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species in combination with prebiotics have been associ-
ated with the prevention or modulation of rotavirus severe 
gastroenteritis.
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Introduction

Severe diarrhea in the acute gastroenteritis is the primary 
cause of dehydration, which can lead to medical compli-
cations or death if left untreated (Hostetler et  al. 2004). 
Annual mortality rates due to infectious diarrhea are about 
2.2 million, and infants and very young children are the age 
group most vulnerable to severe gastroenteritis (Boschi-
Pinto et al. 2008); children mortality were 578,000 world-
wide (Liu et al. 2015). Viruses are the major agents of acute 
gastroenteritis in children up to 5-years-old (Chhabra et al. 
2013). The most reported viruses associated with gastro-
intestinal infections are rotavirus (RV), norovirus, sapovi-
rus, enteric adenovirus, and astrovirus (Elliott 2007). RV is 
the main cause of gastroenteritis in children; this virus is 
responsible for 453,000 deaths of children worldwide (Tate 
et al. 2012). The second place in the list of agents of acute 
viral gastroenteritis in children is for norovirus, which is 
related to 218,000 children deaths worldwide (Koo et  al. 
2010). Enteric adenovirus, sapovirus, and astrovirus have 
been detected in children up to 5-years-old with severe and 
mild gastroenteritis (Finkbeiner et  al. 2009; Rezaei et  al. 
2012; Sdiri-Loulizi et al. 2011). Other viruses such as aichi 
virus, parechovirus, and bocavirus have been related to 
cases of acute diarrhea. Nevertheless, their participation as 
gastrointestinal pathogens remains unclear (Chhabra et al. 
2013).

Abstract  Annual mortality rates due to infectious diar-
rhea are about 2.2 million; children are the most vulner-
able age group to severe gastroenteritis, representing 
group A rotaviruses as the main cause of disease. One of 
the main factors of rotavirus pathogenesis is the NSP4 
protein, which has been characterized as a viral toxin 
involved in triggering several cellular responses leading 
to diarrhea. Furthermore, the rotavirus protein NSP1 has 
been associated with interferon production inhibition by 
inducing the degradation of interferon regulatory factors 
IRF3, IRF5, and IRF7. On the other hand, probiotics such 
as Bifidobacterium and Lactobacillus species in combina-
tion with prebiotics such as inulin, HMO, scGOS, lcFOS 
have been associated with improved generalized antivi-
ral response and anti-rotavirus effect by the reduction of 
rotavirus infectivity and viral shedding, decreased expres-
sion of NSP4 and increased levels of specific anti-rotavi-
rus IgAs. Moreover, these probiotics and prebiotics have 
been related to shorter duration and severity of rotavirus 
diarrhea, to the prevention of infection and reduced inci-
dence of reinfections. In this review we will discuss in 
detail about the rotavirus pathogenesis and immunity, and 
how probiotics such as Lactobacillus and Bifidobacterium 
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Rotavirus

RV is a member of the genus Rotavirus within the family 
Reoviridae; mature viral particles are about 70–100  nm 
in diameter and possess a triple-layered icosahedral pro-
tein capsid composed of an outer layer, an intermediated 
layer, and an inner core layer. The RV genome contains 
11 segments of double-stranded RNA (dsRNA), segments 
which encode six structural proteins (VP1–VP4, VP6, and 
VP7) and six non-structural proteins (NSP1–NSP5/NSP6) 
(Estes and Greenberg 2013). RV is classified in eight dis-
tinct groups (A to H), RVs A, B, and C are found in both 
humans and animals, whereas D, E, F, G, and H have been 
only found in animals (Matthijnssens et al. 2012).

RV causes significant diarrheal disease in infants and 
young of various mammalian and avian species (Estes 
and Greenberg 2013). Within RV, viruses are classified 
into serotypes and genotypes. The binary classification 
for RV is based on distinct types of the structural pro-
teins in the external capsid VP7 (genotype G) and VP4 
(genotype P). In 2008, a complete genome classification 
system was developed to RVA that assigns a specific gen-
otype to each of the 11 genomic segments according to 
established nucleotide percent cutoff values (Matthijns-
sens et  al. 2008). Most of the human RV associated to 
diarrheic disease worldwide are G1P[8], G2P[4], G3P[8], 
G4P[8], and G9P[8] with emerging genotypes such as G9 
and G12 (Rahman et al. 2007; Santos and Hoshino 2005). 
These common human RVs may co-circulate within a 
single season which would be favorable for the formation 
of reassortant viruses and thereby to the genetic diversity 
of RV (Jain et al. 2014).

