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The dawn of the liquid biopsy in the fight against cancer
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ABSTRACT
Cancer is a molecular disease associated with alterations in the genome, which, 

thanks to the highly improved sensitivity of mutation detection techniques, can be 
identified in cell-free DNA (cfDNA) circulating in blood, a method also called liquid 
biopsy. This is a non-invasive alternative to surgical biopsy and has the potential 
of revealing the molecular signature of tumors to aid in the individualization of 
treatments. In this review, we focus on cfDNA analysis, its advantages, and clinical 
applications employing genomic tools (NGS and dPCR) particularly in the field of 
oncology, and highlight its valuable contributions to early detection, prognosis, and 
prediction of treatment response.

INTRODUCTION

The U.S. National Cancer Institute (NCI) defines 
liquid biopsy (LB) as “a test done on a sample of blood to 
look for cancer cells from a tumor that are circulating in 
the blood or for pieces of DNA from tumor cells that are 
in the blood” [1]. In this review, we will primarily focus 
on the second part of this definition, i.e., the detection of 
circulating DNA.

The first steps to explore the potential of cell free 
DNA for genetic testing of cancer  were made in 1948, 
when the first publication of cell-free DNA (cfDNA) and 
free RNA circulating in human blood appeared [2]. Fast 
forwarding to today shows that numerous tests based on 
circulating nucleic acids are in development that – so is 
the hope – will help to opportunely discriminate patients 
with cancer from healthy individuals [3] (Figure 1).

In its beginnings, the application of LB did not 
generate much attention on the part of the scientific 
community. A review of the PubMed (NCBI) database, 
using the search term “liquid biopsy” from 1975 onwards, 
shows a recent increase in the number of publications, 
denoting rapidly growing interest in LB (Figure 2).

Rediscovering LB for diagnostic purposes

To the surprise of many, Osborne et al. reported in 
2013 the case of a 37-year-old pregnant woman with a 
normal medical history but a non-invasive prenatal testing 
(NIPT) result suggestive of aneuploidy for chromosomes 
18 and 13. NIPT searches for fetal cfDNA (3–13%) among 
the maternal cfDNA [4]. After spontaneous labor, a male 
fetus was born without dimorphic characteristics. The 
patient’s vaginal biopsy revealed a small cell carcinoma 
with evidence of aneuploidy in 80% of analyzed cells, 
including alterations in chromosomes 18 and 13 that were 
consistent with the NIPT test performed previously. This 
was the first reported case of detection of cancer in a 
pregnant women by cfDNA [5].

Genome alterations of cancer

Cancer is a pathological condition that 
encompasses more than 100 distinct disease entities 
with diverse risk factors and epidemiologic features 
and that can originate from essentially all cell types 
and organs of the human body. It is characterized by 
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a relatively unrestrained proliferation of cells that can 
invade beyond normal tissue boundaries and metastasize 
to distant organs [6]. A hallmark of cancer is alterations 
in the genome. These alterations may be single 
nucleotide variants (SNVs), promoter methylation, 
copy number variation (CNVs), chromosomal structural 
rearrangements, and alterations in sites relevant for 
transcription, splicing, RNA maturation, or translational 
efficiency [7].

The International Cancer Genome Consortium 
(ICGC) and The Genomic Atlas of Cancer (TCGA), 
which aim to catalog the genomic information of the 
various types of cancer and foster discoveries that 
could allow better understanding of cancer origins and 
development [8], have carried out large-scale research 
into many different types of cancers in order to determine 
the genomic signatures of each. For example, mutations 
in the genes ERBB2, PIK3R1, TP53, and NF1 stand 
out in glioblastoma [9]; TP53, NF1, BRCA1, BRCA2, 
RB1, GABRA6, CSMD3, FAT3, and CDK12 alterations 
characterize ovarian cancer [10]; TP53, PTEN, CTNNB1, 
PIK3CA, ARID1A, KRAS, ARID5B, and POLE mutations 
are features of endometrial cancer [11]; TP53, RAS, 
EGFR, BRAF, PIK3CA, MET, RIT1, STK11, KEAP1, 
NF1, RB1, CDKN2A, SETD2, ARID1A, SMARCA4, 
RBM10, U2AF1, and MGA are hallmarks of lung cancer 
[12]. These studies were made possible with next 
generation sequencing (NGS) technology that has the 
advantage of simultaneously analyzing a large number 
of genes related to a specific phenotype, allowing the 
identification of mutations that are otherwise not easily 
detected [13]. One of the main advantages of NGS is 
that it allows global determination the molecular subtype 
of the disease (via large gene panel, exome, or even 
whole genome sequencing). It also makes monitoring 
progression of the disease and assigning targeted 
molecular therapies easier [8].

