state-space form to get the equilibrium points and the system linearization.

Perturbations were not considered in the linearization.
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ẋ1 = −2.2979x1 +0.6122x2 +1.6857x3 (3.8)

ẋ2 = 0.4761x1 − 0.4761x2 − 15.5555 (3.9)

ẋ3 = 0.4275x1 − 3.1666x3 +0.9130x5 +0.7318x6 +1.0942x7 − 0.7246 (3.10)

ẋ4 = 0.9017x3 − 0.9017x4 − 1.7857 (3.11)

ẋ5 = 0.0996x3 +0.4023x4 − 0.5019x5 − 0.7968x22[2.232tanh(0.0146x5)

− 2.4836+2.201] + 6.1752x20[1.406tanh(0.0048x5)− 0.3081

− 1.425][x21tanh(0.39x19)] (3.12)

ẋ6 = 1.5303x3 − 1.5304x6 − 10.7575tanh(0.011x6)− 5.06− 10.7575 (3.13)

ẋ7 = 1.4519x3 − 2.6634x7 +1.2115x8 (3.14)

ẋ8 = 0.2x7 − 0.2x8 − 0.0048x8(1.915tanh(0.3340x15)− 2.3020+2.788)(3.15)

ẋ9 = −1.6981x9 +1.6981x10 (3.16)

˙x10 = 0.4568x9 − 3.1675x10 +0.9137x12 +0.7309x13 +1.0659x14 (3.17)

˙x11 = 0.7619x10 − 0.7619x11 (3.18)

˙x12 = 0.0947x10 +0.3789x11 − 0.7894x12 +0.7412x18

















x
327
100
3

5.93x
151
50
3

















+ 8595611.0407
111
100 (3.19)

˙x13 = 0.9980x10 − 1.4257x13 (3.20)

˙x14 = 1.4285x10 − 1.8870x14 +0.4585x15 (3.21)

˙x15 = 0.05x14 − 0.1167x15 +0.1483I (3.22)
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˙x16 =
0.0482x

327
100
3

5.93x
151
50
3

+8595611.04
111
100 − 0.0482x16 (3.23)

˙x17 =
0.931x

327
100
3

5.93x
151
50
3

+8595611.04077− 0.931x17 (3.24)

˙x18 = 0.575x16 − 0.00794x18 − 0.00595x18

















x
37
100
3

5.93x
151
50
3

















+8595611.04
111
100

+ 0.0505 (3.25)

˙x19 = 0.0916[2.09tanh(0.035x3 − 2.5916)]

− 2.93[0.61tanh(0.2002x10 − 0.4982)− 1.31]− 0.0916 (3.26)

˙x20 = 0.02764− 0.025tanh(0.1332x12)− 1.5369− 0.04x20 (3.27)

˙x21 = 0.0207tanh(0.39x19)− 0.015x21 − 0.0076 (3.28)

˙x22 = 0.0249tanh(0.1193x12)− 0.63921− 0.04x22 +0.0338 (3.29)

By making these equations equal to zero, the obtained equilibrium points are:

x∗ = [128.6764 96.0097 140.5408 138.5606 149.990 140.5408 137.9540

135.0563 8.7353 8.7353 8.7353 11.8766 6.7194 7.4250 3.3424 1.1634

0.7559 0.5568 2.6994 8.3868 0.3558 0.3941].

After the equilibrium points have been found, the jacobian matrices have to be

calculated in order to get the model linearization, this is done by rewriting the

model in the form presented in 3.30.















ẋ = Ax +Bu

y = Cx
(3.30)

where matrices A =
∂f
∂x
|x∗ , B =

∂f
∂u
|x∗ , and C is the output signal of the model;

where f are the functions, x are the states and u is the control input signal. Af-

ter performing the partial derivatives and the evaluation around the equilibrium

point, the stated matrices are presented in section 4.5. Also, in this section, the
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results of the performance of the control are stated. This scheme was proved with

different CHO intakes in six days.

3.2 Closed-loop controllers in T2DM

One of the main objectives of working with diabetes mellitus models is to have a

control scheme that aims to the blood glucose level regulation. Most of the work

done in reference of this control objective is for T1DM. Nevertheless, there are

many researches that have proved that insulin therapy for T2DM is an effective

methodology to lower glucose levels ( [48], [49], [50]). In controllers for T2DM,

the most outstanding researches use tools as classic control or intelligent algo-

rithms. An example of the first one is the scheme proposed by Sun et al., where

he used a proportional-integral-derivative (PID) controller to maintain normo-

glycemic levels for T2DM patients, considering a closed-loop insulin infusion

pump, short-acting insulin absorption and gut absorption [51]. Their prelimi-

nary results show the potential use of control algorithms for regulation. Also,

by fusing classical control and intelligent algorithms, Ekram et al. proposed the

usage of a proportional-integral (PI) controller with a modification by penalising

the feedback error using a fuzzy inference system [52]. They reported that the

fuzzy-based PI controller had a better performance than the conventional PI con-

troller in glucose regulation.

In this research, a classic PID controller is proposed in order to have a preliminary

analysis of the viability of the closed-loop therapy for T2DM. This controller is the

most common control algorithm used in industry due to the robust performance

and functional simplicity [53]. This controller have a feedback control signal that

depends in the error signal. The control signal is calculated by considering three

characteristics to process the controlled output signal: to cancel the error in the

actual instant, to measure the amount of time that the signal has kept the wrong

values and to anticipate the future errors by measuring the variation rate at each

instant [54]. The equation for the control law is given by equation 3.31.
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u(t) = Kpe(t) +Ki

∫ t

0
e(t)dt +Kd

d

dt
e(t) (3.31)

The problem that is wanted to solve with the application of a PID controller is that

the system get to the normoglycemic range, between 70mg/dl and 120mg/dl, that

is a regulation problem rather than a tracking problem. The main idea is to have

an insulin signal that depends on time to adjust the dose with respect of the blood

glucose level response, in order to maintain the metabolism in a desired glucose

level.

