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ABSTRACT 

Guillermo González Campos 

Candidate for the Degree of Doctor in Engineering with orientation in Information 

Technologies 

 

Universidad Autónoma de Nuevo León 

Facultad de Ingeniería Mecánica y Eléctrica 

 

Title of study: 

Optimization in preparation process of V2O5 using symbolic regression α-β 

 

In this work a symbolic regression algorithm was used for modeling the 

preparation process of the compound V2O5. This algorithm was used with the 

proposal method on this work, were 8 steps are proposed to have better and faster 

results when symbolic regression is applied for industrial processes. The 

preparation of V2O5 consists in modifying the solvent of the medium and 

calcination temperature to obtain a compound with different physical properties. 

A mathematical model of four input variables and one output response was 

generated. This compound is widely used in catalysis and photocatalysis to solve 

environmental problems, such as water and air purification. The aim of creating a 

model was to obtain the best combination of preparation variables that result in a 
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compound with the ideal properties, which promote a better performance in 

catalysis and photocatalysis. A design of experiments was made to obtain a data-

driven model. Initial population, selection and iterations were considered to 

enhance the results when symbolic regression is applied. Genetic programming, 

artificial neural networks and linear regression were compared with symbolic 

regression in order to know which technique has better efficiency to generate 

models. Some metrics related with quality and deliveries of the model were 

proposed to compare the results. The model generated with symbolic regression 

showed better results in comparison with other techniques used, due to the 

metrics used describes less error and better performance to predict new data. 

Responses surfaces were made using the generated SR model and were 

compared showing different perspective in order to optimize the quantity of 

materials used for the preparation process of V2O5. 
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1. INTRODUCTION 

 

 

1.1 PROBLEM DESCRIPTION 

 

 

One of several approaches of researching in computer science is to get 

better and faster ways to solve problems. In some fields of study different from 

computer science there is an opportunity area where new techniques can be 

applied and studied. In computer science, artificial intelligence (AI) techniques 

are being used to help the humanity for solving problems in daily life, industry 

and academic research. AI has many techniques and methods with different 

strengths and weaknesses that can be adapted depending of the application. 

One of the methods to solve problems using AI is the Artificial Neural Network 

(ANN). For example, ANN is common used to solve problems of classification, 

pattern recognition and clustering, among others.  

Genetic Programming is other technique in AI that use genetic or evolutionary 

algorithm to perform a predefined task, this programming evolves as biological 

systems and its evolutionary theories, where genes are changing during the 

time.  There is an application in genetic programming (GP) called symbolic 
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regression (SR) that has been used for modeling on industrial and dynamic 

process [1, 2].  

Models are useful when the process of interest needs to be improved. 

Mathematical models are the most common used, however there are other 

forms to generate models with computer science techniques. ANN can be used 

for optimizing [3]; however, they are black boxes where an explicit formulation 

about the correlation between variables and effects on output response is not 

evident [4]. In chemical processes for academic research, data acquisition of 

experiments is necessary to repeat reactions procedures. The repetitions are 

expensive and time spent in the process is very important even on industry. The 

main motivations for creating models in chemical process are to reduce costs 

and time spent. In this paper, a model using symbolic regression is proposed to 

obtain the best combination of preparation variables of V2O5 that result in a 

compound with the ideal properties that promote a better performance in 

catalysis and photocatalysis. 

 

 

1.2 STATE OF THE ART 

 

A recently study [5] investigate the evidence for SR using GP being an 

effective method to prediction and estimation in software engineering. They 

used 23 primary studies from 1995 to 2008, the results show that SR using GP 

has been applied in three domains within software engineering predictive 

modeling; software quality classification, software cost/effort/size estimation and 

software fault prediction/software reliability growth modeling. Smits et al [6], use 

SR to obtain the maximum scalability to architectures with a very large number 

of processors in a process of a distillation tower with 23 inputs and 5000 
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records. In other work of Smits et al [7] give an overview of the importance of 

variable selection to build robust models from industrial datasets. 

 

Castillo et al [8] uses SR and a design of experiments to obtain the maximum 

data utilization when extrapolation is necessary. In combination with Pareto front 

Castillo et al [9], also uses SR bases on design of experiments and industrial 

data. Kotanchek et al [10] summarize their experience in industrial application of 

genetic programming to empirical modeling and transfer key learnings with 

respect to real-world application. Oliveria et al [11] change the basic behavior of 

the method of SR adding some concepts of evolution strategies (ES) obtaining 

excellent results. Dervis et al [12] made a work where a set of SR problems 

were solved using artificial bee colony programming and then their performance 

was compared with the very well known method evolving computer programs, 

GP. Dabhi et al [13] explored the suitability of ANN and SR to solve empirical 

modeling problems and conclude that SR can deal efficiently with these 

problems. 

 

Cai et al [14] describe a methodology that uses SR to extract correlations from 

heat transfer measurements by searching the form of correlation equation and 

the constants in it that enable the closest fit to experimental data. Zhu et al [15]   

present a method for multivariable SR modeling and predicting, based on gene 

expression programming, furthermore they give an example to explain this 

technique and experiment results show that the model set up is better than 

statistical linear regression techniques. Davidson et al [16] describes a new 

method for creating polynomial regression models and is compared with 

stepwise regression and SR using three example problems, this new method 

includes some changes on the basic genetic programming algorithm first 

proposed by Koza [17]. Finally Barmpalexis et al [18] use SR via GP in the 
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optimization of a pharmaceutical zerorder release matrix table, and its predictive 

performance was compared with ANN models. 

 

Going deeper in SR, more industrial processes have been described with SR 

models, in 2013 a model for cutting machining processes using SR was 

proposed [19]. This model can be used to establish the machining parameters to 

obtain the desired roughness. Recently, a model with SR was used for setting of 

machining parameters and tool selection for a cutting process. The model 

improves the quality of process and increases its performance, which results 

good for the company [20]. 

 

 

1.3 JUSTIFICATION 

 

The benefit of working with new techniques for novel applications on 

industry and science is that the generated knowledge will help other researchers 

to improve their processes of investigation. SR as novel technique still have a 

wide field of study and experimentation on different applications. On this work 

the process of synthesis of the photocatalyst V2O5 has been chosen to optimize 

and improve its process of synthesis. A method is proposed to apply SR on this 

chemical process where some variables are involved to get best results. 
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1.4 HIPOTHESIS 

 

The process of synthesis of the photocatalyst V2O5 can be optimized 

using on technique of artificial intelligence called symbolic regression alpha – 

beta. The way to optimize the process is proposing a method to apply the SR 

with some steps clearly defined.  

 

 

1.5 GENERAL OBJECTIVE 

 

Propose a method to apply symbolic regression and optimize the process 

synthesis of  photocatalyst V2O5. 



CHAPTER 2  BACKGROUND 

   8 

 

 

 

 

2. BACKGROUND 

 

 

2.1 INTRODUCTION TO THE INDUSTRIAL PROCESSES 

 

 

Some centuries ago when industrial revolution started, new machines 

have been created to improve the productive processes using different energy 

sources. Processes like developing textiles, vapor machines for transportation 

were improved during industrial revolution. The main objective for improving the 

processes is to produce more with less materials, energy or resources. 

Production methodologies and new materials have been used to enhance the 

results, but this challenge every time has been more difficult.  

Thanks to the creation of new materials as semiconductors, the 

integrated circuits have been developed and computers have been invented. 

New fields of study arrived thanks at the computers, math problems are solved 

faster than decades ago and computer science starts rising to create techniques 

for problem solving. Actually, techniques of computer science are used to 

improve industrial processes. 
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2.2 INTRODUCTION TO GENETIC PROGRAMING AND SYMBOLIC 
REGRESSION 

 

Genetic Programming (GP) is an extension of Evolutionary Algorithms 

(EA) presented by Koza in 1990 [17]. GP is a representation of a data tree 

structure, where nodes show a function that has arithmetic and logic operations, 

and leafs represent variables and constants. When a GP is running, a function is 

created with the nodes and leafs. This function is evaluated for each generation 

and genetic operators such as crossover and mutation are used to improve the 

results. 

 

 

2.3 INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 

 

Other novel technic on artificial intelligence area are the artificial neural 

network (ANN) which is a technique inspired by biological neuron processing. It 

has a wide application on several sciences for time series forecasting, pattern 

recognition and process control, but the most used application are for 

classification and regression. Training of the neural networks is sensitive to the 

number of neurons in the hidden layer. A better performance of the neural 

network in fitting data can be reached when is involved a high number of 

neurons. However too many neurons in the hidden layer may result in the over 

fitting.  The neural network has some desirable characteristics like robustness 

and precision in the approximation nevertheless neural networks are black 

boxes due to there is not a mathematical equation which explains the model. 
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2.4 INTRODUCTION TO LINEAR REGRESSION 

 

Linear regression is statistical technique used for discovering the relation 

between one or more variables, mainly is applied in engineering and science.  

For example, some industrial processes have one variable that is dependent 

from another one, and its relationship is described in a linear equation or linear 

regression model. If we have data table with 2 variables, where “y” increase its 

value while “x” increases, this behavior can be expressed in a mathematical 

linear model. This model also can be used to predict new values inside the 

range of data table. The simple linear regression model is explained in equation 

1: 

Y =  𝛽0 + 𝛽1x +  ϵ  (1) 

 

Where Y is a linear function of x, and ϵ is the random error term. This technique 

is useful when the variables and its behavior are strongly linked in a linear way. 