Liquid biopsy in cancer

Cancer is often found in organs or tissues of the 
body that are difficult to access, such as brain, ovaries, 
or pancreas. Thus measurements of tissue-resident 
biomarkers for such cancers may be difficult or associated 
with significant clinical risk, such as bleeding or infection 
as consequence of an invasive biopsy or excisional 
procedure [14].

Surgical biopsies (SB) continue to dominate as the 
“gold standard” for diagnosis and choice of treatment 
for diseases of genetic and contagious origin. However, 
they also present disadvantages. Among them is the 
fact that tumor tissue sampling delivers only a static 
and spatially limited representation from the time of the 
surgical procedure. Cancers, however, vary over time due 
to continuous changes that result in genetic heterogeneity 
within the tumor and between the primary and metastatic 
sites (a characteristic typical of cancers in advanced 
stages). In addition, the majority of biopsies are commonly 
fixed in formalin and embedded in paraffin for routine 
pathology, which can reduce their utility for advanced 
molecular analyses [15]. Some of these disadvantages can 
be addressed with the implementation of LB.

LB holds great promise for detection, prognosis, 
and prediction of response to cancer treatment [16–18]. 
Among the main sources of LB-based biomarkers are 
circulating tumor DNA (ctDNA), circulating tumor cells 
(CTCs), exosomes, and microRNAs. ctDNA currently 
leads applications for diagnostic purposes, and, for this 
reason, it is the main subject of this review.

While we do not anticipate that LB will fully 
replace or directly compete with SB for most diagnostic 
purposes any time soon, we do very much foresee that 
LB will complement SB rapidly within the next 3–5 years 
and will become a tool of choice for dynamic monitoring 
of patients on treatment or under active surveillance. In 

Figure 1: Timeline of liquid biopsy development.
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many instances, LB will also prompt further imaging 
workup and/or re-biopsy of tissue lesions. A frequently 
cited advantage is that obtaining LB fluids is much less 
invasive than SB or even imaging studies [19]. Scientific 
studies have increasingly provided evidence of the utility 
of LB for early diagnosis. ctDNA has been detected in 
up to 75% of pancreatic, ovarian, colorectal, bladder, 
breast, neck, hepatocellular, and gastroesophageal cancers 
and melanomas and in up to 50% of primary CNS, renal, 
prostatic, and thyroid cancers [17]. It has also been 
associated with metastatic burden in patients with non-
small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC), among other tumors [19].

LB has thus, a wide potential of clinical 
applications and affords physicians a new tool for 
clinical management of difficult to treat patients with 
advanced stage cancers, prediction of treatment response, 
detection of recurrence, and traceability of tumor genome 
evolution over time [20, 21]. Studies demonstrate that 
ctDNA can be used in the routine management of lung 
cancer to monitor clonal evolution and identify treatment 
resistance [19, 22], particularly in patients with NSCLC 
who are treated with specific tyrosine kinase inhibitors 
(TKIs, such as gefnitinib, erlotinib, crizotinib, and 
ceritinib) [19]. Nearly half of NSCLC patients acquire 
resistance to TKIs and present EGFR T790M mutations; 
consequently, a second biopsy is required. Indeed, 
the European Society for Medical Oncology (ESMO) 
suggested LB as an alternative to tissue re-biopsy and 

presented LB as a validated method for monitoring 
progression of EGFR mutated patients [23, 24].

