

Research Article

High Intraspecific Genetic Diversity of *Nocardia brasiliensis*, a Pathogen Responsible for Cutaneous Nocardiosis Found in France: Phylogenetic Relationships by Using *sod* and *hsp65* Genes

D. Kosova-Maali,¹ E. Bergeron,¹ Y. Maali,² T. Durand,³ J. Gonzalez,⁴ D. Mouniée,¹ H. Sandoval Trujillo,⁴ P. Boiron,¹ M.-C. Salinas-Carmona,⁵ and V. Rodriguez-Nava

¹Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR Ecologie Microbienne, CNRS 5557, INRA 1418, UCBL, Université de Lyon, VetAgro Sup, Faculté de Pharmacie, 8 avenue Rockefeller, Lyon, France

²Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS de Lyon,

Team "Pathogenesis of Staphylococcal Infections", Université de Lyon 1, Lyon, France

³Laboratoire de Bactériologie, Institut des Agents Infectieux, Centre de Biologie et Pathologie Nord, 103 grande rue de la Croix-Rousse, 69004 Lyon, France

⁴Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, 04960 Ciudad de México, Mexico

⁵*Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, NL, Mexico*

Correspondence should be addressed to V. Rodriguez-Nava; veronica.rodriguez-nava@univ-lyon1.fr

Received 9 February 2018; Accepted 31 March 2018; Published 20 May 2018

Academic Editor: Charles Spencer

Copyright © 2018 D. Kosova-Maali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study aims at genetic characterization and phylogenetic relationships of *Nocardia brasiliensis* focusing by using housekeeping *rrs*, *hsp65*, and *sodA* genes. *N. brasiliensis* is the species responsible for 80% of cases of actinomycetoma, one form of cutaneous nocardiosis which occurs mainly in tropical regions reaching immunocompetent patients in which the disease can lead to amputation. We analyze 36 indigenous cases of *N. brasiliensis* that happened in France. Phylogenetic analysis targeting *rrs* gene showed no robustness at phylogenetic nodes level. However, the use of a concatenation of *hsp65* and *sodA* genes showed that the tested strains surprisingly ranked in 3 well-defined genotypes. Genotypes 2 and 3 were phylogenetically closer to each other and both diverged from genotype 1 sustained by a high bootstrap of 81%. This last genotype hosts all the cases of pulmonary forms (3), the sole cerebral form, and almost all the cases of immunocompromised patients (3 out of 4). Moreover, excepting one of them, all the strains belonging to this group present a susceptibility to imipenem which is not the case in the other genotypes that rarely count among them strains being susceptible to this drug. The haplotype diversity (Hd) of *hsp65* (0.927) and *sodA* (0.885) genes was higher than that of *rrs* (0.824). For this gene, we obtained 16 polymorphic sites whereas, for *hsp65* and *sodA* genes, up to 27 and 29 were identified, respectively. This study reveals that these two genes have an important genetic discriminatory power for the evaluation of the intraspecies genetic variability of *N. brasiliensis* and they may be useful for identification purposes at species level. This study also reveals the possible existence of a new species harbored by genotype 1.

1. Introduction

Nocardia is a genus belonging to the aerobic actinomycetes group of bacteria which are Gram-positive bacilli and showing branching filamentous forms [1]. They are saprophytic ubiquitous bacteria which can be found in several environments such as fresh water and saltwater, soil, dust, decaying vegetation, and decaying fecal deposits from animals [1]. Nevertheless, these environmental bacteria can be opportunistic pathogens and lead to human infectious diseases called "nocardiosis" [2]. Nocardiosis can be discriminated into two groups: invasive infection, mainly caused by *N. asteroides*, presenting commonly as pneumonia in patients who are immunocompromised, have underlying chronic lung disease, and are with a possible dissemination to other organs [3], and cutaneous infection via a cut or abraded skin, which can be manifest clinically as (i) abscess and cellulitis, (ii) lymphangitis, (iii) skin infection secondary to dissemination, and (iv) actinomycetoma. This latter group is the most amazing infection due to their severity characterized by the presence of tumefaction, subcutaneous nodules, destructive granulomata, fistulas, and pus [2, 4].

N. brasiliensis is the species isolated from the majority (approximately 80%) of cases of cutaneous nocardiosis, especially in actinomycetoma [2]. This species is more commonly isolated in areas with tropical or subtropical climates such as South America, Asia, and Africa. Due to false diagnosis, rural lifestyles, and poor access to care in these countries, N. brasiliensis nocardiosis constitutes a real public health problem that can lead, in the absence of treatment, to amputations and death in young populations. On the basis of epidemiological surveys conducted in France, the number of cases of nocardiosis between 2000 and 2007 according to the French Nocardiosis Observatory (OFN) was 607 with N. farcinica and N. nova being the most frequent species [5]. However, no data currently exists on the phylogenetic relationships between the indigenous N. brasiliensis strains of tropical origin and native strains isolated in France. Routine genus/species identification of Nocardia was based on macroscopic, microscopic, and biochemical characteristics. The methods described by Boiron et al. [6] were used to determine the decomposition of adenine, casein, hypoxanthine, tyrosine, and xanthine. In addition to the phenotype-based methods, species-level identification is mainly genetically based, nowadays. Classically, 16S rRNA (rrs) gene sequencing is generally used for the specieslevel identification [7, 8], but it fails to discriminate among some species of Nocardia because it does not have enough polymorphism to differentiate them at the species level. Multilocus sequence analysis (MLSA) using concatenated sequences of several housekeeping genes such as superoxide dismutase A (sodA) and heat shock protein 65 (hsp65) has been increasingly used to provide higher accuracy and discriminatory power in the molecular identification of Nocardia spp. [9, 10]. Indeed, a recent study seeking to identify new molecular targets shows that the polymorphism observed in the *sodA* gene sequence contains variable regions that allow the discrimination of closely related Nocardia species [9].

The aim of the present study was to perform a genetic characterization and assess the phylogenetic relationships of *Nocardia brasiliensis* focusing on using housekeeping *rrs*, *hsp65*, and *sodA* genes, for 36 autochthonous *N*. *brasiliensis* strains isolated in France and analyzed by the OFN between 2002 and 2012. Phenotypic characterization was also conducted by assessing antimicrobial resistance profiles, metabolic profiles, and culture condition.

2. Materials and Methods

2.1. Bacterial Strains and Culture Media. A collection of 36 human clinical strains of *N. brasiliensis* was studied (Table 1). All strains were identified as such, at species level by the French Nocardiosis Observatory (OFN) by genetic approach. Moreover, six *Nocardia* reference strains belonging to *N. brasiliensis* clade [9] were also used: *N. brasiliensis* ATCC 19296^T (unknown), *N. altamirensis* DSM 44997^T (karstic cave), *N. boironii* DSM 101696^T (pus sample), *N. iowensis* DSM 45197^T (garden soil), *N. tenerifensis* DSM 44704^T (rhizosphere), and *N. vulneris* DSM 45737^T (human leg wound). Prior to the assays, strains were cultured 72 hours in Bennett medium (made in the laboratory) aerobically at 37° C.

2.2. Growth Test on Culture Media. From 0.5 McF bacterial suspension, bacterial growth was evaluated on three culture media: (i) bromocresol purple (BCP) (Biomérieux, Marcy l'étoile), (ii) Bennett (made in the laboratory), and (iii) Middlebrook (Biomérieux, Marcy l'étoile). One hundred microliters from bacterial suspension standardized was inoculated on the different plate of culture media. The plates were incubated at 37°C and the observations were performed at 48, 72, and 96 hours.