The general closed-loop scheme is represented in Figure 3.2, where the gut ab-

sorption of the CHO intake is the perturbation to the system and the insulin (u(t))

is the control signal that goes into the glucose-insulin dynamic model (in this case

the physiological model for T2DM was used), as can be seen in the next equation,

where u(t) is added to the original differential equation of IPI (Eq. 2.60):

dIPI
dt

=

[

V I
PI

T I
P

(IPV − IPI )− rPIC +u(t)

]

/V I
PI

A reference value is given considering the normoglycemic range and the feedback

signal is the blood glucose level.
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Figure 3.2: General control scheme to analyze the viability of the insulinization
therapy, where the reference is a stated value of the normoglycemic range (be-
tween 70 mg/dl and 120 mg/dl), GPI (t) is the peripheral interstitial glucose con-
centration, e(t) is the error between the reference signal and GPI (t), u(t) is the
control signal gathered from the PID controller, CHO is the amount of carbohy-
drate intake, and Gempt(t) is the rate of gastric emptying.
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Chapter 4

Results

In this section the results of this research are reported. It is structured as fol-

lows: first, the experimental set up to obtain continuous glucose monitoring data

of T2DM patients is presented. After that, results of the scheme to estimate the

parameter f and the sensitivity analysis of the meal simulation model are pre-

sented. Then, results of the parametric adjustment scheme for the physiological

model are presented. Finally, the closed-loop control scheme is proved in the

physiological model, the results are also presented here.

4.1 Experimental set up

Along with Hospital Universitario ”Dr. José Eleuterio González” a prospective

and longitudinal cohort study was performed in order to characterized the dy-

namic behaviour of the glucose metabolism in T2DM patients. The study con-

sidered 20 patients who fulfilled the features described in Table 4.1. The study

was complete in 90 days, in this time the patients recorded their meal intake,

postprandial glucose concentration (two hours after meal intake) and insulin and

metformin supply. Also a continuous glucose monitor (CGM) was carried by the

patients during a week, this permitted to get a report of their blood glucose con-

centrations every five minutes.

41



Age range Between 30 and 70 years old
Time from diagnosis 2 years
Current treatment At least two oral medicines

Body mass index (BMI) Between 26 and 40 kg/m2

% Hb1Ac Between 7.5% and 10%
Fasting glucose
concentration ≥140 mg/dl

Table 4.1: Criteria for acceptance of T2DM patients into the experimental study.

In order to perform the parametric adjustment, data from a patient was used.

In Table 4.2 and in Table 4.3, respectively, CHO intake and postprandial glucose

concentrations are reported. In Figure 4.1 the glucose concentration curves of

each day is presented.

Breakfast Lunch Dinner

MI (gr CHO) MI (gr CHO) MI (gr CHO)

Day 1 45.95 73 60
Day 2 45.95 22.5 82.5
Day 3 45.95 23.4 22.5
Day 4 45.95 5 15
Day 5 45.95 15 49.4
Day 6 45.95 36.3 49.4

Table 4.2: Patient data. Meal intake (MI) measured in grams of CHO.

Breakfast Lunch Dinner

GC (mg/dl) GC (mg/dl) GC (mg/dl)

Day 1 117 195 174
Day 2 153 215 143
Day 3 192 187 168
Day 4 160 134 188
Day 5 104 191 189
Day 6 131 225 178

Table 4.3: Patient data. GC (glucose concentration) measured in mg/dl, it was
taken two hours after meal intake (postprandial).
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Figure 4.1: Glucose concentration curves of six days of continuous glucose moni-
toring every five minutes.

4.2 Parameter and state estimation

The proposed scheme is given by equations of the meal-glucose-insulin model

given by equations (2.23)-(2.25), and the adaptive observer defined in (3.2). The

numerical implementation of the whole system was coded in MATLABr using

the differential equation solver ode45. The simulation time was t ∈ [0,4000] min-

utes, and the vector of initial conditions for the model was x0 = [0 0 0]T . Since the

CHO intake is made in fasting conditions, this is when the stomach is empty, the

initial conditions for the gastric emptying model were stated in zero.

To obtain acceptable results three meals were considered in the numerical imple-

mentation, as described in Figure 4.2. Each meal was considered as the perturba-

tion performed by Dδ(t), and it was modeled as a train of five square pulses, with

period of 6 minutes, giving a total of 30 minutes of CHO intake (see Figure 4.2).

In order to illustrate the convergence of the estimated states, three different sets of

initial conditions were arbitrarily stated as x̂1(0) = x̂2(0) = x̂3(0) = 3x105, x̂1(0) =
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x̂2(0) = x̂3(0) = 4x105 and x̂1(0) = x̂2(0) = x̂3(0) = 9x105 considering the initial

condition for the estimated parameter as f̂ (0) = 0.5, SL(0) = [I ] ∈ ℜ3×3, Λ(0) =

Γ(0) = 1. The nominal values of parameter of the model (2.23)-(2.25) are reported

in Table 4.4, as well as the gains of the adaptive observer. The estimation of states

can be verified in Figure 4.4 - 4.5.

Moreover, the convergence of the estimated parameter f̂ is shown in Figure 4.6,

considering three different initial conditions chosen as f̂ (0) = 0.25, f̂ (0) = 0.5

and f̂ (0) = 3. The resulting estimation of Ra is shown in Figure 4.7. The gastric

emptying submodel is reconnected to the glucose metabolism model proposed by

Dalla Man et al., the glucose concentration can also be obtained, this is shown in

Figure 4.8. In all these figures, the original (solid line) and estimated (dash line)

value are presented.

Parameter Value

kgri 0.0558 min−1

kmax 0.0558 min−1

kmin 0.008 min−1

kabs 0.057 min−1

D 78000 mg
b 0.82
c 0.00236 mg−1

BW 78 kg
f 1.2723
ρ 0.0710
λ 2

Table 4.4: Nominal values for the parameter of the model and adaptive observer
proposed by [34].
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Figure 4.2: CHO intake is modeled by Dδ(t) as a train of five square pulses, with
period of 6 minutes, giving a total of 30 minutes per meal. The disturbance is
presented in the full simulation time (top), and a zoom in of a single meal is also
included (bottom).
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Figure 4.3: Estimation of the glucose mass in solid phase, Qsto1.
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Figure 4.4: Estimation of the glucose mass in liquid phase, Qsto2.
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Figure 4.5: Estimation of the glucose mass in the intestine, Qgut .
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Figure 4.8: Effect of the estimated disturbance in the glucose-insulin metabolism
model by CHO intake.

