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ABSTRACT

Guillermo Gonzéalez Campos
Candidate for the Degree of Doctor in Engineering with orientation in Information

Technologies

Universidad Autbnoma de Nuevo Ledn

Facultad de Ingenieria Mecéanica y Eléctrica

Title of study:

Optimization in preparation process of V20s using symbolic regression a-f3

In this work a symbolic regression algorithm was used for modeling the
preparation process of the compound V:0s. This algorithm was used with the
proposal method on this work, were 8 steps are proposed to have better and faster
results when symbolic regression is applied for industrial processes. The
preparation of V:0s consists in modifying the solvent of the medium and
calcination temperature to obtain a compound with different physical properties.
A mathematical model of four input variables and one output response was
generated. This compound is widely used in catalysis and photocatalysis to solve
environmental problems, such as water and air purification. The aim of creating a

model was to obtain the best combination of preparation variables that result in a




compound with the ideal properties, which promote a better performance in
catalysis and photocatalysis. A design of experiments was made to obtain a data-
driven model. Initial population, selection and iterations were considered to
enhance the results when symbolic regression is applied. Genetic programming,
artificial neural networks and linear regression were compared with symbolic
regression in order to know which technique has better efficiency to generate
models. Some metrics related with quality and deliveries of the model were
proposed to compare the results. The model generated with symbolic regression
showed better results in comparison with other techniques used, due to the
metrics used describes less error and better performance to predict new data.
Responses surfaces were made using the generated SR model and were
compared showing different perspective in order to optimize the quantity of
materials used for the preparation process of V20s.




CHAPTER 1 INTRODUCTION

1.INTRODUCTION

1.1 PROBLEM DESCRIPTION

One of several approaches of researching in computer science is to get
better and faster ways to solve problems. In some fields of study different from
computer science there is an opportunity area where new techniques can be
applied and studied. In computer science, artificial intelligence (Al) techniques
are being used to help the humanity for solving problems in daily life, industry
and academic research. Al has many techniques and methods with different
strengths and weaknesses that can be adapted depending of the application.
One of the methods to solve problems using Al is the Artificial Neural Network
(ANN). For example, ANN is common used to solve problems of classification,

pattern recognition and clustering, among others.

Genetic Programming is other technique in Al that use genetic or evolutionary
algorithm to perform a predefined task, this programming evolves as biological
systems and its evolutionary theories, where genes are changing during the

time. There is an application in genetic programming (GP) called symbolic




CHAPTER 1 INTRODUCTION

regression (SR) that has been used for modeling on industrial and dynamic

process [1, 2].

Models are useful when the process of interest needs to be improved.
Mathematical models are the most common used, however there are other
forms to generate models with computer science techniques. ANN can be used
for optimizing [3]; however, they are black boxes where an explicit formulation
about the correlation between variables and effects on output response is not
evident [4]. In chemical processes for academic research, data acquisition of
experiments is necessary to repeat reactions procedures. The repetitions are
expensive and time spent in the process is very important even on industry. The
main motivations for creating models in chemical process are to reduce costs
and time spent. In this paper, a model using symbolic regression is proposed to
obtain the best combination of preparation variables of V20s that result in a
compound with the ideal properties that promote a better performance in

catalysis and photocatalysis.

1.2 STATE OF THE ART

A recently study [5] investigate the evidence for SR using GP being an
effective method to prediction and estimation in software engineering. They
used 23 primary studies from 1995 to 2008, the results show that SR using GP
has been applied in three domains within software engineering predictive
modeling; software quality classification, software cost/effort/size estimation and
software fault prediction/software reliability growth modeling. Smits et al [6], use
SR to obtain the maximum scalability to architectures with a very large number

of processors in a process of a distillation tower with 23 inputs and 5000
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records. In other work of Smits et al [7] give an overview of the importance of

variable selection to build robust models from industrial datasets.

Castillo et al [8] uses SR and a design of experiments to obtain the maximum
data utilization when extrapolation is necessary. In combination with Pareto front
Castillo et al [9], also uses SR bases on design of experiments and industrial
data. Kotanchek et al [10] summarize their experience in industrial application of
genetic programming to empirical modeling and transfer key learnings with
respect to real-world application. Oliveria et al [11] change the basic behavior of
the method of SR adding some concepts of evolution strategies (ES) obtaining
excellent results. Dervis et al [12] made a work where a set of SR problems
were solved using artificial bee colony programming and then their performance
was compared with the very well known method evolving computer programs,
GP. Dabhi et al [13] explored the suitability of ANN and SR to solve empirical
modeling problems and conclude that SR can deal efficiently with these

problems.

Cai et al [14] describe a methodology that uses SR to extract correlations from
heat transfer measurements by searching the form of correlation equation and
the constants in it that enable the closest fit to experimental data. Zhu et al [15]
present a method for multivariable SR modeling and predicting, based on gene
expression programming, furthermore they give an example to explain this
technique and experiment results show that the model set up is better than
statistical linear regression techniques. Davidson et al [16] describes a new
method for creating polynomial regression models and is compared with
stepwise regression and SR using three example problems, this new method
includes some changes on the basic genetic programming algorithm first

proposed by Koza [17]. Finally Barmpalexis et al [18] use SR via GP in the
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optimization of a pharmaceutical zerorder release matrix table, and its predictive

performance was compared with ANN models.

Going deeper in SR, more industrial processes have been described with SR
models, in 2013 a model for cutting machining processes using SR was
proposed [19]. This model can be used to establish the machining parameters to
obtain the desired roughness. Recently, a model with SR was used for setting of
machining parameters and tool selection for a cutting process. The model
improves the quality of process and increases its performance, which results

good for the company [20].

1.3 JUSTIFICATION

The benefit of working with new techniques for novel applications on
industry and science is that the generated knowledge will help other researchers
to improve their processes of investigation. SR as novel technique still have a
wide field of study and experimentation on different applications. On this work
the process of synthesis of the photocatalyst V20s has been chosen to optimize
and improve its process of synthesis. A method is proposed to apply SR on this

chemical process where some variables are involved to get best results.




CHAPTER 1 INTRODUCTION

1.4  HIPOTHESIS

The process of synthesis of the photocatalyst V2Os can be optimized
using on technique of artificial intelligence called symbolic regression alpha —
beta. The way to optimize the process is proposing a method to apply the SR

with some steps clearly defined.

1.5 GENERAL OBJECTIVE

Propose a method to apply symbolic regression and optimize the process

synthesis of photocatalyst V20s.
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2.BACKGROUND

2.1 INTRODUCTION TO THE INDUSTRIAL PROCESSES

Some centuries ago when industrial revolution started, new machines
have been created to improve the productive processes using different energy
sources. Processes like developing textiles, vapor machines for transportation
were improved during industrial revolution. The main objective for improving the
processes is to produce more with less materials, energy or resources.
Production methodologies and new materials have been used to enhance the
results, but this challenge every time has been more difficult.

Thanks to the creation of new materials as semiconductors, the
integrated circuits have been developed and computers have been invented.
New fields of study arrived thanks at the computers, math problems are solved
faster than decades ago and computer science starts rising to create techniques
for problem solving. Actually, techniques of computer science are used to

improve industrial processes.
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2.2 INTRODUCTION TO GENETIC PROGRAMING AND SYMBOLIC
REGRESSION

Genetic Programming (GP) is an extension of Evolutionary Algorithms
(EA) presented by Koza in 1990 [17]. GP is a representation of a data tree
structure, where nodes show a function that has arithmetic and logic operations,
and leafs represent variables and constants. When a GP is running, a function is
created with the nodes and leafs. This function is evaluated for each generation
and genetic operators such as crossover and mutation are used to improve the

results.

2.3 INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

Other novel technic on artificial intelligence area are the artificial neural
network (ANN) which is a technique inspired by biological neuron processing. It
has a wide application on several sciences for time series forecasting, pattern
recognition and process control, but the most used application are for
classification and regression. Training of the neural networks is sensitive to the
number of neurons in the hidden layer. A better performance of the neural
network in fitting data can be reached when is involved a high number of
neurons. However too many neurons in the hidden layer may result in the over
fitting. The neural network has some desirable characteristics like robustness
and precision in the approximation nevertheless neural networks are black

boxes due to there is not a mathematical equation which explains the model.
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2.4 INTRODUCTION TO LINEAR REGRESSION

Linear regression is statistical technique used for discovering the relation
between one or more variables, mainly is applied in engineering and science.
For example, some industrial processes have one variable that is dependent
from another one, and its relationship is described in a linear equation or linear

regression model. If we have data table with 2 variables, where “y” increase its
value while “x” increases, this behavior can be expressed in a mathematical
linear model. This model also can be used to predict new values inside the
range of data table. The simple linear regression model is explained in equation

1:

Y= B+ pB1x+ € (1)

Where Y is a linear function of x, and e is the random error term. This technique
is useful when the variables and its behavior are strongly linked in a linear way.
However, sometime the processes in real life are not lineal and this technique
will have some restrictions. So, it is required to use other approaches, such as
symbolic regression a-3, which is proposed in this work.

2.5 INTRODUCTION TO SYMBOLIC REGRESSION a-8

The core of this work is based in symbolic regression a-p approach [4].
Where mathematical equations are represented by the combination of a and

operators. An a operators is a function which needs one argument and applies

10
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one mathematical operation, 13 operations are shown in table 1. These

operations are chosen as a operators.

An a operator uses two real number parameters called k1 and k2. Also,
an integer that describes the mathematical operation is used. The a operator is

shown in equation 2:
Opry(x, ki, ky) = alky *x+ky) (2)

where x is an input variable and a is an operation. Depending of the a
operator selected, a specific mathematical operation that requires only one
argument is executed; For example, if a= 1 then the operation made is (k; * x +
k,). The a operator is an integer number and its value determinate a specific
mathematical operation described in Table 1. The B operators are described as
a function that require two arguments and makes the four basic arithmetic
operations = ¢ so a B operator equal to 1 imply the plus operator or B (a,b) = a
+b,and B (a,b) =a/bif = 4.

11
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Table 1. a Operators parameters and mathematical function related

a Mathematical operation
Operator
1 (kix + k3)
2 (kix + ky)?
3 (kix + ky)3
4 (kyx + kp)t
5 (kix + kp) 72
6 (kyx + ky)™3
7 (kyx + k)2
8 (kqx + ky)/3
9 exp(kix + ky)
10 log(kix + k)
11 sin(k,x + k)
12 cos(kyx + k)
13 tan(k,x + k3)

By means of o—3 operators several configurations can be established. A
basic configuration can be defined when an a operator is assigned per input
variable then an B operator is used to connect two a operators (3). Usually, a

simple configuration in majority of the cases is enough for the regression.

y= Bn-1(...82(B1(a1), a2(x2)),)),... an(xn))  (3)

The representation required is a real vector with n element where n is
equal to the number of a operators and k parameters plus B operators. Using
one a operator per variable and connect them by  operators, the number of
parameters is given by the number of a operators, the number of B operators
and k parameters (two per a operator). In a basic structure is a+B+2*a, because
B=a-1, and a = number of variables (Nv) then the number of parameters is

Nv+(Nv-1)+2*Nv. A normalized real vector can be used to represent operators

12
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and k parameters, but a and B operators are integers, so is required the

following formulation to get its value:
a=[V()*13+0.5]  (4)
B = V(i)*4+0.5]  (5)

where [ . ]is the ceiling function. There are 13 a operators defined in Table
1, and 4 B operators (basic algebraic operations). In this work, Evonorm [21, 22]
is used to solve the problem of selection of the suitable parameters (k’s), and

integers to define a and 3 operations.

