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Abstract

Background: Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct.
RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical
cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an
immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown
to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been
limited by the absence of conclusive data on the molecular mechanism of its action.

Methods: In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell
viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial
membrane potential, and reactive oxygen species production.

Results: I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase.
We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the
use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA
alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with
N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP.

Conclusions: Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and
ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed
cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical
chemotherapies.
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Background
Regulated cell death (RCD) is a physiological mechanism by
which the cell activates its own machinery to self-destruct. It
is important for the maintenance of tissue homeostasis and
its deregulation induces diseases such as cancer. Among the
different types of cancer, cervical cancer remains one of the
leading causes of women death worldwide [1]. Although
several approaches such as immune therapy with cytokines,
polyamine synthesis inhibitors, individual micronutrient
supplementation and pharmaceutical agents exist, they have
shown a limited success [2, 3]. And while chemotherapy
and radiotherapy are front-line treatments against this and
other types of cancer, they cause important side effects.
These are reasons why the development of new therapies to
improve existing treatments is a major challenge. Natural-
derived products have recently attained a lot of interest for
their ability to modulate the signaling pathways involved in
cancer proliferation or for their protective potential in radio-
therapy and chemotherapy [4]. Some such natural-derived
products are dialyzable leukocyte extracts (DLE), which are
mixtures of low molecular weight substances (<12 kDa)
released from disintegrated leukocytes of human, bovine, or
other species’ blood or tissue [5, 6]. DLEs have been used as
therapeutic agents in the treatment of a broad spectrum of
diseases, usually related with the immune system [7], includ-
ing cancer, where they have shown to improve the quality of
patients’ lives [8, 9].
Results obtained in our laboratory show that a type of

bovine DLE obtained from disintegrated spleen, IMMUNE-
POTENT CRP© (I-CRP), is cytotoxic to several cancer cell
lines [6]. In the MCF-7 cell line, I-CRP inhibited cell
growth, suppressed the DNA-binding activity of AP-1,
decreased c-Jun protein expression [8] and modulated the
mRNA expression of NFATx, NFATc, NFκB, c-Jun, c-Fos,
p53, bag-1, c-myc, bax, bcl-2 [6]. It has also prevented mur-
ine melanoma cell growth and diminished VEGF release
[10]. However, the mechanisms by which I-CRP exerts
these effects and the type of cell death activated in these or
other cell lines are still unknown. The limited information
of its molecular action mechanisms has limited its wide-
spread use.
The purpose of this study was to analyze the molecular

pathways by which I-CRP exerts its cytotoxicity. We used
the cervical cancer-derived HeLa cell line to further
characterize its mechanism of cytotoxicity. We found that
I-CRP induces caspase-independent but ROS-dependent
cell death, loss of mitochondrial membrane potential,
DNA fragmentation and condensation, and cell cycle
arrest in HeLa cells.

Methods
Cell culture
Human cervix adenocarcinoma HeLa (ATCC® CCL-2™)
and human cervix squamous carcinoma SiHa (ATCC®

HTB-35™) cells were obtained from the American Type
Culture Collection and maintained in a humidified incu-
bator containing 5% CO2 at 37 °C. HeLa cells were cul-
tured in DMEM-F12 supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin (GIBCO).
Cells were routinely grown in plastic tissue-culture dishes
(CORNING).

Cell death induction and inhibition
The bovine dialyzable leukocyte extract, IMMUNEPO-
TENT CRP© (I-CRP), was produced as described previ-
ously [6, 11], and was dissolved in media. One unit of
I-CRP is defined as the product obtained from 1 × 108

leukocytes [11, 12]. Etoposide and QVD.opH (BioVision)
were dissolved in DMSO. N-acetyl-L-cysteine (NAC)
and H2O2 were dissolved in water. For cell death induc-
tion, cells were seeded and incubated with the indicated
concentration of I-CRP, etoposide, or H2O2 at the indi-
cated times. For cell death inhibition, QVD.oph or NAC
were added 30 min before I-CRP, etoposide, or H2O2

treatment. All stock solutions were wrapped in foil and
stored at −20 °C. All reagents were from SIGMA-
ALDRICH, unless otherwise stated.