However, sometime the processes in real life are not lineal and this technique 

will have some restrictions. So, it is required to use other approaches, such as 

symbolic regression α-β, which is proposed in this work. 

 

 

2.5 INTRODUCTION TO SYMBOLIC REGRESSION α-β 

 

The core of this work is based in symbolic regression α-β approach [4]. 

Where mathematical equations are represented by the combination of α and β 

operators. An α operators is a function which needs one argument and applies 
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one mathematical operation, 13 operations are shown in table 1. These 

operations are chosen as α operators. 

An α operator uses two real number parameters called k1 and k2. Also, 

an integer that describes the mathematical operation is used. The α operator is 

shown in equation 2: 

𝑂𝑝𝑟α(𝑥, 𝑘1, 𝑘2) =  α(𝑘1 ∗ 𝑥 + 𝑘2) (2) 

where x is an input variable and α is an operation. Depending of the α 

operator selected, a specific mathematical operation that requires only one 

argument is executed; For example, if α= 1 then the operation made is (𝑘1 ∗ 𝑥 +

𝑘2). The α operator is an integer number and its value determinate a specific 

mathematical operation described in Table 1. The β operators are described as 

a function that require two arguments and makes the four basic arithmetic 

operations β= c so a β operator equal to 1 imply the plus operator or β (a,b) = a 

+ b, and β (a,b) = a/b if β = 4. 
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Table 1. α Operators parameters and mathematical function related 

α 

Operator 

Mathematical operation 

1 (𝑘1𝑥 + 𝑘2) 

2 (𝑘1𝑥 + 𝑘2)2 

3 (𝑘1𝑥 + 𝑘2)3 

4 (𝑘1𝑥 + 𝑘2)−1 

5 (𝑘1𝑥 + 𝑘2)−2 

6 (𝑘1𝑥 + 𝑘2)−3 

7 (𝑘1𝑥 + 𝑘2)1/2 

8 (𝑘1𝑥 + 𝑘2)1/3 

9 exp(𝑘1𝑥 + 𝑘2) 

10 log(𝑘1𝑥 + 𝑘2) 

11 sin(𝑘1𝑥 + 𝑘2) 

12 cos(𝑘1𝑥 + 𝑘2) 

13 tan(𝑘1𝑥 + 𝑘2) 

 

By means of α–β operators several configurations can be established. A 

basic configuration can be defined when an α operator is assigned per input 

variable then an β operator is used to connect two α operators (3). Usually, a 

simple configuration in majority of the cases is enough for the regression. 

 y= βn-1(…β2(β1(α1), α2(x2)),)),… αn(xn)) (3) 

The representation required is a real vector with n element where n is 

equal to the number of α operators and k parameters plus β operators. Using 

one α operator per variable and connect them by β operators, the number of 

parameters is given by the number of α operators, the number of β operators 

and k parameters (two per α operator). In a basic structure is α+β+2*α, because 

β=α-1, and α = number of variables (Nv) then the number of parameters is 

Nv+(Nv-1)+2*Nv. A normalized real vector can be used to represent operators 



CHAPTER 2  BACKGROUND 

   13 

and k parameters, but α and β operators are integers, so is required the 

following formulation to get its value: 

α=V(i)*13+0.5 (4) 

β =V(i)*4+0.5 (5) 

where . is the ceiling function. There are 13 α operators defined in Table 

1, and 4 β operators (basic algebraic operations). In this work, Evonorm [21, 22] 

is used to solve the problem of selection of the suitable parameters (k’s), and 

integers to define α and β operations. 

 

 

2.6 INTRODUCTION TO THE EVALUATION METRICS 

 

The statistics metrics proposed in this work are: (i) mean square error 

(MSE), (ii) prediction error sum of squares (PRESS) and (iii) R2pred. This 

metrics are used in order to validate a regression model. For this reason, is 

necessary to try it with new experimental data to determine how well is the 

performance of the model in practice [23]. The simplest measure is the residual 

calculated as the difference (e(i)) between new observations made by the 

response of the process (y(i)) and predicted response generated by the 

regression model made (ŷ(i)), (Eq. 6). 

𝑒(𝑖) = 𝑦(𝑖) − ŷ(𝑖) (6) 

PRESS is a measure of how well a model works to predict new data. 

Usually, a small value of PRESS is desirable (Eq. 7). In this case, PRESS is 

obtained using cross validation. 

𝑃𝑅𝐸𝑆𝑆 = ∑ (𝑦(𝑖) − ŷ(𝑖))2𝑛
𝑖=1  (7) 
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The percentage of variability R2pred is a measurement for indicating the 

efficiency of the model to predict new observations. A value close to one is 

desirable on this indicator (Eq. 8). 

𝑅𝑝𝑟𝑒𝑑
2 = 1 −

∑ (𝑦(𝑖)−ŷ(i))𝑛
𝑖=1

𝑦′𝑦−(∑ 𝑦(𝑖))2𝑛
𝑖=1

 (8) 

 

MSE calculates the average of squared errors between new observations 

and experimental data. 

An additional metric is proposed to measure the time of calculations for 

the model; the reference to evaluate how fast it works generating models is 

central processing unit (CPU) time of the computer running the algorithm. 

 

 

2.7 PROPOSED METHOD FOR APPLYING SYMBOLIC REGRESSION α-β 

 

In this work, a method for using symbolic regression in an industrial 

process is proposed in order to optimize it. The method proposed is divided in 7 

steps to obtain the best information quality and results. 

 

Steps: 

1. Identify Variables. On this step is necessary to identify the variables of 

the process; input variables and response. The input variables change 

the result of response when we change its values. The response variable 

is the desired output that determines how well our process was 

performed. 
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2. Data acquisition. For the step 2, we need to get some data from the 

process, in order to feed the symbolic regression algorithm and get a 

good training. The data can be obtained from historic results and it is 

recommended to have data with good and bad results, but with all the 

information complete from all variables. If it is not possible to get many 

results from the process, a Design Of Experiments (DOE) can be mode. 

With a DOE, fewer experiments are needed to obtain data values. 

 

 

3. Pre processing. Once a data table is obtained, this information should 

be used for the symbolic regression. Nevertheless some pre processing 

is needed to make the calculations faster. The input and response data 

will be normalized from 0 to 1.  It is proposed to use 80% of data to 

generate models with SR and the 20% left will be used for testing. This 

testing will show results about how well the model generated is good for 

predicting.  

 

4. Define architecture for modeling. As is mentioned before, some α 

operators are used for each variable in symbolic regression α-β. For this 

method is proposed to use 3 α operators for each variable. This number 

can change, however if there are more α operators, the complexity of 

model also changes. The β remains as an operator that makes the four 

basic operations. 
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5. Set characteristics of evolutionary algorithm. When we have the data 

and the architecture of SR algorithm, now the evolutionary algorithm 

needs to be set in order to have the best population in less time and with 

few resources.  

6. Results validation. To evaluate the best performance, four indicators are 

selected, the same as mentioned before: Mean Square Error (MSE), 

R2Pred, PRESS and CPU time.  

7. Analysis of mathematical model. When the SR is executed, a model is 

generated. This mathematical model is the combination of the 4 basic 

operations and the 13 operations defined in previously in the algorithm. 

This equation now can be analyzed, for example to find which is the 

strongest variable that is affecting the response. In this method, this step 

is recommended in order to find the variables that we can optimize with 

other statistical techniques. 

 

8. Optimize model and usage. Using the model to predict new data is the 

last step to optimize the process. With the mathematical model it is not 

necessary a sophisticated software to forecasting. Response surface can 

be made and other types of plots. 

 

These 8 steps are for the proposal method to apply symbolic regression α–β for 

industrial process, in order to obtain an optimization of it. 
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3. EXPERIMENTAL DESCRIPTION 

 

 

3.1  DESCRIPTION OF PROCESS 

 

The synthesis process of V2O5 consists in 4 inputs variables and 1 output 

response. This output response is the desired variable to optimize, modifying the 

inputs. The figure # shows an iconic model of the process.  

 

 
Figure 1. Synthesis process of V2O5 

 

This process is interesting to create a model, because even though there is an 

explanation of how to synthetize this compound, some of the variables are not 

probed which of them have a high impact in the results. Make trail and fail samples 
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to find the best result of the compound can be expensive and a waste of time. On 

industry and research, this samples can be predicted using computer science 

techniques. For that reason, this chemical process is useful to try how effective is 

symbolic regression applied for the process. The intention is clear, and is trying 

to get better results using fewer resources, if with this model generated by SR, 

the process con be optimized to use less heat treatment, water, or other element, 

then goal will be reached.  Is feasible to obtain a mathematical model with SR, 

instead of a black box. 

 

3.1.1  V2O5 compound 

The V2O5 compound has been widely studied for the reduction of NOx 

gases by selective catalytic reduction in presence of ammonia (SCR-NH3) 

[24,25,26]. In this reaction, one important parameter is the number of reaction 

sites, which is related with its surface area. In addition, the acid sites present in 

the V2O5 surface promotes a better efficiency of the reduction of NOx to N2 and 

O2 gases. On the other hand, in the area of photocatalysis the oxide V2O5 had 

been propose as photocatalyst to carry out the removal of organic compounds 

from industrial waste, i.e., petrochemical and textile [27,28]. In these reactions, 

the surface area plays an important role to carry out the adsorption of the 

pollutants in the media to start to decompose them in carbon dioxide and water. 