Rotavirus pathogenesis

RVs infection and replication are primarily in the non-
dividing, mature enterocytes near the tips of the small 
intestinal villi (Estes and Greenberg 2013). Nevertheless, 
RV infection may not be limited to the gut; recently, sev-
eral cases of antigenemia and viremia have been reported, 
although the impact of systemic RV on disease burden 
remains to be determined (Blutt and Conner 2007; Estes 
and Greenberg 2013). The human RV pathogenesis is still 
unclear, some studies in volunteers, with animal models 
and recently in a novel in  vitro human intestinal enter-
oids model (Saxena et al. 2016) point that the viral patho-
genesis may be multifactorial and associated with several 
factors such as: (a) the viral infection to mature entero-
cytes in the lining of the gastrointestinal tract is related to 
enterocyte vacuolization and loss, crypt hyperplasia and 
villous blunting, which is associated with malabsorption 
by intestine; although, the presence of symptoms of such 

diarrhea has been reported before the epithelial damage 
is detected (Jourdan et  al. 1997), (b) the activity of the 
RV non-structural protein NSP4 (Fig. 1), which has been 
characterized as a viral toxin inducing Ca2+-dependent 
Cl− secretion associated with the inhibition of the Na+/
glucose-cotransporter SGLT1, and alterations in cytoskel-
etal structure, in the integrity of the tight junctions and 
the regulation of Na+/K pump (Ball et  al. 1996; Lund-
gren and Svensson 2001; Ousingsawat et al. 2011). This 
intracellular dysregulation in the enterocyte, together 
with the decreased expression of digestive enzymes, 
glucose malabsorption and activation of cystic fibrosis 
conductance regulator (CFTR)-independent Cl− secre-
tion, may be the cause of diarrhea (Ousingsawat et  al. 
2011), (c) the enteric nervous system is associated with 
RV secretory diarrhea and increased intestinal motility, 
the evidence of this association is the modulation effect 
of drugs that block this pathway in RV-induced diarrhea 
(Lundgren et al. 2000), (d) other factor in viral pathogen-
esis is the ability of RV to infect enterochromaffin cells 
(EC), as consequence serotonin (5-hydroxytryptamine) 
is released from EC and acts through the enteric nerv-
ous system inducing activation of vagal afferent nerves 
to brain structures associated with nausea and vomiting 
(Hagbom et al. 2011).

Rotavirus immunity

The mechanisms responsible for generating protective 
immunity to RV infections and illness following natural 
infection are not completely understood, particularly in 
humans where it is difficult to study the acquired cel-
lular immune response in young children due to limita-
tions with timely and sufficient specimens (Estes and 
Greenberg 2013). Most of the knowledge about the 
immune response to RV has been studied in several ani-
mal models, but the most used are mice and pigs (Estes 
and Greenberg 2013). B or T cells knockout mice were 
observed to be chronically infected with RV; the same 
effect has been described in children with B or T cells 
immunodeficiency (Chhabra et al. 2013; Williams et al. 
1998). CD4+ cells are critical for the establishment 
of protective long-term memory responses and impor-
tant for the development of 90% of the RV-specific IgA 
(Kuklin et  al. 2001). On the other hand, CD8+ T cells 
are associated with short-term protection against RV 
reinfection and with timely resolution of primary RV 
infection (Jiang et al. 2008). In the same animal model, 
intestinal tract homing of both B and T cells plays a 
major role in promoting RV immunity mediated by the 
integrin α4β7 and CCR9 (Jiang et al. 2008; Kuklin et al. 
2001; Williams et al. 1998).
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Innate immune response and evasive strategies 
of rotavirus

In the absence of T cell help, a protective B cell response 
is present; nevertheless, this response is reduced com-
pared with wild-type mice, and T cells can mediate their 
effect against RV infection in the absence of perforin, 
Fas, and interferon γ (Franco et  al. 1997, 2006; Gilger 
et al. 1992). Apparently, T cells can clear infection more 
quickly and efficiently than B cells. CD8+ T cells can 
mediate primary RV infection and almost complete or 
partial protection from reinfection (Estes and Greenberg 
2013).

