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Single-Input-Multiple-Output (SIMO) systems are found in several applications. Some of the main concerns are (1) the possibility
of stabilizing all the outputs and (2) the possibility of attaining independent tracking control of all the outputs. Whereas the first
issue can be easily be elucidated, the second has proven to be impossible in all but a few systems. In many cases one practical option
is to use the input to drive a main output, taking care that the behavior of the remaining secondary outputs is acceptable. In this
configuration, in addition to the features of the main control loop, the perturbation rejection properties of the secondary outputs
become important. This article analyzes the structural properties, stability, and perturbation rejection characteristics of SIMO
systems. The article presents fundamental conclusions regarding the relationship of the main control loop and the perturbation
rejection characteristics of the secondary outputs. A simple and intuitive example is used to show how the theoretical findings can
be used to improve the design of the main control loop through its frequency domain characteristics. The results are developed
using simple frequency domain theoretical elements, making the findings relevant for both engineering applications and deriving
further theoretical developments.

1. Introduction

Single-Input-Multiple-Output (SIMO) systems appear onmany
industrial and technological applications where there is the
need for closed-loop control, for instance, in electricmachine
control [1, 2], airplane control [3–5], and automotive active
suspension control [6].

The difficulty of such systems is that inmost cases it is not
possible to attaint total control of all outputs using a single
input. In particular, fully independent reference tracking
control may be impossible [7]. In some cases a bandwidth
separation and nested closed-loop control allow a degree of
control over several output variables. This strategy has been

historically usedwith success in aeronautical applications and
other electromechanical systems [8–10].

The stability of SIMO control systems is an issue of
ongoing interest. For instance, in [11, 12] the stability of
state feedback SIMO systems are studied from a theoretical
point of view. While the stability of any control system is of
prime importance, it is well-known that for actual practical
applications the stability is only a starting requirement.

Othermore common strategywhich usesmodern control
tools is the use of optimal controllers in which all the outputs
are considered on the cost function [7, 13]. While these
control approaches may yield good results, the design pro-
cedure for such controllers still requires the calibration of the
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weighting matrixes. In addition, this design process lacks the
elements to closely relate the control system specifications
with perturbation rejection for all the outputs.

Another important characteristic of many SIMO plants is
that although only one control input is available, theremay be
numerous perturbation inputs. For example, in classic aircraft
control the elevators angle is used as the main control input
for altitude, pitch, and attack angles. Nonetheless, altitude,
pitch, and attack angles dynamics are also subject to many
external perturbations such as wind gusts, changes in load,
and other atmospheric phenomena. If sufficient knowledge
of the nature of the perturbations is available, the effects of
these external perturbations can be modeled as unknown
perturbation inputs feeding known perturbation dynamics.
For instance, while the speed of the wind gust may be
unknown, the dynamical effects of the wind gust for a given
speed are known; thus an unknown input (the wind gust
speed) is used as input to a known perturbation dynamic.
The resulting model is, in a sense, Multiple Inputs Multiple-
Outputs (MIMO) because it has multiple inputs. However,
only one of these inputs is a control variable. In this article
this type of systems is referred to as SIMO systems subject to
multiple perturbations.

In [14] it is shown that there is a close relationship
between the sensitivity of SIMO systems outputs and the con-
troller open-loop gain characteristics. In addition, it is known
that the sensitivity characteristics are important for perturba-
tion rejection. However, this study and the ones mentioned
before do not consider additional external perturbations
directly. Nevertheless, since the consideration of external
perturbations is crucial for most practical applications these
aspects should be investigated in order to complete a useful
design procedure.

There are several control approaches that allow dealing
with external perturbations. For instance, in [15], Active
Disturbance Rejection Control (ADRC) is used in combination
with a decoupling strategy to control several MIMO systems
successfully. Although in [15] the MIMO case was studied,
these concepts could be adapted to the SIMO case. On the
other hand, ADRC does not consider explicit knowledge of
the perturbation dynamics. In these cases ADRC could be
a good alternative. However, if further knowledge of the
perturbation dynamics is available it will be shown that sev-
eral important conclusions can be elucidated. Moreover, the
theoretical tools developed in this article do not impose any
restriction on the characteristics of the controller, allowing
the study of other control strategies, such as ADRC, under the
scope of perturbation rejection tomultiple external perturba-
tions.