2.3. Antimicrobial Susceptibility. The susceptibility of the isolates to different antimicrobials was determined by disk diffusion method with a panel of 31 antibiotics (Biorad, Marnes-la-Coquette France) on Muller Hinton E medium (Biomérieux, Marcy l'étoile, France). Susceptibility testing was done with amikacin 30 μ g, gentamycin 15 μ g, tobramycin 10 μ g, ciprofloxacin 5 μ g, levofloxacin 5 μ g, moxifloxacin 5 μ g, minocycline 30 μ g, doxycycline 30 μ g, tigecycline 15 μ g, cefotaxime 30 μ g, ceftriaxone 30 μ g, cefepime 30 μ g, cefuroxime 30 μ g, amoxicillin 25 μ g, amoxicillin + clavulanic acid 20/10 μ g, ampicillin 10 μ g, ertapenem 10 μ g, meropenem 10 μ g, imipenem 10 μ g, trimethoprim + sulfamethoxazole 1.25/23.75 μ g, rifampicin 30 μ g, and linezolid 30 μ g.

From visible colonies, bacterial suspension was done in sterile water, using a cotton swab to obtain a concentration of 0.5 McFarland according to the Clinical and Laboratory Standards Institute standard M24-A2 [11]. Seeding was done according to the swab method. In this latter, the bacterial inoculum was spread on the agar using a sterile cotton swab in three different directions. The disks were dispensed with a dispenser and the plates were incubated at 37°C for 72 hours and read manually according to the thresholds defined in the recommendations of the SFM 2013 [12].

2.4. Substrate Degradation. The methods of Boiron et al. [6], Goodfellow et al. [13, 14], and Goodfellow and Lechevalier [15] were used to determine the decomposition of adenine, casein, and uric acid [9]. Clinical strains of *N. brasiliensis* and the strains of species belonging to the *N. brasiliensis* clade (*N. brasiliensis*, *N. altamirensis*, *N. iowensis*, *N. tenerifensis*, *N. boironii*, and *N. vulneris*) were tested [9]. Strains *N. boironii*