On the other hand, RV has developed multiple mecha-
nisms to evade the innate immune response, particularly 
the interferon response (INF). The protein NSP1 has been 
characterized as an inhibitor of interferon (INF) produc-
tion by inducing the degradation of interferon regulatory 
factor IRF 3, IRF5 and IRF7 in a host cell-dependent pro-
cess (Fig. 2) (Arnold and Patton 2011). Due to the loss of 
IRF3, the expression of IFN-β is suppressed, the degrada-
tion of IRF5 is associated with the down-regulation of the 
activation of genes producing proinflammatory cytokines. 
Finally, the degradation of IRF7 is related to the decreased 

expression of type I IFN and to an altered activation of 
IFN-α genes (Barro and Patton 2007). NSP1 also medi-
ate degradation of β-TrCP and inhibition of NFκB acti-
vation (Morelli et  al. 2015). All these effects depend of 
the RV strain, and cell type, NSP1 from some animal RV 
degrade IRF3, IRF5, and IRF7; nevertheless, human RV 
NSP1 only degrades IRF5 and IRF7, which may result 
in less efficient inhibition of IFN response (Arnold and 
Patton 2011). NSP1 has also been associated with the 
degradation of other proteins such as the pattern recogni-
tion receptor (cytosolic receptor) known as retinoic acid-
inducible gene I (RIG-I); TNF receptor-associated fac-
tor 2 (TRAF2), and the mitochondrial antiviral signaling 
protein (MAVS, also known as IPS-1, VISA, and Cardif). 
These data indicate that NSP1 can block innate immune 
signaling at both the transcriptional (IRF, NF-κB) and at 
pattern recognition receptor (PRR) level, but not signal-
ing through the TLR3/TRIF pathway or PKR (Broquet 
et  al. 2011). On the other hand, RV activates the PI3K/
Akt pathway to prevent premature apoptosis, and it is also 
related to the post-transcriptional depletion of p53, possi-
bly through the NSP1 activity; as a result, early cell apop-
tosis is prevented (Bagchi et  al. 2010; Bhowmick et  al. 
2013).

Fig. 1   Model of RV infection and pathogenesis: virus entry, forma-
tion of viroplasms and replication, and release of virions and viral 
proteins such as NSP4; this protein mobilizes intracellular calcium 
from endoplasmic reticulum (ER). Released NSP4 affects uninfected 
cells, resulting in mobilization of intracellular calcium by a PLC-
dependent pathway that activates chloride secretion. Tight junctions 

can also be disrupted by RV infection and by the NSP4 activity; 
the disruption of epithelial cell structure may lead to cell death and 
alterations of the paracellular pathway of fluid movement. RV infec-
tion activates epithelial cell signaling resulting in the activation of the 
enteric nervous system, intestinal secretion, and immune responses 
(Estes and Greenberg 2013; Ramig 2004)
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Probiotics and prebiotics vs rotavirus 
gastroenteritis

Current treatment of RV gastroenteritis consists of oral 
rehydration (oral rehydration solutions, ORS) to replace 
fluids and electrolytes lost by vomiting and diarrhea. 
Zinc supplementation improves the oral rehydration, and 
it is recommended by the WHO for children with acute 
gastroenteritis. Several other additives to the ORS for-
mulation are currently under investigation; these include 
lactoferrin and lysozyme and various amino acids includ-
ing glycine, alanine, and glutamine (Estes and Green-
berg 2013). Additionally, the RV vaccines (Rotarix and 
RotaTeq) have shown to be safe and effective in the pre-
vention of RV severe gastroenteritis. Nevertheless, they 
are not globally implemented due to their cost, storage 
and transport requirements (at 2–8 °C) and because of the 
lower protection offered in developing countries (Bines 
and Kirkwood 2015). Moreover, RV gastroenteritis seems 
to be modulated by nutritional interventions such as 

bioactive components of breast milk, probiotics or prebi-
otics (Rigo-Adrover et al. 2016).