In many SIMO tracking control systems amain output is
required to follow a prescribed trajectory, while the comple-
mentary or secondary outputs remain asymptotically stable.
The nested control loops strategy arises with the purpose
of accomplishing this condition. In most engineering appli-
cations a further analysis of the resulting dynamics of the
secondary variables may be necessary. The main reason
behind this is that whereas full tracking control of such
variables may be not required, these variables are often
required to evolve in a neighborhood of the equilibrium

point. That is, the process must operate within the desired
operating regime.

There are several practical examples of this phenomenon
in control applications. For instance, in motor control the
main output variable is the generated torque; however, the
machine flux is often required to operate within a restricted
range. While the flux operates within this range the motor
often operates without problem and the effect of flux varia-
tions over the output may not be evident. However, if the flux
is driven out of certain neighborhood of the ideal equilibrium
point, the machine may bifurcate into another equilibrium
point causing an undesired behavior in the other system
variables [1, 2, 16].

Another example is airplane altitude control using the
elevators. In this case the main variable is the altitude. How-
ever, the angle of attack is also affected by the elevators, and
it should be maintained within certain range. If the angle of
attack increases to certain value the wing stalls and the overall
dynamics of the altitude suffer a heavy transformation, which
may result in unrecoverable loss of airplane control [3].

In many applications the system dynamics may be prop-
erly approximated by linear models if all the output variables
of the SIMOsystemare properly regulated.This allows the use
of linear control tools for the design of adequate controllers.
However, as discussed before, the stabilization of the system
may not be sufficient in the presence of perturbations due
to the possible deviation of secondary outputs from the
operating range because of external perturbations.

Considering that many SIMO systems are designed
considering only the control of the main output variable
then the relationship between this main control loop and
the perturbation rejection characteristics of the secondary
outputs becomes relevant. If the case is that increasing the
performance for themain variable decreases the performance
and robustness of the secondary variables then what con-
troller for the main variable is indicated in order to meet the
overall system specifications? Moreover, in the presence of
input perturbations, how can the designer assess the sensi-
tivity and rejection of such perturbations? It is especially of
interest to know how a high performance control of the main
variable will affect the other variables perturbation rejection
capabilities. Some of these questions are partially answered in
[13, 14]. However, these articles fail to fully characterize all the
loops interactions, the external perturbations, and nonsquare
SIMO systems.

In this article, the SIMO problem is addressed using a
multivariable control analysis and design framework known
as Individual Channel Analysis and Design (ICAD) [17]. The
ICAD framework allows using classical single input single
output (SISO) measures of robustness and performance for
multiple input multiple output (MIMO) systems. The ICAD
framework allows the interpretation of complex control
problems in the context of engineering systems [8, 16, 18–21].
Although ICAD was originally proposed as a decentralized
control design tool, in this article ICAD is adapted for
the study of the SIMO perturbation rejection problem. The
main advantage of ICAD is that the results can be readily
interpreted in the frequency domain. This enables intuitive
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engineering interpretations and opens the door for further
frequency analysis formalism such as𝐻∞.

By adapting ICAD to the nonsquare SIMO control prob-
lem, conditions for stability of SIMO control systems subject
to perturbations are determined.Moreover, the stability of the
complete control system sometimes may not reflect all the
information from the design point of view. Therefore, the
stability of the SIMO control system is divided on sets
which intuitively relate to specific parts of the control sys-
tem. The analysis allows showing directly the performance
and perturbation rejection tradeoffs with classical frequency
analysis tools such as Bode plots. This allows the designer to
take better-informed design decisions relating the technical
specifications and the controller. The authors hope that this
may aid in bridging the theory-practice gap on such prob-
lems. It should be noted that some of themain ideas presented
here formally were first explored within the realm of a
practical application, in particular, during the analysis of
the structural characteristics of the flux-torque subsystem of
induction motors [16]. Finally, the acronyms used along the
article are shown in Acronyms at the end of the paper.