Figure 3 contrasts some of the advantages of 
LB relative to SB. LB can meaningfully augment SB 
by potentially sampling tumor heterogeneity more 
comprehensively and by revealing the dynamics of 
molecular changes of cancer cells while the patient is 
undergoing treatment [21].

LB has thus a wide potential of clinical applications 
and affords physicians with a new tool for clinical 
management of difficult to treat patients with advanced 
stage cancers, for prediction of response to treatment, 
for detection of recurrence, and for traceability of tumor 
genome evolution over time [20, 21].

Circulating tumor DNA (ctDNA)

DNA is continuously released in fragments into 
the circulation through processes such as apoptosis 
and necrosis by both normal and cancerous cells [21, 
25–27]. When released irrespective of cell of origin, it 
is typically referred to as cfDNA (cell-free DNA); but 
when released specifically by cancer cells, it is mostly 
referred to as ctDNA (circulating tumor DNA). Among 
the molecular characteristics of ctDNA are that it may 
harbor mutations, CNVs, methylation changes, or 
integrated viral sequences associated with the tumor 
[28–32]. ctDNA is mainly found in plasma and serum; 
however, it can also be isolated from ascites, breast 

Figure 2: Number of publications per year in PubMed, using the terms “liquid biopsy”, “cell free DNA”, “circulating 
tumor DNA”, “exosomes”, “micro RNA”, and “circulating tumor cells” as of July 1, 2017.
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milk, lymphatic and peritoneal fluids, bone marrow 
aspirates, urine, prostatic fluid, peritoneal lavage, 
sputum, cerebrospinal fluid, gastric juice, and biliary 
and even stool samples [33]. Circulating nucleic acids 
are removed from the blood by the liver and kidney 
and have variable circulating half-lifes ranging from 15 
minutes to several hours [27, 34]. The concentrations of 
this genetic material in patients with cancer range from 0 
to 1,000 ng/mL of blood, with an average of 180 ng/mL. 
In contrast, cfDNA in healthy subjects ranges from 0 to 
100 ng/mL of blood, with an average of 30 ng/mL [27]. 
As a reference, a patient with a tumor burden of 100 g 
released 3.3% of ctDNA into the circulation [35].

In colorectal cancer, it has been found that ctDNA 
is more sensitive than the detection of serum protein 
biomarkers such as carcinoembryonic antigen (CEA), 
showing tighter changes in response to tumor resection 
and a greater predictive capacity for recurrence. In 2014, 
Bettegowda et al. [36] detected mutations in the KRAS 
gene of plasma ctDNA in a group of 206 patients with 
colorectal cancer, with a sensitivity of 87.2% and a 
specificity of 99.2%.

Other source of LB-based biomarkers

Circulating tumor cells (CTCs)

CTCs have been discovered for Asworth in 1869 
during an autopsy of a patient who had metastatic cancer 
[37]. They are cancer cells that detach from a primary or 
metastatic tumor site and are present in the circulation. 
Clinical evidence indicates that patients with metastases 
have 1–10 CTCs per mL of blood and they are rarely 
found in clinically healthy people or in people with non-
malignant tumors. CTCs have been detected in different 
types of cancers, such as breast, ovarian, prostate, lung, 
colorectal, hepatocellular, pancreatic, head and neck, 
bladder, and melanoma [38]. There are commercial 
systems for their detection and isolation, of which the most 
used is the CellSearch® system, an automated detection 
system for CTCs that uses anti-EpCAM antibodies, 
anti-CK antibodies, and anti-CD45 antibodies. CTCs 
are associated with a poor prognosis and are predictive 
of shorter progression-free survival and overall survival 
in patients treated with metastatic breast, colorectal, or 
prostate cancers who have CTC counts of ≥ 5, ≥ 3, or ≥ 
5, respectively, per 7.5 mL of blood at any time during 
the course of the disease [39–41]. However, CTCs are 
often not detectable in patients with dysplastic or early 
malignant lesions, thus limiting their utility for early 
diagnosis or surveillance [42]. Besides their detection and 
isolation, CTCs can be cultured in vitro and to expand ex 
vivo for further analyses [43–46].
Exosomes