2.6 INTRODUCTION TO THE EVALUATION METRICS

The statistics metrics proposed in this work are: (i) mean square error
(MSE), (ii) prediction error sum of squares (PRESS) and (iii) R?pred. This
metrics are used in order to validate a regression model. For this reason, is
necessary to try it with new experimental data to determine how well is the
performance of the model in practice [23]. The simplest measure is the residual
calculated as the difference (e(i)) between new observations made by the
response of the process (y(i)) and predicted response generated by the

regression model made (y(i)), (Eq. 6).
e( =y —-y@ (6)

PRESS is a measure of how well a model works to predict new data.
Usually, a small value of PRESS is desirable (Eq. 7). In this case, PRESS is

obtained using cross validation.

PRESS = %z, (y(D) — §()? (7)

13
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The percentage of variability R?pred is a measurement for indicating the
efficiency of the model to predict new observations. A value close to one is
desirable on this indicator (Eq. 8).

2 _ 4 _ Zin,0®-yG)
Ryrea =1 y'y-CL, y(D))? (8)

MSE calculates the average of squared errors between new observations
and experimental data.

An additional metric is proposed to measure the time of calculations for
the model; the reference to evaluate how fast it works generating models is

central processing unit (CPU) time of the computer running the algorithm.

2.7 PROPOSED METHOD FOR APPLYING SYMBOLIC REGRESSION a-8

In this work, a method for using symbolic regression in an industrial
process is proposed in order to optimize it. The method proposed is divided in 7

steps to obtain the best information quality and results.

Steps:

1. Identify Variables. On this step is necessary to identify the variables of
the process; input variables and response. The input variables change
the result of response when we change its values. The response variable
is the desired output that determines how well our process was

performed.

14
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2. Data acquisition. For the step 2, we need to get some data from the
process, in order to feed the symbolic regression algorithm and get a
good training. The data can be obtained from historic results and it is
recommended to have data with good and bad results, but with all the
information complete from all variables. If it is not possible to get many
results from the process, a Design Of Experiments (DOE) can be mode.

With a DOE, fewer experiments are needed to obtain data values.

3. Pre processing. Once a data table is obtained, this information should
be used for the symbolic regression. Nevertheless some pre processing
is needed to make the calculations faster. The input and response data
will be normalized from 0 to 1. It is proposed to use 80% of data to
generate models with SR and the 20% left will be used for testing. This
testing will show results about how well the model generated is good for
predicting.

4. Define architecture for modeling. As is mentioned before, some a
operators are used for each variable in symbolic regression a-f. For this
method is proposed to use 3 a operators for each variable. This number
can change, however if there are more a operators, the complexity of
model also changes. The B remains as an operator that makes the four

basic operations.

15
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5. Set characteristics of evolutionary algorithm. When we have the data
and the architecture of SR algorithm, now the evolutionary algorithm
needs to be set in order to have the best population in less time and with

few resources.

6. Results validation. To evaluate the best performance, four indicators are
selected, the same as mentioned before: Mean Square Error (MSE),
R?Pred, PRESS and CPU time.

7. Analysis of mathematical model. When the SR is executed, a model is
generated. This mathematical model is the combination of the 4 basic
operations and the 13 operations defined in previously in the algorithm.
This equation now can be analyzed, for example to find which is the
strongest variable that is affecting the response. In this method, this step
is recommended in order to find the variables that we can optimize with

other statistical techniques.

8. Optimize model and usage. Using the model to predict new data is the
last step to optimize the process. With the mathematical model it is not
necessary a sophisticated software to forecasting. Response surface can

be made and other types of plots.

These 8 steps are for the proposal method to apply symbolic regression a— for

industrial process, in order to obtain an optimization of it.

16



CHAPTER 3 EXPERIMENTAL DESCRIPTION

3.EXPERIMENTAL DESCRIPTION

3.1 DESCRIPTION OF PROCESS

The synthesis process of V20s consists in 4 inputs variables and 1 output
response. This output response is the desired variable to optimize, modifying the

inputs. The figure # shows an iconic model of the process.
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Figure 1. Synthesis process of V20s

This process is interesting to create a model, because even though there is an
explanation of how to synthetize this compound, some of the variables are not

probed which of them have a high impact in the results. Make trail and fail samples

17



CHAPTER 3 EXPERIMENTAL DESCRIPTION

to find the best result of the compound can be expensive and a waste of time. On
industry and research, this samples can be predicted using computer science
techniques. For that reason, this chemical process is useful to try how effective is
symbolic regression applied for the process. The intention is clear, and is trying
to get better results using fewer resources, if with this model generated by SR,
the process con be optimized to use less heat treatment, water, or other element,
then goal will be reached. Is feasible to obtain a mathematical model with SR,
instead of a black box.

3.1.1 V205 compound

The V205 compound has been widely studied for the reduction of NOx
gases by selective catalytic reduction in presence of ammonia (SCR-NH3)
[24,25,26]. In this reaction, one important parameter is the number of reaction
sites, which is related with its surface area. In addition, the acid sites present in
the V205 surface promotes a better efficiency of the reduction of NOx to N2 and
02 gases. On the other hand, in the area of photocatalysis the oxide V20s had
been propose as photocatalyst to carry out the removal of organic compounds
from industrial waste, i.e., petrochemical and textile [27,28]. In these reactions,
the surface area plays an important role to carry out the adsorption of the
pollutants in the media to start to decompose them in carbon dioxide and water.
For this purpose, we propose a method to prepare V20s by modifying different
experimental conditions that promotes the development of high surface area

values.

3.1.2 V20s preparation and data acquisition

The V20s samples were prepared by precipitation method. The chemical
materials involved in the process were deionized water, ethylene glycol
(HOCH2CH2O0H) (Aldrich, 99%), and ammonium vanadate (NH4VO3) (Aldrich,
99%). For this purpose, 0.0054 mole of NH4VO3 was dissolved in 50 mL of

18
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distillated water or ethylene glycol under vigorous stirring for 30 minutes. The
solution was exposed to ultrasound irradiation (40 kHz, 70W) under ambient air
at 60°C for different time intervals (0-120 minutes). Once the time has lapsed, the
resulting mixture was heated at 100°C to promote the slow evaporation of the
solvent. The resulted powders were calcined at 400 and 500°C for 24 h to obtain

polycrystalline powders.

According to the method proposed in this work, the Step 1 (Identify variables)
can be done. The input variables are identified, they are:

[ERN

. Quantity of H20 in mL.

N

. Quantity of EG in mL

3. Ultrasonic treatment time in minutes

I

. Temperature in Celsius degrees

The response output is:

1. Surface are in m2g-1

Once the variables are identified, the Step 2 (Data acquisition) from the method
was started. For this chemical process, the variables were modified according
with a design of experiments (DOE) to prepare V205 at different conditions. As a
result, 18 samples were prepared modifying 4 inputs variables and measuring one
response to evaluate its physical properties. The experimental data set is show in
the Table 2.

19
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Table 2. Experimental data set of V205

Sampl Ultrasonic Surface area
. H20 (mL) | EG (mL) {ime (min) T (°C) (m2g-)
1 0 50 0 400 7.7419
2 0 50 60 400 12.1860
3 0 50 120 400 10.3980
4 0 50 0 500 4.1292
5 0 50 60 500 1.9645
6 0 50 120 500 2.3174
7 25 25 0 400 7.4281
8 25 25 60 400 8.0970
9 25 25 120 400 9.7480

10 25 25 0 500 3.9813
11 25 25 60 500 4.2494
12 25 25 120 500 4.5984
13 50 0 0 400 2.9952
14 50 0 60 400 4.2209
15 50 0 120 400 4.8132
16 50 0 0 500 2.9073
17 50 0 60 500 4.6259
18 50 0 120 500 3.8645

20
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3.2 CHARACTERISTICS OF EVOLUTIONARY ALGORITHM

For this work Evonorm is used as the evolutionary algorithm [21,22].
Some of the parameters to adjust that will affect directly to response

variable are population, individuals selected and iterations.

The table 3 shows the values selected to adjust in the algorithm, and with

this data, a design of experiments (DOE) were used.

Table 3. Level of DOE

Population Selection Iterations
100 10 150
200 20 500

30

21
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Twelve groups were needed to know its best performance, table 4 shows

the groups.

Table 4. Groups of DOE

Group Population | Selection Iterations
1 100 10 150
2 100 10 500
3 100 20 150
4 100 20 500
5 100 30 150
6 100 30 500
7 200 10 150
8 200 10 500
9 200 20 150
10 200 20 500
11 200 30 150
12 200 30 500

Finally, on appendix A is shown the information obtained from running the
algorithm for 17 hours on 120 runs during different days. The equipment
used to run the algorithm was a MacBook Air Laptop with 4GB RAM and a

processor of 1.5 Ghz Core i5.

With this information, on table 5 now we can observe that the best group
with better performance indicators is the group 7, however its time
performance is not the best but is under the mean (425 seconds).
Meanwhile the best group with the faster time is group 5, but its

performance indicator to predict new data is very poor.

22
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Table 5. Results of means of each group of DOE

Group MSE R2pred PRESS CPU time
(Seconds)
1 0.004216 0.9798 0.4216 161.3561
2 0.00378 0.9795 0.378 729.3228
3 0.004385 | 0.9782 0.4385 | 129.8918
4 0.004174 0.9796 0.4174 463.435
5 0.004443 0.9794 0.4443 120.6474
6 0.00404 0.98 0.404 387.8231
7 0.0032499 | 0.984 0.32499 | 220.2551
8 0.00427 0.9795 0.427 721.9884
9 0.003831 0.982 0.3831 231.5504
10 0.0041221| 0.9784 0.41221 | 704.9504
11 0.003916 | 0.9789 0.3916 | 265.6669
12 0.003608 0.9811 0.3608 968.1012

With these results the proposal to use in the architecture for evolutionary
algorithm for symbolic regression alpha-beta is using population with 200,

the individual selected with 10 and running for 150 iterations.

3.3 OTHER APPROACHES TO COMPARE

When the data is acquired, before to use it with SR will be helpful to compare it
with other tools. This comparison is to know which techniques can explain the
process as well thru a model, it is proposed to use genetic programming, artificial
neural network and linear regression. If a comparison is made using the results

with other techniques, will have a general view of how well it performs the SR

23
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algorithm for this process. Some industrial process can be explained with simpler

solutions or not.