2. Problem Statement

Consider the following input-perturbed SIMO system:𝑌 (𝑠) = 𝐺𝑢 (𝑠) 𝑢 (𝑠) + 𝐺𝑝 (𝑠) 𝑃𝑒 (𝑠)
𝑌 (𝑠) = (𝑦1 (𝑠)𝑦2 (𝑠)...𝑦𝑛 (𝑠))
𝑃𝑒 (𝑠) = (𝑝𝑒1 (𝑠)𝑝𝑒2 (𝑠)...𝑝𝑒𝑚 (𝑠))
𝐺𝑢 (𝑠) = (𝑔1,𝑢 (𝑠)𝑔2,𝑢 (𝑠)...𝑔3,𝑢 (𝑠))
𝐺𝑝 (𝑠) = (

(
𝑔1,𝑝1 (𝑠) 𝑔1,𝑝2 (𝑠) ⋅ ⋅ ⋅ 𝑔1,𝑝𝑚 (𝑠)𝑔2,𝑝1 (𝑠) 𝑔2,𝑝2 (𝑠) ⋅ ⋅ ⋅ 𝑔2,𝑝𝑚 (𝑠)... ... d

...𝑔𝑛,𝑝1 (𝑠) 𝑔𝑛,𝑝2 (𝑠) ⋅ ⋅ ⋅ 𝑔𝑛,𝑝𝑚 (𝑠)
)
)

,

(1)

where 𝑌(𝑠) is the output vector, 𝑢(𝑠) is the scalar input signal,𝑃𝑒(𝑠) is an unknown perturbation signal vector, 𝐺𝑢(𝑠) is the
unperturbed nominal SIMO plant, and 𝐺𝑝(𝑠) is an additive
perturbation matrix. In this case the system contains one
input, 𝑛 outputs, and𝑚 unknown perturbation signals.

The goal is to elucidate the effect of the perturbations𝑃𝑒(𝑠)
over the outputs 𝑌(𝑠) when a particular output is controlled
using the input 𝑢(𝑠). Without loss of generality, consider
that the main output is 𝑦1(𝑠) and the remaining outputs are
secondary outputs. If the main output is controlled using a
feedback controller 𝑘(𝑠) then𝑢 (𝑠) = 𝑘 (𝑠) 𝑒 (𝑠)𝑒 (𝑠) = ref (𝑠) − 𝑦1 (𝑠) , (2)

where ref(𝑠) is the main output reference and 𝑒(𝑠) is the error.
In this case it is considered that the secondary outputs must
converge to the designated equilibriumwhich is equal to zero
for (1) if the system is operated in regulation. The resulting
control scheme is shown in Figure 1.

The first design task is the main closed-loop 𝑦1(𝑠)/
ref(𝑠) = ℎ(𝑠): 𝑦1 (𝑠)

ref (𝑠) = ℎ (𝑠) = 𝑘 (𝑠) 𝑔𝑢,1 (𝑠)1 + 𝑘 (𝑠) 𝑔𝑢,1 (𝑠) (3)

which may be designed according to classical SISO control
considerations.

Next, the effect of the perturbations over the main output
variable is analyzed. Let 𝑦𝑗𝑝(𝑠) = ∑𝑚𝑖=1 𝑔𝑗,𝑝𝑖(𝑠)𝑝𝑒𝑖(𝑠); that is,𝑦1𝑝(𝑠) contains the cumulative effect of all the perturbation
signals over the main output. According to Figure 1, it is clear
that 𝑦1𝑝(𝑠) can be treated as an output perturbation acting
on the main control loop. Thus, the effect of 𝑦1𝑝(𝑠) over the
main output can be modeled using the sensitivity function of
the main control loop:𝑆 (𝑠) = 11 + 𝑘 (𝑠) 𝑔𝑢,1 (𝑠) . (4)

Accordingly, the effect of the perturbation vector 𝑃𝑒(𝑠) over
the output 𝑦1(𝑠) is given by 𝑆(𝑠)𝑦1𝑝(𝑠). Then, the complete
main output yields𝑦1 (𝑠) = ℎ (𝑠) ref (𝑠) + 𝑆 (𝑠) 𝑚∑

𝑖=1

𝑔1,𝑝𝑖 (𝑠) 𝑝𝑒𝑖 (𝑠) . (5)

Equation (5) shows that the characteristics of the main
output correspond to that of a typical perturbed SISO control
systemwhere a high bandwidth controller (that is, 𝑘(𝑠) → ∞)
results in high performance and high-perturbation rejection
capabilities. The possibility of achieving such features have
been widely studied, some very known results have been
reported in [22–25].