Probiotics such as Lactobacillus and Bifidobacterium 
species, and Saccharomyces boulardii have been associated 
with the prevention of RV infection, to shorter duration and 
severity of RV diarrhea, to reduced incidence of reinfec-
tions and to the modulation of the immune response and 
viral shedding (Das et al. 2016; Lee et al. 2015; Maragk-
oudakis et al. 2010; Rigo-Adrover et al. 2017; Varyukhina 
et al. 2012).

Out of the reported probiotics showing potential as gut 
pathogens antagonists, some species of Lactobacillus and 
Bifidobacterium are commonly reported worldwide (Servin 
2004). Focusing against RV, an in  vivo evaluation on 
mouse demonstrated that oral administration of Bifidobac-
terium breve strongly protected against RV-induced diar-
rhea, thus observing an anti-RV IgA level increase in feces, 
mammary gland and intestine of treated mouse (Yasui et al. 
1995). In other murine models, pathogen-free rats infected 
with SA11 RV strain and orally treated with L. casei, small 

Fig. 2   Rotavirus interactions with the host innate system: viral entry 
into cells and viral double strand RNA (dsRNA) induce the gen-
eration of pathogen-associated molecular pathways (PAMPs). As 
a result, cytosolic pathogen recognition receptors (PRRs), such as 
RIG-I and MDA-5 are activated, leading to mitochondrial-associated 
adaptor protein MAVS-dependent activation of transcription factor 
IRF3/IRF7. Activated IRF3/IRF7 translocates to nucleus, where it 
induces the transcription of several genes resulting in the transcrip-
tion and expression of IFN-α/β. IFN secretion from rotavirus infected 
cells results in the establishment of antiviral state in bystander cells, 

mediated by signaling through the transcription factors STAT1, 
STAT2, and IRF9. The viral protein NSP1 induces proteosomal deg-
radation of RIG-I, MAVS, IRF3, and IRF7. On the other hand, the 
induction of IFN in rotavirus infected cells also requires nuclear fac-
tor κβ (NF-κβ), following the proteosomal degradation of its inhibi-
tory partner IκB-α; NSP1 can block this pathway by inducing the pro-
teosomal degradation of β-TrCP, which is an essential co-factor for 
IκB-α degradation. As a result, NSP1 affects the quality and intensity 
of the interferon response (Arnold and Patton 2011; Estes and Green-
berg 2013)
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intestine lesions, and RV infection level were reduced in all 
intestine sections, as well as diarrhea (Guérin-Danan et al. 
2001). In  vitro and in  vivo studies revealed that some of 
the mechanisms of probiotics against RV infection are the 
production of antimicrobial substances (lactic acid, nitric 
oxide, H2O2 and bacteriocins), stimulation of antimicro-
bial peptides, mucin production by epithelial cells, stimu-
lation of local adaptive (specific IgA response), and innate 
immune responses (Fig. 3) (Gänzle et al. 2000; Kaila et al. 
1995). Moreover, Lactobacillus and Bifidobacterium spe-
cies have been associated to the stimulation of production 
of cytokines IL25, IL33, TGF by intestinal cells; IL22, by 
innate immune cells; IL12, IL25, IL10 and TGF, by anti-
gen-presenting cells; resulting in improved intestinal bar-
rier function, reduced effector and increased regulatory 
immune responses (Vlasova et al. 2016).

On the other hand, prebiotics such as the sialic acid 
containing human milk oligosaccharides (HMO) has been 
associated to in  vitro reduced RV infectivity and replica-
tion (Hester et  al. 2013). HMO have also been associated 
with the reduction of the duration of RV diarrhea in piglets 
by modulating colonic microbiota and immune response 

to RV infection (Li et  al. 2014). Moreover, a mixture of 
short-chain galactooligosaccharides (scGOS), long-chain 
fructooligosaccharides (lcFOS) and Bifidobacterium breve 
showed protection against RV infection in suckling rats 
(Rigo-Adrover et al. 2016). In children with acute RV gas-
troenteritis, the oral administration of a mixture of Bifi-
dobacterium lactis B94 and inulin as prebiotic showed a 
shorter duration of RV acute watery diarrhea (İşlek et  al. 
2014). On the other hand, a mixture of prebiotics such 
scGOS, lcFOS and pectin-derived acidic oligosaccharides 
mixture and heat-treated probiotics in fermented milk com-
ponents in RV-induced diarrhea in suckling rats was associ-
ated with a decreased viral shedding and reduced clinical 
signs (Rigo-Adrover et al. 2017).