Exosomes are small round vesicles, 30–120 nm 
in diameter, and of endosomal origin carrying RNA, 

miRNAs, DNA, and proteins that are released by multiple 
cell types (including tumor cells) into the extracellular 
environment. Exosomes may mediate some form of 
communication between cells, being internalized by other 
cells [42, 47, 48]. They are found in biological fluids like 
blood, urine, saliva, pleural effusions, amniotic fluid, 
nasal secretions, bronchoalveolar lavages, cerebrospinal 
fluid, breast milk, and ascites [49–51]. Special features 
of exosomes have been associated with several types of 
cancer, such as pancreatic [52, 53], breast [54], gastric 
[55] colon [56], and ovarian [57].
miRNAs

MicroRNAs or miRNAs are small molecules 
of non-coding RNA, between 19 and 24 nucleotides 
in length, that act as regulatory molecules of gene 
expression, exerting function by hybridizing to inhibit 
the translation of mRNAs of its target genes [58–60]. 
Differential expression of miRNAs in patients with cancer 
has been described. miRNAs like those of the Let-7 family 
have been associated with lung cancer [61, 62]; miR15a/
miR16a with chronic lymphocyte leukemia [63]; miR-34 
family to neuroblastoma and colon cancer [64, 65]; miR-
17–92 cluster with B-cell lymphoma, breast, colon, lung, 
stomach, prostate, and pancreatic cancers [66–68]; miR-21 
with hepatocellular and breast cancer [69, 70]; miR-155 
with diffuse large B-cell lymphoma and colorectal cancer 
[71, 72]; miR372/miR373 with testicular germ cell tumor 
[73]; and the miR-200 family with ovarian cancer [74]. 
In 2008, Mitchell et al. [75] showed that miRNAs may 
be ideal blood-based cancer biomarkers for three main 
reasons: 1) Expression of miRNAs is found frequently 
deregulated in cancer; 2) the expression patterns of 
miRNAs in cancer appear to be specific; and 3) miRNAs 
are usually highly stable in tissues fixed with formalin 
and, possibly, also in plasma or serum.

Based on this evidence as a whole, the expression 
levels of individual miRNAs and miRNA signatures are 
now linked to classification and prognosis of several 
human cancers.

LB technology in the market

Several companies have been adapting genetic 
variation identification panels to include LB-based ctDNA 
as an input option. Boreal Genomics [76], Trovagene 
[77], RainDance Technologies [78, 79], Inivata [80], 
and Pathway Genomics [81] are examples of companies 
working on this technology (Table 1). Another example 
is Illumina’s spin-off Grail that started in 2016 with the 
aim of developing an LB-based pan-cancer “molecular 
stethoscope.”

Pre-analytical considerations of LB

In 2013, Messaoudi et al. [82] indicated that one 
of the main obstacles for the use of cfDNA in clinical 
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practice is the heterogeneity of the various protocols 
for the manipulation and analysis of cfDNA. There are 
complex pre-analytical and analytical considerations to 
be taken into account when planning cfDNA analyses. 
Such considerations range from sample collection to 
interpretation of findings.

Among pre-analytical variables, the blood collection 
tube used is an important consideration, as it needs to 
provide the necessary conditions for the stability of the 
cfDNA [83]. There are several collection tubes on the 
market as illustrated in Figure 3A. One of the applications 
in which this is especially critical, because of the need for 
long-term stable cfDNA, is in studies (such as multicenter 
clinical trials) in which blood samples are sent for analysis 
to a laboratory in another region.