Cell viability assessment
Cell growth inhibition was determined by measuring 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium brom-
ide (MTT) dye absorbance by living cells, as previously
described [6]. In brief, 5 × 103 cells per well were seeded
in 96-well microtiter plates for MTT assays. After expos-
ure to IMMUNEPOTENT CRP for 4, 8, 16, 24, 48, and
72 h, twenty microliters of MTT solution (2 mg/ml in
PBS) were added to each well. The plates were incubated
for 3 additional hours at 37 °C, after which the MTT
solution in the medium was aspirated and 200 μl of
DMSO were added to each well to solubilize the forma-
zan crystals formed in the viable cells. The optical dens-
ity was measured at 570 nm using a microplate reader
(Synergy2, Biotek).

Cell death analysis
Cell death was determined by staining cells with
annexin-V-allycophalloidin (APC, BD) and propidium
iodide (PI), as previously described [13]. In brief, 2 × 105

cells were seeded in 24-well plates (Corning) and were
incubated with IMMUNEPOTENT CRP for 24 h, with
or without incubation with QVD.oph. Cells were then
detached and washed twice with PBS and then resus-
pended in 200 μl of binding buffer (10 mM HEPES/
NaOH pH 7.4, 140 mM NaCl, 2.5 mM CaCl2). Cells
were then stained and subsequently assessed with a flow
cytometer (Becton Dickinson, BDAccury6) and analyzed
using FlowJo Software.
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Cell counting and blue trypan staining
Time-lapse cellular cytotoxicity induced by 1.25 U/mL of
I-CRP treatment was measured with trypan blue exclusion
assay. Briefly, 1 × 104 cells were seeded into 96-well plates
and treated with I-CRP for 16, 24, 48, and 72 h, or left
without treatment, as a control. After the incubation
period, the cells were harvested and washed twice with
PBS, and the cell pellet was then resuspended with 0.5mL
PBS. Then, 20 μL of suspension was mixed with equal
volume of 0.4% trypan blue and was count using a
Neubauer chamber (Superior Marienfeld) and a clear-field
microscopy (Primostar Zeiss). Each I-CRP and control
was assayed three times in quintuplicate. Total cells were
counted, and the percentage of trypan blue positive cells
was obtained.

Cell morphology assessment
HeLa cells were cultured in 24-well plates and left untreated
or incubated for 16, 24, 48, and 72 h with I-CRP. After the
incubation time, plates were observed in an inverted micro-
scope (NIKON TS100) and pictures were obtained with an
Infinity1 (Lumenera) camera.

Cell cycle analysis
Cell cycle distributions were determined by PI staining. In
brief, 5 × 105 cells in 6-well dishes (CORNING) were incu-
bated with I-CRP at different times (4, 8, 16, 24, 48 h) and
concentrations (1, 1.25, and 2 U/mL). Cells were then
washed with PBS and fixed in 70% ethanol. Cells were
washed again with PBS, then incubated with PI (10 μg/ml)
with simultaneous RNase treatment at 37 °C for 30 min.
Cell DNA contents were measured using a flow cytometer
(Becton Dickinson, BDAccury6), and analyzed using
FlowJo Software.

Nuclear assessment
For DNA degradation we analyzed the SubG1 population
obtained from cell cycle analysis, using a flow cytometer
(Becton Dickinson, BDAccury6), and analyzed using FlowJo
Software. For chromatin condensation we did Hoechst
staining. In brief 10 × 105 cells were incubated in 6-well
plates, then treated with I-CRP and then were washed in
PBS and fixed with paraformaldehyde 4%. We stained the
cells for 5 min using 5 μg/ml Hoechst 33,342 (SIGMA-AL-
DRICH). Cells were then washed with PBS, observed using
a fluorescence microscope (OLYMPUS IX70) and analyzed
with Image-J software.

Caspase analysis
Caspase activity was measured using Caspase 3 (active)
FITC staining kit (ABCAM). In brief, 5 × 105 cells in 6-well
dishes (CORNING) were incubated with IMMUNEPO-
TENT CRP alone or co-cultured with QVD.oph. Cells were
then recuperated and stained following the manufacturer’s

instructions. Caspase activity was measured using a flow
cytometer (Becton Dickinson, BDAccury6) and analyzed
using FlowJo Software.