For this purpose, we propose a method to prepare V2O5 by modifying different 

experimental conditions that promotes the development of high surface area 

values.  

 

3.1.2  V2O5 preparation and data acquisition 

The V2O5 samples were prepared by precipitation method. The chemical 

materials involved in the process were deionized water, ethylene glycol 

(HOCH2CH2OH) (Aldrich, 99%), and ammonium vanadate (NH4VO3) (Aldrich, 

99%). For this purpose, 0.0054 mole of NH4VO3 was dissolved in 50 mL of 
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distillated water or ethylene glycol under vigorous stirring for 30 minutes. The 

solution was exposed to ultrasound irradiation (40 kHz, 70W) under ambient air 

at 60°C for different time intervals (0-120 minutes). Once the time has lapsed, the 

resulting mixture was heated at 100°C to promote the slow evaporation of the 

solvent. The resulted powders were calcined at 400 and 500°C for 24 h to obtain 

polycrystalline powders.  

According to the method proposed in this work, the Step 1 (Identify variables) 
can be done. The input variables are identified, they are:  

 

1. Quantity of H20 in mL. 

2. Quantity of EG in mL 

3. Ultrasonic treatment time in minutes 

4. Temperature in Celsius degrees 

 

The response output is: 

 

1. Surface are in m2g-1 

 

Once the variables are identified, the Step 2 (Data acquisition) from the method 

was started. For this chemical process, the variables were modified according 

with a design of experiments (DOE) to prepare V2O5 at different conditions. As a 

result, 18 samples were prepared modifying 4 inputs variables and measuring one 

response to evaluate its physical properties. The experimental data set is show in 

the Table 2. 
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Table 2. Experimental data set of V2O5 

Sampl

e 
H2O (mL) EG (mL) 

Ultrasonic 

time (min) 
T (°C) 

Surface area 

(m2g-1) 

1 0 50 0 400 7.7419 

2 0 50 60 400 12.1860 

3 0 50 120 400 10.3980 

4 0 50 0 500 4.1292 

5 0 50 60 500 1.9645 

6 0 50 120 500 2.3174 

7 25 25 0 400 7.4281 

8 25 25 60 400 8.0970 

9 25 25 120 400 9.7480 

10 25 25 0 500 3.9813 

11 25 25 60 500 4.2494 

12 25 25 120 500 4.5984 

13 50 0 0 400 2.9952 

14 50 0 60 400 4.2209 

15 50 0 120 400 4.8132 

16 50 0 0 500 2.9073 

17 50 0 60 500 4.6259 

18 50 0 120 500 3.8645 
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3.2  CHARACTERISTICS OF EVOLUTIONARY ALGORITHM 

 

For this work Evonorm is used as the evolutionary algorithm [21,22]. 

Some of the parameters to adjust that will affect directly to response 

variable are population, individuals selected and iterations.  

The table 3 shows the values selected to adjust in the algorithm, and with 

this data, a design of experiments (DOE) were used. 

 

Table 3. Level of DOE  

Population Selection Iterations 

100 10 150 

200 20 500 

  30   
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Twelve groups were needed to know its best performance, table 4 shows 

the groups. 

 

Table 4. Groups of DOE 

Group Population Selection Iterations 

1 100 10 150 

2 100 10 500 

3 100 20 150 

4 100 20 500 

5 100 30 150 

6 100 30 500 

7 200 10 150 

8 200 10 500 

9 200 20 150 

10 200 20 500 

11 200 30 150 

12 200 30 500 

 

Finally, on appendix A is shown the information obtained from running the 

algorithm for 17 hours on 120 runs during different days. The equipment 

used to run the algorithm was a MacBook Air Laptop with 4GB RAM and a 

processor of 1.5 Ghz Core i5. 

 

With this information, on table  5 now we can observe that the best group 

with better performance indicators is the group 7, however its time 

performance is not the best but is under the mean (425 seconds). 

Meanwhile the best group with the faster time is group 5, but its 

performance indicator to predict new data is very poor. 
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Table 5. Results of means of each group of DOE 

Group MSE R2pred PRESS 
CPU time 

(Seconds) 

1 0.004216 0.9798 0.4216 161.3561 

2 0.00378 0.9795 0.378 729.3228 

3 0.004385 0.9782 0.4385 129.8918 

4 0.004174 0.9796 0.4174 463.435 

5 0.004443 0.9794 0.4443 120.6474 

6 0.00404 0.98 0.404 387.8231 

7 0.0032499 0.984 0.32499 220.2551 

8 0.00427 0.9795 0.427 721.9884 

9 0.003831 0.982 0.3831 231.5504 

10 0.0041221 0.9784 0.41221 704.9504 

11 0.003916 0.9789 0.3916 265.6669 

12 0.003608 0.9811 0.3608 968.1012 

 

With these results the proposal to use in the architecture for evolutionary 

algorithm for symbolic regression alpha-beta is using population with 200, 

the individual selected with 10 and running for 150 iterations. 

 

 

3.3  OTHER APPROACHES TO COMPARE 

 

 When the data is acquired, before to use it with SR will be helpful to compare it 

with other tools. This comparison is to know which techniques can explain the 

process as well thru a model, it is proposed to use genetic programming, artificial 

neural network and linear regression. If a comparison is made using the results 

with other techniques, will have a general view of how well it performs the SR 
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algorithm for this process. Some industrial process can be explained with simpler 

solutions or not.  

 

Genetic programming uses the following operations {+,-,*,/,exp,log} for all nodes 

for 300 generations, considering 100 individuals, a simply crossover with a 

probability of 0.9 and a simple mutation with a probability of 0.05. This parameters 

for GP were found the best solution using the key performance indicators of 

PRESS, MSE and R2Pred. An 80% of experimental data is used for model 

building and 20% for test validation.  

 

For linear regression is executed under the same conditions and evaluated with 

the same statistical metrics that are used in this work. 

 

With artificial neural network approach, a perceptron-multilayer neural network 

with back propagation rule was used, with 8 neurons on middle layer and a 

constant learning parameter 0.25 and a moment of 0.5 during 800 epochs. These 

configuration parameters of ANN were the best combination found to get better 

results using the same statistical metrics that are used with the other techniques. 
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4. RESULTS 

 

 

4.1 MODELLING WITH SYMBOLIC REGRESSION 

  

 With the data obtained in Step 2, the Step 3 (Pre processing) was made 
when the algorithm was executed, all the data was normalized from 0 to 1 and, it 

was defined 80% of data used for generate models and 20% to test them. 

 

To define the architecture for modeling in Step 4, the SR algorithm was 

defined with 3 α operators. 

 

The Step 5 (Set characteristics of evolutionary algorithm), was defined as the 

metohod proposal in subchapter 3.2, with a population of 200, 10 individual 

selected per iteration, during 150 iterations. 

The model generated with SR for the oxide V2O5 with the best parameter 

configuration is show in equation 9 (coefficients of equation are normalized): 

𝑓(𝑥1𝑥2𝑥3) = (((((tan(0.1990473𝑥1 + 0.9119780) + log(0.0415200𝑥2 +

0.9910278)) + (0.997222𝑥3 + 0.4656022)−2/(0.6793249𝑥1 + 0.3253794)1/2 −
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sin(0.1825961𝑥2 + 0.9986060))/(0.3713540𝑥3 + 0.7209171)) − (0.0123117𝑥1 +

0.9517829)3 ∗ (0.0858313𝑥2 + 0.3856453)) + sin(0.7869533𝑥3 + 0.7936947))/

(0.8517493 + 0.9853957)3 (9) 

 

The results with the model and the data set are compared in a plot, the figure 2 

shows the comparision between them. 

 

 
Fig.2 . Comparison data between model results 

 

Also, the evaluation (Figure 3) fitness graph is showed to explain how was its 

behavior during time on 150 iterations. 
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Fig. 3. Evaluation plot 

 

Once the step 5 was performed, the Step 6 (Results validation),  was 

executed, using the performance indicators. The statistics metrics results for this 

equation are MSE equal to 0.0017962, PRESS equal to 0.1796221 and R2pred 

equal to 0.99125554.2   
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4.2 COMPARISONS 

 

The same results validation using the performance indicators, were used 

for the other tecniques. A resume of performance of the techniques to generate 

the best model for the preparation process oxide V2O5 is shown on the table 6.  

 

Table 6. Statistical metrics results of the best model found of V2O5 for linear 

regression, genetic programming and symbolic regression alpha-beta 

Technique MSE PRESS R2pred 
CPU 

time 

Linear regresssion 0.146478636 14.6478636 0.364175752 0.009 

Genetic programming 0.080161008 8.01610081 0.608180149 488.122 

Artificial neural network 0.010416923 1.041692271 0.935792749 18.423 

Symbolic regression 

alpha-beta 
0.0017962 0.1796221 0.9912555 125.581   

 

 

 

Considering results shown in table 6 the ideal criteria low error, high R2pred and 

low PRESS can be taken here. The best technique for predicting new data 

according to this table is SR. The technique with less error according to this table 

is SR, the results show that the best statistic metric values belong to SR model. 

Performance on CPU time is different in each case and it is expected to be like 

this, due the fact that SR runs for 150 generations, GP for 300 and ANN for 800 

generations. Using artificial neural networks could be a good option, but an explicit 

correlation between variables and effects on output response is not evident in 

other words ANN are black boxes. 
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The Step 7 (Analysis of mathematical model)  was performed. The “y” is 

surface area, H2O is 𝑥1, ethylenglycol is 𝑥2, ultrasound irradiation is 𝑥3 and heat 

treatment temperature is 𝑥4. Symbolic regression eliminates the factor 𝑥4, this 

mean that heat treatment temperature is irrelevant for the response according to 

this model generated.  