	Sample date	Nature of sampling	Patient record	Immunosuppressed	Genotype sodA/hsp65	Tropism	Pristinamycin	Imipenem	Amikacin	Trimethoprim + sulfamethoxazole
Pustfrom cutaneous thigh ablcess 04.21 YesGICutaneousRPustfrom cutaneous abscess 04.01 NoG3CutaneousRPustfrom cutaneous abscess 05.63 NoG3CutaneousRSkin biopsy 05.63 NoG3CutaneousRCGF 05.63 NoG3CutaneousRCGF 05.72 NoG3CutaneousRCGF 05.73 NoG3CutaneousRCGF 05.73 NoG3CutaneousRNound of forehead 05.17 NoG3CutaneousRSubcutaneous abscess 03.188 NoG3CutaneousRBronchial aspiration 09.248 NoG3CutaneousRPas from the lip $0.10.66$ NoG3CutaneousRPas from the lip 0.023 NoG3CutaneousRPas from the lip 0.024 YesG3CutaneousRPas from the lip 0.023 NoG3CutaneousPas from the lip <td>04/2002</td> <td>Intraoperative tissue</td> <td>02.56</td> <td>No</td> <td>G3</td> <td>Cutaneous</td> <td>Я</td> <td>Я</td> <td>S</td> <td>S</td>	04/2002	Intraoperative tissue	02.56	No	G3	Cutaneous	Я	Я	S	S
Phis from cutaneous abscess $04,101$ NoG3CutaneousRSkin biopy 5.64 YesG1CutaneousRCSF 5.63 NoG3CutaneousRCSF 3347 NoG3CutaneousRCSF 3347 NoG3CutaneousRCSF 3347 NoG3CutaneousRCSF 3347 NoG3CutaneousRCutaneous abscess 07168 NoG3CutaneousRNound forchead $08,173$ NoG3CutaneousRSubcutaneous abscess $09,106$ NoG3CutaneousRSubcutaneous abscess $09,106$ NoG3CutaneousRBronchial aptration $09,204$ NoG3CutaneousRBronchial aptration $09,204$ NoG3CutaneousRPus of leg abscess $09,106$ NoG3CutaneousRBronchial aptration $09,204$ NoG3CutaneousRPus fringer abscess $10,32$ NoG3CutaneousRPus fringer abscess $10,36$ NoG3CutaneousRPus fringer abscess $10,36$ NoG3CutaneousRPus fringer abscess $10,36$ NoG3CutaneousRPus fringer abscess $11,44$ NoG3CutaneousRPus fringer abscess $11,44$ No <t< td=""><td>12/2003</td><td>Pus from cutaneous thigh abscess</td><td>04.21</td><td>Yes</td><td>GI</td><td>Cutaneous</td><td>R</td><td>S</td><td>S</td><td>S</td></t<>	12/2003	Pus from cutaneous thigh abscess	04.21	Yes	GI	Cutaneous	R	S	S	S
Expectoration then LBA05.64YesG1LungRSkin hopsy65.12NoG1ClanarousRSkin hopsy65.73NoG3ClanarousRCSF 3.77 NoG3ClanarousRCSF 3.77 NoG3ClanarousRCSF 3.77 NoG3ClanarousRNound of forchead 08.178 NoG3ClanarousRSubcutaneous abscess 03.138 NoG3ClanarousRSubcutaneous abscess 09.138 NoG3ClanarousRSubcutaneous abscess 09.138 NoG3ClanarousRSubcutaneous abscess 09.106 NoG3ClanarousRPus of leg abscess 29.34 NoG3ClanarousRPus flogra abscess 09.106 NoG3ClanarousRPus flogra abscess 09.244 YesG3ClanarousRPus flogra abscess 09.246 NoG3ClanarousRPus flogra abscess 09.246 NoG3ClanarousRPus flogra absces 09.246	2004	Pus from cutaneous abscess	04.101	No	G3	Cutaneous	R	R	S	S
Skin blopsy 65.12 NoClCutaneousRTerm 25.63 NoClCutaneousR CF 32.47 NoClClCutaneousR CF 32.47 NoClClCutaneousR CF 32.47 NoClClCutaneousR CH Cutaneous abscess 08.188 NoClClCutaneousRSubcutaneous abscess 08.188 NoClClCutaneousRSubcutaneous abscess 08.138 NoClClCutaneousRSubcutaneous abscess 08.138 NoClClCutaneousRSubcutaneous abscess 08.138 NoClClCutaneousRSubcutaneous abscess 09.71 NoClClCutaneousRBronchial appriation 09.106 NoClClCutaneousRBronchial appriation 09.230 NoClClCutaneousBronchial appriation 09.230	07/2005	Expectoration then LBA	05.64	Yes	GI	Lung	R	S	S	S
CFDhalanx biopsy 05.63 No 05.3 CataneousRCF 05.77 No 03 05.77 No 03 041 081.88 Cutaneous abscess 07.168 No 03 041 081.78 No 03 041 081.78 Wound of forehead 081.78 No 03 031.78 No 03 041 081.78 Subcutaneous abscess 09.138 No 03 031.78 No 03 041 081.78 Subcutaneous abscess 09.71 No 03 031.78 No 03 041 081.78 Subcutaneous abscess 09.71 No 03 031.76 00001618 0000018 0000018 Bronchial aspiration 09.244 Yes 031.66 032 $0100000000000000000000000000000000000$	01/2005	Skin biopsy	05.12	No	GI	Cutaneous	R	S	S	S
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	07/2005	Phalanx biopsy	05.63	No	G3	Cutaneous	R	R	S	S
3247NoG3UnknownRCutaneous abscess 0.7168 NoG3CutaneousRWound of forchead 0.1738 NoG3CutaneousRSubcutaneous abscess 0.7168 NoG3CutaneousRSubcutaneous abscess 0.8188 NoG3CutaneousRSubcutaneous abscess 0.9144 NoG3CutaneousRBronchial appiration 0.9106 NoG3CutaneousRBronchial appiration 0.9106 NoG3CutaneousRBronchial appiration 0.9106 NoG3CutaneousRBronchial appiration 0.9244 YesG3CutaneousRBronchial appiration 0.9244 YesG3CutaneousRDas finger skin 0.92280 NoG3CutaneousRPus finger skin 0.9230 NoG3CutaneousRPus finger s	2005	CSF	05.77	No	G	Brain	R	R	S	S
	11/2005		3247	No	G3	Unknown	R	S	S	S
Wound of forchead 08.178 NoG3CutaneousRElbow abscess 08.188 NoG3SubcutaneousRElbow abscess 29.85 NoG3SubcutaneousR 1 Elbow abscess 29.85 NoG3CutaneousR 1 1 NoG3CutaneousR 1 1 NoG3CutaneousR 1 1 10.6 NoG3CutaneousR 1 10.16 NoG3CutaneousR 1 10.35 NoG3CutaneousR 1 10.93 Yes 0.93 0.93 0.93 1 10.93 10.93 Yes 0.93 0.93 1 10.93 10.93 10.93 10.93 10.93 1 10.93 10.93 10.93 10.93 10.93 1 10.93 10.93 10.93 10.93 10.93 1 10.93 10.93 10.93 10.93 10.93 1 10.93 10.93 10.93 $10.$	2007	Cutaneous abscess	07.168	No	G3	Cutaneous	R	R	S	S
Subcutaneous abscess 08188 NoG3SubcutaneousRElbow abscess 2985 NoG3CutaneousRDus of leg abscess 9974 NoG3CutaneousRDus of leg abscess 0971 NoG3CutaneousRDus of leg abscess 0971 NoG1LungRDus of leg abscess 09716 NoG3CutaneousRDus of leg abscess 09.106 NoG3CutaneousRDus from the lip 10.166 NoG3CutaneousRDus from the lip 10.35 NoG3CutaneousRDus from the lip 10.35 NoG3CutaneousRDus from the lip 10.35 NoG3CutaneousRDus from the lip 10.36 NoG3CutaneousRDus from the lip 10.36 NoG3CutaneousRDus from the lip 10.39 NoG3CutaneousRDus from the lip 11.73 NoG3CutaneousRDus from the lip 11.74 NoG3CutaneousRDus from the lip<	10/2008	Wound of forehead	08.178	No	G3	Cutaneous	R	S	S	S
Elbow abscess2985NoG3CutaneousRPus of leg abscess9044NoG2UnknownRPus of leg abscess90105NoG2UnknownRBronchial aspiration09.106NoG3CutaneousRFinger skin09.244YesG1LungRPus finger skin09.280NoG3CutaneousRPus finger skin09.280NoG3CutaneousRPus finger skin09.35NoG3CutaneousRPus finger skin01.46NoG3CutaneousRPus finger abscess10.35NoG3CutaneousRPus finger abscess10.146NoG3CutaneousRPus finger abscess10.146NoG3CutaneousRPus finger abscess10.146NoG3CutaneousRPus finger10.146NoG3CutaneousRPus finger11.44NoG3CutaneousRPusPus finger11.44NoG3CutaneousRPusPus11.16NoG3CutaneousRPusPus11.16NoG3CutaneousRPusPus11.16NoG3CutaneousRPusPusNoG3CutaneousRPusPusNoG3CutaneousRPus	11/2008	Subcutaneous abscess	08.188	No	G3	Subcutaneous	R	R	S	S
0 10	10/2008	Elbow abscess	2985	No	G3	Cutaneous	R	R	S	S
Pus of leg abscess 09.71 No G2 Cutaneous R Bronchial aspiration 09.106 No G1 Lung R Finger skin 09.244 Yes G1 Lung R Finger skin 09.280 No G3 Cutaneous R Finger skin 0.35 No G3 Cutaneous R Finger abscess 10.35 No G3 Cutaneous R Toe abscess 10.35 No G3 Cutaneous R Pus finger 10.146 No G3 Cutaneous R Pus finger 10.180 No G3 Cutaneous R Pus finger 11.44 No G3 Cutaneous R	03/2008	I	9044	No	G2	Unknown	R	R	S	S
Bronchial aspiration 09.106 No G1 Lung R Finger skin 09.244 Yes G1 Lung R Pus from the lip 10.16 No G3 Cutaneous R Pus from the lip 10.16 No G3 Cutaneous R Pus from the lip 10.16 No G3 Cutaneous R Pus from the lip 10.146 No G3 Cutaneous R Pus finger 10.146 No G3 Cutaneous R Pus finger 10.180 No G3 Cutaneous R Pus finger 10.180 No G3 Cutaneous R Pus Pus 1276 No G3 Cutaneous R Pus Pus 11.44 No G3 Cutaneous R Pus Pus 11.43 No G3 Cutaneous R Pus Pus 11.44 No G3 Cutaneous R Pus Thigh abscess 11.140	03/2009	Pus of leg abscess	09.71	No	G2	Cutaneous	R	S	S	S
Bronchial aspiration09.244YesGiLungRFinger skin09.280NoG3CutaneousRPus from the lip10.16NoG3CutaneousRFinger abscess10.35NoG3CutaneousRTota abscess10.82NoG3CutaneousRTota abscess10.16NoG3CutaneousRTota abscess10.130NoG3CutaneousRLeg wound10.146NoG3CutaneousRPus finger10.180NoG3CutaneousRLeg wound10.180NoG3CutaneousRPus finger10.180NoG3CutaneousRPus finger11.144NoG3CutaneousRPusSepsis hand11.44NoG3CutaneousRPusCutaneous11.144NoG3CutaneousRPusCutaneousRNoG3CutaneousRPusCutaneousNoG3CutaneousRPusFine wound11.16NoG3CutaneousRThigh abscess11.130NoG3CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.140NoG3CutaneousRFane wound11.151NoG3CutaneousRFane wound	04/2009	Bronchial aspiration	09.106	No	GI	Lung	R	S	S	S