The next step for dealing with the SIMO control problem
consists in determining the effect of the main control loop
over the secondary outputs. It is especially important to
determine the effects that closing this control loop has over
the stability and perturbation rejection characteristics of the
secondary outputs. Let the transfer functions of interest be
denoted by 𝑐𝑗,𝑟 (𝑠) = 𝑦𝑗 (𝑠)

ref (𝑠)𝑐𝑗,𝑝𝑖 (𝑠) = 𝑦𝑗 (𝑠)𝑝𝑒𝑖 (𝑠) , (6)
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Figure 1: Perturbed SIMO control scheme.
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Figure 2: Closed-loop equivalent of the perturbed SIMO control system of Figure 1.

where 𝑐𝑗,𝑟(𝑠) models the effect of the main reference over
the secondary output 𝑗 and 𝑐𝑗,𝑝𝑖(𝑠) models the effect of the
perturbation 𝑖 over output 𝑗. It is clear that𝑦𝑗 (𝑠) = 𝑐𝑗,𝑟 (𝑠) ref (𝑠) + 𝑚∑

𝑖=1

𝑐𝑗,𝑝𝑖 (𝑠) 𝑝𝑒𝑖 (𝑠) . (7)

According to (5) and (7) the scheme of Figure 1 can be
restructured as shown in Figure 2 where the scalar transfer

functions ℎ(𝑠), 𝑆(𝑠)𝑔1,𝑝𝑖(𝑠), 𝑐𝑗,𝑟(𝑠), and 𝑐𝑗,𝑝𝑖(𝑠) model the
effects of the main reference and the perturbations signals
over all the outputs.

The control system stability depends on the stability of the
set of transfer functions:

S = {ℎ (𝑠) , 𝑆 (𝑠) 𝑔1,𝑝𝑖 (𝑠) , 𝑐𝑗,𝑟 (𝑠) , 𝑐𝑗,𝑝𝑖 (𝑠) : 𝑗 ∈ {2, 𝑛} , 𝑖∈ {1, 𝑚}} . (8)
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On the other hand, the perturbation rejection capabilities
are also defined by this set. Although it is easy to numerically
(or even symbolically) calculate set (8) on each case, in the
next section useful general conclusions will be derived. In
particular, set S will be partitioned for analysis purposes as
follows S = {ℎ(𝑠),S1,S2,S3} with S1 = {𝑆(𝑠)𝑔1,𝑝𝑖(𝑠) : 𝑖 ∈{1, 𝑚}}, S2 = {𝑐𝑗,𝑟(𝑠) : 𝑗 ∈ {2, 𝑛}} and S3 = {𝑐𝑗,𝑝𝑖(𝑠) : 𝑗 ∈{2, 𝑛}, 𝑖 ∈ {1, 𝑚}}.
3. Main Results

The first element of set (8) (i.e., h(s)) is well-known and will
not be studied further here. On the other hand, the main
characteristics of S1 and S2 can be derived from typical SISO
perturbation rejection analysis and will be presented with
two brief lemmas. Finally, S3 is more involved and has not
been studied thoroughly in the past. Therefore, the main
results of this article deal with the characteristics of S3 and
its significance for SIMO control design.

Assumptions

(i) Each element of matrix (1) represents a controllable
and observable system.That is, there are no pole/zero
cancellations on the individual transfer functions
of (1). This is line with assuming that (1) is in an
irreducible form.

(ii) There are no unstable zero/pole cancellations between
the controller ℎ(𝑠) and the plant. This constraint
eases the dealing with internal stability whereas not
really limiting the results in practice. Note that actual
zero/pole cancellations are not really possible in
practice.