 

It can be see from equation 9 that the time of ultrasound exposure of the 

reactive mixture is a very important factor, which can be related to the acoustic 

cavitation that promotes extreme conditions inside the collapsing bubble with hot 

spots of 5000 K, pressures of 1000 bar (Luévano-Hipólito et al 2014). 

 

 

4.3  RESPONSE SURFACES 

 

Finally for the proposal method to apply SR for a industrial process, the 

Step 8 (Optimize model and usage), was made. In order to optimize the 

process, the model generated with SR is used to create response surfaces. For 

the response surfaces, the variable 𝑥4 was fixed as a static value of 400 and 

𝑥1was fixed to 0, 25 and 50. The variables 𝑥2 and 𝑥3 were calculated with the 

equation 9 with different values.  

 

For 𝑥2 the values starts from 0 to 50 with steps of 1. For 𝑥3 the values starts from 

0 to 120 with steps of 1. In x axis is the variable 𝑥3, in the y axis is the variable 𝑥2 

and z axis is the response. 
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Fig.4 Response surface with 𝑥1 at 0 

 
Fig.5 Response surface with 𝑥1 at 25 
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Fig.6 Response surface with 𝑥1 at 50 

 

With the response surfaces we can compare each other. It is observed that in 

figure 6 with 𝑥1 = 50, is easier to reach greater numbers for the response variable 

even if values of 𝑥2 and 𝑥3 are no high, which means for the interested in 

preparation process of V2O5 that using water instead of other materials can get 

similar results that using more energy or more expensive materials. 
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5. CONCLUSIONS 

 

 

On this work, a method to apply a symbolic regression alpha-beta algorithm to 

industrial process was proposed. The method consists in 8 steps to obtain the 

better and faster results using the algorithm. To apply the method, a mathematical 

model was generated for the preparation process of V2O5. This model was 

generated from experimental data obtained in a chemistry laboratory. The 

compound V2O5 has 18 samples on data set. In this case, 4 variables were the 

input variables and 1 output response. In order to compare the efficiency of the 

method proposed to apply SR, a comparison was made using similar approaches 

like linear regression, artificial neural network and genetic programming, the 

performance of each model was evaluated using statistical metrics and CPU time 

running the algorithm. To enhance the performance of SR algorithm a DOE was 

made to get the best configuration parameters, these configuration parameters 

were set for the proposal method. Finally, the results showed that symbolic 

regression model have better results on the statistical metrics than other 

techniques, nevertheless the CPU time was not the best enough, due the 

calculations that are needed to be performed during execution of SR algorithm. 

 

 Finally, the last step of the method is use the data for optimizing and response 

surfaces were made using the model generated by SR and were compared each 

other. The comparison of response surfaces showed different perspective for the 
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input variables and to optimize the quantity of materials used for the preparation 

of V2O5. 

Symbolic regression can be used in other chemical process to optimize the 

process methods; however, for future work other output values on experimental 

data set of this compound could be used to generate new models in order to have 

the ideal properties that promote a better performance in catalysis and 

photocatalysis. 

 

For future work, there are many possibilities to improve the algorithm according 

to the process of apply. For example, the type of operators can be changed, with 

other ones that describe better the process. The use of hierarchies to employ 

equations that represent hidden abstractions. And other type of process con be 

optimized with symbolic regression alpha-beta to prove that the algorithm works 

in a broader context and is robust enough. 
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APPENDIX A 
 

Run Training 
Data 

Populat
ion 

Select
ion 

Iteratio
ns 

# 
Alphas 

# 
Betas MSE R2pred PRESS CPU time 

1 0.8 100 10 150 13 4 0.00385 0.982 0.385 138.471 

2 0.8 100 10 150 13 4 0.00254 0.987 0.254 181.123 

3 0.8 100 10 150 13 4 0.00204 0.99 0.204 201.273 

4 0.8 100 10 150 13 4 0.00255 0.988 0.255 172.567 

5 0.8 100 10 150 13 4 0.00324 0.986 0.324 168.481 

6 0.8 100 10 150 13 4 0.00703 0.969 0.703 124.611 

7 0.8 100 10 150 13 4 0.00721 0.954 0.721 196.366 

8 0.8 100 10 150 13 4 0.00328 0.986 0.328 135.784 

9 0.8 100 10 150 13 4 0.00391 0.983 0.391 176.306 

10 0.8 100 10 150 13 4 0.00651 0.973 0.651 118.579 

Mean              0.00421
6 0.9798 0.4216 161.3561 

11 0.8 100 10 500 13 4 0.00511 0.972 0.511 621.6 

12 0.8 100 10 500 13 4 0.00722 0.966 0.722 698.72 

13 0.8 100 10 500 13 4 0.00604 0.967 0.604 737.551 

14 0.8 100 10 500 13 4 0.00153 0.992 0.153 678.582 

15 0.8 100 10 500 13 4 0.00481 0.971 0.481 631.451 

16 0.8 100 10 500 13 4 0.00261 0.982 0.261 779.718 

17 0.8 100 10 500 13 4 0.00448 0.977 0.448 823.382 

18 0.8 100 10 500 13 4 0.00117 0.995 0.117 684.265 

19 0.8 100 10 500 13 4 0.00187 0.988 0.187 738.284 

20 0.8 100 10 500 13 4 0.00296 0.985 0.296 899.675 

Mean              0.00378 0.9795 0.378 729.3228 
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21 0.8 100 20 150 13 4 0.00524 0.977 0.524 200.414 

22 0.8 100 20 150 13 4 0.00175 0.992 0.175 152.674 

23 0.8 100 20 150 13 4 0.00503 0.972 0.503 159.257 

24 0.8 100 20 150 13 4 0.00603 0.963 0.603 145.805 

25 0.8 100 20 150 13 4 0.00447 0.981 0.447 115.013 

26 0.8 100 20 150 13 4 0.00538 0.974 0.538 113.446 

27 0.8 100 20 150 13 4 0.00339 0.984 0.339 114.552 

28 0.8 100 20 150 13 4 0.00491 0.974 0.491 85.074 

29 0.8 100 20 150 13 4 0.00291 0.986 0.291 122.585 

30 0.8 100 20 150 13 4 0.00474 0.979 0.474 90.098 

Mean              0.00438
5 0.9782 0.4385 129.8918 

31 0.8 100 20 500 13 4 0.00373 0.983 0.373 453.444 

32 0.8 100 20 500 13 4 0.00214 0.99 0.214 515.934 

33 0.8 100 20 500 13 4 0.00419 0.98 0.419 525.564 

34 0.8 100 20 500 13 4 0.00223 0.986 0.223 528.94 

35 0.8 100 20 500 13 4 0.0041 0.982 0.41 270.103 

36 0.8 100 20 500 13 4 0.0043 0.979 0.43 269.703 

37 0.8 100 20 500 13 4 0.00708 0.971 0.708 471.594 

38 0.8 100 20 500 13 4 0.00609 0.968 0.609 510.56 

39 0.8 100 20 500 13 4 0.00378 0.978 0.378 594.858 

40 0.8 100 20 500 13 4 0.0041 0.979 0.41 493.65 

Mean              0.00417
4 0.9796 0.4174 463.435 

41 0.8 100 30 150 13 4 0.0052 0.977 0.52 123.298 

42 0.8 100 30 150 13 4 0.00631 0.967 0.631 88.327 

43 0.8 100 30 150 13 4 0.0022 0.99 0.22 129.288 

44 0.8 100 30 150 13 4 0.00498 0.975 0.498 87.693 

45 0.8 100 30 150 13 4 0.00539 0.976 0.539 136.345 

46 0.8 100 30 150 13 4 0.00345 0.986 0.345 126.708 

47 0.8 100 30 150 13 4 0.00246 0.988 0.246 149.533 

48 0.8 100 30 150 13 4 0.0069 0.969 0.69 147.329 
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49 0.8 100 30 150 13 4 0.00361 0.984 0.361 111.741 

50 0.8 100 30 150 13 4 0.00393 0.982 0.393 106.212 

Mean              0.00444
3 0.9794 0.4443 120.6474 

51 0.8 100 30 500 13 4 0.0019 0.991 0.19 335.092 

52 0.8 100 30 500 13 4 0.00398 0.978 0.398 437.247 

53 0.8 100 30 500 13 4 0.0043 0.985 0.43 362.92 

54 0.8 100 30 500 13 4 0.0069 0.965 0.69 491.435 

55 0.8 100 30 500 13 4 0.00385 0.98 0.385 445.225 

56 0.8 100 30 500 13 4 0.00489 0.973 0.489 391.251 

57 0.8 100 30 500 13 4 0.00166 0.991 0.166 392.84 

58 0.8 100 30 500 13 4 0.00214 0.989 0.214 353.521 

59 0.8 100 30 500 13 4 0.00529 0.974 0.529 328.528 

60 0.8 100 30 500 13 4 0.00549 0.974 0.549 340.172 

Mean              0.00404 0.98 0.404 387.8231 

61 0.8 200 10 150 13 4 0.00421 0.973 0.421 211.956 

62 0.8 200 10 150 13 4 0.00303 0.987 0.303 223.955 

63 0.8 200 10 150 13 4 0.00172 0.99 0.172 242.569 

64 0.8 200 10 150 13 4 0.00241 0.989 0.241 213.18 

65 0.8 200 10 150 13 4 0.00292 0.987 0.292 206.297 

66 0.8 200 10 150 13 4 0.00697 0.971 0.697 224.216 

67 0.8 200 10 150 13 4 0.0043 0.977 0.43 223.994 

68 0.8 200 10 150 13 4 0.0034 0.983 0.34 218.608 

69 0.8 200 10 150 13 4 0.00255 0.988 0.255 224.101 

70 0.8 200 10 150 13 4 0.00098
9 0.995 0.0989 213.675 

Mean              0.00325 0.984 0.325 220.2551 

71 0.8 200 10 500 13 4 0.00548 0.973 0.548 685.716 

72 0.8 200 10 500 13 4 0.00521 0.974 0.521 669.948 

73 0.8 200 10 500 13 4 0.00537 0.971 0.537 708.825 

74 0.8 200 10 500 13 4 0.00466 0.974 0.466 719.38 

75 0.8 200 10 500 13 4 0.00491 0.979 0.491 666.221 
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76 0.8 200 10 500 13 4 0.00124 0.994 0.124 874.499 