Mitochondrial membrane potential analysis
Mitochondrial membrane potential was measured using
TMRE (125 nM) (SIGMA-ALDRICH). In brief, 5 × 105

cells in 6-well dishes (CORNING) were incubated as in-
dicated. Cells were then recuperated, washed with PBS,
stained, incubated at 37 °C for 30 min, and measured
using a flow cytometer (Becton Dickinson, BDAccury6)
and analyzed using FlowJo Software. For fluorescence
microscopy, cells were washed in PBS after treatment,
stained, and incubated at 37 °C for 30 min. Cells were
then washed with PBS and observed using a fluorescence
microscope (OLYMPUS IX70).

ROS production analysis
ROS generation was measured using DCFDA (2.5 μM)
(Invitrogen). In brief, 5 × 105 cells in 6-well dishes
(CORNING) were incubated as indicated. Cells were then
recuperated, washed with PBS, stained, incubated at 37 °C
for 30 min, and measured using a flow cytometer (Becton
Dickinson, BDAccury6) and analyzed using FlowJo Soft-
ware. For fluorescence microscopy cells were washed in
PBS after treatment, stained, and incubated at 37 °C for
30 min. Cells were then washed with PBS and observed
using a fluorescence microscope (OLYMPUS IX70).

Statistical analysis
The results given in this study represent the mean of at
least four independent experiments done in triplicate
(mean ± SD). The data was analyzed using GraphPad
Prism (San Diego, CA, USA). Statistical analysis was
done using paired student T-test. The statistical signifi-
cance was defined as p < 0.05.

Results
IMMUNEPOTENT CRP-treatment diminishes cell viability in
HeLa cells
I-CRP has been shown to suppress cell viability in several
tumor cell lines [6, 10]. However, its effect on cervical
cancer-derived HeLa cell line, has not been assessed, thus,
we determined the effect of I-CRP on these cells. IMMU-
NEPOTENT CRP decreased the viability of HeLa cells in
a dose- and time-dependent-manner (Fig. 1). We observed
low cytotoxic effects after 4 h and 8 h of treatment, and
observed that after 16 h we could detect a considerable
diminution of cell viability, which continued to decrease
after 24, 48, and 72 h. The cytotoxic concentration that
decreased the viability of 50% of the cells (CC50) after 8 h
is 2 U/mL, after 16 h and 24 h of treatment is 1 U/mL,
after 48 h is 0.75 U/mL, and after a 72 h–treatment it is
0.5 U/mL (Fig. 1).

Martínez-Torres et al. BMC Cancer  (2018) 18:13 Page 3 of 13



IMMUNEPOTENT CRP induces cell death and inhibits cell
recovery in HeLa cells
As the MTT assay measures cell metabolism through the
capacity of the viable cells to reduce MTT into formazan
crystals [14], we further evaluated cell death by assessing
phosphatidylserine (PS) exposure (Annexin-V-APC) and
membrane permability (propidium iodide, PI) at different
doses of I-CRP after 24 h of treatment (Fig. 2). In healthy
cells, PS is generally restricted to the inner leaflet of the cell
membrane, and the exposure of phosphatidylserine on the
outer leaflet is an effect that is commonly observed during
apoptosis [15]. We determined PS externalization by flow

cytometry of Annexin V-APC/Propidium Iodide-labelled
cells that were treated with IMMUNEPOTENT CRP at dif-
ferent doses for 24 h. As shown in Fig. 2, I-CRP induced a
slight population of AnnexinV-positive and PI-negative
cells and most of them were double positive cells. Further-
more, as expected with MTT results, I-CRP induced cell-
death in a concentration-dependent manner. It provoked a
slight cell death induction at 0.75 U/mL, reaching 35% at
1 U/mL. At a 1.25 U/mL dose it induced cell death in 50%
of the cells, increasing near to 80% at a 1.5 U/mL dose, and
reaching complete cell death at 2 U/mL. Additionally, when
we assessed trypan blue exclusion using 1.25 U/mL after a