Lemma 1. The set S1 = {𝑆(𝑠)𝑔1,𝑝𝑖(𝑠) : 𝑖 ∈ {1,𝑚}} is stable
iff the closed-loop of the main control loop ℎ(𝑠) is stable and
the unstable modes of 𝑔1,𝑝𝑖(𝑠) are included on the modes of𝑔1,𝑢(𝑠) ∀𝑖 ∈ {1,𝑚}.
Proof. The proof is immediate since the stability of the
sensitivity function of the main control loop is equivalent
to the stability of the complementary sensitivity of the main
control loop. The stability of transfer functions 𝑔1,𝑝𝑖(𝑠) is an
obvious requirement if no zero/pole cancellations between𝑆(𝑠) and 𝑔1,𝑝𝑖(𝑠) are introduced. On the other hand, if 𝑔1,𝑝𝑖(𝑠)
has unstable modes these modes are also roots of the denom-
inator of 𝑔1,𝑝𝑖(𝑠). Let 𝑔1,𝑢(𝑠) = 𝑛𝑢(𝑠)/𝑑𝑢(𝑠)𝑑𝑢(𝑠) where 𝑑𝑢(𝑠)
contains the stable modes and 𝑑𝑢(𝑠) is monic and contains
the unstable modes; then 𝑆(𝑠) = 𝑑𝑢(𝑠)𝑑𝑢(𝑠)𝑘(𝑠)/(𝑑𝑢(𝑠)𝑑𝑢(𝑠) +𝑘(𝑠)𝑛𝑢(𝑠)); thus all the unstable modes appear on the numer-
ator of 𝑆(𝑠). On the other hand, let 𝑔1,𝑝𝑖(𝑠) = 𝑛𝑝(𝑠)/𝑑𝑝(𝑠)𝑑𝑝(𝑠)
where 𝑑𝑢(𝑠) contains the stable modes and 𝑑𝑝(𝑠) is monic
and contains the unstablemodes.Therefore, if all the unstable
modes of 𝑔1,𝑝𝑖(𝑠) are also modes of 𝑔1,𝑢(𝑠), then 𝑑𝑢(𝑠) =𝑑𝑝(𝑠) and the roots corresponding to these modes will cancel
in 𝑆(𝑠)𝑔1,𝑝𝑖(𝑠) since they are factors of the numerator and
the denominator, rendering 𝑆(𝑠)𝑔1,𝑝𝑖(𝑠) input/output stable.
Finally, there is no loss of internal stability because there is

not loss of order in 𝑆(𝑠)𝑔1,𝑝𝑖(𝑠) since the unstable modes lost
from 𝑔1,𝑝𝑖(𝑠) in the cancellation are fully contained in 𝑔1,𝑢(𝑠)
as required by the lemma.

Discussion. Note that Lemma 1 refers to zero/pole cancella-
tions of the roots corresponding to the same unstable modes.
That is, it is not sufficient for the zero/pole cancellation to
occur, it is necessary for it to involve the same mode; oth-
erwise internal stability is lost.The consequences of Lemma 1
are well-known and impose obvious SISO requirements over
the main control loop. In particular, similar conclusions
may be reached through well-known perturbation rejection
analysis. Therefore, due to lack of space further discussions
in this regard will be omitted.

Lemma 2. The set S2 = {𝑐𝑗,𝑟(𝑠) : 𝑗 ∈ {1, 𝑛}} is stable iff set S1
is stable and all the unstable modes of 𝑔𝑗,𝑢(𝑠) are also modes of𝑔1,𝑢(𝑠) ∀𝑗 ∈ {2, 𝑛}.
Proof. First, when 𝑗 = 1 then 𝑐𝑗,𝑟(𝑠) = ℎ(𝑠) whose stability is
included on the stability of setS1. On the other cases a simple
algebraic exercise reveals that 𝑐𝑗,𝑟(𝑠) = ℎ(𝑠)𝑔1,𝑢(𝑠)−1𝑔𝑗,𝑢(𝑠) =(𝑘(𝑠)/(1 + 𝑘(𝑠)𝑔1,𝑢(𝑠)))𝑔𝑗,𝑢(𝑠). The stability of ℎ(𝑠)𝑔1,𝑢(𝑠)−1,
also called controller complementary sensitivity [22], is
equivalent to the stability of ℎ(𝑠).