77 0.8 200 10 500 13 4 0.00402 0.978 0.402 673.456 

78 0.8 200 10 500 13 4 0.00605 0.976 0.605 731.105 

79 0.8 200 10 500 13 4 0.00201 0.991 0.201 707.201 

80 0.8 200 10 500 13 4 0.00375 0.985 0.375 783.533 

Mean              0.00427 0.9795 0.427 721.9884 

81 0.8 200 20 150 13 4 0.00331 0.983 0.331 227.205 

82 0.8 200 20 150 13 4 0.00357 0.983 0.357 411.805 

83 0.8 200 20 150 13 4 0.00383 0.983 0.383 220.228 

84 0.8 200 20 150 13 4 0.00429 0.974 0.429 208.118 

85 0.8 200 20 150 13 4 0.00435 0.981 0.435 205.104 

86 0.8 200 20 150 13 4 0.00328 0.986 0.328 203.19 

87 0.8 200 20 150 13 4 0.00423 0.983 0.423 216.121 

88 0.8 200 20 150 13 4 0.00255 0.986 0.255 215.087 

89 0.8 200 20 150 13 4 0.00388 0.982 0.388 204.132 

90 0.8 200 20 150 13 4 0.00502 0.979 0.502 204.514 

Mean              0.00383
1 0.982 0.3831 231.5504 

91 0.8 200 20 500 13 4 0.00531 0.974 0.531 656.586 

92 0.8 200 20 500 13 4 0.00499 0.975 0.499 698.608 

93 0.8 200 20 500 13 4 0.00468 0.976 0.468 661.698 

94 0.8 200 20 500 13 4 0.00197 0.989 0.197 673.456 

95 0.8 200 20 500 13 4 0.00089
1 0.996 0.0891 649.955 

96 0.8 200 20 500 13 4 0.00447 0.977 0.447 1021.038 

97 0.8 200 20 500 13 4 0.00336 0.981 0.336 699.231 

98 0.8 200 20 500 13 4 0.00521 0.975 0.521 664.877 

99 0.8 200 20 500 13 4 0.00545 0.969 0.545 660.23 

100 0.8 200 20 500 13 4 0.00489 0.972 0.489 663.825 

Mean              0.00412
2 0.9784 0.4122 704.9504 

101 0.8 200 30 150 13 4 0.00399 0.978 0.399 224.421 
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102 0.8 200 30 150 13 4 0.00283 0.985 0.283 226.597 

103 0.8 200 30 150 13 4 0.00438 0.97 0.438 311.782 

104 0.8 200 30 150 13 4 0.00402 0.98 0.402 467.748 

105 0.8 200 30 150 13 4 0.0045 0.97 0.45 238.065 

106 0.8 200 30 150 13 4 0.00428 0.982 0.428 233.233 

107 0.8 200 30 150 13 4 0.00503 0.976 0.503 244.913 

108 0.8 200 30 150 13 4 0.00325 0.982 0.325 163.482 

109 0.8 200 30 150 13 4 0.00429 0.98 0.429 274.477 

110 0.8 200 30 150 13 4 0.00259 0.986 0.259 271.951 

Mean              0.00391
6 0.9789 0.3916 265.6669 

111 0.8 200 30 500 13 4 0.00216 0.989 0.216 1023.71 

112 0.8 200 30 500 13 4 0.00366 0.982 0.366 905.585 

113 0.8 200 30 500 13 4 0.00387 0.979 0.387 1035.032 

114 0.8 200 30 500 13 4 0.00201 0.99 0.201 958.163 

115 0.8 200 30 500 13 4 0.00403 0.977 0.403 991.27 

116 0.8 200 30 500 13 4 0.00344 0.979 0.344 962.446 

117 0.8 200 30 500 13 4 0.00252 0.989 0.252 1017.397 

118 0.8 200 30 500 13 4 0.00458 0.979 0.458 1116.642 

119 0.8 200 30 500 13 4 0.0037 0.982 0.37 747.471 

120 0.8 200 30 500 13 4 0.00611 0.965 0.611 923.296 

Mean              0.00360
8 0.9811 0.3608 968.1012 
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APPENDIX B 
 

Coded symbolic regression alpha-beta //Desnormalization 

 //Interval [0, 1] -> [LMIN, LMAX] function a=desnormalization(Vn, LMIN, 

LMAX) a=Vn*LMAX+LMIN*(1-Vn); if a>LMAX 

     a=LMAX; 

 end 

 if a<LMIN 

     a=LMIN; 

 end endfunction //Normalization. Interval [LMIN, LMAX] -> [0, 1] function 

a=normalization(Van, LMIN, LMAX) a=(Van-LMIN)/((LMAX-

LMIN)+0.000001); if a>1 

     a=1; 

 end 

 if a<0 

     a=0; 

 end endfunction function [posmax, valmax]=maxp(V) temp=size(V); 

 NTB=max(temp); posmax=0; 

 valmax=0; 

 for b=1:NTB 

     if V(b)>valmax 

         valmax=V(b); 

         posmax=b;     

     end 
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 end endfunction //Algoritmya Evolutionary computation 2004 

 //Proyect of simplification of algorithms 

 //Autor: Luis Torres T. 

 //All rights reserved 

 //May 2004 

 //Evolution Strategies and Genetic Algorithms 

 //Maxp function [posmin, valmin]=minp(V) temp=size(V); 

 NTB=max(temp); posmin=0; 

 valmin=1000000000; 

 for b=1:NTB 

     if V(b)<valmin 

         valmin=V(b); 

         posmin=b;     

     end 

 end endfunction function [M]=shaking(M) [NTPat NTCol]=size(M); 

 //Shaking the information for i=1:10*NTPat 

     pos1 = round(rand()*NTPat+0.5); 

     pos2 = round(rand()*NTPat+0.5); 

      

     temp=M(pos1,:); 

     M(pos1,:)=M(pos2,:); 

     M(pos2,:)=temp; 

   end 

    

 endfunction function [DataTrain, DataVal1, DataVal2, 

MRange]=GenTrainVal(DataExp, percent) //Generation of training and 

validation databases [NTPat NTCol]=size(DataExp); 

 //Shaking the information for i=1:10*NTPat 

     pos1 = round(rand()*NTPat+0.5); 

     pos2 = round(rand()*NTPat+0.5); 
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     temp=DataExp(pos1,:); 

     DataExp(pos1,:)=DataExp(pos2,:); 

     DataExp(pos2,:)=temp; 

 end //Normalization of information //Normalization of the data; 

 [NTD NTCols]=size(DataExp); //columns of the data  

 [NTR2,NTC2]=size(DataExp); 

 DataN=zeros(NTR2,NTC2); 

 //Matriz to save every range of the matrix 

 MRange=zeros(NTCols,2);//1-Lmin, 2-Lmax 

 for col=1:NTCols 

     Lmax = max(DataExp(:,col)); //+max(DataExp(:,col))*0.1; 

     Lmin = min(DataExp(:,col)); //-min(DataExp(:,col))*0.1; 

     MRange(col,1)=Lmin; MRange(col,2)=Lmax; 

     DataN(:,col)=(DataExp(:,col)-Lmin)./(Lmax-Lmin); 

 end //Generation of Training data base 

 //percent=0.8; 

 posel=round(percent*NTPat); 

 DataTrain = DataN(1:posel,:); //Generation of validation Data Base 

 //Direct experimental data 

 DataVal1 = DataN(posel:NTPat,:); //Random NTPat data 

 DataVal2=zeros(NTPat,NTCols); 

 for d=1:100 

     pos=round(rand()*NTPat+0.5); 