Plasma processing is another pre-analytical factor to 
consider. Messaoudi and colleagues report that performing 
a double centrifugation during plasma isolation is ideal 
for minimizing contaminating nuclear DNA from white 

cells that otherwise would contaminate and dilute true 
cfDNA [82]. Double centrifugation has thus become the 
current gold standard for prospective plasma biobanking 
(Figure 3B).

The choice of procedure for the extraction and 
purification of cfDNA is, however, the most important 
pre-analytical factor to be taken into account. For this, 
a wide variety of kits exist that allow isolating cfDNA 
from several sources, particularly from plasma. In Figure 
3C, some of the popular commercially available kits 
for the extraction and purification of cfDNA, based on 
the separation by silica columns or by magnetic beads, 
are listed. Once the genetic material is isolated, it is 
necessary to perform an analysis to confirm the quality 
of the sample. For this, the companies producing the 
extraction and purification kits offer various quality 
control methodologies as indicated in Figure 3D. The 
choice of reagents and equipment to be used will depend 
to a great extent on availability, accessibility, budget, 

Table 1: Examples of LB panels in the market
Name of Panel Company Genes Analyzed Reference
OnTarget Boreal Genomics Can include up to 100 mutations across 

multiple genes (not listed)
76

Trovera Trovagene EGFR, KRAS, and BRAF 77
ThunderBolts Cancer Panel RainDance Technologies ABL1, EGFR, GNAQ, KRAS, PTPN11, 

RB1, MET, GNAS, ERBB2, AKT1, ALK, 
ERBB4, HNF1A, MLH1, RET, APC, EXH2, 
HRAS, MPL, SMAD4, ATM, FBXW7, 
IDH1, NOTCH1, SMARCB1, SMO, NPM1, 
IDH2, FGFR1, BRAF, CDH1, FGFR2, 
JAK2, NRAS, SRC, SKT11, PDGFRA, 
JAK3, FGFR3, CDKN2A, CSF1R, FLT3, 
KDR, PIK3CA, TP53, VHL, PTEN, KIT, 
GNA11, and CTNNB1

78

ThunderBolts Myeloid Panel RainDance Technologies ASXL1, BCOR, BCOR1, BRAF, CALR, 
CBL, CBLB, GATA1, FLT3, EZH2, ETV6, 
DNMT3A, CSF3R, CEBPA, GATA2, GNAS, 
HRAS, IDH1, IDH2, JAK1, JAK2, JAK3, 
KDM6A, KIT, KMT2A/MLL-PTD, KRAS, 
MEK1, MPL, PTEN, PML, PHF6, NRAS, 
NPM1, NOTCH1, MYD88, PTPN11, 
RAD21, RUNX1, SETBP1, SF3B1, SMC1A, 
MSC3, ZRSR2, WT1, U2AF1, TP53, TET2, 
STAG2, and SRSF2

79

InVision Inviata AKT1, ALK, BRAF, CCND1, CDKN2A, 
CTNNB1, EGFR, ERBB2, ESR1, FGFR1, 
FGFR2, FGFG3, GATA3, GNA11, GNAQ, 
GNAS, HRAS, IDH1, IDH2, KIT, KRAS, 
MAP2K1, MET, MYC, NFE2L2, NRAS, 
NTRK1, PDGFRA, PIK3CA, PPP2R1A, 
PTEN, STK11, TP53, and U2AF1

80

CancerIntercept Detect/
Monitor

Pathway Genomics BRAF, CTNNB1, EGFR, FOXL2, GNAS, 
KRAS, NRAS, PIK3CA, and TP53

81
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analytical sensitivity, and final readout desired (such 
as end-point PCR, real-time PCR, digital PCR (dPCR), 
microarrays, or NGS).

Finally, storage and freezing conditions of ctDNA 
need to be considered (Figure 3E). Our own data shows 
that storage at –20 °C, –80 °C, and in vapor phase liquid 
nitrogen (below –150 °C) are equivalent once the DNA 
has been extracted. Long-term stability of cfDNA in 
plasma and serum that is frozen prior to extraction remains 
to be studied.