The rest of the proof is similar to that of Lemma 1.
Briefly, let 𝑔1,𝑢(𝑠) = 𝑛1(𝑠)/𝑑1(𝑠) and 𝑔𝑗,𝑢(𝑠) = 𝑛𝑗(𝑠)/𝑑𝑗(𝑠);
then 𝑐𝑗,𝑟(𝑠) = (𝑑1(𝑠)𝑘(𝑠)/(𝑑1(𝑠) + 𝑘(𝑠)𝑛1(𝑠)))(𝑛𝑗(𝑠)/𝑑𝑗(𝑠)).
If 𝑔𝑗,𝑢(𝑠) and 𝑔1,𝑢(𝑠) share unstable modes then the roots
corresponding to those modes will cancel. However, in a
similar fashion as in Lemma 1, the requirement is not only
algebraic it is required for the cancellation to be of the same
modes. Other unstable zero/pole cancellations cannot occur
since ℎ(𝑠)𝑔1,𝑢(𝑠)−1 is internally stable due to assumption
(ii).

Discussion.The result of Lemma 2 is also straightforward.The
effect of the main control loop reference over the secondary
output 𝑗 is equal to the controller complementary sensitivity
and the open-loop transfer function relating the main input
to the secondary output. That is: 𝑐𝑗,𝑟(𝑠) = ℎ(𝑠)𝑔1,𝑢(𝑠)−1𝑔𝑗,𝑢(𝑠).
In addition, it is clear that stabilizing unstable plant modes
via themain output will stabilize the same unstablemodes for
all outputs if they are observable/controllable with the main
input/output pairing.

A basic result of the ICAD theory for 2 × 2 systems
will be introduced next. This result is fundamental for the
development of the main results of the article.

Lemma 3. Let a 2 × 2 diagonal control system given by(𝑦1 (𝑠)𝑦2 (𝑠)) = (𝑔11 (𝑠) 𝑔12 (𝑠)𝑔21 (𝑠) 𝑔22 (𝑠))(𝑢1 (𝑠)𝑢2 (𝑠))= 𝑌 (𝑠) 𝐺 (𝑠) 𝑈 (𝑠)(𝑢1 (𝑠)𝑢2 (𝑠)) = (𝑘1 (𝑠) 00 𝑘2 (𝑠))(𝑒1 (𝑠)𝑒2 (𝑠)) = 𝑈 (𝑠)= 𝐾 (𝑠) 𝐸 (𝑠)
(9)
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Figure 3: Multivariable 2 × 2 control system with a diagonal controller and the equivalent individual channels decomposition.

with 𝑒𝑖(𝑠) = 𝑟𝑖(𝑠) − 𝑦𝑖(𝑠). Then the output equations may be
rewritten without assumptions or loss of information as𝑦𝑖 (𝑠) = 𝑘𝑖 (𝑠) 𝑐𝑖 (𝑠)1 + 𝑘𝑖 (𝑠) 𝑐𝑖 (𝑠) 𝑟𝑖 (𝑠)+ 11 + 𝑘𝑖 (𝑠) 𝑐𝑖 (𝑠) 𝑔𝑖𝑗 (𝑠)𝑔𝑗𝑗 (𝑠)ℎ𝑗 (𝑠) 𝑟𝑗 (𝑠) (10)

𝑐𝑖 (𝑠) = 𝑦𝑖 (𝑠)𝑢𝑖 (𝑠) = 𝑔𝑖𝑖 (𝑠) (1 − 𝛾 (𝑠) ℎ𝑗 (𝑠)) ;𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, 2 (11)

ℎ𝑖 (𝑠) = 𝑘𝑖 (𝑠) 𝑔𝑖𝑖 (𝑠)1 + 𝑘𝑖𝑔𝑖𝑖 (𝑠) (12)

𝛾 (𝑠) = 𝑔12 (𝑠) 𝑔21 (𝑠)𝑔11 (𝑠) 𝑔22 (𝑠) , (13)

where 𝑐𝑖(𝑠) are called individual channels and 𝛾(𝑠) is the
Multivariable Structure Function (MSF).