Genetic programming uses the following operations {+,-,*,/,exp,log} for all nodes
for 300 generations, considering 100 individuals, a simply crossover with a
probability of 0.9 and a simple mutation with a probability of 0.05. This parameters
for GP were found the best solution using the key performance indicators of
PRESS, MSE and R?Pred. An 80% of experimental data is used for model
building and 20% for test validation.

For linear regression is executed under the same conditions and evaluated with

the same statistical metrics that are used in this work.

With artificial neural network approach, a perceptron-multilayer neural network
with back propagation rule was used, with 8 neurons on middle layer and a
constant learning parameter 0.25 and a moment of 0.5 during 800 epochs. These
configuration parameters of ANN were the best combination found to get better
results using the same statistical metrics that are used with the other techniques.

24



CHAPTER 4 RESULTS

4.RESULTS

41 MODELLING WITH SYMBOLIC REGRESSION

With the data obtained in Step 2, the Step 3 (Pre processing) was made
when the algorithm was executed, all the data was normalized from O to 1 and, it

was defined 80% of data used for generate models and 20% to test them.

To define the architecture for modeling in Step 4, the SR algorithm was

defined with 3 a operators.

The Step 5 (Set characteristics of evolutionary algorithm), was defined as the
metohod proposal in subchapter 3.2, with a population of 200, 10 individual

selected per iteration, during 150 iterations.

The model generated with SR for the oxide V20s with the best parameter

configuration is show in equation 9 (coefficients of equation are normalized):

f(x1x2%3) = (((((tan(0.1990473x; + 0.9119780) + log(0.0415200x, +
0.9910278)) + (0.997222x; + 0.4656022)~2/(0.6793249x, + 0.3253794)1/2 —

25
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sin(0.1825961x, + 0.9986060))/(0.3713540x; + 0.7209171)) — (0.0123117x; +
0.9517829)3 * (0.0858313x, + 0.3856453)) + sin(0.7869533x; + 0.7936947))/
(0.8517493 + 0.9853957)%  (9)

The results with the model and the data set are compared in a plot, the figure 2

shows the comparision between them.

0.9 -
0.8 ]
0.7 -
0.6 ]
0.5 _
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0.3 _
0.2

0.1 4

Fig.2 . Comparison data between model results

Also, the evaluation (Figure 3) fitness graph is showed to explain how was its

behavior during time on 150 iterations.
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Fig. 3. Evaluation plot

Once the step 5 was performed, the Step 6 (Results validation), was
executed, using the performance indicators. The statistics metrics results for this
equation are MSE equal to 0.0017962, PRESS equal to 0.1796221 and R?pred
equal to 0.99125554.2

27



CHAPTER 4 RESULTS

4.2 COMPARISONS

The same results validation using the performance indicators, were used
for the other tecniques. A resume of performance of the techniques to generate

the best model for the preparation process oxide V20s is shown on the table 6.

Table 6. Statistical metrics results of the best model found of Vv.0s for linear

regression, genetic programming and symbolic regression alpha-beta

_ CPU
Technique MSE PRESS R2pred ]
time
Linear regresssion 0.146478636 14.6478636 0.364175752 0.009

Genetic programming 0.080161008 8.01610081 0.608180149 488.122
Artificial neural network  0.010416923 1.041692271 0.935792749 18.423
Symbolic regression

0.0017962  0.1796221  0.9912555  125.581
alpha-beta

Considering results shown in table 6 the ideal criteria low error, high R?pred and
low PRESS can be taken here. The best technique for predicting new data
according to this table is SR. The technique with less error according to this table
is SR, the results show that the best statistic metric values belong to SR model.
Performance on CPU time is different in each case and it is expected to be like
this, due the fact that SR runs for 150 generations, GP for 300 and ANN for 800
generations. Using artificial neural networks could be a good option, but an explicit
correlation between variables and effects on output response is not evident in

other words ANN are black boxes.
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“y 9

The Step 7 (Analysis of mathematical model) was performed. The “y” is
surface area, H20 is x;, ethylenglycol is x,, ultrasound irradiation is x; and heat
treatment temperature is x,. Symbolic regression eliminates the factor x,, this
mean that heat treatment temperature is irrelevant for the response according to

this model generated.

It can be see from equation 9 that the time of ultrasound exposure of the
reactive mixture is a very important factor, which can be related to the acoustic
cavitation that promotes extreme conditions inside the collapsing bubble with hot

spots of 5000 K, pressures of 1000 bar (Luévano-Hipdlito et al 2014).

4.3 RESPONSE SURFACES

Finally for the proposal method to apply SR for a industrial process, the
Step 8 (Optimize model and usage), was made. In order to optimize the
process, the model generated with SR is used to create response surfaces. For
the response surfaces, the variable x, was fixed as a static value of 400 and
x,was fixed to 0, 25 and 50. The variables x, and x; were calculated with the

equation 9 with different values.

For x, the values starts from 0 to 50 with steps of 1. For x; the values starts from
0 to 120 with steps of 1. In x axis is the variable x5, in the y axis is the variable x,

and z axis is the response.
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Fig.4 Response surface with x; at 0
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.

With the response surfaces we can compare each other. It is observed that in

figure 6 with x; = 50, is easier to reach greater numbers for the response variable

even if values of x, and x; are no high, which means for the interested in

preparation process of V20s that using water instead of other materials can get

similar results that using more energy or more expensive materials.
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5.CONCLUSIONS

On this work, a method to apply a symbolic regression alpha-beta algorithm to
industrial process was proposed. The method consists in 8 steps to obtain the
better and faster results using the algorithm. To apply the method, a mathematical
model was generated for the preparation process of V20s. This model was
generated from experimental data obtained in a chemistry laboratory. The
compound V205 has 18 samples on data set. In this case, 4 variables were the
input variables and 1 output response. In order to compare the efficiency of the
method proposed to apply SR, a comparison was made using similar approaches
like linear regression, artificial neural network and genetic programming, the
performance of each model was evaluated using statistical metrics and CPU time
running the algorithm. To enhance the performance of SR algorithm a DOE was
made to get the best configuration parameters, these configuration parameters
were set for the proposal method. Finally, the results showed that symbolic
regression model have better results on the statistical metrics than other
techniques, nevertheless the CPU time was not the best enough, due the

calculations that are needed to be performed during execution of SR algorithm.

Finally, the last step of the method is use the data for optimizing and response
surfaces were made using the model generated by SR and were compared each

other. The comparison of response surfaces showed different perspective for the
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input variables and to optimize the quantity of materials used for the preparation
of V20s.

Symbolic regression can be used in other chemical process to optimize the
process methods; however, for future work other output values on experimental
data set of this compound could be used to generate new models in order to have
the ideal properties that promote a better performance in catalysis and

photocatalysis.

For future work, there are many possibilities to improve the algorithm according
to the process of apply. For example, the type of operators can be changed, with
other ones that describe better the process. The use of hierarchies to employ
equations that represent hidden abstractions. And other type of process con be
optimized with symbolic regression alpha-beta to prove that the algorithm works

in a broader context and is robust enough.
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APPENDIX A

Run Bﬁ!‘i”g iF:)?]p”'at ier:e“ 'rfgratio ﬁlphas getas MSE  |R2pred |PRESS |CPU time
1 08 100 10 150 13 4 0.00385 |0.982 |0.385 |138.471
2 08 100 10 150 13 4 0.00254 |0.987 |0.254 |181.123
3 08 100 10 150 13 4 0.00204 | 0.99 0.204 | 201.273
4 08 100 10 150 13 4 0.00255 |0.988 |0.255 |172.567
5 08 100 10 150 13 4 0.00324 |0.986 |0.324 |168.481
6 08 100 10 150 13 4 0.00703 |0.969 |0.703 |124.611
7 08 100 10 150 13 4 0.00721 |0.954 |0.721 |196.366
8 08 100 10 150 13 4 0.00328 |0.986 |0.328 |135.784
9 08 100 10 150 13 4 0.00391 |0.983 |0.391 |176.306
10 |08 100 10 150 13 4 0.00651 |0.973 |0.651 |118.579
Mean 2'00421 0.9798 |0.4216 |161.3561
11 |08 100 10 500 13 4 0.00511 |0.972 |0511 |6216