     DataVal2(d,:) = DataN(pos,:); 

 end endfunction    function r=OprAlpha(alphao, k1, k2, x) r=0; 

 if alphao==1 

     r=(k1*x+k2); 

 end if alphao==2 

     r=(k1*x+k2)^2; 

 end if alphao==3 

     r=(k1*x+k2)^3; 
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 end if alphao==4 

     r=(k1*x+k2+0.00000001)^(-1); 

 end if alphao==5 

     r=(k1*x+k2+0.00000001)^(-2); 

 end if alphao==6 

     r=(k1*x+k2+0.00000001)^(-3); 

 end if alphao==7 

     r=(k1*x+k2)^(1/2); 

 end if alphao==8 

     r=(k1*x+k2)^(1/3); 

 end if alphao==9 

     r=exp(k1*x+k2); 

 end if alphao==10 

     r=log(k1*x+k2+0.000000000000001); 

 end if alphao==11 

     r=sin(k1*x+k2); 

 end if alphao==12 

     r=cos(k1*x+k2); 

 end if alphao==13 

         r=sin(k1*x+k2)/(cos(k1*x+k2)+0.0000000001); 

 end if alphao<1 | alphao>13 

   r=0; 

 end endfunction function r=OprAlphaV2(alphao, k1, k2, x) r=0; 

 if alphao==1 

     r=(k1*x+k2); 

 end if alphao==2 

     r=(k1*x+k2)^2; 

 end if alphao==3 

     r=(k1*x+k2)^(1/2); 

 end if alphao==4 

     r=(k1*x+k2+0.00000001)^(-1); 
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 end if alphao==5 

     r=exp(k1*x+k2); 

 end if alphao==6 

     r=log(k1*x+k2+0.000000000000001); 

 end if alphao==7 

     r=(k1*x+k2+0.00000001)^(-2); 

 end if alphao==8 

     r=(k1*x+k2)^3; 

 end if alphao==9 

     r=(k1*x+k2+0.00000001)^(-3); 

 end if alphao==10 

     r=(k1*x+k2)^(1/3); 

 end if alphao==11 

     r=sin(k1*x+k2); 

 end if alphao==12 

     r=cos(k1*x+k2); 

 end if alphao==13 

         r=sin(k1*x+k2)/(cos(k1*x+k2)+0.0000000001); 

 end if alphao<1 | alphao>13 

   r=0; 

 end endfunction function r=OprBeta(betao, x1, x2) r=0; if betao==1 

     r=(x1+x2); 

 end if betao==2 

     r=(x1-x2); 

 end if betao==3 

     r=(x1*x2); 

 end if betao==4 

     r=(x1/(x2+0.0000000001)); 

 end endfunction //int2bin function [B]=Int2Bin(I, ne) 

      

     cc=1; 
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     B=zeros(1,ne); 

     out=0; 

     R=I; 
     while out==0 

          

         R=R/2; 

         n=R-floor(R);  

         if n>0 then 

             B(cc)=1; cc=cc+1; 

         else 

             B(cc)=0;cc=cc+1; 

         end 

          

         R=floor(R); 

         if R<=0 then 

             out=1; 

         end 

          

          

     end 

      

      

 endfunction //******************************************************** 

 //***********   Experimental Data ************************ 

 //******************************************************* 

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++ function [err, Rep]=evalIndiN(Cx, K, Opa, Opb, 

DataTrain) [NTRows, NTCols]=size(DataTrain); //Normalization Rep=[]; 

   //Non-codifications 

   //Two beta levels 
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   k11 = K(1); 

   k21 = K(2); 

   k12 = K(3); 

   k22 = K(4); 

   k13 = K(5); 

   k23 = K(6); 

   k14 = K(7); 

   k24 = K(8); 

   k15 = K(9); 

   k25 = K(10); 

   k16 = K(11); 

   k26 = K(12); 

   k17 = K(13); 

   k27 = K(14); 

   k18 = K(15); 

   k28 = K(16); 

   k19 = K(17); 

   k29 = K(18); 

   k1A = K(19); 

   k2A = K(20); 

   k1B = K(21); 

   k2B = K(22); 

   k1C = K(23); 

   k2C = K(24); 

    

   alphao1 = Opa(1); 

   alphao2 = Opa(2); 

   alphao3 = Opa(3); 

   alphao4 = Opa(4); 

   alphao5 = Opa(5); 
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   alphao6 = Opa(6); 

   alphao7 = Opa(7); 

   alphao8 = Opa(8); 

   alphao9 = Opa(9); 

   alphao10 = Opa(10); 

   alphao11 = Opa(11); 

   alphao12 = Opa(12); 

    

    

   betao1= Opb(1); 

   betao2= Opb(2); 

   betao3= Opb(3); 

   betao4= Opb(4); 

   betao5= Opb(5); 

   betao6= Opb(6); 

   betao7= Opb(7); 

   betao8= Opb(8); 

   betao9= Opb(9); 

   betao10= Opb(10); 

   betao11= Opb(11); 

    

   //2^(4*3)-1 

   // I=round(Cx*63); two variable * 3 

    

     I=round(Cx*4095); 

    

    

   errsum=0; 

    

   for row=1:NTRows 
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     x1 = DataTrain(row,1); 

     x2 = DataTrain(row,2); 

     x3 = DataTrain(row,3); 

     x4 = DataTrain(row,4); 

      

      

     [B]=Int2Bin(I,12); //6  for two variables, 12 for four variables  

      

 //    r1 = B(1)*OprAlpha(alphao1,k11,k21,x1); 

 //    r2 = B(2)*OprAlpha(alphao2,k12,k22,x1); 

 //    r3 = B(3)*OprAlpha(alphao3,k13,k23,x1); 

 //    r4 = B(4)*OprAlpha(alphao4,k14,k24,x2); 

 //    r5 = B(5)*OprAlpha(alphao5,k15,k25,x2); 

 //    r6 = B(6)*OprAlpha(alphao6,k16,k26,x2); 

 //    r7 = B(7)*OprAlpha(alphao7,k17,k27,x3); 

 //    r8 = B(8)*OprAlpha(alphao8,k18,k28,x3); 

 //    r9 = B(9)*OprAlpha(alphao9,k19,k29,x3); 

 //    r10 = B(10)*OprAlpha(alphao10,k1A,k2A,x4); 

 //    r11 = B(11)*OprAlpha(alphao11,k1B,k2B,x4); 

 //    r12 = B(12)*OprAlpha(alphao12,k1C,k2C,x4); 

      

     r1 = B(1)*OprAlphaV2(alphao1,k11,k21,x1); 

     r2 = B(2)*OprAlphaV2(alphao2,k12,k22,x1); 

     r3 = B(3)*OprAlphaV2(alphao3,k13,k23,x1); 

     r4 = B(4)*OprAlphaV2(alphao4,k14,k24,x2); 

     r5 = B(5)*OprAlphaV2(alphao5,k15,k25,x2); 

     r6 = B(6)*OprAlphaV2(alphao6,k16,k26,x2); 

     r7 = B(7)*OprAlphaV2(alphao7,k17,k27,x3); 

     r8 = B(8)*OprAlphaV2(alphao8,k18,k28,x3); 

     r9 = B(9)*OprAlphaV2(alphao9,k19,k29,x3); 

     r10 = B(10)*OprAlphaV2(alphao10,k1A,k2A,x4); 
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     r11 = B(11)*OprAlphaV2(alphao11,k1B,k2B,x4); 

     r12 = B(12)*OprAlphaV2(alphao12,k1C,k2C,x4); 

      

     

      

     y1 = OprBeta(betao1,r1,r2); 

     y2 = OprBeta(betao2,y1,r3); 

     y3 = OprBeta(betao3,y2,r4); 

     y4 = OprBeta(betao4,y3,r5); 

     y5 = OprBeta(betao5,y4,r6); 

     y6 = OprBeta(betao6,y5,r7); 

     y7 = OprBeta(betao7,y6,r8); 

     y8 = OprBeta(betao8,y7,r9); 

     y9 = OprBeta(betao9,y8,r10); 

     y10 = OprBeta(betao10,y9,r11); 

     y = OprBeta(betao11,y10,r12); 

      

      

      

     //Desnormalization 

     yd = DataTrain(row,5); 

     aux=[yd y]; 

     Rep=[Rep; aux]; 

     errsum = (y - yd)^2 + errsum; //Error calculation 

      

   end 

    

   err=(errsum)/NTD; 

    

   //sqrt(sum((Rep(:,1)-Rep(:,2))^2)) ; //Other way to calc error...  
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 endfunction 

///////////////////////*************************************************//////////////////////////

///////////////// 

 //Adjusment in the range 

 //Copyrights LMTT092010 function [P]=adjust(P, M) 

 [NTI NTPr] = size(P); 

 for k=1:NTI 

     for pr=1:NTPr 

          

         //Checks the inferior range 

         if P(k,pr)<M(pr,1) 

             P(k,pr)=M(pr,1); 

         end 

         //Checks the superior range 

         if P(k,pr)>M(pr,2) 

             P(k,pr)=M(pr,2); 

         end 

                 

     end 

 end endfunction //Normalization. Interval [LMIN, LMAX] -> [0, 1] function 

a=normalization(Van, LMIN, LMAX) a=(Van-LMIN)/((LMAX-

LMIN)+0.000001); if a>1 

     a=1; 

 end 

 if a<0 

     a=0; 

 end endfunction //Desnormalization 

 //Interval [0, 1] -> [LMIN, LMAX] function a=desnormalization(Vn, LMIN, 

LMAX) a=Vn*LMAX+LMIN*(1-Vn); if a>LMAX 

     a=LMAX; 

 end 
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 if a<LMIN 

     a=LMIN; 

 end endfunction //Algoritmya Evolutionary computation 2004 

 //Proyect of simplification of algorithms 

 //Autor: Luis Torres T. 

 //All rights reserved 

 //May 2004 

 //Evolution Strategies and Genetic Algorithms 

 //Maxp function [posmax, valmax]=maxp(V) temp=size(V); 

 NTB=max(temp); posmax=0; 

 valmax=0; 

 for b=1:NTB 

     if V(b)>valmax 

         valmax=V(b); 

         posmax=b;     

     end 

 end endfunction //Algoritmya Evolutionary computation 2004 

 //Proyect of simplification of algorithms 

 //Autor: Luis Torres T. 