Analytical possibilities of LB

The methods for ctDNA analysis can be divided into 
point mutations analysis; detection of somatic mutations 
as biomarkers and whole genome analysis (WGA); and 
detection of rearrangements and chromosomal copy-
number changes (Table 2; Figure 3F) [84].

In point mutations analysis, qPCR, dPCR, and targeted 
sequencing can be included; these technologies are highly 
sensitive (< 1%) and allow detection of a low tumor fraction 
in plasma DNA, while WGA can be used in high tumor 
fraction situations (sensitivity > 10%) [17]. In this sense, the 
best options for diagnosis are methodologies based on PCR 
since they allow detection of low levels of ctDNA. NGS 
methodologies are increasing the sensitivity and throughput 
necessary for diagnostic ctDNA analysis [85].

Potential limitations of LB

While LB is doubtlessly an extremely powerful 
addition to the diagnostic tool set, the approach also 
suffers from several technology-inherent limitations that 
need to be discussed and considered.

First, LB may have lower sensitivity than SB for 
rare variants. This is because LB attempts detection of 
alterations in peripheral fluids rather than the tumor itself 
(volume dilution) and in a background of non-altered 
cfDNA from cellular sources other than the tumor (for 
example, in a patient with other co-morbidities such as 
sepsis, abundant cfDNA may be circulating that is derived 
from non-cancerous cell compartments). Second, while LB 
may be able to pick up heterogeneity (via ultra-deep NGS 
of ctDNA), tracing tumor heterogeneity back to multiple 
simultaneous lesions (e.g., primary vs. multiple metastatic 
sites) and pinpointing which clones dominate which site 
may be close to impossible without combining LB with 
smartly targeted SB procedures. In addition, it is plausible 
that various distinct lesions in a patient would each shed 
variable amounts of ctDNA and thus LB would not just 
be a volume-proportional mixture of contributing lesions 
(thus making the heterogeneity problem even harder to 
untangle). Some lesions, e.g., brain metastases, may shed 
little to no ctDNA into the circulation. Finally, LB could 
potentially pick up physiologically continuously occurring 

Figure 3: Comparison of features between surgical (tissue-based) and liquid biopsies (left) and overview of the various elements of the 
liquid biopsy workflow (A-F, right).
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but clinically inconsequential mutational events in other 
high turnover compartments, such as the bone marrow. 
This would further complicate the interpretation of rare 
alleles detected by ultra-deep sequencing of ctDNA.

Evolutional analysis of cancer by ctDNA

Besides the benefits mentioned previously, LB may 
also allow for evolutional analysis of cancer in real time. 
The subclonal dynamics of ctDNA has been characterized 
in several studies, which demonstrate that ctDNA can be 
used to detect emergence of resistance to treatment [86–88]. 
LB has allowed to carry out studies on frequency, identity, 
and evolution of subclonal genetic alterations that had 
previously been very limited due to the difficulty of serially 
accessing tumor tissue [88, 89]. Abbosh et. al. performed 
a a phylogenetic subclone analysis in NSCLC employing 
ctDNA over a period of 231 days and identified single 
nucleotide variations (SNV) that had not been identified 
in the primary tumor, suggesting that ctDNA can be used 
when subclones of the primary tumor are found in low 
quantities. In addition they analyzed patients who had liver 
metastases in which subclones were identified originating in 
the primary pulmonary tumor [88]. Furthermore, they were 
able to associate the ctDNA with the histological type of the 
tumor. Imamura et. al. determined that ctDNA is a specific 
tumor marker for assessing the response to treatment and 
the molecular dynamics of NSCLC-related oncogenes [90].

Summary

LB is at the dawn of a new era of cancer 
“theranostics”, being a non-invasive addition to SB. 
LB is capable of generating valuable information about 
cancer almost in real time that can be used to reveal the 

genetic features of individual tumors, thus improving 
early detection, prognostication, and monitoring treatment 
responses and eventual resistance. We have reviewed the 
current state of the art of LB-related analytics and provide 
an outlook of its clinical utility.
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