12 |08 100 10 500 13 4 0.00722 |0.966 |0.722 | 698.72

13 |08 100 10 500 13 4 0.00604 |0.967 |0.604 |737.551
14 |08 100 10 500 13 4 0.00153 |0.992 |0.153 |678.582
15 |08 100 10 500 13 4 0.00481 |0.971 |0.481 |631.451
16 |08 100 10 500 13 4 0.00261 |0.982 |0.261 |779.718
17 |08 100 10 500 13 4 0.00448 |0.977 |0.448 |823.382
18 |08 100 10 500 13 4 0.00117 |0.995 |0.117 |684.265
19 |08 100 10 500 13 4 0.00187 |0.988 |0.187 |738.284
20 |08 100 10 500 13 4 0.00296 |0.985 |0.296 |899.675
Mean 0.00378 |0.9795 |0.378 |729.3228
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21 0.8 100 20 150 13 0.00524 | 0.977 0.524 200.414
22 0.8 100 20 150 13 0.00175 | 0.992 0.175 152.674
23 0.8 100 20 150 13 0.00503 | 0.972 0.503 159.257
24 0.8 100 20 150 13 0.00603 | 0.963 0.603 145.805
25 0.8 100 20 150 13 0.00447 |0.981 0.447 115.013
26 0.8 100 20 150 13 0.00538 | 0.974 0.538 113.446
27 0.8 100 20 150 13 0.00339 | 0.984 0.339 114.552
28 0.8 100 20 150 13 0.00491 | 0.974 0.491 85.074
29 0.8 100 20 150 13 0.00291 | 0.986 0.291 122.585
30 0.8 100 20 150 13 0.00474 | 0.979 0.474 90.098
Mean g'00438 0.9782 |0.4385 |129.8918
31 0.8 100 20 500 13 0.00373 | 0.983 0.373 453.444
32 0.8 100 20 500 13 0.00214 | 0.99 0.214 515.934
33 0.8 100 20 500 13 0.00419 |0.98 0.419 525.564
34 0.8 100 20 500 13 0.00223 | 0.986 0.223 528.94
35 0.8 100 20 500 13 0.0041 |0.982 0.41 270.103
36 0.8 100 20 500 13 0.0043 |0.979 0.43 269.703
37 0.8 100 20 500 13 0.00708 | 0.971 0.708 471.594
38 0.8 100 20 500 13 0.00609 | 0.968 0.609 510.56
39 0.8 100 20 500 13 0.00378 | 0.978 0.378 594.858
40 0.8 100 20 500 13 0.0041 |0.979 0.41 493.65
Mean 2'00417 0.9796 |0.4174 |463.435
41 0.8 100 30 150 13 0.0052 |0.977 0.52 123.298
42 0.8 100 30 150 13 0.00631 | 0.967 0.631 88.327
43 0.8 100 30 150 13 0.0022 |0.99 0.22 129.288
44 0.8 100 30 150 13 0.00498 | 0.975 0.498 87.693
45 0.8 100 30 150 13 0.00539 | 0.976 0.539 136.345
46 0.8 100 30 150 13 0.00345 | 0.986 0.345 126.708
a7 0.8 100 30 150 13 0.00246 | 0.988 0.246 149.533
48 0.8 100 30 150 13 0.0069 |0.969 0.69 147.329
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49 0.8 100 30 150 13 0.00361 | 0.984 0.361 111.741
50 0.8 100 30 150 13 0.00393 | 0.982 0.393 106.212
Mean 3'00444 0.9794 |0.4443 |120.6474
51 0.8 100 30 500 13 0.0019 |0.991 0.19 335.092
52 0.8 100 30 500 13 0.00398 | 0.978 0.398 437.247
53 0.8 100 30 500 13 0.0043 |0.985 0.43 362.92
54 0.8 100 30 500 13 0.0069 |0.965 0.69 491.435
55 0.8 100 30 500 13 0.00385 | 0.98 0.385 445.225
56 0.8 100 30 500 13 0.00489 |0.973 0.489 391.251
57 0.8 100 30 500 13 0.00166 | 0.991 0.166 392.84
58 0.8 100 30 500 13 0.00214 | 0.989 0.214 353.521
59 0.8 100 30 500 13 0.00529 | 0.974 0.529 328.528
60 0.8 100 30 500 13 0.00549 | 0.974 0.549 340.172
Mean 0.00404 | 0.98 0.404 387.8231
61 0.8 200 10 150 13 0.00421 | 0.973 0.421 211.956
62 0.8 200 10 150 13 0.00303 | 0.987 0.303 223.955
63 0.8 200 10 150 13 0.00172 | 0.99 0.172 242.569
64 0.8 200 10 150 13 0.00241 | 0.989 0.241 213.18
65 0.8 200 10 150 13 0.00292 | 0.987 0.292 206.297
66 0.8 200 10 150 13 0.00697 | 0.971 0.697 224.216
67 0.8 200 10 150 13 0.0043 |0.977 0.43 223.994
68 0.8 200 10 150 13 0.0034 |0.983 0.34 218.608
69 0.8 200 10 150 13 0.00255 | 0.988 0.255 224.101
70 0.8 200 10 150 13 8'00098 0.995 0.0989 |213.675
Mean 0.00325 | 0.984 0.325 220.2551
71 0.8 200 10 500 13 0.00548 | 0.973 0.548 685.716
72 0.8 200 10 500 13 0.00521 | 0.974 0.521 669.948
73 0.8 200 10 500 13 0.00537 | 0.971 0.537 708.825
74 0.8 200 10 500 13 0.00466 | 0.974 0.466 719.38
75 0.8 200 10 500 13 0.00491 | 0.979 0.491 666.221
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76 0.8 200 10 500 13 0.00124 | 0.994 0.124 874.499
77 0.8 200 10 500 13 0.00402 | 0.978 0.402 673.456
78 0.8 200 10 500 13 0.00605 | 0.976 0.605 731.105
79 0.8 200 10 500 13 0.00201 |0.991 0.201 707.201
80 0.8 200 10 500 13 0.00375 | 0.985 0.375 783.533
Mean 0.00427 | 0.9795 |0.427 721.9884
81 0.8 200 20 150 13 0.00331 | 0.983 0.331 227.205
82 0.8 200 20 150 13 0.00357 | 0.983 0.357 411.805
83 0.8 200 20 150 13 0.00383 | 0.983 0.383 220.228
84 0.8 200 20 150 13 0.00429 | 0.974 0.429 208.118
85 0.8 200 20 150 13 0.00435 | 0.981 0.435 205.104
86 0.8 200 20 150 13 0.00328 | 0.986 0.328 203.19
87 0.8 200 20 150 13 0.00423 | 0.983 0.423 216.121
88 0.8 200 20 150 13 0.00255 | 0.986 0.255 215.087
89 0.8 200 20 150 13 0.00388 | 0.982 0.388 204.132
90 0.8 200 20 150 13 0.00502 | 0.979 0.502 204.514
Mean 2'00383 0.982 0.3831 |231.5504
91 0.8 200 20 500 13 0.00531 | 0.974 0.531 656.586
92 0.8 200 20 500 13 0.00499 |0.975 0.499 698.608
93 0.8 200 20 500 13 0.00468 | 0.976 0.468 661.698
94 0.8 200 20 500 13 0.00197 | 0.989 0.197 673.456
95 0.8 200 20 500 13 2'00089 0.996 0.0891 | 649.955
96 0.8 200 20 500 13 0.00447 | 0.977 0.447 1021.038
97 0.8 200 20 500 13 0.00336 | 0.981 0.336 699.231
98 0.8 200 20 500 13 0.00521 | 0.975 0.521 664.877
99 0.8 200 20 500 13 0.00545 | 0.969 0.545 660.23
100 0.8 200 20 500 13 0.00489 | 0.972 0.489 663.825
Mean (2)'00412 0.9784 |0.4122 |704.9504
101 0.8 200 30 150 13 0.00399 |0.978 0.399 224.421
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102 0.8 200 30 150 13 0.00283 | 0.985 0.283 226.597
103 0.8 200 30 150 13 0.00438 | 0.97 0.438 311.782
104 0.8 200 30 150 13 0.00402 | 0.98 0.402 467.748
105 0.8 200 30 150 13 0.0045 |0.97 0.45 238.065
106 0.8 200 30 150 13 0.00428 | 0.982 0.428 233.233
107 0.8 200 30 150 13 0.00503 | 0.976 0.503 244913
108 0.8 200 30 150 13 0.00325 | 0.982 0.325 163.482
109 0.8 200 30 150 13 0.00429 | 0.98 0.429 274.477
110 0.8 200 30 150 13 0.00259 | 0.986 0.259 271.951
Mean 8'00391 0.9789 |0.3916 |265.6669
111 0.8 200 30 500 13 0.00216 | 0.989 0.216 1023.71
112 0.8 200 30 500 13 0.00366 |0.982 0.366 905.585
113 0.8 200 30 500 13 0.00387 | 0.979 0.387 1035.032
114 0.8 200 30 500 13 0.00201 |0.99 0.201 958.163
115 0.8 200 30 500 13 0.00403 | 0.977 0.403 991.27
116 0.8 200 30 500 13 0.00344 | 0.979 0.344 962.446
117 0.8 200 30 500 13 0.00252 | 0.989 0.252 1017.397
118 0.8 200 30 500 13 0.00458 | 0.979 0.458 1116.642
119 0.8 200 30 500 13 0.0037 |0.982 0.37 747.471
120 0.8 200 30 500 13 0.00611 | 0.965 0.611 923.296
Mean 3'00360 0.9811 |0.3608 |968.1012
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APPENDIX B

Coded symbolic regression alpha-beta //Desnormalization
llinterval [0, 1] -> [LMIN, LMAX] function a=desnormalization(Vn, LMIN,
LMAX) a=Vn*LMAX+LMIN*(1-Vn); if a>LMAX

a=LMAX;
end
if a<LMIN

a=LMIN;
end endfunction //Normalization. Interval [LMIN, LMAX] -> [0, 1] function
a=normalization(Van, LMIN, LMAX) a=(Van-LMIN)/((LMAX-
LMIN)+0.000001); if a>1

a=1;

end
if a<0
a=0;
end endfunction function [posmax, valmax]=maxp(V) temp=size(V);
NTB=max(temp); posmax=0;
valmax=0;
for b=1:NTB
if V(b)>valmax
valmax=V(b);
posmax=Db;

end
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end endfunction //Algoritmya Evolutionary computation 2004
/[Proyect of simplification of algorithms
/[Autor: Luis Torres T.
//All rights reserved
/IMay 2004
/[Evolution Strategies and Genetic Algorithms
//Maxp function [posmin, valmin]=minp(V) temp=size(V);
NTB=max(temp); posmin=0;
valmin=1000000000;
for b=1:NTB
if V(b)<valmin
valmin=V(b);
posmin=Db;
end
end endfunction function [M]=shaking(M) [NTPat NTCol]=size(M);
//Shaking the information for i=1:10*NTPat
posl = round(rand()*NTPat+0.5);
pos2 = round(rand()*NTPat+0.5);

temp=M(pos1,:);
M(posl,:)=M(pos2,.);
M(pos2,:)=temp;

end

endfunction function [DataTrain, DataVvall, DataVval2,
MRange]=GenTrainVal(DataExp, percent) //Generation of training and
validation databases [NTPat NTCol]=size(DataExp);
//IShaking the information for i=1:10*NTPat

posl = round(rand()*NTPat+0.5);

pos2 = round(rand()*NTPat+0.5);
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temp=DataExp(posl,:);
DataExp(posl,:)=DataExp(pos2,:);
DataExp(pos2,:)=temp;
end //Normalization of information //Normalization of the data;
[NTD NTCols]=size(DataExp); //columns of the data
[NTR2,NTC2]=size(DataExp);
DataN=zeros(NTR2,NTC2);
//Matriz to save every range of the matrix
MRange=zeros(NTCols,2);//1-Lmin, 2-Lmax
for col=1:NTCols
Lmax = max(DataExp(:,col)); //[+max(DataExp(:,col))*0.1;
Lmin = min(DataExp(:,col)); //-min(DataExp(:,col))*0.1;
MRange(col,1)=Lmin; MRange(col,2)=Lmax;
DataN(:,col)=(DataExp(:,col)-Lmin)./(Lmax-Lmin);
end //Generation of Training data base
llpercent=0.8;
posel=round(percent*NTPat);
DataTrain = DataN(1:posel,:); //Generation of validation Data Base
/IDirect experimental data
DataVall = DataN(posel:NTPat,:); //Random NTPat data
DataVal2=zeros(NTPat,NTCols);
for d=1:100
pos=round(rand()*NTPat+0.5);
DataVal2(d,:) = DataN(pos,:);
end endfunction function r=0prAlpha(alphao, k1, k2, x) r=0;
if alphao==1
r=(k1*x+k2);
end if alphao==2
r=(k1*x+k2)"2;
end if alphao==3
r=(k1*x+k2)"3;
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end if alphao==
r=(k1*x+k2+0.00000001)"(-1);

end if alphao==5
r=(k1*x+k2+0.00000001)"(-2);

end if alphao==6
r=(k1*x+k2+0.00000001)"(-3);

end if alphao==7
r=(k1*x+k2)\(1/2);

end if alphao==8
r=(k1*x+k2)\(1/3);

end if alphao==9
r=exp(k1*x+k2);

end if alphao==10
r=log(k1*x+k2+0.000000000000001);