4.3 Sensitivity analysis

As said in Section 3.1.2, the sensitivity analysis of the meal-glucose-insulin model

was performed by implementing Equation 3.5. Considering that the total number

of states n was 12, and the total number of parameters m was 37, the dimension

of the matrices were A(t,P) of 12 × 12, S(t) of 12 × 37, and B(t,P) of 12 × 37. The

parameters that were considered for this analysis were: kp1, kp2, kp3, kp4, f , kabs,

BW , Fcns, ke1, ke2, k1, k2, Vm0, Vmx, Km0, m1, m2, m4, m5, m6, γ , ki , VI , kmax, kmin, b,

c, kgri , p2u , Ib, K , Sb, α, β, h, VG and D.

The range of consideration for a parameter to be sensible was ± 400. With this in

mind, the most sensible parameters were: kp2, kp3, k1, k2, ke1, VI , α and β. This

parameters affect in Equations 2.1, 2.2, 2.25, as can be seen below. Since the equa-

tion of interest was Equation 2.1, which models the mass of glucose in plasma and

rapidly equilibrating tissues and is needed in Equation 2.10, in order to model the

glucose concentration, the sensitivity analysis results for this equation can be seen

in Figure 4.9.
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dGp(t)

dt
= EGP(t) +Ra(t)−Uii(t)−E(t)− k1Gp(t)

+ k2Gt(t)

dGt(t)

dt
= −Uid(t) + k1Gp(t)− k2Gt(t)

EGP(t) = kp1 − kp2Gp(t)− kp3Id(t)− kp4Ipo(t)

E(t) =



















ke1[Gp(t)− ke2], if Gp(t) > ke2

0 if Gp(t) ≤ ke2

I(t) =
Ip(t)

VI

dY (t)

dt
=



















−α[Y (t)− β(G(t)− h)], if β(G(t)− h) ≥ −Sb

−α ∗Y (t)−α ∗ Sb, if β(G(t)− h) < −Sb

Figure 4.9: Sensitivity analysis results for state x1, which is described by Equation
2.1. The most sensible parameteres were: kp2, kp3, k1, k2, ke1, VI , α and β. The
range of consideration as a sensible parameter is between ± 400.

Back in 2007, a sensitivity analysis for the physiological model for T1DM, pro-

posed by Sorensen in [7], was previously reported by Quiroz and Femat in [55].
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It was stated that there were four most sensitive parameters related to metabolic

parameters.

4.4 Parametric adjustment

The parametric adjustment was performed for both models. Since the results

of the meal-glucose-insulin model were not conclusive, they are not presented.

Therefore, the parametric adjustment outcome shown in this section was ob-

tained from the physiological model. Eighteen parameters were chosen from the

metabolic rates to perform the adjustment:

M I
PGU = 2.788+1.915tanh

[

0.619

(

IPF
IBPF
− 3.719

)]

MG
HGU = 2.201+2.232tanh

[

1.883

(

GL

GB
L

− 1.319

)]

M I∞
HGU = 0.845+0.624tanh

[

0.894

(

IL
IBL
− 0.715

)]

M I∞
HGP = 0.691− 0.626tanh

[

0.998

(

IL
IBL
− 1.54

)]

S =



















[N1Y +N2(X −R)]m, if X > R

N1Ym, if X ≤ R

(4.1)

Recalling Subsection 2.4, an evolutionary algorithm was used to perform the

parametric adjustment. The implementation of the Evonorm algorithmwas coded

in MATLABr. According to the physiological model proposed by Vahidi et al,

they stated that in T2DM 18 parameters related with metabolic rates change re-

garding healthy condition. Then those 18 parameters were adjusted with the al-

gorithm, the equations that involve these parameters are presented above. The

information was separated as three events: breakfast, lunch and dinner, in or-

der to have a more accurate performance of the algorithm and to diminish the

simulation time. The parameters used in the implementation of the Evonorm
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Day Breakfast Lunch Dinner

1 3.3408 3.4935 Dismiss
2 Dismiss Dismiss 4.4552
3 5.8690 7.73 11.5011
4 3.33 11.8855 12.6632
5 7.8482 Dismiss 26.7860
6 4.7072 9.8081 13.2906

Table 4.5: Mean errors obtained in each simulation for the parametric adjustment.
The Dismiss legend indicates that the error of the adjustment was either too big
or a complex number.

algorithm were total of individuals I , stated as 100 individuals, selected individ-

uals Is, stated as 20 individuals, and total of performed generations TG, stated

as 150 generations. About the generation of new individuals, the upper range for

the new individuals generation was left opened and the lower range was left as

1× 10−5 to allow a wider search for the parameters.

The performance of the algorithm with the 18 events can be seen in Table 4.5

along with the mean error of each one. The accepted error was less than 14mg/dl,

that is lower than the average accepted error from glucometers. The results from

the simulations are reported in Figures 4.10, 4.11 and 4.12.
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Figure 4.10: Tracking curves of the parametric adjustment of the physiological
model of glucose metabolism during breakfast meal.
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Figure 4.11: Tracking curves of the parametric adjustment of the physiological
model of glucose metabolism during dinner meal.
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Figure 4.12: Tracking curves of the parametric adjustment of the physiological
model of glucose metabolism during breakfast.

Themean absolute error with its standard deviation was considered for each event

in order to have a better understanding of the performance of the evolutionary

algorithm. The best three simulations were chosen in order to calculate the mean

error for each event. This can be seen in Figures 4.13, 4.14 and 4.15.
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Figure 4.13: Mean absolute error of breakfast event of days 1, 4 and 6.
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Figure 4.14: Mean absolute error of lunch event of days 1, 3 and 6.
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Figure 4.15: Mean absolute error of dinner event of days 2, 3 and 4.