The representation of the individual channel decomposi-
tion can be graphically represented as shown in Figure 3.The
proof of Lemma 3 can be found in [17].

Discussion.There aremany facts brought to light by Lemma 3.
In particular the MSF can be very useful for evaluating
the characteristics of multivariable systems. This function is
inherent to the nature of the process and reveals important
dynamical characteristics related to the existence of robust
controllers satisfying arbitrary specifications. The main char-
acteristics of the MSF are as follows [17, 21, 26]:

(i) It determines the cross-coupling characteristics of
each input-output configuration. In particular, its
magnitude quantifies the coupling between channels.

(ii) It has an interpretation in the frequency domain.

(iii) The transmission zeros of𝐺(𝑠) coincide with the roots
of 1 − 𝛾(𝑠) = det[𝐺(𝑠)] = 𝑔11𝑔22 − 𝑔12𝑔21.

(iv) Its closeness to (1, 0) in the Nyquist plot indicates to
what extent the plant structure (not necessarily its
stability) is sensitive to uncertainty.

(v) It allows evaluating the robustness of decoupling
controllers.

(vi) There is a close relationship between theMSF and the
relative gain array.

One of the main advantages of this decomposition of2 × 2 systems is that the multivariable response of any given
output can be written as a scalar transfer function relating the
complementary sensitivity of the individual channel equation𝑐𝑖(𝑠) and the sensitivity of the same individual channel. This
allows designing controller 𝑘𝑖(𝑠) as a traditional SISO control
task with perturbation rejection specifications. Finally, an
important aspect is that the individual channel 𝑐𝑖(s) can
also be used to model the open-loop input-output transfer
function 𝑦𝑖(𝑠)/𝑢𝑖(𝑠) when output 𝑦𝑗(𝑠) is controlled via 𝑢𝑗(𝑠).
In this setup the ICAD framework is suitable for studying the
SIMO perturbation rejection problem.

It is known that there is a close relationship between
the MSF and the transmission zeros of the system [17,
27]. However, this relationship has not been completely
characterized. The next result further shows this relationship
for 2×2 systems and serves as an accessory to the main result
of this article.However, this resultmay also be helpful in other
contexts.

Theorem4. Let a controllable and observable 2×2 systemwith
transfer function matrix (TFM) be 𝐺𝑎(𝑠) such that𝐺𝑎 (𝑠) = ( 𝑛𝑎11(𝑠) 𝑛𝑎12(𝑠)𝑛𝑎21(𝑠) 𝑛𝑎22(𝑠)

)𝑑𝑎 (𝑠) , (14)

where 𝑑𝑎(𝑠) is the system poles polynomial obtained from the
Smith-McMillan decomposition of 𝐺𝑎(𝑠). Then the MSF 𝛾𝑎(𝑠)
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of 𝐺𝑎(𝑠) defined according to (9) and (13) is equal to 𝛾𝑎(𝑠) =𝑛𝑎12(𝑠)𝑛𝑎21(𝑠)/𝑛𝑎22(𝑠)𝑛𝑎11(𝑠) and the following is true:1 − 𝛾𝑎 (𝑠) = 𝑘𝛼𝑧𝑎 (𝑠) 𝑑𝑎 (𝑠)𝑛𝑎11 (𝑠) 𝑛𝑎22 (𝑠) , (15)

where 𝑧𝑎(𝑠) is a polynomial which contains the transmission
zeros of 𝐺𝑎(s) and 𝑘𝛼 is a real constant.
Proof. The Smith-McMillan decomposition of 𝐺𝑎(𝑠) yields
[28, 29]