end if alphao==11
r=sin(k1*x+k2);

end if alphao==12
r=cos(k1*x+k2);

end if alphao==13

r=sin(k1*x+k2)/(cos(k1*x+k2)+0.0000000001);
end if alphao<1 | alphao>13
r=0;

end endfunction function r=OprAlphaV2(alphao, k1, k2, x) r=0;

if alphao==1
r=(k1*x+k2);

end if alphao==2
r=(k1*x+k2)"2;

end if alphao==3
r=(k1*x+k2)(1/2);

end if alphao==
r=(k1*x+k2+0.00000001)"(-1);
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end if alphao==5
r=exp(k1*x+k?2);
end if alphao==6
r=log(k1*x+k2+0.000000000000001);
end if alphao==7
r=(k1*x+k2+0.00000001)"(-2);
end if alphao==8
r=(k1*x+k2)"3;
end if alphao==9
r=(k1*x+k2+0.00000001)"(-3);
end if alphao==10
r=(k1*x+k2)(1/3);
end if alphao==11
r=sin(k1*x+k2);
end if alphao==12
r=cos(k1*x+k2);
end if alphao==13
r=sin(k1*x+k2)/(cos(k1*x+k2)+0.0000000001);
end if alphao<1 | alphao>13
r=0;
end endfunction function r=OprBeta(betao, x1, x2) r=0; if betao==1
r=(x1+x2)
end if betao==2
r=(x1-x2);
end if betao==
r=(x1*x2);
end if betao==
r=(x1/(x2+0.0000000001));
end endfunction //int2bin function [B]=Int2Bin(l, ne)

cc=1;
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B=zeros(1,ne);
out=0;
R=l;

while out==0

R=R/2;
n=R-floor(R);
if n>0 then
B(cc)=1; cc=cc+1;
else
B(cc)=0;cc=cc+1;

end

R=floor(R);
if R<=0 then
out=1;

end

end

1 kkkkkkkkkkkkkkhkkkkhkkkhkkkkhkkkkhkkkhkhkkhkhkkhkhhkkkhhkkhkkhkkhkhhkkhkkkhkkkhhkkkk
endfunction /

//*********** EXpe rl me ntal Data kkkkkkkkkkkkkkkkkkkkkhkkk

/ kkkkkkkkkkkkkkkkkkkhkkkkkkhkkhkkhkkkkkkkkhkkkhkkkkkkkkkkkkkkkkkk

[[++++++++++++++ bR

++++++++++++++++++++ function [err, Rep]=evalindiN(Cx, K, Opa, Opb,

DataTrain) [NTRows, NTCols]=size(DataTrain); /Normalization Rep=[];
//Non-codifications

//ITwo beta levels
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k11 = K(1);
k21 = K(2);
k12 = K(3);
k22 = K(4);
k13 = K(5);
k23 = K(6);
k14 = K(7);
k24 = K(8);
k15 = K(9);
k25 = K(10);
k16 = K(11);
k26 = K(12);
k17 = K(13);
k27 = K(14);
k18 = K(15);
k28 = K(16);
k19 = K(17);
k29 = K(18);
k1A = K(19);
k2A = K(20);
k1B = K(21);
k2B = K(22);
k1C = K(23);
k2C = K(24);

alphaol = Opa(l);
alphao2 = Opa(2);
alphao3 = Opa(3);
alphao4 = Opa(4);
alphao5 = Opa(b);
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alphao6 = Opa(6);
alphao7 = Opa(7);
alphao8 = Opa(8);
alphao9 = Opa(9);
alphaol0 = Opa(10);
alphaoll = Opa(11);
alphaol2 = Opa(12);

betaol= Opb(1);
betao2= Opb(2);
betao3= Opb(3);
betao4= Opb(4);
betao5= Opb(5);
betao6= Opb(6);
betao7= Opb(7);
betao8= Opb(8);
betao9= Opb(9);
betao10= Opb(10);
betaoll= Opb(11);

1127(4*3)-1
/I I=round(Cx*63); two variable * 3

I=round(Cx*4095);

errsum=0;

for row=1:NTRows
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I
I
I
I
I
I
I
I
I
I
I
I

x1 = DataTrain(row,1);
x2 = DataTrain(row,?2);
x3 = DataTrain(row,3);
x4 = DataTrain(row,4);

[B]=Int2Bin(1,12); //6 for two variables, 12 for four variables

rl = B(1)*OprAlpha(alphaol,k11,k21,x1);
r2 = B(2)*OprAlpha(alphao2,k12,k22,x1);
r3 = B(3)*OprAlpha(alphao3,k13,k23,x1);
r4 = B(4)*OprAlpha(alphao4,k14,k24,x2);
r5 = B(5)*OprAlpha(alphao5,k15,k25,x2);
ré = B(6)*OprAlpha(alphao6,k16,k26,x2);
r7 = B(7)*OprAlpha(alphao7,k17,k27,x3);
r8 = B(8)*OprAlpha(alphao8,k18,k28,x3);
r9 = B(9)*OprAlpha(alphao9,k19,k29,x3);
r10 = B(10)*OprAlpha(alphao10,k1Ak2A,x4);
r11 = B(11)*OprAlpha(alphaoll,k1B,k2B,x4);
r12 = B(12)*OprAlpha(alphaol12,k1C,k2C,x4);

rl = B(1)*OprAlphaV2(alphaol,k11,k21,x1);
r2 = B(2)*OprAlphaV2(alphao2,k12,k22,x1);
r3 = B(3)*OprAlphaV2(alphao3,k13,k23,x1);
r4 = B(4)*OprAlphaV2(alphao4,k14,k24,x2);
r5 = B(5)*OprAlphaV2(alphao5,k15,k25,x2);
ré = B(6)*OprAlphaV2(alphao6,k16,k26,x2);
r7 = B(7)*OprAlphaV2(alphao7,k17,k27,x3);
r8 = B(8)*OprAlphaV2(alphao8,k18,k28,x3);
r9 = B(9)*OprAlphaV2(alphao9,k19,k29,x3);
r10 = B(10)*OprAlphaV2(alphaol0,k1A k2A,x4);
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rll = B(11)*OprAlphaV2(alphaoll,k1B,k2B,x4);
r12 = B(12)*OprAlphaV2(alphaol2,k1C,k2C,x4);

y1 = OprBeta(betaol,rl,r2);
y2 = OprBeta(betao2,y1,r3);
y3 = OprBeta(betao3,y2,r4);
y4 = OprBeta(betao4,y3,r5);
y5 = OprBeta(betao5,y4,r6);
y6 = OprBeta(betao6,y5,r7);
y7 = OprBeta(betao7,y6,r8);
y8 = OprBeta(betao8,y7,r9);
y9 = OprBeta(betao9,y8,r10);
y10 = OprBeta(betao10,y9,r11);
y = OprBeta(betaoll,y10,r12);

/[Desnormalization

yd = DataTrain(row,5);
aux=[yd y[;

Rep=[Rep; aux];

errsum = (y - yd)"2 + errsum; //Error calculation

end

err=(errsum)/NTD;

IIsqrt(sum((Rep(:,1)-Rep(:,2))"2)) ; //Other way to calc error...
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endfunction
I ek [ T
M
//Adjusment in the range
/ICopyrights LMTT092010 function [P]=adjust(P, M)
[NTI NTPr] = size(P);
for k=1:NTI
for pr=1:NTPr

//Checks the inferior range

if P(k,pr)<M(pr,1)
P(k,pr)=M(pr,1);

end

//Checks the superior range

if P(k,pr)>M(pr,2)
P(k,pr)=M(pr,2);

end

end
end endfunction //Normalization. Interval [LMIN, LMAX] -> [0, 1] function
a=normalization(Van, LMIN, LMAX) a=(Van-LMIN)/((LMAX-
LMIN)+0.000001); if a>1

a=1,
end
if a<0

a=0;
end endfunction //Desnormalization
llinterval [0, 1] -> [LMIN, LMAX] function a=desnormalization(VVn, LMIN,
LMAX) a=Vn*LMAX+LMIN*(1-Vn); if a>LMAX

a=LMAX;

end
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if a<LMIN
a=LMIN;
end endfunction //Algoritmya Evolutionary computation 2004
/[Proyect of simplification of algorithms
//Autor: Luis Torres T.
/[All rights reserved
/IMay 2004
/[Evolution Strategies and Genetic Algorithms
[IMaxp function [posmax, valmax]=maxp(V) temp=size(V);
NTB=max(temp); posmax=0;
valmax=0;
for b=1:NTB
if V(b)>valmax
valmax=V(b);
posmax=Db;
end
end endfunction //Algoritmya Evolutionary computation 2004
/[Proyect of simplification of algorithms
/[Autor: Luis Torres T.
/IAll rights reserved
/IMay 2004
/[Evolution Strategies and Genetic Algorithms
//Maxp function [posmin, valmin]=minp(V) temp=size(V);
NTB=max(temp); posmin=0;
valmin=1000000000;
for b=1:NTB
if V(b)<valmin
valmin=V(b);
posmin=Db;
end

end endfunction function [Meann, Stdn]=CalculationEvonorm(PS)
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/[Calculation of the EvoLogNorm
/ID is a matrix of NTISXNTPr

[NTIS NTPr]=size(PS);
Meann=zeros(1,NTPr);
Stdn=zeros(1,NTPr);
D=zeros(1,NTIS);
NTD=NTIS;
for pr=1:NTPr

D=PS(:,pr);

Meann(pr) = sum(D)/NTD;

Stdn(pr) = sgrt(sum((D - Meann(pr)).~2)/NTD);

end

endfunction //A proposal for a new evolutionary algorithm

/I Evola heuristics

/IGeneration of a population function [P]=GenEvonorm(Meann, Stdn,
Imax, NTI)

NTPr=max(size(Meann));

P=zeros(NTI,NTPr); for k=1:NTI
for pr=1:NTPr
Nc = sum(rand(1,12))-6; //Estimation of the normal random variable
if rand()>0.5
P(k,pr) = Meann(pr)+(Stdn(pr)+0.00000052)*Nc;
else
P(k,pr) = Imax(pr)+(Stdn(pr)+0.00000052)*Nc;
end
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end

end

endfunction function [PS]=selectiondet(P, FE, NTIS) for k=1:NTIS
[pos,vall=maxp(FE);
PS(k,:)=P(pos,:);
FE(pos)=-10000000;

end

H % kkkkkkkkkkkkkkkkk *
en dfu n Ctl on //***************** kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
//********************* C A S O I kkkkkkkkkkkhkkhkkkkhkkkhkkkkkkkkkx

//************************************************************* fu n Ctl on [SO I err
’ ’

Report, Rep, msres, R2pred, PRESS]=SRABcorrosionNMO(NTI, NTIS,
NTGen)

IN205 //(h20) (eg) (tUS) Temp (°C) area superficial
ExpData=[0 50 0 400 7.7419
50 60 400 12.1860