 //All rights reserved 

 //May 2004 

 //Evolution Strategies and Genetic Algorithms 

 //Maxp function [posmin, valmin]=minp(V) temp=size(V); 

 NTB=max(temp); posmin=0; 

 valmin=1000000000; 

 for b=1:NTB 

     if V(b)<valmin 

         valmin=V(b); 

         posmin=b;     

     end 

 end endfunction function [Meann, Stdn]=CalculationEvonorm(PS) 
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   //Calculation of the EvoLogNorm 

   //D is a matrix of NTISxNTPr 

    

   [NTIS NTPr]=size(PS); 

   Meann=zeros(1,NTPr); 

   Stdn=zeros(1,NTPr); 

   D=zeros(1,NTIS); 

   NTD=NTIS; 

   for pr=1:NTPr 

       D=PS(:,pr); 

       Meann(pr) = sum(D)/NTD; 

    

       Stdn(pr) = sqrt(sum((D - Meann(pr)).^2)/NTD); 

        

     end 

      

   endfunction //A proposal for a new evolutionary algorithm 

 // Evola heuristics 

 //Generation of a population function [P]=GenEvonorm(Meann, Stdn, 

Imax, NTI) 
    

   NTPr=max(size(Meann)); 

    

   P=zeros(NTI,NTPr);   for k=1:NTI 
     for pr=1:NTPr 

       Nc = sum(rand(1,12))-6; //Estimation of the normal random variable 

       if rand()>0.5 

         P(k,pr) = Meann(pr)+(Stdn(pr)+0.00000052)*Nc; 

       else 

         P(k,pr) = Imax(pr)+(Stdn(pr)+0.00000052)*Nc; 

       end 
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     end 

   end 

    

 endfunction function [PS]=selectiondet(P, FE, NTIS) for k=1:NTIS 

         [pos,val]=maxp(FE); 

         PS(k,:)=P(pos,:); 

         FE(pos)=-10000000; 

 end 

        

 endfunction //************************************************************* 

 //*********************  C A S O I *************************** 

 //************************************************************* function [Sol, err, 
Report, Rep, msres, R2pred, PRESS]=SRABcorrosionNMO(NTI, NTIS, 

NTGen) 

      

     //v205 //(h20) (eg) (t US) Temp (°C) area superficial  

  ExpData=[0    50    0    400    7.7419 

 0    50    60    400    12.1860 

 0    50    120    400    10.3980 

 0    50    0    500    4.1292 

 0    50    60    500    1.9645 

 0    50    120    500    2.3174 

 25    25    0    400    7.4281 

 25    25    60    400    8.0970 

 25    25    120    400    9.7480 

 25    25    0    500    3.9813 

 25    25    60    500    4.2494 

 25    25    120    500    4.5984 

 50    0    0    400    2.9952 

 50    0    60    400    4.2209 

 50    0    120    400    4.8132 
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 50    0    0    500    2.9073 

 50    0    60    500    4.6259 

 50    0    120    500    3.8645 

 ]; //Normalization [DataTrain,DataVal1,DataVal2,MRange] = 

GenTrainVal(ExpData,0.8); Table=DataTrain; [NTD NTCol]=size(Table); 

//Pk changes, POa, POb stay without change //Evonorm structures for k 

adjustements 

    

     //V2    

   NTPr=48;//six k parameters, three alpha operators and two beta 

operators   P=zeros(NTI,NTPr); 

    

     Report=[]; 

    

   //Margin per parameter 

   MR=zeros(NTPr,2); 

   //Constanst limits 

    

   MR(:,1)=0; //minimum 

   MR(:,2)=1; //maximum 

    

   //Generate a new population 

   //V2 

   for k=1:NTI 
     for pr=1:NTPr 

         P(k,pr)=desnormalization(rand(),MR(pr,1),MR(pr,2)); 

     end 

   end 

    

   //Auxiliar variables 

   miny=10000000000000000; 
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   maxy=-1000000000000000; 

    

   FE=zeros(1,NTI); //Evaluation per individual 

   Imax=P(1,:); //Best individual found 

    

    

   //Principal cycle begin here 

    

   for cycle=1:NTGen 

      

     // Evaluation   

     for k=1:NTI       //Decoding 

       Cx=P(k,1); 

       Kp=P(k,2:25); 

       Opa=round(13*P(k,26:37)+0.5); 

       Opb=round(4*P(k,38:48)+0.5); 

        

        [err, Rep] = evalIndiN(Cx,Kp,Opa,Opb,DataTrain);            

       y=err;   
        

       if y > maxy 

           maxy=y; 

       end       if y<miny 

           miny=y; 

            

           //Imax=Kp; 

            

           //V2 

           Imax=P(k,:); 

           Sol=[Kp Opa Opb]; 

       end 
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       //Minimization 

       aux = (sum(Opa)/(13*12) + sum(Opb)/(4*11))/2; 

        FE(k) = 0.5*(1 - normalization(y, miny, maxy)) + 0.5*(1-aux); 

               end //of k 

    

   

  //Selection 

   

      [PS]=selectiondet(P,FE,NTIS); 

   

  //Generation 

   

  //Normalization of PS-PSN 

 // PSN=PS; 

 // for k=1:NTIS 

 //   for pr=1:NTPr 

 //     PSN(k,pr)=normalization(PS(k,pr),MR(pr,1),MR(pr,2)); 

 //   end 

 // end 

          

   

  //Estimation of parameters  

   [Meann,Stdn]=CalculationEvonorm(PS); 

    

   //Using the heuristics 

   [P]=GenEvonorm(Meann,Stdn,Imax,NTI); 
     

    //Desnormalization of PN->P 

 //    for k=1:NTIS 

 //     for pr=1:NTPr 
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 //       P(k,pr)=desnormalization(PN(k,pr),MR(pr,1),MR(pr,2)); 

 //     end 

 //   end 

         

   Report=[Report miny]; 

         

   //Adjust for corresponding limits 

   [P]=adjust(P,MR);       

          

   end 

    

    

 Table=DataVal2; 

 [NTD NTCol]=size(Table);       Cx=Imax(1); 

       Kp=Imax(2:25); 

       Opa=round(13*Imax(26:37)+0.5); 

       Opb=round(4*Imax(38:48)+0.5); 

        

         I=round(Cx*4095); 

         [B]=Int2Bin(I,12);  

        

       Sol=[B Kp Opa Opb]; 

        [err, Rep] = evalIndiN(Cx,Kp,Opa,Opb,DataTrain); 

        

 //PRESS and R2pred considering DataVal2 

   Y=DataVal2(:,5);     

      

     //Stundentized 

     //Calculate H??? 

     //msres=sum(VErr.^2)/(NTD-4); 

     //ds=VErr/sqrt(msres(1-Hii)); 
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     //PRESS and R2 prediction 

     VErr=Rep(:,1)-Rep(:,2); 

     PRESS=sum(VErr.^2); 

     SST=Y'*Y-sum(Y.^2)/NTD; 

     R2pred=1-PRESS/SST; 

      //Standarized 

     

     

     msres=sum(VErr.^2)/(NTD); 

     ds=VErr/sqrt(msres); //ds with high value, a potential outlier (non tipic 

value) endfunction  

//XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 //Decode equations function [R]=ExtractAlpha(opalpha, k1, k2, varx) 

      

     ks=string(k1); 

      

     

     r=strcat(['',ks]); 

     ks=string(k2); 

      

      

     xs=''; 

      

      

     if varx==1 then 

         xs='x1'; 

     end 

      

     if varx==2 then 
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         xs='x2'; 

     end 

      

     if varx==3 then 

         xs='x3'; 

     end 

      

     if varx==4 then 

         xs='x1'; 

     end 

      

     if varx==5 then 

         xs='x2'; 

     end 

      

     if varx==6 then 

         xs='x3'; 

     end 

      

     if varx==7 then 

         xs='x1'; 

     end 

      

     if varx==8 then 

         xs='x2'; 

     end 

      

     if varx==9 then 

         xs='x3'; 

     end 
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     if opalpha==1 then 

         R=strcat(['(',r,xs,'+',ks,')']); 

     end 

      

      

     if opalpha==2 then 

         R=strcat(['exp(',r,xs,'+',ks,')']); 

     end 

          

     if opalpha==3 then 

         R=strcat(['(',r,xs,'+',ks,')^2']); 

          

     end 

      

     if opalpha==4 then 

         R=strcat(['log(',r,xs,'+',ks,')']); 

          

     end 

      

     if opalpha==5 then 

         R=strcat(['(',r,xs,'+',ks,')^(-1)']); 

     end 

      

     if opalpha==6 then 

         R=strcat(['(',r,xs,'+',ks,')^(-2)']); 

     end 

      

     if opalpha==7 then 

         R= strcat(['(',r,xs,'+',ks,')^(1/2)']); 

     end 



  APPENDIX 

    67 

      

     if opalpha==8 then 

         R=strcat(['(',r,xs,'+',ks,')^3']); 

     end 

      

     if opalpha==9 then 

         R=strcat(['(',r,xs,'+',ks,')^(-3)']); 

          

     end 

      

     if opalpha==10 then 

         R=strcat(['(',r,xs,'+',ks,')^(1/3)']); 

     end 

      