Also, to have a look of the dispersion of the best sets of selected parameters, each

of the parameters were normalized and then graphed in a boxplot. The central

mark on the box indicates the median, and the bottom and top edges of the box

indicate the 25th and 75th percentiles, respectively. These boxplots can be seen

in Figures 4.16, 4.17 and 4.18.
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Figure 4.16: Boxplot of adjusted parameters of breakfast event for a) day 1, b) day
4 and c) day 6.
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Figure 4.17: Boxplot of adjusted parameters of lunch event for a) day 1, b) day 3
and c) day 6.
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4.5 Closed-loop control

As stated in Section 3, a proportional-integral-derivative (PID) controller was

proposed in order to analyze the response of the physiological model for T2DM.

The model was linearized around its equilibrium point, in order to get the state-

space form to implement the PID controller. The matrices A, B, C and D from the

linearization (using the model (3.8) - (3.29)) are as follows:

A1,j =
[

−2.29 0.61 1.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]

A2,j =
[

0.47 −0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]

A3,j =
[ 0.42 0 −3.16 0 0.91 0.73 1.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0]

A4,j =
[

0 0 0.90 −0.90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]

57



A5,j =
[ 0 0 0.09 0.4023 −0.59 0 0 0 0 0 0 0 0 0 0 6.25 −2.29 −4.67

1.9 0 0 0]

A6,j =
[

0 0 1.53 0 0 −1.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]

A7,j =
[

0 0 1.45 0 0 0 −2.74 1.29 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]

A8,j =
[ 0 0 0 0 0 0 0.20 −0.20 0 0 0 0 0 0 −0.015 0 0 0 0 0 0

0]

A9,j =
[

0 0 0 0 0 0 0 0 −1.73 1.73 0 0 0 0 0 0 0 0 0 0 0 0
]

A10,j =
[ 0 0 0 0 0 0 0 0 0.45 −3.15 0 0.90 0.72 1.06 0 0 0 0 0 0

0 0]

A11,j =
[

0 0 0 0 0 0 0 0 0 0.76 −0.76 0 0 0 0 0 0 0 0 0 0 0
]

A12,j =
[ 0 0 0.05 0 0 0 0 0 0 0.09 0.37 −0.78 0 0 0 0 0 0 0 0 0

0 0]

A13,j =
[

0 0 0 0 0 0 0 0 0 1.41 0 0 −1.83 0 0 0 0 0 0 0 0 0
]

A14,j =
[

0 0 0 0 0 0 0 0 0 1.41 0 0 0 −1.87 0.45 0 0 0 0 0 0 0
]

A15,j =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 −0.11 0 0 0 0 0 0 0
]

A16,j =
[

0 0 0 0 0 0 0 0 0 0 0 −0.0005 0 0 0 −0.04 0 0 0 0 0 0
]

A17,j =
[

0 0 0 0 0 0 0 0.001 0 0 0 0 −0.04 0 0 0 0 0
]

A18,j =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.0154 0.003 0 0 0
]

A19,j =
[ 0 0 −0.0007 0 0 0 0 0 0 −0.04 0 0 0 0 0 0 0 0 −0.09 0 0

0]

A20,j =
[ 0 0 −0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.01 0.095

0]

A21,j =
[

0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.04 0
]

A22,j =
[

0 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.93
]

B =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.148 0 0 0 0 0 0 0
]T

C =
[

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]

D = [0]

where j = 22 for matrix A. Figure 4.19 shows the implementation of the nonlin-
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ear system in open-loop, and Figure 4.20 shows the implementation of the control

scheme performed in Simulinkr.

The PID controller was tuned using the Tune command from Simulinkr . For

this purpose the linearization of the physiological model, described in Subsection

3.1.1 was needed. The implementation was performed with the nonlinear system

with nominal parameters as reported in Table 2.2.

Figure 4.19: Open-loop implementation diagram in Simulinkr of the physiologi-
cal model.

Figure 4.20: Closed-loop implementation diagram considering the PID tuned us-
ing the autotunning command of Simulinkr

The controller scheme was proved with the three meals of the six days reported

in the experimental study. This is shown in Figures 4.21 - 4.26, where the green

band represents the normoglycemic range (70 mg/dl - 120 mg/dl).
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Figure 4.21: Control results for day 1 of the three meal simulation taken from the
experimental set up, where the green band represents the normoglycemic range
(70 mg/dl - 120 mg/dl).

Figure 4.22: Control results for day 2 of the three meal simulation taken from the
experimental set up, where the green band represents the normoglycemic range
(70 mg/dl - 120 mg/dl).
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Figure 4.23: Control results for day 3 of the three meal simulation taken from the
experimental set up, where the green band represents the normoglycemic range
(70 mg/dl - 120 mg/dl).

Figure 4.24: Control results for day 4 of the three meal simulation taken from the
experimental set up, where the green band represents the normoglycemic range
(70 mg/dl - 120 mg/dl).
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Figure 4.25: Control results for day 5 of the three meal simulation taken from the
experimental set up, where the green band represents the normoglycemic range
(70 mg/dl - 120 mg/dl).

Figure 4.26: Control results for day 6 of the three meal simulation taken from the
experimental set up, where the green band represents the normoglycemic range
(70 mg/dl - 120 mg/dl).
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Chapter 5

Conclusions and Future Work

After working with two different models of glucose-insulin dynamics, it was con-

cluded that the most optimal model was the physiological model proposed by

Vahidi et al. because of its robustness and detailed explanation of the interaction

between organs. Conversely, the meal simulation model proposed by Dalla Man

et al. can be an intuitive model but mathematically speaking, complications were

presented when the parametric adjustment was tried to be made because of the

non-linearity of the rate of glucose appearance. Similarly, observation issues were

presented in the attempt of implementing the adaptive observer with the com-

plete model.