a

Fig. 1 Concentration and time effect of I-CRP exposure on HeLa cell viability. After HeLa cells were treated with various concentrations (0.25, 0.5,
0.75, 1.0, 1.25, 1.5, 1.75, 2 U/mL) of I-CRP for different times (4, 8, 16, 24, 48, 72 h), cell viability was measured by MTT assay. The percentages refer
to relative cell viability represented as percentage of control (non-treated cell viability = 100%)

b
  

a
  

Fig. 2 Phosphatidylserine exposure and membrane permeability of HeLa cells after I-CRP exposure. a Cell death was measured by flow cytometry
through Annexin-V and PI staining in HeLa cells treated with different concentrations (0.75, 1.0, 1.25 1.5, 2 U/mL) of I-CRP for 24 h. The percentages
refer to Annexin-V-positive/PI-negative or Annexin-V-positive/PI-positive staining analyzed by flowjo software. b Cells were treated and analyzed as in
(A) and graphed
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treatment of 16 h, 24 h, 48 h, and 72 h, we saw that it
occurs at a time-dependent manner, reaching complete cell
death after 48 h of treatment (Fig. 3a).
Next, we assessed cell recovery after different times of

1.25 U/mL treatment with I-CRP and then treatment-
withdrawal. The cells were treated for 16 h, 24 h, 48 h, or
72 h, then washed and reseeded for 24 h. We observed
that the cells were already compromised, as they did not
recover from the MTT reduction, maintaining the same
relative viability as if the treatment had not been
removed (Fig. 3b, 1). Moreover, morphological assess-
ment showed a reduction of cell confluence and alter-
ations in cell morphology that were visible after 16 h
of treatment and these alterations increased through
time, reaching a complete cell loss after 72 h of
I-CRP- treatment (Fig. 3C).

IMMUNEPOTENT CRP induces cell cycle arrest in HeLa cells
Interestingly, although MTT showed that the CC50 after
24-h treatment was 1 U/mL, we confirmed that it is neces-
sary to use 1.25 U/mL of I-CRP to induce cell death.
Because the decrease in MTT activity can be due to cell
death and/or to the decrease of cell division, we further
assessed cell cycle after I-CRP treatment, to determine if it
induces cell cycle arrest. A seen in Fig. 4, I-CRP effectively
induces cell cycle arrest in G2/M phase at 1 U/mL, which
also increases at a concentration of 1.25 U/mL. We could
not detect cell cycle arrest, at a concentration of 2 U/mL
probably because cell death was directly induced at this con-
centration, as shown in Fig. 2a.
To verify that cell cycle arrest was time-dependent, we

used 1.25 U/mL treatment and assessed cell cycle arrest
after 4, 8, 16, 24, and 48 h of treatment. At 4 h of treatment

a

c

b

Fig. 3 Time-dependent characteristics of cell death induced by I-CRP in HeLa cells. a Cell death was measured by trypan blue exclusion after I-CRP treatment
(1.25 U/mL) for 16 h, 24 h, 48 h, and 72 h and was analyzed as a percentage of living cells and graphed. b Effect on cell viability after withdrawal of I-CRP
(1.25 U/mL) administered for 16 h, 24 h, 48 h and 72 h, was measured by MTT assay after 24 h of withdrawal. The percentages refer to relative cell viability
represented as % control (non-treated cell viability = 100%). c Changes in morphology of HeLa cells induced by treatment with I-CRP (1.25 U/mL) for 16 h,
24 h, 48 h and 72 h, observed in an inverted microscope (NIKON TS100) (20X)
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we noticed a slight accumulation of cells in G2/M
phases that increased with time and reached the max-
imum accumulation after 24 h of treatment, then
decreased after 48 h (Fig. 4b, c). We used Etoposide
as a positive control, as it is a topoisomerase II inhibitor
that induces p53-dependent cell cycle arrest in G2/M
phase [16], and we saw a more potent cycle arrest in G2/
M phase at 16, 24, and 48 h of treatment (Fig. 4c).
Although both treatments induce cell cycle arrest in G2/
M phase, I-CRP induces this arrest earlier and it probably
does it in a different manner.