Finger skin09.280NoG3CutaneousRPus from the lip10.16NoG3CutaneousRFinger abscess10.35NoG3CutaneousRFinger abscess10.33YesG3CutaneousRToo bascess10.93YesG3CutaneousRToo bascess10.146NoG3CutaneousRPus finger10.180NoG3CutaneousRLeg wound11.736NoG3CutaneousRLeg wound12786NoG3CutaneousRLeg wound12786NoG3CutaneousR-14229NoG3CutaneousR-14229NoG3CutaneousR-14229NoG3CutaneousR-14229NoG3CutaneousR-11.44NoG3CutaneousRAnd wound11.80NoG3CutaneousRCutaneous abscess11.73NoG3CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.189NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousR<	10/2009	Bronchial aspiration	09.244	Yes	G	Lung	R	S	S	S
Pus from the lip10.16NoG3CutaneousRFinger abscess10.35NoG2CutaneousRHand abscess10.93YesG3CutaneousRToe abscess10.93YesG3CutaneousRTeg wound10.180NoG3CutaneousRLeg wound10.180NoG3CutaneousRLeg wound10.180NoG3CutaneousRLeg wound12786NoG3CutaneousR-14229NoG3CutaneousR-14229NoG3CutaneousRPus11.44NoG3CutaneousRAnd wound11.73NoG1CutaneousRThigh abscess11.140NoG2CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.139NoG3CutaneousRThigh abscess11.189NoG3CutaneousRThigh abscess11.189NoG3CutaneousRThigh abscess11.189NoG3CutaneousRTaneous abscess11.189NoG3Cutaneous <td>12/2009</td> <td>Finger skin</td> <td>09.280</td> <td>No</td> <td>G3</td> <td>Cutaneous</td> <td>R</td> <td>R</td> <td>S</td> <td>S</td>	12/2009	Finger skin	09.280	No	G3	Cutaneous	R	R	S	S
Finger abscess10.35NoG2CutaneousRHand abscess10.82NoG3CutaneousRToe abscess10.93YesG3CutaneousRLeg wound10.146NoG3CutaneousRPus finger10.180NoG3CutaneousRLeg wound12786NoG3CutaneousRLeg wound12786NoG3CutaneousRLeg wound12786NoG3CutaneousRNoG3CutaneousRRPusPus11.44NoG3CutaneousRCutaneous abscess11.73NoG3CutaneousRHand wound11.16NoG3CutaneousRThigh abscess11.140NoG3CutaneousRHand wound11.151NoG3CutaneousRThigh abscess11.172NoG3CutaneousRHand wound11.172NoG3CutaneousRThigh abscess11.189NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR	10/2009	Pus from the lip	10.16	No	G3	Cutaneous	R	R	S	S
Hand abscess 10.82 No G3 Cutaneous R Toe abscess 10.93 Yes G3 Cutaneous R Toe abscess 10.146 No G3 Cutaneous R Te gwound 10.146 No G3 Cutaneous R Te gwound 12.786 No G3 Cutaneous R - 14229 No G2 Cutaneous R - 11.44 No G2 Cutaneous R - Pus 11.130 No G2 Cutaneous R Hand wound 11.16 No G2 Cutaneous R Thigh abscess 11.16 No G2 Cutaneous R Thigh abscess 11.16 No G2 Cutaneous R fuanewound	02/2010	Finger abscess	10.35	No	G2	Cutaneous	R	R	S	S
Toe abscess10.93YesG3CutaneousRLeg wound10.146NoG3CutaneousRPus finger10.180NoG3CutaneousR-10.180NoG3CutaneousR-14229NoG2UnknownR-14229NoG3CutaneousR-1444NoG3CutaneousRPus11.44NoG3CutaneousRThand wound11.80NoG1CutaneousRThigh abscess11.140NoG2CutaneousRThigh abscess11.140NoG2CutaneousRThigh abscess11.140NoG3CutaneousRCutaneous abscess11.131NoG3CutaneousRThigh abscess11.140NoG3CutaneousRThigh abscess11.131NoG3CutaneousRThigh abscess11.189NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR12.08NoG3CutaneousR	05/2010	Hand abscess	10.82	No	G3	Cutaneous	R	R	S	S
Leg wound 10.146 No G3 Cutaneous R Pus finger 10.180 No G3 Cutaneous R - 10.180 No G3 Cutaneous R - 14229 No G3 Cutaneous R - 14229 No G3 Cutaneous R Pus 11.44 No G3 Cutaneous R Pus 11.44 No G3 Cutaneous R Hand wound 11.80 No G1 Cutaneous R Cutaneous 11.140 No G2 Cutaneous R Thigh abscess 11.140 No G2 Cutaneous R Hand wound 11.151 No G3 Cutaneous R Knee wound 11.151 No G3 Cutaneous R Hand wound 11.172 No G3 Cutaneous R - 11.189 </td <td>05/2010</td> <td>Toe abscess</td> <td>10.93</td> <td>Yes</td> <td>G3</td> <td>Cutaneous</td> <td>R</td> <td>R</td> <td>S</td> <td>S</td>	05/2010	Toe abscess	10.93	Yes	G3	Cutaneous	R	R	S	S
Pus finger10.180NoG3CutaneousR14229NoG2CutaneousR-14229NoG2UnknownRPussepsis hand45762NoG3CutaneousRPus11.44NoG3CutaneousRPusUnknownG3CutaneousRPusUnknownG3CutaneousRPusUnknownG1CutaneousRPusUnknownG1CutaneousRPusUnknownG1CutaneousRPusUnknownG1CutaneousRPusUnknownG3CutaneousRPusNoG3CutaneousRPusUnknownG3CutaneousRPusNoG3CutaneousRPusNoG3CutaneousRPutaneous abscess11.189NoG3CutaneousPutaneous abscess11.189NoG3CutaneousPutaneous abscess12.08NoG3CutaneousRPutaneous abscess12.28NoG3CutaneousRPutaneous abscess12.28NoG3CutaneousR	09/2010	Leg wound	10.146	No	G3	Cutaneous	R	R	S	S
Leg wound12786NoG2CutaneousR-14229NoG2UnknownR-14229NoG3CutaneousRPus11.44NoG2CutaneousRThad wound11.73NoG1CutaneousRThigh abscess11.16NoG2CutaneousRThigh abscess11.116NoG2CutaneousRThigh abscess11.116NoG2CutaneousRThigh abscess11.116NoG2CutaneousRThigh abscess11.116NoG2CutaneousRThigh abscess11.116NoG2CutaneousRCutaneous abscess11.116NoG3CutaneousRThigh abscess11.118NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR	11/2010	Pus finger	10.180	No	G3	Cutaneous	R	R	S	S
- 14229 No G2 Unknown R Pus 11.44 No G3 Cutaneous R Pus 11.44 No G3 Cutaneous R Thad wound 11.73 No G1 Cutaneous R Thigh abscess 11.16 No G2 Cutaneous R Thigh abscess 11.116 No G2 Cutaneous R Knee wound 11.151 No G2 Cutaneous R Hand wound 11.172 No G3 Cutaneous R Cutaneous abscess 11.189 No G3 Cutaneous R - 12.08 No G3 Cutaneous R T - - 12.08 No G3 Cutaneous R <t< td=""><td>11/2010</td><td>Leg wound</td><td>12786</td><td>No</td><td>G2</td><td>Cutaneous</td><td>R</td><td>Я</td><td>S</td><td>S</td></t<>	11/2010	Leg wound	12786	No	G2	Cutaneous	R	Я	S	S
Sepsis hand45762NoG3CutaneousRPus11.44NoG2CutaneousRPus11.73NoG1CutaneousRHand wound11.80NoG1CutaneousRCutaneous abscess11.16NoG2CutaneousRThigh abscess11.116NoG2CutaneousRThigh abscess11.140NoG2CutaneousRHand wound11.151NoG3CutaneousRInde wound11.172NoG3CutaneousRHand wound11.172NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousRIndewound11.172NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousRIndewound11.122NoG3CutaneousRIndewound11.122NoG3CutaneousRIndewound11.122NoG3CutaneousRIndewous abscess12.28NoG3CutaneousR	04/2010	I	14229	No	G2	Unknown	R	S	S	S
Pus11.44NoG2CutaneousRHand wound11.73NoG1CutaneousRHand wound11.80NoG1CutaneousRCutaneous11.116NoG2CutaneousRThigh abscess11.116NoG2CutaneousRThigh abscess11.116NoG2CutaneousRThigh abscess11.151NoG2CutaneousRInde wound11.151NoG3CutaneousRHand wound11.172NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousR-12.08NoG1UnknownR-12.08NoG3CutaneousR-12.28NoG3CutaneousR	07/2010	Sepsis hand	45762	No	G3	Cutaneous	R	Я	S	S
Cutaneous abscess11.73NoGlCutaneousRHand wound11.80NoGlCutaneousRCutaneous11.116NoG2CutaneousRThigh abscess11.140NoG2CutaneousRThigh abscess11.151NoG2CutaneousRKnee wound11.151NoG3CutaneousRHand wound11.172NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousR-12.08NoG1UnknownR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR-12.08NoG3CutaneousR	2011	Pus	11.44	No	G2	Cutaneous	R	R	S	S
Hand wound11.80NoG1CutaneousRCutaneous11.116NoG2CutaneousRThigh abscess11.140NoG2CutaneousRThee wound11.151NoG3CutaneousRHand wound11.172NoG3CutaneousRCutaneous abscess11.189NoG3CutaneousR-12.08NoG1UnknownR-12.08NoG3CutaneousR-12.28NoG3CutaneousR-12.28NoG3CutaneousR	05/2011	Cutaneous abscess	11.73	No	GI	Cutaneous	R	S	S	S
Cutaneous11.116NoG2CutaneousR1Thigh abscess11.140NoG2CutaneousR1Knee wound11.151NoG3CutaneousR1Hand wound11.172NoG3CutaneousR1Cutaneous abscess11.189NoG3CutaneousR1-12.08NoG1UnknownR1Cutaneous abscess12.28NoG3CutaneousR1	05/2011	Hand wound	11.80	No	GI	Cutaneous	R	S	S	S
Thigh abscess11.140NoG2CutaneousR1Knee wound11.151NoG3CutaneousR1Hand wound11.172NoG3CutaneousR1Cutaneous abscess11.189NoG3CutaneousR1-12.08NoG1UnknownR1Cutaneous abscess12.28NoG3CutaneousR1	08/2011	Cutaneous	11.116	No	G2	Cutaneous	R	R	S	S
Knee wound11.151NoG3CutaneousR1Hand wound11.172NoG3CutaneousR1Cutaneous abscess11.189NoG3CutaneousR1-12.08NoG1UnknownR1Cutaneous abscess12.28NoG3CutaneousR1	2011	Thigh abscess	11.140	No	G2	Cutaneous	R	R	S	S
Hand wound11.172NoG3CutaneousR111Cutaneous abscess11.189NoG3CutaneousR1-12.08NoG1UnknownR12Cutaneous abscess12.28NoG3CutaneousR1	09/2011	Knee wound	11.151	No	G3	Cutaneous	R	Я	S	S
II Cutaneous abscess II.189 No G3 Cutaneous R I - 12.08 No G1 Unknown R I 12 Cutaneous abscess 12.28 No G3 Cutaneous R I	2011	Hand wound	11.172	No	G3	Cutaneous	R	Я	S	S
- 12.08 No Gl Unknown R D12 Cutaneous abscess 12.28 No G3 Cutaneous R	12/2011	Cutaneous abscess	11.189	No	G3	Cutaneous	R	Я	S	S
Cutaneous abscess 12.28 No G3	2012	I	12.08	No	GI	Unknown	R	S	S	S
	02/2012	Cutaneous abscess	12.28	No	G3	Cutaneous	R	Я	S	S