The conclusion about the parameter and state estimation is that the adaptive ob-

server was an adequate tool to solve this problem because of the nature of the

process. As a future work, the full scheme is proposed, that is work with the com-

plete meal-glucose-insulin model as a whole, instead of a cascade adaptation. The

complete observance of the system is yet to be proved.

About the sensitivity analysis of the meal-glucose-insulin model, the resulting

parameters were the expected ones because of the processes that they were in-

volved in. Those parameters where chosen for the parametric adjustment, which

results, as it was stated before, were not conclusive and most of the simulations

took days to complete the computation. In reference of the physiological model,
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the parametric adjustment had a good performance but the width of the windows

samples were too small to actually work with the resulting parameters. There-

fore, it is proposed to implement it with wider windows and more patient data.

In the work done with the control scheme, it was shown that the linearization is

required to tune a conventional PID controller. Yet, there is a phase difference

between the open-loop signal and the closed-loop signal of some simulations due

to the controller. Therefore the linearization, as well as the controller, is an op-

portunity area to work with. While it is right that PID controllers are widely used

in the industry, it was confirmed by the simulations that this scheme is not the

most accurate to work with for blood glucose regulation.

Since the necessity of a control scheme for T2DM therapy is clear, and many

methodologies can be improved to get better results in blood glucose regulation,

it is proposed as a future work to develop a robust control scheme to have an

automated therapy. Also, it is seek to modify the glucose metabolism model so

that the effect of antihyperglycemic drugs can be added to the model, as well as

exercise and insulin action. With altogether, it will be possible to start develop-

ing a methodology for in silicomodels in order to have a patient orientated model

considering insulinization therapy. By having this tool it is expected to help im-

proving T2DM therapy.
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Abstract: Carbohydrate intake is one of the main disturbances in blood glucose metabolism
and one of the major care-issues in diabetes therapy. For this reason, the dynamics of glucose
absorption after a meal intake must be included in glucose metabolism models. Current interest
in developing patient-specific models has shown the necessity to estimate key parameters in
models of carbohydrate intake, which cannot be measured with available sensor technology. In
this contribution, we present a scheme to estimate a parameter and a state related to absorption
of glucose in the intestine, which depend on the amount of carbohydrates ingested in a meal.
The scheme is based on an adaptive observer with exponential convergence to estimate states
and uncertain constant parameters.

Keywords: Parameter estimation, patient-specific models, glucose metabolism modeling,
carbohydrate intake, glucose dynamics.

1. INTRODUCTION

In 2015, the World Health Organization (WHO (2015))
disclosed the main diseases responsible for more than half
of the worldwide deaths, situating diabetes on the 6th
place. The latest statistics of the International Diabetes
Federation (IDF (2017)) reported that there are 425 mil-
lion people worldwide (between 20 and 79 years old) with
some type of diabetes; and in 2045, this number could rise
627 million people. Type 2 diabetes mellitus (T2DM) is
the one with more cases in the world, affecting about 87%
to 91% of the diabetic patients.

Along with the right treatment to control the glycemic
levels, lifestyle is important in diabetes care. Since en-
ergy is produced from glucose and the main way the
body gathers it is by carbohydrate (CHO) intake, it is
important to include nutritional therapy to bring blood
glucose concentration into normoglycemic levels. There is
an association between having a balanced diet (with the
guidance of a dietitian) and a decrement of the percentage
of glycosylated hemoglobin (HbA1C). Studies about the
role of macronutrients in diabetic diet are not conclusive;
but it has been demostrated that low-CHO diets reduce
Hb1Ac about 0.2% to 0.5% (ADA (2017) and Wheeler
et al. (2012)). Also, He et al. (2010) showed that including
whole grains in diet is related with the decrement of cardio-
vascular diseases and mortality rate in diabetic patients.
In some cases, T2DM patients can required insulin-based
therapy; that is, daily insulin doses depending on their
glycemic levels (Lian et al. (2013)). Conventionally doses

⋆ G. Quiroz thanks the National Council of Science and Technology
(CONACYT) for financial support (grant 220187). A. Olay-Blanco
also thanks CONACYT for scholarship (grant 448599).

are prescribed according to the clinical features of patients
but their lifestyle habits (meal and exercise) are uncertain
or unknown. Recent studies have shown that automation
of insulin dosage could improve glucose management in
diabetic patients (Riddle et al. (2003)). Such approach
requires the mathematical modeling of the main processes
related to glucose-insulin dynamics, including the glucose
absorption from daily CHO intake. Mathematical model-
ing of glucose metabolism has had a major development
in the last decades; including systemic models (Ackerman
et al. (1965), Bergman et al. (1981)), black-box models
(Stahl and Johansson (2008), Georga et al. (2011)), and
compartmental models (Sorensen (1985), Hovorka et al.
(2004)); but not all models are useful in solving the au-
tomation of insulin dosage.

An appropriated model for this end must consider the full-
relationship from CHO intake to blood glucose concentra-
tion. Dalla Man et al. (2007) have contributed to solve this
problem, they presented a model of glucose metabolism
including meal dynamics; however, it depends on the rate
of glucose appearance in the intestine (Ra), which is an
unmeasured process. In insulin dosage automation, the
only available measured variable is glucose concentration;
therefore, the model proposed by Dalla Man et al. (2007)
must be improved in order to provide the full-relationship
from CHO intake to blood glucose concentration. For this
reason, in this paper we propose an approach to estimate
the rate of glucose appearance in the intestine; that is, a
sensorless approach to know the effect of CHO intake in
glucose metabolism. This idea is sketched in Fig. 1, we con-
sider the gastric emptying model (Dalla Man et al. (2006))
which input is the CHO intake (Dδ(t)) and it computes
the rate of glucose appearance in the intestine (Ra). In
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Fig. 1. Block diagram of the sensorless approach to include
the effect of CHO intake in glucose-insulin metabolism
models. An adaptive observer with exponential con-
vergence is proposed to estimate the rate of glucose
appearance in the intestine.

turn, Ra andDδ(t) are the inputs of the proposed adaptive
observer, which is an state affine scheme with exponential
convergence to estimate states and uncertain constant
parameters. In this case, the observer estimates uncertain
parameter f and the state related to mass of glucose
in the intestine (Qgut), both from the gastric emptying
model. Once the parameter and the state are estimated,
the effect of CHO intake can be included in the glucose-
insulin metabolism model, which output is the measured
blood glucose concentration (G(t)). This paper is orga-
nized as follows: Section 2 presents the methodologies to
model gastric emptying and glucose-insulin metabolism.
The proposed scheme to estimate a parameter and the
states of the gastric emptying model is outlined in Section
3. The numerical implementation of the estimation scheme
and the main results are in Section 4. Finally, a brief
discussion and some concluding remarks are in Section 5.