Although the probiotics and prebiotics mechanisms 
against RV are not well defined yet, there is some recent 
evidence about the beneficial effect of them in the viral 
pathogenesis and immune response modulation (Table  1). 
The activity of probiotics and prebiotics against RV 
pathogenesis may be attributable to decreased viral shed-
ding possibly due to the interaction of probiotics (or their 
metabolites) and prebiotics with the viral particles avoiding 

Fig. 3   Prebiotics, probiotics, and gut immunity: interaction of prebi-
otics and probiotics such as Lactobacillus and Bifidobacterium spe-
cies and the immune system, described from in  vitro and in  vivo 
assays with mice and gnotobiotic pigs. Prebiotics such as HMO, 
scGOS or lcFOS together with probiotics Lactobacillus and Bifido-

bacterium may improve the immune response against enteric patho-
gens. These probiotics inhibit some viruses by producing lactic acid, 
H2O2, NO, short-chain fatty acids (SCFA), bacteriocins, promotes 
and preserve the integrity of the epithelium, and compete with patho-
gens for intestinal epithelial cell (Vlasova et al. 2016)



958	 Arch Microbiol (2017) 199:953–961

1 3

Ta
bl

e 
1  

E
ff

ec
t o

f 
pr

ob
io

tic
s 

an
d 

pr
eb

io
tic

s 
ag

ai
ns

t r
ot

av
ir

us
 g

as
tr

oe
nt

er
iti

s

Pr
ob

io
tic

 s
pe

ci
es

Pr
eb

io
tic

s
A

ss
ay

 d
es

cr
ip

tio
n

E
ff

ec
t

R
ef

er
en

ce
s

L
ac

to
ba

ci
ll

us
 c

as
ei

 S
hi

ro
ta

L
ac

to
ba

ci
ll

us
 r

ha
m

no
su

s 
G

G
N

ot
 in

cl
ud

ed
C

L
A

B
 p

or
ci

ne
 c

el
l l

in
e 

pr
e-

in
cu

ba
te

d 
w

ith
 s

el
ec

te
d 

L
A

B
 s

tr
ai

ns
 a

nd
 th

en
 c

ha
l-

le
ng

ed
 w

ith
 R

V

In
cr

ea
se

d 
ce

ll 
su

rv
iv

al
 p

er
ce

nt
ag

es
, f

ro
m

 
40

%
 u

p 
to

 8
0%

M
ar

ag
ko

ud
ak

is
 e

t a
l. 

(2
01

0)

L
ac

to
ba

ci
ll

us
 c

as
ei

B
ac

il
lu

s 
th

et
ai

ot
ao

m
ic

ro
n

N
ot

 in
cl

ud
ed

H
um

an
 in

te
st

in
al

 c
ul

tu
re

d 
ce

lls
 H

T
29

-
M

T
X

 w
er

e 
in

cu
ba

te
d 

w
ith

 b
ac

te
ri

a-
de

ri
ve

d 
so

lu
bl

e 
fa

ct
or

s 
an

d 
in

fe
ct

ed
 w

ith
 

R
V

D
ec

re
as

ed
 R

V
 in

fe
ct

io
n,

 m
or

e 
th

an
 8

5%
 

of
 H

T
29

-M
T

X
 c

el
ls

 w
er

e 
no

t i
nf

ec
te

d 
w

he
n 

L
. c

as
ei

 s
pe

nt
 c

ul
tu

re
 s

up
er

na
ta

nt
s 

w
er

e 
us

ed
In

cr
ea

se
d 

ce
ll-

su
rf

ac
e 

gl
yc

an
 m

od
ifi

ca
-

tio
n 

w
hi

ch
 w

as
 a

ss
oc

ia
te

d 
w

ith
 a

 s
tr

on
g 

in
hi

bi
tio

n 
of

 R
V

 e
nt

ry

V
ar

yu
kh

in
a 

et
 a

l. 
(2

01
2)