IMMUNEPOTENT CRP induces DNA alterations
One of the major features of regulated cell death is the
degradation of DNA and nuclear condensation. Different
types of endonucleases activated during many types of
RCD cleave sections of internucleosomal DNA and
cause extensive DNA fragmentation [17]. The fragmen-
ted, low molecular weight DNA can be extracted from
the cells during the process of cell staining, and cells
with fractional, sub-G1, DNA content can be quantified.
To assess DNA degradation, we quantified sub-G1
population of cells treated at different times with I-CRP.

a

b

c

Fig. 4 Cell cycle changes after I-CRP treatment of HeLa cells. a Schematic representation of changes in cellular DNA content in cells treated with
different concentrations of I-CRP (1, 1.25, 2 U/mL) for 24 h, stained with propidium iodide and analyzed by flow cytometry to determine the
cell-cycle distribution (left). The results were analyzed using Flowjo software and graphed (right). b Cell-cycle distribution of cells treated with
I-CRP (1.25 U/mL) for different times (4, 8 16, 24, 48 h). c Cells were treated with I-CRP (1.25 U/mL) or etoposide (100 μM) for different times (4, 8 16, 24,
48 h) and analyzed as in (A) and graphed
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As shown in Fig. 5a, Sub-G1 was detected after 48 h of
I-CRP treatment, indicating the late stages of cell death,
similar to the effect observed by Etoposide treatment.
To further characterize these nuclear alterations, we
stained HeLa cells with Hoechst and nuclear morph-
ology was assessed using a fluorescence microscope. As
shown in Fig. 5b, I-CRP–treated cells show an altered
nucleus after 16 h of treatment, and a type-2 necklace
condensation [18], after 48 h, while Etoposide treatment
shows a higher DNA condensation (Fig. c). Altogether,
these results demonstrate that I-CRP induces DNA deg-
radation and a partial chromatin condensation, indicat-
ing that nuclear alterations are a late step in I-CRP
induced cell death.

IMMUNEPOTENT CRP induces caspase-independent cell
death
To verify the main molecular regulators of this type of cell
death, we assessed caspase activity. As shown in Fig. 6,
I-CRP induces slight caspase activation, as determined by
the detection of caspase-3 activation (A). To determine if
this type of cell death was dependent on caspase activity
we used the pan-caspase inhibitor QVD.oph [19] and we
found that, contrary to etoposide treatment, I-CRP-
mediated cell death was independent of caspase-activation

(Fig. 6b), in fact, the use of this pan-caspase inhibitor
blocked caspase activation and etoposide-induced apop-
tosis but it did not inhibit the cell death induced by I-CRP
(Fig. 6b). This result shows that although a small percent-
age of caspase-3 is activated by I-CRP, caspase-activity is
not necessary for I-CRP-induced RCD.

IMMUNEPOTENT CRP induces loss of mitochondrial
membrane potential and ROS-dependent cell death
The role of mitochondria in cell death is widely accepted,
as they play a central role in cellular energetics and cell
death signaling [20]. Moreover, mitochondrial dysfunction
leads to reactive-oxygen species (ROS) generation [21–23],
which has been associated with caspase-independent types
of cell death [24]. As we found that caspases are dispens-
able for this type of cell death, we assessed whether the I-
CRP was able to induce loss of mitochondrial membrane
potential and ROS production, through tetramethylrhoda-
mine ethyl ester (TMRE) and 2′,7′-dichlorofluorescin
diacetate (DCFDA) staining, followed by fluorescence
microscopy and flow cytometric analysis. As shown in Fig. 7,
I-CRP induces loss of mitochondrial membrane potential
and ROS production, as shown by fluorescence microscopy
(7A,C) and flow cytometry (7B,D), in HeLa cells.