2. MODELING METHODOLOGIES

To model the full-relationship from CHO intake to blood
glucose concentration we used the previous approaches
reported by Dalla Man et al.: one for the gastric emptying
process after a CHO intake (Dalla Man et al. (2006)),
and other one for glucose-insulin metabolism (Dalla Man
et al. (2007)). As it was discussed in the Introduction
section, the problem of the gastric emptying model is that
it includes an uncertain parameter (f), which is related to
the amount of ingested CHO. Therefore the design of the
adaptive observer is based on such model that is described
in subsection 2.1. Once the rate of glucose appearance is
estimated, the effect of the CHO intake in the glucose-
insulin metabolism can be illustrated using the model
proposed by Dalla Man et al. (2007), which is described in
subsection 2.2.

2.1 Gastric emptying model

Gastric emptying in the human body regulates the glucose
uptake. After the stomach is emptied, all of the absorbed
material goes into the intestines, this has been proved
by some studies where the glucose absorption in the
small intestine is considerated as a nonlinear process
(Marathe et al. (2013)). Lehmann and Deutsch (1992)
presented a physiological model of glucose and insulin
interaction in type 1 diabetic patients. They described
glucose uptake in the gut by considering that the amount
of glucose (represented in grams of CHO) is being absorbed
at a certain rate. Also the stomach is getting emptied
according to the quantity of the ingested CHO. The
proposed gastric emptying curve was set to be a triangular
function if the ingestion was less than 10 g of CHO or a

trapezoidal function if it was greater or equal than 10 g
of CHO. Recently, Yokrattanasak et al. (2016) considered
gastric emptying as an irregular process by modeling the
transition from the full stomach to the duodenum and the
jejunum. This process was proposed to be a stochastic
model where the meal in the stomach at time t0 is 100%,
and the gastric emptying is done by random releases
(spurts) until the matter in stomach approaches to zero.
Thus, the sequence of spurts can be used as input in a
glucose-insulin metabolism model.

Regarding the physiological modeling approach, Dalla Man
et al. (2006) proposed two models for oral glucose absorp-
tion based on Ra data previously recorded in experiments.
Those models describe the transit of CHO intake in three
phases: two phases for the transit through the stomach,
and one for the transit in the intestines. The main dif-
ference between both models was the way the gastric rate
was described; in one model it is stated as a linear function
and in the other as a nonlinear one, where the latter fits
better Ra data. For this reason, in this paper we use the
second model and it is described below:

dQsto1(t)

dt
=−kgriQsto1(t) +Dδ(t) (1)

dQsto2(t)

dt
=−kempt(Qsto)Qsto2(t) + kgriQsto1(t) (2)

dQgut(t)

dt
=−kabsQgut(t) + kempt(Qsto)Qsto2(t) (3)

where Qsto1(t) (mg) and Qsto2(t) (mg) are the glucose
masses in the stomach for both phases, Qgut(t) (mg) is
the glucose mass in the intestine, kabs (min−1) is the
constant rate of intestinal absorption, kgri is the rate of
grinding, D (mg) is the amount of CHO intake, δ(t) is an
impulse function because the response time of the glucose
metabolism is higher than the response time of the food
intake and it is widely used in literature. The rate of gastric
emptying kempt(Qsto) describes the transit of the total
mass of glucose in the stomach into the intestine, starting
at a maximum rate kmax (min−1) at the beginning of the
transit and decreasing to a minimum rate kmin (min−1),
by the function:

kempt(Qsto) = kmin +
kmax − kmin

2

∗ {tanh

[

5

2D(1− b)
(Qsto(t)− bD)

]

− tanh

[

5

2Dc
(Qsto(t)− cD)

]

+ 2} (4)

where Qsto(t) = Qsto1(t) +Qsto2(t) is the total amount of
glucose in the stomach (mg), b and c are the percentages
of the dose for which kempt decreases and rises back to
(kmax− kmin)/2, respectively. The rate of glucose appear-
ance depends on the final absorption by the intestine:

Ra(t) =
fkabsQgut(t)

BW
(5)

where f (dimensionless) is the fraction of intestinal absorp-
tion that actually appears in plasma and BW is the body
weight (kg). As it can be verified, parameter f depends
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on Ra data involving an experimental protocol which is
no feasible in insulin dosage automation, where the only
no-invasive measure is blood glucose concentration.

2.2 Glucose-insulin metabolism model

As it was stated before, it is necessary to have a model that
describes the glucose-insulin dynamics. Here we present
the model proposed by Dalla Man et al. (2007), which is
divided in five subsystems. The first one is the glucose
subsystem, which describes the mass of glucose in plasma
and rapidly equilibrating tissues (Gp(t)) and the mass
of glucose in slowly equilibrating tissues (Gt(t)). This
subsystem takes endogenous (EGP (t)) and exogenous
(Ra(t)) sources of glucose, as well as the insulin-dependent
(Uid(t)) and -independent (Uii(t)) glucose utilization and
renal excretion (E(t)):

dGp(t)

dt
=EGP (t) +Ra(t)− Uii(t)− E(t)

− k1Gp(t) + k2Gt(t) (6)

dGt(t)

dt
=−Uid(t) + k1Gp(t)− k2Gt(t) (7)

where k1 and k2 (min−1) are the rate parameters of
distribution. The blood glucose concentration G(t) is the
relationship of appearance of the mass of glucose in plasma
Gp(t) in a certain distribution volume VG, this is described
as follows:

G(t) =
Gp(t)

VG

(8)

The second subsystem describes the mass of the insulin in
liver (Il(t)) and in blood (Ip(t)):

dIl(t)

dt
=−(m1 +m3(t))Il(t) +m2Ip(t) + S(t) (9)

dIp(t)

dt
=−(m2 +m4)Ip(t) +m1Il(t) (10)

where m1, m2, m3(t), m4 (min−1) are rate parameters of
distribution and S(t) (pmol/L/min) is the insulin secre-
tion. The blood insulin concentration I(t) can be described
in a similar way than blood glucose concentration, where
the plasmatic mass Ip of insulin is delivered within a
distribution volume VI , this process is described as follows:

I(t) =
Ip(t)

VI

(11)

The endogenous source of glucose, EGP (t) is described by
the third subsystem:

dId(t)

dt
=−ki[Id(t)− I1(t)] (12)

dI1(t)

dt
=−ki[I1(t)− I(t)] (13)

where Id(t) is a delayed insulin signal, I1(t) is an auxiliary
variable of Id(t) and ki (min−1) is the rate parameter
accounting for delay between insulin signal and insulin

action. The fourth subsystem is the glucose utilization
(X(t)):

dX(t)

dt
= −p2UX(t) + p2U [I(t)− Ib] (14)

where Ib (pmol/L) is the basal insulin concentration and
p2U (min−1) is the rate constant of insulin action of the
peripheral glucose utilization.

Finally, the last subsystem describes insulin secretion:

dIpo(t)

dt
=−γIpo(t) + Spo(t) (15)

dY (t)

dt
=















−α[Y (t)− β(G(t)− h)],

if β(G(t)− h) ≥ −Sb

−αY (t)− αSb,

if β(G(t)− h) < −Sb

(16)

where Ipo(t) stands for the insulin in portal vein and
Y (t) is the insulin release threshold. γ (min−1) is the
transfer rate constant between portal vein and liver, h
(mg/dl) is the threshold level of glucose above which β-
cells initiate to produce new insulin, α (min−1) is the
delay between glucose signal and insulin secretion, β
(pmol/kg/min) is the pancreatic responsivity to glucose,
Spo(t) (pmol/L/min) is the insulin secretion of the portal
vein and Sb is the basal insulin secretion.

3. ESTIMATION IN GLUCOSE-INSULIN
METABOLISM

Estimation is a helpful tool in the biomedical field be-
cause of the lack of sensors to measure many physiological
signals. An example of this is in mathematical modeling,
where it is necessary to have enough sensed data to vali-
date the models. Numerous applications of mathematical
observers or estimators can be found in many areas in
order to overcome the lack of sensors; for example Barrett
et al. (1993) optimized the quality of a medical image by
identifying a weak signal in a noisy picture. That was
done by the implementation of a mathematical observer
including the ideal Bayesian, nonprewhitening filter and
a Hotelling observer. In the oncology field, Goldwasser
(2010) proposed a method to estimate the lung cancer
risk due to repeated low-dose of radiation exposures. Also
a statistical approach to understand the natural course
of lung cancer was proposed there. Another application
in oncology is the work by Hirata et al. (2016), where a
parametric estimation problem in a model of androgen de-
privation treatment on prostate cancer was resolved. They
proposed two solutions: cross entropy and the Bayesian
theorem, both approaches were resolved using available
patient data.

There is many work to be done to estimate physiological
variables or parameters in mathematical models of glu-
cose metabolism; because most of the metabolic processes
cannot be measured or their measurement involves clinical
procedures or invasive methods. Regarding gastric empty-
ing model, for example the model presented by Dalla Man
et al. (2006) has the disadvantage that the parameter f
is uncertain. Moreover, in Dalla Man et al. (2007), the
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glucose metabolism model includes such gastric emptying
model, and thus Ra and f are both unknown. Thus, we
present a preliminary estimation of parameter f for the
gastric emptying model of Dalla Man et al. (2006).

3.1 Design of an adaptive observer

In this work, the parameter f is estimated using the
adaptive observer proposed by Rodŕıguez et al. (2015),
which was used in a cascade system of anaerobic digestion
for wastewater. For estimation purposes, the process model
must be structured as the following state affine system:

{

ẋ = A (y, u)x+ β (y, u) + ϕ (y, u) θ
+Bg(y, u, x, θ)

y = Cx
(17)

where x ∈ ℜn is the state vector, θ ∈ ℜq is the unknown
constant parameter vector, u ∈ ℜl is the input vector,
y ∈ ℜr is the measurable output. A (y, u), β (y, u), ϕ (y, u),
g(y, u, x, θ), B and C are matrices of appropriate dimen-
sions. Furthermore, n, q, l and r are the state space, pa-
rameter space, control space, and output space dimensions
of system (17), respectively.

Considering that A (y, u), β (y, u), ϕ (y, u) and g(y, u, x, θ)
satisfy the Assumptions A1-A3 from Rodŕıguez et al.
(2015), an adaptive observer for (17) is given by:



































˙̂x = A (y, u) x̂+ β (y, u) + ϕ (y, u) θ̂ +Bg(y, u, x̂, θ̂)
+{S−1

L CT + ΛΓ−1ΛTCT }Q(y − Cx̂)

ṠL = −ρSL −AT (y, u)SL − SLA (y, u) + CTQC

Λ̇ = {A (y, u)− S−1

L CTQC}Λ + ϕ (y, u)

Γ̇ = −λΓ + ΛTCTQCΛ
˙̂
θ = Γ−1ΛTCTQ(y − Cx̂)

(18)

where x̂ and θ̂ are estimations of x and θ, respectively. The
parameters ρ ∈ ℜ and λ ∈ ℜ modify the gains SL ∈ ℜn×n,
Λ ∈ ℜn×q and Γ ∈ ℜq×q, of the observer for n states, l
inputs, r outputs and q unknown parameters. Q ∈ ℜr×r,
SL and Γ are positive definite symmetric matrices. The
exponential convergence proof of the adaptive observer
(18) to system (17) is demonstrated in Rodŕıguez et al.
(2015). By means of some algebraic manipulation, the
system (1)-(5) can be written as (17) with:

x =

[

x1

x2

x3

]

= f

[

Qsto1(t)
Qsto2(t)
Qgut(t)

]

(19)

θ = f, u = Dδ(t), y = Ra(t),

A (y, u) =

[

−kgri 0 0
kgri −kmax 0
0 kmax −kabs

]

,

β (y, u) =

[

0
0
0

]

, ϕ (y, u) =

[

Dδ(t)
0
0

]

,

B =











0

−
(kmax − kmin)

2
(kmax − kmin)

2











,

g (y, u, x, θ) = [tanh(w)− tanh(v)]x2,

w =
5(x1 + x2)

2Df(1− b)
−

5b

2(1− b)
,

v =
5(x1 + x2)

2Dcf
−

5

2
,

and C =

[

0 0
kabs
BW

]

.