DSM 101696^T, *N. brasiliensis* ATCC 19296^T, and *N. vulneris* DSM 45737^T were incubated at 37°C, and *N. altamirensis* DSM 44997^T, *N. tenerifensis* DSM 44704^T, and *N. iowensis* DSM 45197^T were incubated at 28°C [9]. The readings were performed at 3, 7, 10, 14, 17, and 21 days.

2.5. Methods of DNA Extraction. DNA extraction from Nocardia strains was performed with achromopeptidase according to the method reported by Rodríguez-Nava et al. [10]. Colonies were picked off with a loop, and one loopful was suspended in 200 μ L of sterile water containing a dozen glass beads and vortexed for 5 minutes. The mixture was then incubated for 15 minutes at 70°C. The suspension supplemented with 3.4 μ L of achromopeptidase (Sigma, Steinheim, Germany) at 10 U/mL was incubated at 55°C for 15 minutes. The suspensions were then centrifuged for 5 minutes at 13,000 rpm. The supernatants were stored at -20° C until use.

2.6. Amplification and Sequencing

Gene rrs. A 606-bp fragment of the rrs gene was amplified with primers Noc1, 5'-GCTTAACACATGCAAGTCG-3', and Noc2, 5'-GAATTCCAGTCTCCCCTG-3', and PCR program and reaction mixture were carried out according the recommendations of Rodríguez-Nava et al. [10].

Gene hsp65. A 441-bp fragment of the *hsp65* gene encoding the 65-kDa heat shock protein was amplified with primers described by Telenti et al. (TB11: 5'-ACCAACGATGGTGTGTCCAT-3' and TB12: 5'-CTTGTCGAACCGCATACCCT-3') [16]. PCR program and reaction mixture were carried out according to the recommendations of Sánchez-Herrera et al. [17].

Gene sodA. A 440-bp fragment of the sodA gene was amplified and sequenced with primers SodV1 (5'-CAC CAY WSC AAG CAC CA-3') and SodV2 (5'-CCT TAG CGT TCT GGT ACT G-3') where Y = C or T, W = A or T, and S = C or G. The amplification was also done according to the recommendations of Sánchez-Herrera et al. [17].

All resulting PCR products were sequenced and verified (Biofidal, Lyon, France).

The breakpoints for identification based in *sodA* and *hsp65* genes are 99% for each one [17, 18]. For the *rrs* gene, a higher breakpoint of 99.6% is used, according to CLSI [19].

2.7. Phylogenetic Analysis. The rrs gene sequences which we obtained for the 36 clinical isolates of *N. brasiliensis* and the reference strains were aligned manually for the comparative phylogenetic analysis using the Seaview program.

MLSA was performed using *hsp65* and *sodA* sequences of the strains collection. The trimmed aligned sequences were concatenated in the order *sodA-hsp65* to generate an 846 bp sequence using the Seaview program. The Seaview program was also used to infer the evolutionary trees according to the neighbour-joining method [20] and Kimura's two-parameter model [21]. The robustness of the tree was performed with a bootstrap of 1000 replicates. Taking into account the breakpoints for identification at species level of *sodA* and *hsp65* genes individually, the breakpoint for concatenated sequence has been also fixed at 99%.

2.8. DNA Polymorphism of rrs, hsp65, and sodA Genes. The number of haplotypes, the haplotype diversity (Hd), the number of polymorphic sites, and other variables were obtained with DnaSP software [22].

3. Results

3.1. Growth on Culture Medium. The three culture media allowed the growth of clinical strains of *N. brasiliensis*. The Bennett medium showed abundant and rapid growth (48 hours). Middlebrook medium showed strong growth but also it was slightly slower (72 hours). The BCP medium presented interesting results with good rapid growth at 48 hours. *N. brasiliensis* clade tested type strains showed similar patterns to the clinical strains, except that *N. boironii* had a difficult growth on BCP and no growth on Middlebrook; this seems a peculiarity of this species.

3.2. Antimicrobial Susceptibilities. Eight out of 31 antibiotic molecules tested were active on all the strains' collection: linezolid, tigecycline, trimethoprim + sulfamethoxazole, moxifloxacin, amikacin, amoxicillin + clavulanic acid, tobramycin, and gentamycin. Regarding the imipenem and pristinamycin molecules, resistance was observed on the majority of clinical isolates of *N. brasiliensis* (Table 1).

3.3. Degradation of Substrate. The assimilation test of adenine and uric acid proved negative for all the strains tested of the *N. brasiliensis* clade including clinical and reference ones. The casein degradation test showed that all clinical strains are able to metabolize casein except the clinical strain 12.28. In addition our result showed that some types of strains such as *N. vulneris*, *N. tenerifensis*, *N. boironii*, and *N. iowensis* are also able to degrade casein in the same way as *N. brasiliensis* except *N. altamirensis*. Casein is ultimately a marker that can be used for the phenotypic identification of the *N. brasiliensis* clade and not the *N. brasiliensis* species as it has been believed for many years.