50 120 400 10.3980

50 0 500 4.1292

50 60 500 1.9645

50 120 500 2.3174

25 25 0 400 7.4281

25 25 60 400 8.0970

25 25 120 400 9.7480

25 25 0 500 3.9813

25 25 60 500 4.2494

25 25 120 500 4.5984

50 0 0 400 2.9952

50 0 60 400 4.2209

50 0 120 400 4.8132

o O O O O
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50 0 0 500 2.9073

50 0 60 500 4.6259

50 0 120 500 3.8645

I; //Normalization [DataTrain,DataVall,DataVal2,MRange] =
GenTrainVal(ExpData,0.8); Table=DataTrain; [NTD NTCol]=size(Table);
/IPk changes, POa, POb stay without change //Evonorm structures for k

adjustements

IN2
NTPr=48;//six k parameters, three alpha operators and two beta

operators P=zeros(NTI,NTPr);

Report=[];

/IMargin per parameter
MR=zeros(NTPr,2);

/IConstanst limits

MR(:,1)=0; //minimum
MR(:,2)=1; //maximum

/IGenerate a new population
IIV2
for k=1:NTI
for pr=1:NTPr
P(k,pr)=desnormalization(rand(),MR(pr,1),MR(pr,2));

end

end

/IAuxiliar variables
miny=10000000000000000;
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maxy=-1000000000000000;

FE=zeros(1,NTI); //Evaluation per individual
Imax=P(1,:); //Best individual found

/[Principal cycle begin here

for cycle=1:NTGen

/I Evaluation

for k=1:NTI /[Decoding
Cx=P(k,1);
Kp=P(k,2:25);
Opa=round(13*P(k,26:37)+0.5);
Opb=round(4*P(k,38:48)+0.5);

[err, Rep] = evallndiN(Cx,Kp,Opa,Opb,DataTrain);

y=err;

if y > maxy
maxy=y;
end if y<miny

miny=y;

INmax=Kp;

N2
Imax=P(k,:);
Sol=[Kp Opa Opb];

end
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//Minimization

aux = (sum(Opa)/(13*12) + sum(Opb)/(4*11))/2;

FE(k) = 0.5*%(1 - normalization(y, miny, maxy)) + 0.5*(1-aux);
end //of k

/ISelection

[PS]=selectiondet(P,FE,NTIS);

/[IGeneration

//Normalization of PS-PSN

I PSN=PS;

I/l for k=1:NTIS

/I for pr=1:NTPr

/I PSN(k,pr)=normalization(PS(k,pr),MR(pr,1),MR(pr,2));
/I end

/l end

/[Estimation of parameters
[Meann,Stdn]=CalculationEvonorm(PS);

/IUsing the heuristics
[P]=GenEvonorm(Meann,Stdn,Imax,NTl);

/IDesnormalization of PN->P
/I for k=1:NTIS
/[ for pr=1:NTPr
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I P(k,pr)=desnormalization(PN(k,pr),MR(pr,1),MR(pr,2));
/I end
/I end

Report=[Report miny];

//Adjust for corresponding limits
[P]=adjust(P,MR);

end

Table=DataVal2;

[NTD NTCol]=size(Table); Cx=Imax(1);
Kp=Imax(2:25);
Opa=round(13*Imax(26:37)+0.5);
Opb=round(4*Imax(38:48)+0.5);

I=round(Cx*4095);
[B]=Int2Bin(1,12);

Sol=[B Kp Opa Opb];
[err, Rep] = evallndiN(Cx,Kp,Opa,Opb,DataTrain);

/IPRESS and R2pred considering DataVal2
Y=DataVal2(:,5);

//Stundentized

/[Calculate H???
[Imsres=sum(VErr.~2)/(NTD-4);
/l[ds=VErr/sqgrt(msres(1-Hii));
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//IPRESS and R2 prediction
VEr=Rep(;,1)-Rep(:,2);
PRESS=sum(VErr."2);
SST=Y"*Y-sum(Y.*2)/NTD;
R2pred=1-PRESS/SST;
//Standarized

msres=sum(VErr."2)/(NTD);

ds=VErr/sgrt(msres); //ds with high value, a potential outlier (non tipic
value) endfunction
110:9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9,0.9.0.4
/IDecode equations function [R]=ExtractAlpha(opalpha, k1, k2, varx)

ks=string(k1);

r=strcat([",ks]);
ks=string(k2);

Xs=",

if varx==1 then
xs='x1";

end

if varx==2 then
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XsS='x2"

end

if varx==3 then
Xs="x3"

end

if varx==4 then
xs="x1"

end

if varx==5 then
XsS='x2"

end

if varx==6 then
Xs='x3"

end

if varx==7 then
xs='x1"

end

if varx==8 then
XS="X2";

end

if varx==9 then
XS="X3";

end
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if opalpha==1 then
R=strcat(['(,r,xs,"+',ks,)]);

end

if opalpha==2 then
R=strcat(['exp(,r,xs,'+',ks,));

end

if opalpha==3 then
R=strcat(['(,r,xs,'+'ks,)"27);

end

if opalpha==4 then
R=strcat(['log(,r,xs,'+',ks,)]);

end

if opalpha==5 then
R=strcat(['(,r,xs,'+',ks,)(-1)']);
end

if opalpha==6 then
R=strcat(['(',r,xs,'+' ks, )(-2)']);

end

if opalpha==7 then
R= strecat(['(',r,xs,'+',ks,)N1/2)']);

end
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if opalpha==8 then
R=strcat(['(',r,xs,'+',ks,)"3");
end

if opalpha==9 then
R=strcat(['(',r,xs,'+",ks,)(-3)]);

end

if opalpha==10 then
R=strcat(['(',r,xs,'+' ks, )N1/3)1);

end

if opalpha==11 then
R=strcat(['sin(',r,xs,'+'ks,")]);

end

if opalpha==12 then
R=strcat(['cos(’,r,xs,'+',ks,)"]);

end

if opalpha==13 then
R=strcat(['tan(’,r,xs,'+',ks,));

end

if opalpha<l | opalpha>13
R='0";

end
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endfunction

function [R]=ExtractAlphasim(opalpha, k1, k2, varx)

I':";

Xs=",

if varx<=3 then

xs='x1";
r='k11";ks='k21";
end

if varx>3 & varx<=6 then

XS="X2";
r="k12";ks="'k22";
end

if varx>6 & varx<=9 then

XS="X3";
r='k13":ks='k23"
end

if varx>9 & varx<=12 then
Xs="x4",
r='k14"ks='k24"
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end

if varx>13 & varx<=15 then
XS='x5"
r='k15"ks="k25"

end

if opalpha==1 then
R=strcat(['(',r,xs,'+',ks,));
end

if opalpha==2 then
R=strcat(['(,r,xs,'+' ks, )"2");
end

if opalpha==3 then
R=strcat(['(',r,xs,'+'ks,)"37);
end

if opalpha==4 then
R=strcat(['(",r,xs,"+',ks, ) -1)"]);
end

if opalpha==5 then
R=strcat(['(,r,xs,"+' ks, ) -2)']);
end

if opalpha==6 then
R=strcat(['(',r,xs,"+',ks,)(-3)']);
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end

if opalpha==7 then
R=strcat(['(,r,xs,"+',ks,)(1/2)]):

end

if opalpha==8 then
R=strcat(['(',r,xs,"+',ks,)N1/3)1);

end

if opalpha==9 then
R=strcat(['exp(,r,xs,'+'ks,)]);

end

if opalpha==10 then
R=strcat(['log(’,r,xs,'+',ks,)]);

end

if opalpha==11 then
R=strcat(['sin(',r,xs,'+',ks,")]);

end

if opalpha==12 then
R=strcat(['cos(’r,xs,'+',ks,)]);

end

if opalpha==13 then
R=strcat(['tan(’,r,xs,"+',ks,));

end
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if opalpha<l | opalpha>13
R="0"

end

endfunction function [EquationR]=DecodEqu(Sol)

B=Sol(1:12);
K=Sol(13:36);
OpA = Sol(37:48);
opB = Sol(49:59);

TB=max(size(B));

cheta=1;
R=":
for b=1:TB

opalpha=o0pA(b);
k1=K(2*b-1);
k2=K(2*b);

if B(b)==1 then

[rn]=ExtractAlpha(opalpha,k1,k2,b);

else

rmn="0"

end
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if b>1 then
if opB(cbeta)==1 then
betas="+';
end

if opB(cbeta)==2 then
betas="-';
end

if opB(cbeta)==3 then
betas="";

end

if opB(cbeta)==4 then
betas="/",

end

if opB(cbeta)>4 then
betas="?";

end

cbeta=cbeta+1;

R=strcat(['(',R,betas,rn,")");

/I R=strcat([R,betas,rn]);
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else

R=rn;

end

end
EquationR=strcat(['y(x1,x2,x3,x4,x5)=",R]);

endfunction function [EquationR]=DecodEqusim(Sol)

B=Sol(1:15);
K=Sol(16:45);
OpA = Sol(46:60);
opB = Sol(61:74);

TB=max(size(B));

cbeta=1;
R=";
for b=1:TB

opalpha=opA(b);
k1=K(2*b-1);
k2=K(2*b);

if B(b)==1 then
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[rn]=ExtractAlphasim(opalpha,k1,k2,b);

else

rn="'0";

end

if b>1 then
if opB(cbeta)==1 then
betas="+';
end

if opB(cbeta)==2 then
betas="-
end

if opB(cbeta)==3 then
betas="";

end

if opB(cbeta)==4 then
betas="/";

end

if opB(cbeta)>4 then
betas="?";

end
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cbeta=cbeta+1;
R=strcat(['(‘,R,betas,rn,"));
Il pause
/IR=strcat([R,betas,rn]);
else
R=rn;
end

end

EquationR=strcat(['y(x1,x2,x3,x4,x5)="R]);

endfunction function [Table, ReportS, ReportY]=ExperTable()

Table=[];
ReportS=|[];
ReportY=[];

for exper=1:2

tic();[Sol,err,Report,Rep,msres,R2pred,PRESS]=SRABcorrosionNMO(20
0,10,150);a=toc();

aux=[msres R2pred PRESS a|];

Table=[Table; aux];
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ReportS=[ReportS;Sol];
ReportY=[ReportY Rep];
end

endfunction function [Ip, J, Fo, s, Rep, Interv]=IntervalPred(X0)
ExpData=[0 50 O 400 7.7419

50 60 400 12.1860

50 120 400 10.3980

50 0 500 4.1292

50 60 500 1.9645

50 120 500 2.3174

25 25 0 400 7.4281

25 25 60 400 8.0970

25 25 120 400 9.7480

25 25 0 500 3.9813

25 25 60 500 4.2494

25 25 120 500 4.5984

0 400 2.9952

60 400 4.2209

120 400 4.8132

0 500 2.9073

60 500 4.6259

50 0 120 500 3.8645

]; //INormalization
[DataTrain,DataVall,DataVal2,MRange] = GenTrainVal(ExpData,0.8);
[NTD NTCol]=size(DataTrain); J=zeros(NTD,4);
Rep=[];