Then, the adaptive observer (18) and the scalar mapping

(19) allow the estimation of Q̂sto1(t), Q̂sto2(t), Q̂gut(t) and

f̂ of the states Qsto1(t), Qsto2(t), Qgut(t) and parameter
f , respectively; if the next assumptions hold:

(i) The system (1)-(3) is completely observable.
(ii) The Assumptions A1-A3 from Rodŕıguez et al. (2015)

are satisfied.

Then, the estimation of Ra(t) is computed as

R̂a(t) =
kabsx̂3

BW
. (20)

4. NUMERICAL IMPLEMENTATION AND RESULTS

The proposed scheme is given by equations of the original
model (1)-(3), and the adaptive observer defined in (18).
The numerical implementation of the whole system was
coded in MATLABr using the differential equation solver
ode45. The simulation time was t ∈ [0, 4000] minutes,
and the vector of initial conditions for the model was
x0 = [0 0 0]T , since the CHO intake is made in fasting
conditions, this is when the stomach is empty, the initial
conditions for the gastric emptying model were stated in
zero.

To obtain acceptable results three meals were considered
in the numerical implementation, as described in Fig. 2.
Each meal was considered as the perturbation performed
by Dδ(t) was modeled as a train of five square pulses, with
period of 6 minutes, giving a total of 30 minutes of CHO
intake (see Fig. 2).

In order to illustrate the convergence of the estimated
states, three different sets of initial conditions were arbi-
trarily stated as x̂1(0) = x̂2(0) = x̂3(0) = 3x105, x̂1(0) =
x̂2(0) = x̂3(0) = 4x105 and x̂1(0) = x̂2(0) = x̂3(0) = 9x105

considering the initial condition for the estimated param-

eter as f̂(0) = 0.5, SL(0) = [I] ∈ ℜ3×3, Λ(0) = Γ(0) = 1.
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Table 1. Parameter nominal values of the
model and adaptive observer proposed by

Dalla Man et al. (2007).

Parameter Value

kgri 0.0558 min−1

kmax 0.0558 min−1

kmin 0.008 min−1

kabs 0.057 min−1

D 78000 mg

b 0.82
c 0.00236 mg−1

BW 78 kg

f 1.2723
ρ 0.0710
λ 2
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Fig. 2. CHO intake is modeled by Dδ(t) as a train of five
square pulses, with period of 6 minutes, giving a total
of 30 minutes per meal. The disturbance is presented
in the full simulation time (top), and a zoom in of a
single meal is also included (bottom).
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Fig. 3. Estimation of the glucose mass in solid phase,Qsto1.

The nominal values of parameter of the model (1)-(3) are
reported in Table 1, as well as the gains of the adaptive
observer. The estimation of states can be verified in Fig.
3 - 5.

Moreover, the convergence of the estimated parameter

f̂ is shown in Fig. 6, considering three different initial

conditions chosen as f̂(0) = 0.25, f̂(0) = 0.5 and f̂(0) = 3.
The resulting estimation of Ra is shown in Fig. 7. In all
these figures, the original (solid line) and estimated (dash
line) value are presented.

5. DISCUSSION AND CONCLUDING REMARKS

The proposed scheme provides a sensorless solution by
the estimation of parameter f and state Qgut. Since the
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Fig. 4. Estimation of the glucose mass in liquid phase,
Qsto2.

0 500 1000 1500 2000 2500 3000 3500

0

1

2

3

4

x 10
5

Time (min)

M
a
s
s
 o

f 
g
lu

c
o
s
e
 i

n
 i

n
te

s
ti

n
e
 (

m
g
)

 

 

Q
gut

(0) = 0

Estimated Q
gut

(0) = 3x10
5

Estimated Q
gut

(0) = 4x10
5

Estimated Q
gut

(0) = 9x10
5

Fig. 5. Estimation of the glucose mass in the intestine,
Qgut.
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Fig. 8. Effect of the estimated disturbance in the glucose-
insulin metabolism model by CHO intake.

observer has a convergence period, the simulation was
made considering a typical 3-meal plan as shown in Fig. 2.
The asymptotic convergence of the observer is illustrated
in Fig. 3 - Fig. 7; there we can see that the scheme only
required the time of one meal to be calibrated. In terms of
glucose-insulin metabolism dynamics this calibration time
is suitable. Regarding the estimation error, it is neglected
after the calibration period. Blood glucose concentration
after a meal can be properly reproduced by the glucose-
insulin metabolism model only if Ra data is available,
which is an unmeasured variable. Once the parameter f
and state Qgut are estimated, then we have an estimation
of Ra (Fig. 7) to be used in the glucose-insulin metabolism
model, and reproduce the effect of a CHO intake Dδ(t)
in the blood glucose concentration G(t) (Fig. 8). In both
cases, the estimation error is also neglected after the cal-
ibration period. In conclusion, we show that the adaptive
observer provides a suitable solution to estimate unmea-
sured processes as the rate of glucose appearance. Thus,
the scheme in Fig. 1 can be a mathematical approach to
represent the full-relationship from CHO intake to blood
glucose concentration, and in consequence, it could be a
useful model to solve the automation of insulin dosage in
T2DM treatment.
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