3.4. *Phylogeny.* Primers Nocl and Noc2 amplified the expected 606-bp fragment of the *rrs* gene for all the collection strains. Phylogenetic trees (Figure 1) based upon *rrs* showed homogeneity within clinical strains of *N. brasiliensis.* For this, the *rrs* gene is not relevant to show intraspecies diversity.

In addition, based upon the concatenation of *sodA* and *hsp65* housekeeping genes, the phylogenetic tree generated (Figure 2) had several distinct genotypes: (i) genotype 1 containing clinical strains, (ii) genotype 2 harboring some clinical strains, and (iii) genotype 3 harboring some clinical strains and *N. brasiliensis* ATCC 19296^T. For the tropical *N. brasiliensis* HUJEG01 strain, it is observed that it does not belong to any of the 3 genotypes and is positioned alone

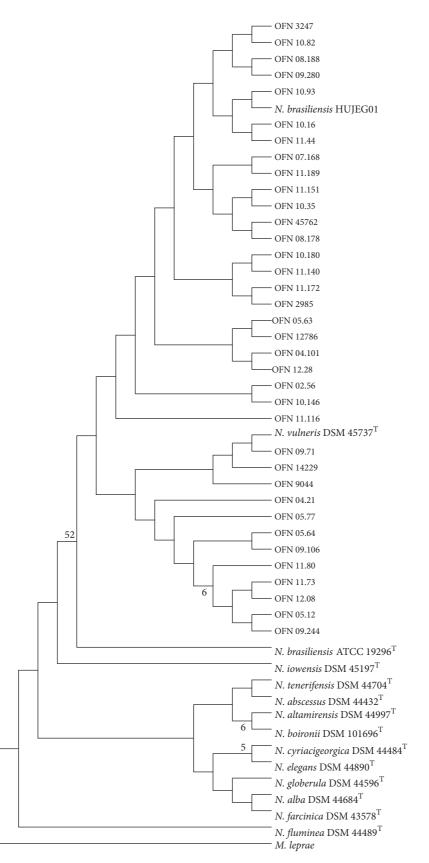


FIGURE 1: Phylogenetic distribution of *rrs* gene of 36 *N. brasiliensis* clinical strains analyzed in this study using neighbour-joining method, Kimura's two-parameter model, and bootstrap of 1000. Only values of bootstrap significance greater than 50% (Seaview) were reported.

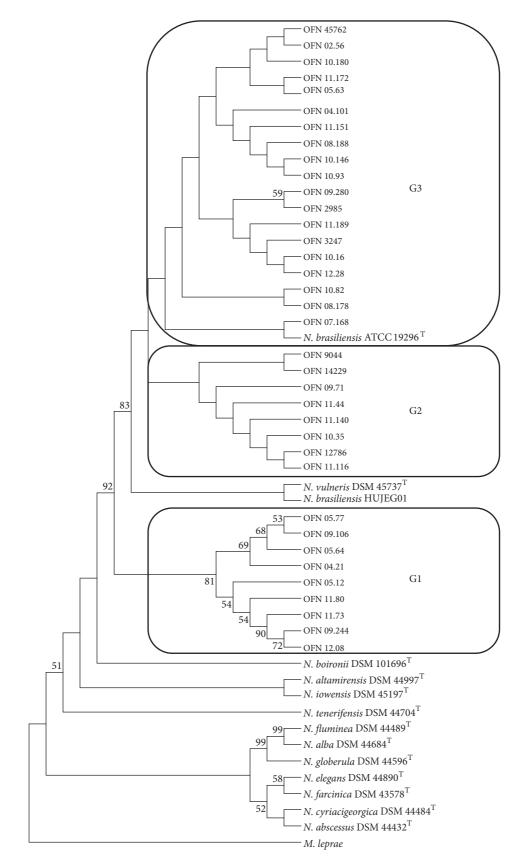


FIGURE 2: Phylogenetic distribution of concatenation *sodA-hsp65* genes of 36 *N. brasiliensis* clinical strains analyzed in this study using neighbour-joining method, Kimura's two-parameter model, and bootstrap of 1000. Only values of bootstrap significance greater than 50% were reported.

in the tree between genotypes 1 and 2. This distribution of clinical strains of N. brasiliensis in 3 different genotypes shows an intraspecies diversity rather important. To better understand the polymorphism showed by phylogenetic trees, we studied the percentages of the similarities between the sequences. The average percentages of similarities based on the rrs gene (Table 2) range from 99.39% to 99.57% between the clinical strains and the 2 reference strains of N. brasiliensis (type and tropical strains). According to the CLSI, the similarity percentage needed for identification at species level must be greater than or equal to a threshold of 99.6% [19]. The clinical strains that showed a similarity percentage lower than this threshold for both reference strains of N. brasiliensis were anyway considered as belonging to this species because no higher similarity percentage was obtained for any other species. In the same way, the N. vulneris type strain was also revealed to be close to clinical strains according to the average of percentage of similarity (98.77%). Between the 2 reference strains of N. brasiliensis the percentage of similarity is higher, up to 99.82%. The percentages of similarities based on the concatenation of the sodA-hsp65 genes (Table 2) decrease and range now from 97.99% to 99.19% between the clinical strains and the 2 reference strains of N. brasiliensis. Between the type and reference strains of *N. brasiliensis* the percentage of similarity does not reach 99% this time. The comparison of the 3 genotypes between them (based on the representation of each genotype by 3 clinical strains) by using sodA-hsp65 genes shows that genotypes 2 and 3 are closer to each other (98.97% of similarity). The average of the percentages of similarity between genotypes 1 and 2 were 97.97%. and 98.28% between genotypes 1 and 3. Finally this value goes up to 98.97% between genotypes 2 and 3. This means that the more distant genotypes between them are 1 and 2 and the closer ones are 2 and 3.

In parallel, an epidemiological study based on the clinical files was carried out, and the data were presented in Table 1. In order to know the link between the genetic diversity and the tropism of the clinical strains, a superposition of data was made between the phylogenetic tree obtained by the concatenation of *sodA* and *hsp65* and the tropism of the clinical strains (Figure 2). Thus, we can see that in genotypes 2 and 3 we have almost all the clinical strains that have a cutaneous tropism except the 08.188 strain which has a subcutaneous tropism. Regarding genotype 1 it is more heterogeneous with various tropism: (i) pulmonary, (ii) cerebral, and (iii) cutaneous. Regarding the immunocompetence of patients, we have only 4 patients who have immunodepression factors, whose strains are in genotype 1 except the 10.93 strain which is in genotype 3.

3.5. Analysis of rrs, hsp65, and sodA Genes Polymorphism. The 36 clinical strains and 2 reference strains of *N. brasiliensis* studied showed (i) for *rrs* gene 16 polymorphic sites sharing 16 haplotypes and showing a Hd of 0.824; (ii) for *hsp65* gene, 27 polymorphic sites and up to 22 different haplotypes with a Hd of 0.927; and, (iii) for *sodA* gene, up to 29 polymorphic sites sharing 14 haplotypes having a Hd of 0.885 (Table 3).

4. Discussion

Nocardia spp. are common soil-inhabiting bacteria that frequently infect humans through traumatic injuries or inhalation routes and cause infections, such as actinomycetoma and nocardiosis, respectively. *N. brasiliensis* is the main aetiological agent of actinomycetoma in various countries [23]. The input data used in this study highlight the existence of indigenous cases of cutaneous and subcutaneous (such as actinomycetoma) nocardiosis caused by *N. brasiliensis* in France. Moreover, we can observe that *N. brasiliensis* is also responsible for severe cases of disseminated nocardiosis in immunocompromised patients (pulmonary and cerebral cases).

To determine whether there is an association between clinical tropism of strains and their genetic profile we performed genetic characterization of 36 indigenous cases of *N. brasiliensis* that happened in France.