Ip=[0 0 O];

suma=0; for d=1:NTD

x1=DataTrain(d,1);

x2=DataTrain(d,2);

o O O O O

al
o
o O o o o
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x3=DataTrain(d,3);
k13=0.2663285;
k23=-0.6372761,;
k14=-0.5851344;
k24=0.5818615;

//Original function
y=(k13*x3+k23)"2+(k14*x2+k24);

aux=[DataTrain(d,4) y];
Rep=[Rep; aux];

/IJacobian

suma = suma + (DataTrain(d,4)-y)"2;

Fd=[2*(k13*x3+k23)*x3 2*(k13*x3+k23) x2 1];

J(d,:) = Fd;
end s=sqrt(suma/(NTD-4)); //four parameters k's //Xo normalization
x1n = normalization(X(1),MRange(1,1),MRange(1,2));
x2n = normalization(X(2),MRange(2,1),MRange(2,2));
x3n = normalization(X(3),MRange(3,1),MRange(3,2)); //Original function
with Xo
yo=(k13*x3n+k23)"2+(k14*x2n+k24);
yr = desnormalization(yo,MRange(4,1),MRange(4,2));

/[Fo evaluated with Xo
Fo = [2*(k13*x3n+k23)*x3n 2*(k13*x3n+k23) x2n 1];
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tstud=2.776;

Interv=tstud*s*sqrt(1+Fo*inv(J™*J)*Fo’);

/IDesnormalization of intervals

intervr = desnormalization(Interv,MRange(4,1),MRange(4,2));

a=intervr-yr;

b=intervr+yr

Ip=[ a yr b]; endfunction function [TableSRAB,
SolSR]=experimentsSR()

TableSRAB=[];SolSR=[];
for exper=1:10

[Sol,err,Report,Rep,msres,R2pred,PRESS]=SRABcorrosionNMO(500,50,
200);

aux=[msres R2pred PRESS];
TableSRAB=[TableSRAB; aux];
SoISR=[S0ISR; Sol];

end

endfunction
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Abstraci— Symbalic regression is an application of genetic
programming and & wsed for modeling different dynamic
processes. Industrial processes problems have been solved using
this technigue. In this work a symbolic regression algorithm is
used for modeling the synthesks process of the oxides BiMaoly,
and V04 in order to provide a model. These oxides are nsed on
heterogenesus photocatalysis. Genetie programming, artificial
neural network and lnear regression are compared with
symbolle regression models using statistics metries to evaluate
them.

Spmbolic  regression

Keywords— genellc  prograsming;
photecatalysis; ndistrial modeling.

1. INTRODUCTION

Muodeling  industrial and dynamic processes is an
opportunity area where new techniques are being studied.
There is a new application in genetic programming (GP) called
symbolic regression (SR} and 15 uwsed for modeling on
industrial processes. There are several forms to generate
models; mathematical models are not black boxes [1].
Artificial neural networks (ANN) could be a good model for
optimizing [2]: however, they are black boxes where an
explicit formulation about the comelation between variables
and effects on output response is not evident [1]. In chemical
processes, Repetibions of reactions on chemical expeniments
are expensive and spent time is very important, even on
industry o academic research. This is the importance of
creating models on chemical processes. In this paper symbolic
regression models are proposed for two different compounds
used on heterogeneous photocatalysis; Bi;MoOx [3] and Va0,

Il. RELATED WORKS

Recently some authors have been worked with SR Gudo
F. Smits et al use SR with the aim of obtain maximum
scalability to architectures with a very large number of
processors in a process of a distillation tower with 23 inputs
and 5000 records [4). They present a GP variant; Pareto GP,
which exploits the Pareto front to dramatically speed the

OTE-1-4T00-0000-215 £31.00 2015 IEEE
DOL 10108 AL 201433
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symbolic regression solution evolution as well as explicitly
exploit  the  complexity-performance  trade-off  [3].
Furthermore, in other work they give an overview of the
importance of variable selection to build robust models from
industrial datasets [6], Flor Castillo et al, use SR and a design
of experiments {DOE) to obtain the maximum data utilization
when extrapolation is necessary [7] and also use SR based on
Pareto front [8]. An important work of Mark Kotanchek et al,
summarize their experience in industrial application of genetic
programming to empinical modeling and transfer key leamings
with respect to real-world application.[%]. Edvarde Oliveria et
al, changes the basic behavior of the method of SR adding
some concepts of cvolution strategies (ES) obtaining good
results. [14].

Other important work was made by Birkan Can et al,
where they made a comparative analysis of GP and ANN for
meta modeling of discrete-event simulation models, [11].
Xiong Shengwu et al, apply GP to SR problem and propose a
new GP representation and algorithm that can be applied to
both continuous  function’s  regression and  discontinuous
function’s regression [12]. Lus M. Torres-Trevifio et al,
propased an hybrid system for setting machining parameters
from experimental data using SR alpha-beta to build
mathematical models [1]. Dervis Karaboga et al made a work
where a set of SR benchmark problems were solved using
artificial bee colony programming and then its performance
was compared with the very well known method evolving
computer programs, GP [13]. Vipul K. Dabhi et al, exploned
the suitability of ANN and SR to solve empirical modeling
problems and conclude that SR can deal efficiently with these
problems [14].

Weihua Cai et al describe a methodology that uses SR to
extract correlations from heat transfer measurcments by
scarching for both the form of the correlation equation and the
constants in it that enable the closest fit to experimental data
[15]. T.L Lew et al, extend the class of possible models

cps™

e
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considerably by carrying out a general SR using GP approach
[16]. Ming-fang Zhu et al, present a method for multivariable
SR modelng and predicting, based on gene expression
programming, a recently proposed evolutionary computation
technique, furthermore they give an example to explain this
technique. Experiment results show that the model set up is
better than statistical linear regression technigues [17].

J.W. Davidson et al describes a new method for creating
polynomial regression models and is compared with stepwise
regression and SR using three example problems] 18], this new
method includes some changes on the basic genetic
programming algorithm first proposed by  Koza [19]. P.
Barmpalexis et al use SR via GP in the optimization of a
pharmaceutical zerorder release matrix table, and its predictive
performance was compared with ANN models [20].

Finally Wasif Afzal et al, investigate the evidence for SR
using GP being an effective method to prediction and
estimation n software engincering, when wiath
regression/'machine learming models. They used 23 primary
studics from 1995 to 2008, the results show that SR using GP
has been applied in three domains within software engineering
predictive modeling; software quabty classification, software
cost/cffort/size estimation and software fault
prediction/software rehability growth modelng [21].

I1I. HETEROGENEOUS PHOTOCATALYSIS

During the last decade the heterogeneous photocatalysis has
been positioned as an  effective  technology  to solve
environmenial problems [22, 23], The chemical reactions
involved in heterogencous photocatalysis are highly attractive
because they take place at ambient conditions (T=298K,
P=1bar) and the photocatalyst can be used almost indefinitely.
For these reasons heterogencous photocatalysis has been
applied to the treatment of wastewaters and indoor purification.
Titanium dioxide (Ti():) is one of the most important
semiconductor photocatalyst due to its high photocatalytic
activity under UV radiation, low cost, and stability to corrosion
processes of its anatase polymorph. However, its relative wide
energy band gap of 3.2 eV linmits further applications of the
material in the wisible-light region. In the scarch of
semiconductor materials with photocatalytic activity under
visible-light iradiation, important efforts have been carned out
since the last decade. For example, the Ti0); anatase polymorph
has been doped with some metals and no metals i onder to
increase its absorption in the visible range [24]. In another
approach, several authors have propesed alternative oxides
than tradinonal TiO, with high photocatalytic activity under
visible-light imadiation such as; VO, WO, Inl-xMNixTa(4,
Calny(3y, InVO,, BiV0y, and Bi,Mo); [25,26,27 28 29.30,31].
Specifically  bismuth molybdate has an Aunvillius  type
structure that has atoms of molybdenum in octahedral positions
which is interesting from the point of view in photocatalysis.
(On the other hand. V.0 15 an efficient catalyst due to its strong
acidity, high thermal stability and low oodation potential
compared with other catalysts [32]. The cficiency of syntheis

process depend of several parameters such as crystallinity,
surface arca and thermal treatment. These parameters can be
modified depending on the expenmental conditions  of
synthesis to obtain the semiconductor oxide. In this work the
oxides Va0 and Bi;Mo(), were selected for modelling its
synthesis process using SR.

IV, METHODOLOGY: MODEL GENERATION BY SYMBOLIC
REGRESSION ALPHA-BETA

In this work a symbolic regression o-f approach is used
[33]. A mathematical eguation is represented by the
combination of « and [ operators. An e operators is defined as
a function that requires only one argument and applics only
one mathematical operation. Considering a review of several
mathematical models of real processes, 13 operations are
chosen as a operators (see Table 1).

An @ operator uses two real number parameters called k1 and
k2 and an integer that describes the mathematical operation.
The a operator is defined as follows:

Dp‘r,{x,k,,iz}= alky *» x + k3) (1)
where x is an input variable and a is an operation. Depending
of the o operator sclected, a specific mathematical operation
that requires only one argument is exccuted; e.g., if = | then
the operation made is (ky, *x+kz), if @ =13 then the
operation made 15 tan(ky + x + k;). The a operator is an
integer nomber and its value determinate a  specific
mathematical operation descnibed in Table 1. A ff operator 1s
defined as a function that require two arguments and makes
the four basic arithmetic operations f= ¢ so a f operator equal
to 1 imply the plus operator or ff (@.b) = a + b, and §f (a,b) =
a'bif fi=4.

Tahle 1. & Operators parameters and its related mathematical

function
a Operator Mathematical operation

1 (kyx + k)

2 (kyx + kg)*

3 (kyx + k)P

4 (kyx + k)t
5 (kyx + k)2
3 (heyx + k)2
7 ey x + kg)*2
8 (leyx + kz)'
k) explhyx + k)
10 log(kyx + k3)
11 sin(k,x + k;)
12 cos{kyx + k3)
13 tan(k, x + k,)
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A. Represemtation of operators

By means of a—f operators several configurations can be
established. A basic configuration can be defined when an a
operator is assigned per input variable then an § operator is
used to connect two a operators (2). Usoally, a simple
configuration in majority of the cases 15 enough for the
regression.

v= Pl ), aa(xz)) . el ) (2)
The representation required 15 a real vector with n clement
where »n is equal to the number of @ operators and &
parameters plus # operators. Using one @ operator per vanable
and connect them by ff operators, the number of parameters 1s
given by the number of a operators, the number of § operators
and k parameters (two per & operator). In a basic structure 1s
atfi+2%a, because f=a-1, and a = number of vanables (Nv)
then the number of parameters is MeHM-1+2*Ne. A
normalized real vector can be used to represent operators and
k parameters, but a and /f operators are integers, so 15 required
the following formulation to get its value:

a= ViiF13+0.5] 3

B V(405 i)
where [.] is the ceiling function. There are 13 @ operators
defined in Table 1| and 4 § operators (basic algebraic
operations). Consider the following example: the vector of
parameters 15 Vo= [0854 0124 0456 0232 0987 0654
0.0234] for two variables, so, two a operators, one ff operator,
and four k parameters are represented. Decoding 15 as follows:
first, e and ff operators are decoded using the first elements of
the vector, then the & parameters are represented on the rest of
the elements.

aj =[V(1)*13+0.5]=[{0.854*13+0.5) = 12 this represents a
) cos function,

ay = (V(2)*1340.5) =[0.124*13+40.5) = 3 this represents a
cubic exponcntial,

£ =[(Vi3y*4+0.5y1=[(0.456*4+0.5) ] = 3 this represents a

multiplication,

by =Vi4=0232,
b =V(5=0987,
ki =Vie=00654,
b= V(T=0.0234.