ca

b

Fig. 5 Nuclear alterations induced by I-CRP in HeLa cells. a Degradation of DNA in Cells treated with I-CRP (1.25 U/mL) for 16 h, 24 h, 48 h and
72 h or Etoposide for 48 h. b Nuclear size measured by Image-J software of cells treated with I-CRP for different times (16, 24, 48 h), and stained
with Hoechst 33,342. The percentages refer to nuclear size represent as % control (non-treated nuclear size = 100%). c Nuclear morphology of cells
treated with I-CRP for 16 h, 24 h and 48 h or etoposide (100 μM for 48 h), stained with Hoechst 33,342 and visualized by fluorescence microscopy
(OLYMPUS IX70) (40X)
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Moreover, I-CRP- treatment induces ROS production
in a level similar to Etoposide and H2O2 at their CC50
(8A). We also found a correlation between ROS produc-
tion and PS exposure, because approximately 50% of the
cells display these two features (Fig. 8). Moreover, when
we use QVD we can see that it is not able to inhibit
ROS production in I-CRP treated cells, while it inhibits
its production in Etoposide-treated cells and partially in
H2O2-treated cells (Fig. 8a). Then, we used the antioxi-
dant N-acetyl-L-cysteine (NAC), which increases intra-
cellular GSH levels and possesses thiol-disulfide
exchange activity [25, 26], to determine if it was able to
inhibit ROS production. As shown in Fig. 8a, NAC was
able to inhibit ROS production induced by I-CRP,
Etoposide, and H2O2.
Finally, to determine if ROS were playing a role in I-CRP-

induced cell death, we pretreated cells with NAC, before
treating them with I-CRP. As shown in Fig. 8b, NAC was
able to inhibit I-CRP induced cell death in HeLa and SiHa
(Additional file 1: Fig. S1) cells, as observed by the reduc-
tion of Annexin V+ staining. The same result was observed
when assessing H2O2-treated cells previously incubated
with NAC and partially in Etoposide-treated cells (Fig. 8b).

NAC also inhibited caspase-3 activation in I-CRP-
treated cells (Additional file 2: Fig. S2), which indicated
that caspase-3 activation is a secondary effect of ROS
production after I-CRP treatment.
Overall these results show that I-CRP induces a regulated

type of cell death that is independent of caspase-3 activa-
tion, and induces cell cycle arrest, DNA fragmentation,
mitochondrial damage, and ROS-dependent cell death.

Discussion
Conventional therapies used against cancer, including cer-
vical cancer [27, 28], exhibit many side effects due to their
lack of specificity to cancer cells, while recently developed
approaches have shown a limited success [29–31]. Because
of this, the search for new therapies that improve existing
treatments has become an important subject of study.
Dialyzable leukocyte extracts containing transfer factors

have been used as adjuvants for chemotherapy for osteosar-
coma [32], prostate cancer [33], lung cancer [34, 35], and
breast cancer [9]. In these cases the extract has proven to
be beneficial for cancer patients by improving their im-
mune system by increasing cell-mediated cytotoxicity [32]
or leukocyte cell number [9, 35], resulting in higher survival

a

b

Fig. 6 Caspase-3 activity and effects of pan-caspase inhibition on HeLa cells treated with I-CRP. a Caspase-3 activation was measured by flow cytometry in
cells that were left alone or pretreated with QVD.oph and then treated with I-CRP (1.25 U/ml) or etoposide (100 μM) for 24 h, data was then analyzed and
graphed. b Cell viability was determined by flow cytometry in cells that were left alone or pretreated with QVD.oph and then treated with I-CRP (1.25 U/ml)
or etoposide (100 μM) for 24 h. The percentages refer to Annexin-V-positive or Annexin-V-positive/PI-positive staining
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rates in patients treated [12]. Furthermore, it has also been
demonstrated that dialyzable leukocyte extracts alone can
be cytotoxic to cancer cells [5, 36–39], which has been
specially studied using the bovine dialyzable leukocyte
extract, IMMUNEPOTENT-CRP [6, 8, 10]. However, the
mechanism underlying cell viability reduction by dialyzable
leukocyte extracts, including I-CRP is misunderstood.
Although several studies were done to understand this
mechanism, no principal effector has been found.
In the present study, we showed that I-CRP reduced cell

viability of HeLa cells by inducing cell cycle arrest and cell
death. I-CRP induced changes in cell morphology, and de-
creased cell viability in a time and concentration-dependent
manner, and we realized that this decrease was due to both
cell death and cell cycle arrest. Cell cycle was arrested in
phase G2/M and reached its maximum at 1.25 U/mL, and
after 16 and 24-h of treatment. We also observed a low
caspase-3 activity generated by I-CRP, however this activity
is not necessary for the execution of cell death, because cell
death occurred even after the activation of caspase-3 was
inhibited by the pan caspase inhibitor QVD.Oph. DNA
alterations, including chromatin condensation and DNA
degradation, were observed as a late step of cell death
induction, as they are observed after 48 h of treatment,
when most of the cells have undergone membrane perme-
ability loss. We further showed that I-CRP induced ROS
production in a caspase-independent manner, and that this
production is indispensable for cell death induction.