The three culture media allow the growth of clinical strains of N. brasiliensis. However, on Bennett's medium more abundant and fast growth (48 hours) was observed. But the downside of this medium is its inaccessibility in the hospital because it is not marketable. Middlebrook medium shows strong growth but also it was slightly slower (72 hours). This medium is very expensive and not accessible to all budgets. However, it is an interesting alternative in isolating Nocardia from a complex sample. It is a selective medium of Mycobacteria, which promotes the growth of some Nocardia to the detriment of other external bacteria or commensal flora that may be in the biological sample analyzed. The BCP medium, used routinely in hospitals for Gram-negative bacteria, has interesting results with good fast growth (48 hours). It would therefore be advisable to use it as isolation medium for urgent cases, by the speed of growth.

Antibiograms results show resistance of most of the clinical strains to imipenem. This can pose therapeutic problems since it is part of molecules proposed during a phase of a general treatment for nocardiosis [24]. However, all clinical strains of *N. brasiliensis* were sensible to SXT and would be an effective molecule during treatments. The sensibility of *N. brasiliensis* type strain to this antibiotic has already been observed by Gilquin et al. [9].

Our study confirms that all clinical strains of *N. brasilien*sis are capable of degrading casein except 12.28 clinical strain. As shown by Seol et al. the *N. brasiliensis* type strain is able to degrade casein as well [25]. However, the test on the reference strains reveals that *N. vulneris*, *N. tenerifensis*, *N. boironii*, and *N. iowensis* are also capable of degrading casein in the same way as *N. brasiliensis*, as also shown by Gilquin et al. [9]. This type of test is used in some countries without the necessary molecular biology tools to identify *N. brasiliensis*. But, now, they must be aware that with this test we target several species of clade *N. brasiliensis*. So, it is no longer a criterion of identification proper to *N. brasiliensis*.

Phylogenetic tree based on the *rrs* gene sequence of our collection showed a low genetic diversity resulting in low polymorphism sequence. In addition, we can note that *N. vulneris* DSM 45737^{T} , identified as a new species by Lasker et al., present a genetic sequence very close to *N. brasiliensis*

		N. brasiliensis HUJEG01	; HUJEG01	N. brasiliensis ATCC 19296 ^T	ATCC 19296 ^T	N. vulneris DSM 45737^{T}	SM 45737 ^T
		sodA-hsp65	rrs	sodA-hsp65	115	sodA-hsp65	rrs
N. brasiliensis ATCC 19296 ^T		98.51	99.82				
N. vulneris DSM 45737 ^T		98.38	98.73	98.51	98.55	·	ı
N. altamirensis $DSM 44997^{T}$		95.91	98.24	95.41	98.07	95.91	97.47
N. boironii DSM 101696 ^T	Similarity average (%)	96.53	98.07	96.28	97.89	96.15	97.29
N. iowensis DSM 45197 ^T		94.91	97.89	95.29	97.71	94.54	97.64
N. tenerifensis DSM 44704^{T}		96.28	96.67	96.03	96.49	95.91	96.03
	Similarity range (%)	(97.77–98.38)	1	(97.77–98.26)		(97.52–98.14)	
Genotype 1	Similarity average (%)	98.01	ı	97.99		97.67	
	Similarity range (%)	(98.39-98.88)		(98.88-99.38)		(98.63-98.88)	
Genorype 2	Similarity average (%)	98.73	ı	99.19		98.80	
	Similarity range (%)	(98.14 - 98.88)		(98.26–99.00)		(98.01–98.76)	
Genorype 2	Similarity average (%)	98.63	ı	98.76		98.50	
	Similarity range (%)		(98.57 - 100)		(98.38–99.82)		(98.01-99.09)
	Similarity average (%)		99.57		99.39		98.77

genes.
nd rrs go
5 and
p65
-hs
Ā
sod
for
terval and mean for so
- L
anc
rval
nte
l in in
q
esse
pr
v ex
arity
nil
sir
of
ge
enta
Perc
ä
ΕË
LAB

TABLE 5. DINA polymorphism of 778, 18905	, and soury genes from	Chinear IV. Drustitensis strains isolat	eu in France.
Nocardia species	Genes (bp) ^a	Number of haplotypes (Hd, S ² , SD) ^b	Number of of polymorphic sites
N. brasiliensis	rrs (569)	16 (0.824, 0.00300, 0.055)	16
N = 38:36 clinical strains and 2 reference strains)	hsp65 (401)	22 (0.927, 0.00087, 0.029)	27

TABLE 3: DNA polymorphism of rrs. https://www.science.com/com/science/scie

^aResulting fragment size without the primers sequences; ^bHd: haplotype (gene) diversity, S²: variance of haplotype diversity, and SD: standard deviation of haplotype diversity.

sodA (406)

strains [26] with percentages of similarities on average greater than 98%.

(N = 38: 36 clinical strains and 2 reference strains)

Analysis of the phylogenetic tree (Figure 2) based on the MLSA by the concatenation of sodA and hsp65 housekeeping genes showed that the isolates are surprisingly classified according to 3 genotypes. These groups were formed upon similarity percentages and existing phylogenetic distances between the sequences of the strains studied. Genotype 1 concerns a well-defined cluster containing 9 clinical strains only which is sustained by a bootstrap of 81%. This genotype hosts all the cases of pulmonary forms (3), the sole cerebral form, and almost all the cases of immunocompromised patients (3 out of 4). Moreover, eight out of twelve strains susceptible to imipenem can be found in this group. There is just one remaining strain in this group not presenting this kind of susceptibility. The reason may be an acquired resistance to this drug due to a previous treatment. This well-defined genotype evokes the possible existence of another species or a strong variability in this case. This may have been caused by environmental pressures in the ecosystem of these isolates which may have resulted in the selection of strains that may have acquired, by mutations or genetic transfer with other microorganisms, new virulence characters different from that of the strain type N. brasiliensis. Regarding genotypes 2 and 3, they include clinical strains and N. brasiliensis ATCC 19296^T type strain. However, the discrimination between these 2 genotypes is less clear than that with genotype 1 because of being in weak bootstrap that is less than 50. The genetic differences do not allow distinguishing them properly and their phenotypic behavior remains similar. Then, it would be interesting to study on another gene capable of generating more divergences, for example, gyrB and rpoB genes, which have already successfully been used for studying the polymorphism of some other Nocardia species [27, 28].

Concerning the percentage of similarity between the type and tropical strain of N. brasiliensis, it is 99.82% according to the rrs and goes down to 98.51% with the concatenation of sodA and hsp65. The fact of highlighting a greater dissimilarity with the concatenation between the type and tropical N. brasiliensis strain shows the advantage of the use of 2 markers like sodA and hsp65 vis-à-vis the rrs. The discriminatory power of these two genes may be explained by the presence of more polymorphic sites (hsp65: 27; sodA: 29) than in the case of rrs gene (16) and also by having Hd values higher than that of rrs gene (hsp65: 0.927; sodA: 0.885; rrs: 0.824).

It would be interesting to identify the genes involved in the virulence of different genotypes, including those of actinomycetoma. Interesting leads can be considered: (i) as identification of virulence genes expressed using the RNAseq method or (ii) to identify noncoding RNAs [23]. In addition, to genomically distinguish N. brasiliensis and N. vulneris a specific PCR to N. vulneris, using a specific gene of the species, should be developed.

14 (0.885, 0.00080, 0.028)

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors thank Audrey Dubost for her technical support in bioinformatics analysis.