The formulation represented 1s:

3

y=cos(k o +kg) * (ke + k) (3}

In this work, Evonorm is used to solve the problem of

selection, the suitable parameters (£'s), and integers to define

and f operations Dunng the last decade the heterogencous
photocatalysis has been positioned.

176

B Evelutionary algorithm Evenorm

Evonorm is an easy way to implement an estimation of
distribution algorithm [34, 35]. As arl cvolutionary algorithm
sclection of new individuals and thE generation of a new
population 15 wsed; however, the crossover and mutation
mechamsm is substituted by an estimation of parameters of a
normal distribution function. The following steps are used in
Evonorm:

I.  Ewvaluation of a population P.
2. Deterministic selection of individuals from P to P 5.
3. Generation of a new population using P S

A population P is a matrix of size [, (total of individuals) and
1 (total of decision variables). A solution is a set of decision
variables, and this set is represented as a real vector. Every
row of the population P represents a set of decision vanables.
The selection mechanism is deterministic because the fittest
individuals are sclected. Usually the number of sclected
individuals is lower than the number of the original
population, wsually a 20 or 100 % of the total population. A
random variable with normal distribution is estimated per
decision variable, s0 a marginal distribution function is used.
Two parameters are estimated, the mean and the standard
deviation, that are determined using the values of the selected
individuals. The population of selected individuals is a matrix
Ps of size [, (total of individuals selected) and {2 The Egs. 6
and 7 are used to caleulate the mean and standard deviation,
considering every vector of population Ps.

e = X (Pspr) s (6)

N

Tpr = j{Z:-l {Psprlg - p.pr:}z]f'il

where pr=1,...0

A new population is generated using the estimated normal
random variables. This is a stochastic process; however, a
heuristic is used to maintain eguilibrium between exploration
and exploitation, s0 new solutions can be found not
necessarily near of the mean caleulated. The best solution
found fx at the moment is involved in the generation, so, in the
50 % of the times, the mean is used in the calculations and, on
the other 50 % of the time, the best solution found fx is used
as i mean as is shown in the following equation:

N{ptpr. ) U() > 0.5

t:
N(pr,..rzpr‘ll otherwise ®

Pt;rr=[
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The random varable L) has a uniform distribution function;
N() is a random variable with a normal distribution function.

C. Residual analysis

One effective way to validate a regression model 1s to
collect new experimental data to determine how well the
model performs in practice [36). The most simple measure is
the residual calculated as the difference (#{i)) between new
observations made by the response of the process (v{(i)) and
predicted response generated by the regression model made
(=(i)). (Eq. 9.

e(i) = (i) = #(i) ()
The prediction error sum of squares (PRESS) is o measure of
how well a model works to predict new data. Usually, a small
value of PRESS is desirable (Eq. 10). In this case, the FRESS
is obtained using cross validation.

PRESS = T, (y(i) — #(1))* (1)

The percentage of variability }\'2",. is a measurement for
indicating the efficiency of the model to predict new
observations. A value near one is desirable on this indicator

{Eq. 11).

L0 e A1)}

¥y-(Ef P an

ﬁ‘érm =1=

V. A CASE OF APPLICATION: SYNTHESIS PROCESS OF
PHOTOC ATALYSTS BlL,MoOO, AND V.0,

An experimental design was made considering  two
different oxides for photocatalysis: Bi:MoOy and V,0s. First
Bi:Mo0), material was synthesized by co-precipitation assisted
with ultrasonic radiation. For this Dse iwo agueous
solutions  were pared. In the first one, 91508 g of
Bi(WNOy); SHyO [Aldrich, 99.99%] were dissolved in 100 mL
of diluted HNO;. The second one was prepared by dissolving
1.7359 g of (NHs}eMorOz-4H:0 [Aldrich, 99.99%] in 100
mL of distilled water. The bismuth nitrate solution was added
dropwise to the molybdate solution with a vigorous stirring.
When the mix was reached, the pH of the solution was
adjusted at 5 by using a 2M NHyOH solution. Afterward, the
solution was cxposed to ultrasonic radiation in a water bath at
60°C (TOW, 42 kHz). The resulting vellow suspension was
maintained at 100°C to promote a slow cvaporation of the
solvent. The yellow powder obtained after this thermal
treatment was used as precursor of Bi,MoO,. A slow thermal
treatment of 10°C/min in air at 300, 350, 400, 450 and 500°C
was employed to obtain polyerystalline powders of Bi,MoO,.

The second oxide 15 V,0: which was prepared by
precipitation method using ethylenglyeol as stabilizer. In a
typical synthesis, 0.0054 mole of ammonium metavanadate
(NHLVO5) (Aldrich, 99%) were dissolved i 50 ml of
distillated water or ethylenglycol (HOCH:CHOH) (Aldnch,
99%) under vigorous stirring. Subscquently, the solution was
exposed to ultrasound irradiation (TOW, 42 kHz) under ambicnt
air in a water bath at 60°C for time intervals from 0 to 120
minutes. Once clapsed time, resulting mixture was heated at
100°C in a hot plate to promote the evaporation of the solvent.
The resulted powders were heated at 400 and S00°C for 24 h to
ohtain polycrystalline powders.

A, Model generation and comparizon using genetic
programuing artificial newral network and linear
regression

Other similar approaches can be used to generate
mathematical models like genetic programming, artificial
neural network and linear regression. For both oxides genetic
programming uses the following operations {+,-*._exp,log}
for all nodes for 300 gencrations, considening 100 individuals.
A simply crossover with a probability of 0.9 and a simple
mutation with a probability of 0.05 is used. Statistical metrics
as mean square error (MSE), PRESS, and R e are caleulated.
An 80F% of expernimental data is used for model building and
20% for test validation. Lincar regression is exccuted under
the same conditions. With artificial neural network approach,
a multiperceptron neural network with back propagation rule
was used, with § newrons on middle layer and a constant
learning parameter 0.25 and a moment of 0.5 during 800
epochs.

In Symbolic regression operators and parameters are set by
Evonorm, for the oxide V.0, a population of 200 individuals,
20 are selected for generating new population during 200
gencrations. For Bi:MoOg a population of 100 mdividuals, 10
are sclected dunng 300 gencrations. A resume of the
performance of the algorithm is shown on the table 2 and 3.
Central processing unit (CPU) time is calculated using a
laptop with dual-core 1.3Ghz with 4GB RAM.

Table 2. Statistical metrics resubis of best model found of BiMoO,

using linear regression, genetic programming and  symbolic
Fegresaion.
Appreach MSE PRESS [ Lt
Lneas regression. | Q40092316 | 4009130637 | 0.69585E415 0.014
Ganatic O.4EIIS0TE | 48135072 0.4BS767E08 152015
prOg Mg
Adtificial neural COSIS0684T | 3190644684 | 0.BGEE07336 11414
Emtwork
Symbokc regression | GO37TES1115 | 5789110887 | 001546318 FEEEES]
alpha-bita
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Table 3. Statistical metrics results of best model found of Vo0 using
linear regresaion, genetic programming and symbolic regression.

CPU time
Approach MISE PRESE B
Linaar ragrassion 0145478636 | 146472536 | 036AL7ETSE | Q009
Genatic TOEOLEI00E | EOLGIOOAL | OGOBLEOLAS | AEA 122
ETORTAMITINE
Aetificial naural QOIM16323 | 1041652271 | 0935752749 | 1B433
naTwork
Symbokc regrission | OOO363E107 | CLIG3E10PZY | 0.9BOS0S535 | 246525
apha-beta
VI. RESULTS

The models generated are normalized. The model
generated with SR for the oxide V,0; is shown in equation 12:

Flxpayxyx,) = 01834666 — .000B4B388x2 + 0.015535327x, —
DO2ETETE4x; + 0.1202515x, — 1322645399 I ]

where v is surface arca, Ha0 is x, cthylenglycol is
ultrasound trradiation 1s x; and heat treatment temperature is
x4 In this model the factor x4 1s not considered, because there
heat treatment femperature is imelevant for the response of
surface arca.

The model generated with SR for the oxide Bi,MoOy; is shown
n equation 13:

Fixx,z,

wp( -0 1L DA TAx, - 1)
F HLGLT N4, & DASH 151200 |+ e — 0107406, —0.63710 79} — 0. LSO2 Mix, +0.0 046 HIE)E

(13)

where v is half life time, ulirasound irradiation 15 x,, heat
treatment time is x; and temperature of heat treatment is x;. In
this model the heat treatment time is irrelevant for the
response of half life time.

Considering results shown in tables 2 and 3, criteria of low
complexity, low error, high II'.JFI,] and low PRESS can be taken
here. Performance on CPU time is best on linear regression,
however its other statistical metrics are poor compared with
symbaolic regression. Genetie programming CPU time is higher
compared with SR in both cases. Antificial neural network
works well and better in model for Bi:Mo(O,, using ANN is a
good option, but an explicit correlation between vanables and
cffects on output response is not evident. The results on the
model of oxide W0y show a better performance compared
with Bi;Mo0); model. In this case to have more samples on
dataset is recommended for better results on statistical metrics.

VII. CONLUSIONS AND FUTURE WORK

A symbolic regression modeling 15 proposed for different
synthesis process of 2 oxides used on photocatalysis. A set of
models are generated from expenimental data. The oxides
Bi:MoO; have 12 samples and V,0; have 1% samples. A
comparison using similar approaches like artificial neural
network, lincar regression and genctic programming is made.
The performance of cach model 15 evaluated using statistical
metrics and CPL time running the algonthm. The results show
that symbolic regression model have good results compared
with other technigues, especially when there 15 more samples
on data set. A low performance model could be generated
when there are fow samples of the process. In this examples,
few data are introduced, so models of low performance are
generated; in spite of, results are supenor tham linear
regression.  Symbolic regression could be used in other
chemical process to optimize their methods; nevertheless for
future work other output values on experimental data set could
be used to generate new models.
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