The past decade has witnessed a steady accumulation
of findings leading to the description of many cancer cell
death pathways, opening the possibilities to eradicate
apoptosis-resistant cells. These findings also suggest that
multiple cell death modalities can engage common sub-
cellular sites and organelles, and even share initiator and
effector molecules [40, 41].
Caspase-independent cell death has been observed in a

variety of cancer treatments, such as ionizing radiation [42],
CD47 agonist peptides [13], berberine [43], differentiation
inducing factor 3 [44], geranylated 4-phenylcoumarins [45],
among others. Interestingly, this type of cell death could be
used to prevent apoptosis resistance in tumor cells. In some
cases, such as I-CRP, there is an activity of caspases but this
activity is not necessary to carry out the cell death, this is
because the caspases can be involved in non-lethal cell pro-
cesses such as differentiation, normal cell signalling and
maturation [46], in addition to their immune functions
[47]. Like I-CRP other agents also induce activation of cas-
pases but kill cancer cells through a caspase-independent
mechanism, such it is the case of bisanthracycline WP 631
[48], selenosemicarbazone metal complexes [49], phenoxa-
zine derivatives [50], among others. Many of these agents
induce caspase-independent cell death mechanisms that
have been well documented and whose characterization
has helped to determine shared features of these types of
cell death modalities, such is the case of matrine [51] and
methylnitronitrosoguanidine (MNNG) [52, 53], that induce

b

d

a

c

Fig. 7 Mitochondrial membrane potential and ROS production of HeLa cells treated with I-CRP. a Mitochondrial membrane potential was measured by
fluorescence microscopy (25X) using TMRE staining in non-treated cells (control) or treated with I-CRP (1.25 U/mL). b Mitochondrial membrane potential
was measured by flow cytometry through TMRE staining in cells left alone or treated with I-CRP (1.25 U/mL) for 24 h. c ROS levels were measured by
fluorescence microscopy (25X) using DCFDA staining in non-treated cells (control) or treated with I-CRP (1.25 U/mL). d ROS levels were measured by flow
cytometry through DCFDA staining in cells left alone or treated with I-CRP (1.25 U/mL) for 24 h
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mitochondrial damage, and subsequently AIF-dependent
cell death.
Cell cycle arrest in G1 phase [54–57], S phase [58], or

G2/M phase [59, 60] has commonly been observed as an
early step in several types of cell death [61–63]. Here we
show that cell cycle was arrested in G2/M phase, and this
was observed from 8 h to 48 h of treatment at a 1.25 U/mL
concentration. There are several agents, such genistein [64],
austrobailignan-1 [65], and curcumin analog WZ35 [66],
that can also cause an arrest in the G2/M phase of the cell
cycle followed by cell death induction. Although a recent
publication of our research group showed that I-CRP does
not affect cell cycle in bone marrow cells of mice treated
with I-CRP [11], here we show that in cervical cancer cells
it induces cell cycle arrest in G2/M phase, uncovering a
different effect in cancer cells.
DNA degradation has become a crucial target for cell

death induction, however, we should consider that blockage
of DNA-degrading enzymes does not prevent cell death
during apoptosis, and enucleated cytoplasts can be induced
to undergo apoptosis [67], indicating that the nucleus is not
always a prime target of apoptosis and cytoplasmic process
can play a major role in the programmed cell death initi-
ation. Here, we observed DNA alterations induced by