B
ifi

do
ba

ct
er

iu
m

 lo
ng

um
L

ac
to

ba
ci

ll
us

 a
ci

do
ph

il
us

N
ot

 in
cl

ud
ed

In
 v

itr
o 

an
tiv

ir
al

 a
ct

iv
iti

es
 o

f 
pr

ob
io

tic
 

is
ol

at
es

 o
n 

ro
ta

vi
ru

s
D

ou
bl

e-
bl

in
d 

tr
ia

l i
nc

lu
di

ng
 c

hi
ld

re
n 

w
ith

 
vi

ra
l g

as
tr

oe
nt

er
iti

s

D
ec

re
as

ed
 a

nt
iv

ir
al

 a
ct

iv
ity

 b
y 

re
du

ce
d 

pl
aq

ue
 f

or
m

at
io

n 
by

 3
8 

an
d 

31
%

 in
 V

er
o 

ce
lls

T
he

 d
ur

at
io

n 
of

 d
ia

rr
he

a 
w

as
 s

ig
ni

fic
an

tly
 

sh
or

te
r 

in
 th

e 
pr

ob
io

tic
 g

ro
up

L
ee

 e
t a

l. 
(2

01
5)

Sa
cc

ha
ro

m
yc

es
 b

ou
la

rd
ii

N
ot

 in
cl

ud
ed

D
ou

bl
e-

bl
in

d 
ra

nd
om

iz
ed

 c
on

tr
ol

le
d 

tr
ia

l
R

V
-i

nd
uc

ed
 d

ia
rr

he
a 

w
as

 s
ig

ni
fic

an
tly

 
sh

or
te

r 
in

 th
e 

gr
ou

p 
w

ith
 th

e 
pr

ob
io

tic
D

as
 e

t a
l. 

(2
01

6)

L
ac

to
ba

ci
ll

us
 c

as
ei

B
ifi

do
ba

ct
er

iu
m

 a
do

le
sc

en
ti

s
N

ot
 in

cl
ud

ed
In

 v
itr

o 
as

sa
y 

in
 M

A
10

4 
ce

lls
 in

 a
 

bl
oc

ki
ng

 R
V

 m
od

el
 a

nd
 in

tr
ac

el
lu

la
r 

m
od

el
 e

va
lu

at
in

g 
th

e 
N

SP
4 

pr
od

uc
tio

n 
an

d 
C

a2+
 li

be
ra

tio
n 

m
ea

su
re

d 
by

 fl
ow

 
cy

to
m

et
ry

A
nt

i-
R

V
 e

ff
ec

t i
n 

ce
lls

 w
ith

 m
et

ab
ol

ite
s 

of
 L

ac
to

ba
ci

ll
us

 c
as

ei
, a

nd
 B

ifi
do

ba
ct

e-
ri

um
 a

do
le

sc
en

ti
s 

in
 th

e 
re

du
ct

io
n 

of
 th

e 
N

SP
4 

pr
od

uc
tio

n 
an

d 
C

a2+
 li

be
ra

tio
n

O
la

ya
 G

al
án

 e
t a

l. 
(2

01
6)

N
ot

 in
cl

ud
ed

H
um

an
 m

ilk
 o

lig
os

ac
ch

ar
id

es
 (

H
M

O
)

In
 v

itr
o 

sy
st

em
 f

or
 a

ss
es

si
ng

 c
el

lu
la

r 
bi

nd
-

in
g 

an
d 

vi
ra

l i
nf

ec
tiv

ity
/r

ep
lic

at
io

n,
 a

nd
 

in
 a

 R
V

 in
fe

ct
io

n 
m

od
el

 in
 s

itu
 in

 p
ig

le
ts

In
fe

ct
iv

ity
 o

f 
R

V
 w

as
 in

hi
bi

te
d 

by
 s

ia
-

ly
la

te
d 

H
M

O
In

 s
itu

 a
ss

ay
s 

w
ith

 p
re

bi
ot

ic
 +

 R
V

 s
ho

w
ed

 
a 

lo
w

er
 v

ir
al

 r
ep

lic
at

io
n,

 a
s 

as
se

ss
ed

 b
y 

en
te

ro
to

xi
n 

N
SP

4 
m

R
N

A
 e

xp
re

ss
io

n

H
es

te
r 

et
 a

l. 
(2

01
3)