      

     if opalpha==11 then 

         R=strcat(['sin(',r,xs,'+',ks,')']); 

     end 

      

     if opalpha==12 then 

         R=strcat(['cos(',r,xs,'+',ks,')']); 

     end 

      

     if opalpha==13 then 

         R=strcat(['tan(',r,xs,'+',ks,')']); 

     end 

      

     if opalpha<1 | opalpha>13 

         R='0'; 

     end 
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 endfunction 

      function [R]=ExtractAlphasim(opalpha, k1, k2, varx) 

      

     

      

     r=''; 

      

      

     xs=''; 

      

      

     if varx<=3 then 

         xs='x1'; 

         r='k11';ks='k21'; 

     end 

      

     if varx>3 & varx<=6 then 

         xs='x2'; 

         r='k12';ks='k22'; 

     end 

      

     if varx>6 & varx<=9 then 

         xs='x3'; 

         r='k13';ks='k23'; 

     end 

      

     if varx>9 & varx<=12 then 

         xs='x4'; 

         r='k14';ks='k24'; 
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     end 

      

     if varx>13 & varx<=15 then 

         xs='x5'; 

         r='k15';ks='k25'; 

     end 

      

      

     if opalpha==1 then 

         R=strcat(['(',r,xs,'+',ks,')']); 

     end 

      

      

     if opalpha==2 then 

         R=strcat(['(',r,xs,'+',ks,')^2']); 

     end 

          

     if opalpha==3 then 

         R=strcat(['(',r,xs,'+',ks,')^3']); 

     end 

      

     if opalpha==4 then 

         R=strcat(['(',r,xs,'+',ks,')^(-1)']); 

     end 

      

     if opalpha==5 then 

         R=strcat(['(',r,xs,'+',ks,')^(-2)']); 

     end 

      

     if opalpha==6 then 

         R=strcat(['(',r,xs,'+',ks,')^(-3)']); 
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     end 

      

     if opalpha==7 then 

         R=strcat(['(',r,xs,'+',ks,')^(1/2)']); 

     end 

      

     if opalpha==8 then 

         R=strcat(['(',r,xs,'+',ks,')^(1/3)']); 

     end 

      

     if opalpha==9 then 

         R=strcat(['exp(',r,xs,'+',ks,')']); 

     end 

      

     if opalpha==10 then 

         R=strcat(['log(',r,xs,'+',ks,')']); 

     end 

      

      

     if opalpha==11 then 

         R=strcat(['sin(',r,xs,'+',ks,')']); 

     end 

      

     if opalpha==12 then 

         R=strcat(['cos(',r,xs,'+',ks,')']); 

     end 

      

     if opalpha==13 then 

         R=strcat(['tan(',r,xs,'+',ks,')']); 

     end 
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       if opalpha<1 | opalpha>13 

         R='0'; 

     end 

      

      

      

 endfunction function [EquationR]=DecodEqu(Sol) 
      

      

     B=Sol(1:12); 

     K=Sol(13:36); 

     opA = Sol(37:48); 

     opB = Sol(49:59);   

      

     TB=max(size(B)); 

     cbeta=1; 

     R=''; 

     for b=1:TB 

          

              opalpha=opA(b); 

              k1=K(2*b-1); 

              k2=K(2*b); 

              if B(b)==1 then 

               

                 [rn]=ExtractAlpha(opalpha,k1,k2,b); 

               

              else 

              rn='0'; 

                  

              end 
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               if b>1 then 

                     if opB(cbeta)==1 then 

                         betas='+'; 

                     end 

               

                 if opB(cbeta)==2 then 

                     betas='-'; 

                 end 

               

               

                 if opB(cbeta)==3 then 

                     betas='*'; 

                 end 

               

               

                 if opB(cbeta)==4 then 

                     betas='/'; 

                 end 

                  

                 if opB(cbeta)>4 then 

                      betas='?'; 

                 end 

                  

                  cbeta=cbeta+1; 

                   

                   

                   

                   

                    R=strcat(['(',R,betas,rn,')']); 

                     

                 // R=strcat([R,betas,rn]); 
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              else 

                   

                  R=rn; 

                   

              end 

               

           

              

            

          

     end 

              EquationR=strcat(['y(x1,x2,x3,x4,x5)=',R]); 

      

 endfunction function [EquationR]=DecodEqusim(Sol) 
      

      

     B=Sol(1:15); 

     K=Sol(16:45); 

     opA = Sol(46:60); 

     opB = Sol(61:74);   

      

     TB=max(size(B)); 

     cbeta=1; 

     R=''; 

     for b=1:TB 

          

              opalpha=opA(b); 

              k1=K(2*b-1); 

              k2=K(2*b); 

              if B(b)==1 then 
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                 [rn]=ExtractAlphasim(opalpha,k1,k2,b); 

               

              else 

              rn='0'; 

                  

              end 

               

               if b>1 then 

                 if opB(cbeta)==1 then 

                         betas='+'; 

                 end 

               

                 if opB(cbeta)==2 then 

                     betas='-'; 

                 end 

               

               

                 if opB(cbeta)==3 then 

                     betas='*'; 

                 end 

               

               

                 if opB(cbeta)==4 then 

                     betas='/'; 

                 end 

                  

                 if opB(cbeta)>4 then 

                      betas='?'; 

                 end 

                  



  APPENDIX 

    75 

                  cbeta=cbeta+1; 

                    

                   

                   R=strcat(['(',R,betas,rn,')']); 

                  // pause 

                   

                  //R=strcat([R,betas,rn]); 

                   

              else 

                   

                  R=rn; 

                   

              end 

                        

     end 

      

      

      EquationR=strcat(['y(x1,x2,x3,x4,x5)=',R]); 

      

      

 endfunction function [Table, ReportS, ReportY]=ExperTable() 

      

     Table=[]; 

     ReportS=[]; 

     ReportY=[]; 

     for exper=1:2 

         

tic();[Sol,err,Report,Rep,msres,R2pred,PRESS]=SRABcorrosionNMO(20

0,10,150);a=toc(); 

         aux=[msres R2pred PRESS a]; 

         Table=[Table; aux]; 
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         ReportS=[ReportS;Sol]; 

         ReportY=[ReportY Rep]; 

     end 

      

 endfunction function [Ip, J, Fo, s, Rep, Interv]=IntervalPred(X0) 

ExpData=[0    50    0    400    7.7419 

 0    50    60    400    12.1860 

 0    50    120    400    10.3980 

 0    50    0    500    4.1292 

 0    50    60    500    1.9645 

 0    50    120    500    2.3174 

 25    25    0    400    7.4281 

 25    25    60    400    8.0970 

 25    25    120    400    9.7480 

 25    25    0    500    3.9813 

 25    25    60    500    4.2494 

 25    25    120    500    4.5984 

 50    0    0    400    2.9952 

 50    0    60    400    4.2209 

 50    0    120    400    4.8132 

 50    0    0    500    2.9073 

 50    0    60    500    4.6259 

 50    0    120    500    3.8645 

 ]; //Normalization 

 [DataTrain,DataVal1,DataVal2,MRange] = GenTrainVal(ExpData,0.8); 

 [NTD NTCol]=size(DataTrain); J=zeros(NTD,4); 

 Rep=[]; 

 Ip=[0 0 0]; 

 suma=0; for d=1:NTD 

     x1=DataTrain(d,1); 

     x2=DataTrain(d,2); 
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     x3=DataTrain(d,3); 

     k13=0.2663285; 

     k23=-0.6372761; 

     k14=-0.5851344; 

     k24=0.5818615; 

          //Original function 

     y=(k13*x3+k23)^2+(k14*x2+k24); 

      

     aux=[DataTrain(d,4) y]; 

     Rep=[Rep; aux]; 

      

      

     //Jacobian 

      

     suma = suma + (DataTrain(d,4)-y)^2; 

      

     Fd=[2*(k13*x3+k23)*x3 2*(k13*x3+k23) x2 1]; 

      

     J(d,:) = Fd; 

 end s=sqrt(suma/(NTD-4)); //four parameters k's //Xo normalization 

 x1n = normalization(X(1),MRange(1,1),MRange(1,2)); 

 x2n = normalization(X(2),MRange(2,1),MRange(2,2)); 

 x3n = normalization(X(3),MRange(3,1),MRange(3,2)); //Original function 

with Xo 

     yo=(k13*x3n+k23)^2+(k14*x2n+k24); 

     yr = desnormalization(yo,MRange(4,1),MRange(4,2)); 

      

      

      

      //Fo evaluated with Xo 

 Fo = [2*(k13*x3n+k23)*x3n 2*(k13*x3n+k23) x2n 1];     
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     tstud=2.776; 

     Interv=tstud*s*sqrt(1+Fo*inv(J'*J)*Fo'); 

      

      

     //Desnormalization of intervals 

     intervr = desnormalization(Interv,MRange(4,1),MRange(4,2)); 

      

     a=intervr-yr; 

     b=intervr+yr 

      

     Ip=[ a  yr b]; endfunction      function [TableSRAB, 

SolSR]=experimentsSR() 

      

     TableSRAB=[];SolSR=[]; 

     for exper=1:10 

      

         

[Sol,err,Report,Rep,msres,R2pred,PRESS]=SRABcorrosionNMO(500,50,

200); 

          

         aux=[msres R2pred PRESS]; 

         TableSRAB=[TableSRAB; aux]; 

         SolSR=[SolSR; Sol]; 

     end      

 endfunction 
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