I-CRP, including partial chromatin condensation and DNA
degradation as a late step of cell death induction (after 48 h
of treatment) when most of the cells are dead, indicating
that, DNA degradation does not play a role in this type of
cell death, but it is a consequence of this process.
ROS are produced as a result of cellular metabolism at

low-to-moderate concentrations and participate in physio-
logical cell processes. However when produced at high con-
centrations, they produce adverse modifications to cell
components, such as lipids, proteins, and DNA, affecting
cellular organelles and functions and leading to cell death
[68–72]. Caspase-independent cell death has been com-
monly associated with production of ROS [73, 74]. Some of
these types of cell death can be associated with ROS, but in-
dependent of their production [75], or caspase-independent
and ROS-dependent, such is the case of as Mn porphyrin in
combination with ascorbate [76] and Obinutuzumab [77].
Yet, the cell death modalities that are ROS-dependent can
be very vast and include autophagy, necrosis, pyroptosis,
and mitoptosis [23, 70]. As the cell death induced by I-CRP
was ROS-dependent and the alterations in cell morphology
seemed to include cytoplasmic vacuolization, autophagy
could be an interesting clue to follow, to better characterize
the cell death mechanism induced by I-CRP.

b

a

Fig. 8 ROS production and the effect of their inhibition upon I-CRP-treatment of HeLa cells. a ROS levels were measured by flow cytometry through
DCFDA staining in cells left alone or pretreated with NAC or QVD.oph and then treated with I-CRP (1.25 U/mL), etoposide (100 μM), or H2O2 (100 μM)
for 24 h. b The effect on cell viability of cells left alone or pretreated with NAC and then treated with I-CRP (1.25 U/mL), etoposide (100 μM), or H2O2

(100 μM) for 24 h, was analyzed by flow cytometry through Annexin-V staining. The results were analyzed using FlowJo software and graphed
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Recently, our research group has published that I-CRP
possess antioxidant capacity in lipopolysaccharide-stimulated
human blood cells [78], murine peritoneal macrophages [79],
and in bone marrow cells of 5-fluoracil-treated mice [11].
Here we show for the first time that I-CRP provokes ROS
production in cancer cells, which are required for cell death
induction. These results hint at a complex mechanism by
which I-CRP induces a selective cell death depending on the
type of cells. However, further studies are necessary to under-
stand the differences of the cell mechanisms activated in
different cell types.
The results shown here suggest that I-CRP can display

multiple effects on cancer cells, yet ROS production was
found to be indispensable for cell death. Many studies have
involved ROS production in a variety of cell death modal-
ities [23, 24, 69, 80, 81], and they can act as either initiators
or executioners of cell death [24, 40, 68]. Additional studies
must be done to understand how ROS are produced after
I-CRP treatment in HeLa cells and their role as initiators or
executioner of cell death induced by I-CRP.

Conclusions
In conclusion, I-CRP treatment in HeLa cells diminishes
cell viability through cell death and cell cycle arrest, which
is accompanied by DNA alterations in the late steps of this
type of RCD. Interestingly, caspase-3 was modestly acti-
vated after I-CRP treatment, yet RCD was independent of
caspase-activity. Furthermore, I-CRP treatment induces
loss of mitochondrial membrane potential and ROS pro-
duction. The use of the antioxidant NAC prevents ROS
and cell death induced by I-CRP, indicating that I-CRP
induces ROS-dependent cell death. Overall, this work
sheds light into the regulated pathway by which I-CRP
reduces cell viability in HeLa cells, uncovering a cell death
modality that dispenses of caspase activation. This work
opens the way to further analyze the characterization of
this atypical type of cell death that might be activated in
parallel with apoptosis-inducing chemotherapies.

Additional files

Additional file 1: Figure S1. (A) ROS levels were measured by flow
cytometry through DCFDA staining in SiHa cells left alone or pretreated
with NAC or QVD.oph and then treated with I-CRP (1.25 U/mL) for 24 h.
(B) The effect on cell death of cells left alone or pretreated with NAC or
QVD.oph and then treated with I-CRP (1.25 U/mL) for 24 h, was analyzed
by flow cytometry through Annexin-V staining. The results were analyzed
and graphed. (PDF 20 kb)

Additional file 2: Figure S2. Left, caspase-3 activity of HeLa cells left
untreated or pretreated with Nac, and then treated with I-CRP. Right, the
results obtained were analyzed and graphed as the percentage of HeLa
cells positive for caspase-3 activity. (PDF 37 kb)
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