B
ifi

do
ba

ct
er

iu
m

 la
ct

is
 B

94
In

ul
in

A
dm

in
is

tr
at

io
n 

of
 p

ro
bi

ot
ic

 a
nd

 p
re

bi
ot

ic
 

in
 c

hi
ld

re
n 

w
ith

 a
cu

te
 g

as
tr

oe
nt

er
iti

s.
T

he
 p

re
bi

ot
ic

-g
ro

up
 s

ho
rt

en
ed

 th
e 

du
ra

-
tio

n 
of

 R
V

 a
cu

te
 w

at
er

y 
di

ar
rh

ea
İş
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the entry into enterocytes and as a consequence reducing 
the RV replication (Rigo-Adrover et  al. 2017). Moreover, 
the in  vitro effect of metabolites of Lactobacillus casei, 
and Bifidobacterium adolescentis was associated with 
a reduced expression of the RV enterotoxin NSP4 and 
reduced levels of Ca2+ liberation suggesting that cell will 
not reach the electrolyte imbalance caused by this pathway 
(Olaya Galán et al. 2016). On the other hand, the modula-
tion of RV immune response by probiotics and prebiotics 
has been associated with a generalized antiviral response 
via pattern recognition receptor signaling and through pro-
moting type I IFNs, which are key regulators of IFN signal-
ing pathway (Ishizuka et al. 2016; Kang et al. 2015). Bifi-
dobacterium infantis MCC12 and Bifidobacterium breve 
MCC1274 have been associated with a significant reduc-
tion of RVs titers in infected porcine intestinal epithelial 
cells (PIE); the beneficial effects of both bifidobacteria 
were associated with the reduction of A20 expression and 
improvements of IRF-3 activation, IFN-ß production, and 
MxA and RNase L expressions. The reduction of A20 is 
associated with the IFN stimulation response and IFN pro-
moter dependent transcription by physically interacting 
with NF-κB-activating kinase/Traf family member-associ-
ated NFκB activator-binding kinase 1 and IKK-i/IKKe, and 
inhibiting dimerization of IRF-3 following engagement of 
TLR3 by dsRNA. In this regard, the up-regulation of MxA 
inhibits viruses by sequestering the newly synthesized viral 
proteins, and RNase L would be related to the lower RVs 
replication (Ishizuka et  al. 2016). Thus, probiotics and 
prebiotics would be associated with generalized antiviral 
effect and to specific anti-RV activity.

Conclusion

RV is the main cause of severe gastroenteritis in chil-
dren up to 5-years-old worldwide. The current progress 
described in this review is the description of the strains 
of probiotics with the best effect against the RVs gas-
troenteritis, and how their effect may be improved by 
the presence of prebiotics such as inulin, HMO, scGOS, 
lcFOS, pectin-derived acidic oligosaccharides mixture 
and heat-treated probiotics in fermented milk compo-
nents. Although more evidence is needed to support the 
beneficial effects and the mechanisms of prebiotics and 
probiotics against RV gastroenteritis severity; it is possi-
ble that the beneficial activity of probiotics and prebiot-
ics are associated to: (a) the improvement in the intestinal 
microenvironment and the healthy intestinal microbiota 
balance strengthen the intestinal epithelial barrier, (b) 
the interaction of both probiotic (metabolites) or prebi-
otic with viral particles avoiding the RV cell entry, (c) 
increased generalized antiviral response, (d) decreased 

expression of the viral enterotoxin NSP4 and possibly 
of NSP1 and (e) the increased levels of specific anti-RVs 
IgAs. Together, all these factors would be associated to 
decreased RV infectivity, viral shedding, to shorter dura-
tion and severity of RV diarrhea, to the prevention of RV 
infection and reduced incidence of reinfections. Moreo-
ver, further studies are needed for the elucidation of the 
mechanisms of action of probiotics/prebiotics mixtures 
against RV severe gastroenteritis and the implementation 
of the effective and safe use of probiotic/prebiotics as 
preventive and therapeutic strategies in the management 
of RV gastroenteritis.
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