References

- [1] V. Kandi, "Human Nocardia Infections: A Review of Pulmonary Nocardiosis., Human Nocardia Infections: A Review of Pulmonary Nocardiosis," Cureus Cureus, vol. 7, no. 8, pp. e304e304, 2015.
- [2] S. Maraki, S. Chochlidakis, E. Nioti, and Y. Tselentis, "Primary lymphocutaneous nocardiosis in an immunocompetent patient," Annals of Clinical Microbiology and Antimicrobials, vol. 3, article no. 24, 2004.
- [3] M. A. Saubolle and D. Sussland, "Nocardiosis: review of clinical and laboratory experience," Journal of Clinical Microbiology, vol. 41, no. 10, pp. 4497-4501, 2003.
- [4] B. A. Brown-Elliott, J. M. Brown, P. S. Conville, and R. J. Wallace Jr., "Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy," Clinical Microbiology Reviews, vol. 19, no. 2, pp. 259-282, 2006.
- V. Rodriguez-Nava, D. Lebeaux, O. Lortholary, P. Boiron, [5] and Nocardia., "Nocardia. Précis de Bactériologie Clinique," Nocardia, no. 2, 2007.
- [6] P. Boiron, F. Provost, and B. Dupont, "Technical protocols," In Methodes de laboratoire pour le diagnostic de la nocardiose, Institut Pasteur, Paris, France, 1993, 107-126.
- [7] A. Betrán, M. C. Villuendas, A. Rezusta, J. Pereira, M. J. Revillo, and V. Rodríguez-Nava, "Clinical significance, antimicrobial susceptibility and molecular identification of Nocardia species isolated from children with cystic fibrosis," Brazilian Journal of Microbiology, vol. 47, no. 3, pp. 531-535, 2016.
- [8] A. Ramírez-Radilla, V. Rodríguez-Nava, H. V. Silva-Rojas, M. Hernández-Tellez, H. Sandoval, and N. Ramírez-Durán, "Phylogenetic identification of Nocardia brasiliensis strains isolated from actinomycetoma in Mexico State using speciesspecific primers," Journal de Mycologie Médicale, vol. 21, no. 2, pp. 113-117, 2011.

29

- [9] J. M. Gilquin, B. Riviere, V. Jurado et al., "First Case of Actinomycetoma in France Due to a Novel," *mSphere*, vol. 1, no. 6, p. e00309-16, 2016.
- [10] V. Rodríguez-Nava, A. Couble, G. Devulder, J.-P. Flandrois, P. Boiron, and F. Laurent, "Use of PCR-restriction enzyme pattern analysis and sequencing database for hsp65 genebased identification of Nocardia species," *Journal of Clinical Microbiology*, vol. 44, no. 2, pp. 536–546, 2006.
- [11] Susceptibility testing of Mycobacteria, Nocardiae, and other aerobic actinomycetes, Approved Standard, vol. 56, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2011, M24-A2.
- [12] "CA-SFM, "Les recommandations du Comité de l'Antibiogramme de la Société Française de Microbiologie," *Paris: Société Française de Microbiologie*, 2013.
- M. Goodfellow, "The genus Nocardia Trevisan," in *Topley and Wilson's microbiology and microbial infections*, A. Balows and B. I. Duerden, Eds., pp. 464–489, Edward Arnold, London, UK, 2 edition, 1998.
- [14] M. Goodfellow, *The family Nocardiaceae*, The prokaryotes, Springer, New York, NY, USA, 2 edition, 1992, 1188–1213.
- [15] M. Goodfellow and M. P. Lechevalier, "Genus Nocardia Trevisan," in *Bergey's manual of systematic bacteriology*, S. T. Williams, M. E. Sharpe, and J. G. Holt, Eds., vol. 4, pp. 2350– 2361, Lippincott Williams & Wilkins, Baltimore, MD, USA, 1989.
- [16] A. Telenti, F. Marchesi, M. Balz, F. Bally, E. C. Böttger, and T. Bodmer, "Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis," *J. Clin. Microbiol*, vol. 31, no. 2, pp. 175–178, 1993.
- [17] K. Sánchez-Herrera, H. Sandoval, D. Mouniee et al., "Molecular identification of Nocardia species using the sodA gene: Identificación molecular de especies de Nocardia utilizando el gen sodA.," *New Microbes and New Infections*, vol. 19, pp. 96–116, 2017.
- [18] C. Y. Turenne, M. Semret, D. V. Cousins, D. M. Collins, and M. A. Behr, "Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex," *Journal of Clinical Microbiology*, vol. 44, no. 2, pp. 433–440, 2006.
- [19] CLSI, "Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing," in *Approved Guideline. CLSI document MM18- A. Wayne, PA*, vol. CLSI document MM18- A, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2008.
- [20] J. A. Soddell, F. M. Stainsby, K. L. Eales, R. M. Kroppenstedt, R. J. Seviour, and M. Goodfellow, "Millisia gen. nov., sp. nov., an actinomycete isolated from activated sludge foam," *International Journal of Systematic and Evolutionary Microbiology*, vol. 56, no. 4, pp. 739–744, 2006.
- [21] V. A. Steingrube, R. W. Wilson, B. A. Brown et al., "Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis," *Journal of Clinical Microbiology*, vol. 35, no. 4, pp. 817–822, 1997.
- [22] J. Rozas, A. Ferrer-Mata, J. C. Sánchez-DelBarrio et al., "DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets," *Molecular Biology and Evolution*, vol. 34, no. 12, pp. 3299–3302, 2017.
- [23] J. S. Cruz-Rabadán, J. Miranda-Ríos, G. Espín-Ocampo, L. J. Méndez-Tovar, H. R. Maya-Pineda, and F. Hernández-Hernández, "Non-coding RNAs are differentially expressed by

Nocardia brasiliensis in vitro and in experimental actinomycetoma," *The Open Microbiology Journal*, vol. 11, pp. 112–125, 2017.

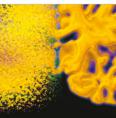
- [24] S. Valdezate, N. Garrido, G. Carrasco et al., "Epidemiology and susceptibility to antimicrobial agents of the main Nocardia species in Spain," *Journal of Antimicrobial Chemotherapy*, vol. 72, no. 3, pp. 754–761, 2017.
- [25] C.-A. Seol, H. Sung, D.-H. Kim, M. Ji, Y.-P. Chong, and M.-N. Kim, "The first korean case of disseminated mycetoma caused by nocardia pseudobrasiliensis in a patient on longterm corticosteroid therapy for the treatment of microscopic polyangiitis," *Annals of Laboratory Medicine*, vol. 33, no. 3, pp. 203–207, 2013.
- [26] B. A. Lasker, M. Bell, H.-P. Klenk, C. Spröer, P. Schumann, and J. M. Brown, "Nocardia vulneris sp. nov., isolated from wounds of human patients in North America," *Antonie van Leeuwenhoek-Journal of Microbiology*, vol. 106, no. 3, pp. 543–553, 2014.
- [27] L. R. McTaggart, S. E. Richardson, M. Witkowska, and S. X. Zhang, "Phylogeny and identification of Nocardia species on the basis of multilocus sequence analysis," *Journal of Clinical Microbiology*, vol. 48, no. 12, pp. 4525–4533, 2010.
- [28] G. Carrasco, S. Valdezate, N. Garrido, P. Villalón, M. J. Medina-Pascual, and J. A. Sáez-Nieto, "Identification, typing, and phylogenetic relationships of the main clinical nocardia species in spain according to their gyrb and rpob genes," *Journal of Clinical Microbiology*, vol. 51, no. 11, pp. 3602–3608, 2013.

The Scientific World Journal

Journal of Immunology Research

Research and Practice

BioMed Research International


Journal of Ophthalmology


Computational and Mathematical Methods in Medicine

International

Behavioural Neurology

Evidence-Based Complementary and Alternative Medicine

Research and Treatment

Oxidative Medicine and Cellular Longevity

Submit your manuscripts at www.hindawi.com