SM𝐺𝑎 (𝑠) = (mcf𝑎 (𝑠)𝑑𝑎 (𝑠) 00 (𝑛𝑎11 (𝑠) 𝑛𝑎22 (𝑠) − 𝑛𝑎12 (𝑠) 𝑛𝑎21 (𝑠)) / (mcf𝑎 (𝑠) 𝑘𝛼)𝑑𝑎 (𝑠) ) = (sm1 (𝑠) 00 sm2 (𝑠)) , (16)

where mcf𝑎(𝑠) denotes the maximum monic common
factor of the set {𝑛𝑎11(𝑠), 𝑛𝑎22(𝑠), 𝑛𝑎12(𝑠), 𝑛𝑎21(𝑠)} and 𝑘𝛼 is
a constant such that sm2(𝑠) is monic. The first part of the
proof consists in showing that there cannot by zero/pole
cancellations on sm1(𝑠). Consider the contrary that there is
at least one zero/pole cancellation in sm1(𝑠). Without loss
of generality let this factor be denoted by (𝑠 + 𝑎0). Since
the numerator of sm1(𝑠) is the maximum common factor
of all the numerators of 𝐺𝑎(s) then it must be possible to
write 𝐺𝑎(𝑠) = (𝑠 + 𝑎0)𝐺𝑎(𝑠). Recall that 𝐺𝑎(𝑠) has a common
denominator equal to the denominator of sm1(𝑠). Then,
since the denominator of both 𝐺𝑎(𝑠) and sm1(𝑠) is the
system poles polynomial a zero/pole cancellation on
sm1(𝑠) indicates the nonobservability/noncontrollability
of the mode (𝑠 + 𝑎0) which contradicts the definition of𝐺𝑎(𝑠).

The next part of the proof consists in showing that all the
poles of sm2(𝑠)must cancel with some of the zeros of sm2(𝑠).
This is easy to show recalling that the systempoles polynomial
of 𝐺𝑎(𝑠) is equal to the denominator of sm1(𝑠)sm2(𝑠) after
computing the zero-pole cancellations individually on sm1(𝑠)
and sm2(𝑠) [28, 29]. Since there are no zero-pole cancellations
on sm1(𝑠) then 𝑑𝑎(𝑠) must cancel in sm2(𝑠); otherwise the
system poles polynomial would result different than 𝑑𝑎(𝑠)
which is not possible from the definition of 𝐺𝑎(𝑠). This
last result shows that sm2(𝑠) may be rewritten as sm2(𝑠) =𝑑𝑎(𝑠)𝑧̃𝑎(𝑠)/𝑑𝑎(𝑠) where 𝑧̃𝑎(𝑠) is coprime with 𝑑𝑎(𝑠); thus the
numerator of sm2(𝑠) is𝑛𝑎11 (𝑠) 𝑛𝑎22 (𝑠) − 𝑛𝑎12 (𝑠) 𝑛𝑎21 (𝑠)

mcf𝑎 (𝑠) 𝑘𝛼 = 𝑑𝑎 (𝑠) 𝑧̃𝑎 (𝑠) . (17)

It is known that the transmission zeros polynomial
of 𝐺𝑎(s), denoted as 𝑧𝑎(s), is equal to the numerator of
sm1(𝑠)sm2(𝑠) after computing the zero/pole cancellations
individually on sm1(𝑠) and sm2(𝑠) [28, 29]. It was shown that
there are no cancellations in sm1(𝑠) and after cancellations the
numerator of sm2(𝑠) yields 𝑧̃𝑎(𝑠); thus 𝑧𝑎(𝑠) = mcf𝑎(𝑠)𝑧̃𝑎(𝑠).
Considering this and (17) then

𝑛𝑎11 (𝑠) 𝑛𝑎22 (𝑠) − 𝑛𝑎12 (𝑠) 𝑛𝑎21 (𝑠) = 𝑘𝛼𝑧𝑎 (𝑠) 𝑑𝑎 (𝑠) . (18)

Finally, it is easy to see that the MSF of 𝐺𝑎(𝑠), defined
according to (9) and (13), yields 𝛾𝑎(𝑠) = 𝑛𝑎12(𝑠)𝑛𝑎21(𝑠)/𝑛𝑎22(𝑠)𝑛𝑎11(𝑠) because of the common denominator of 𝐺𝑎(𝑠).
Finally, considering this and (18) yields1 − 𝛾𝑎 (𝑠) = 𝑘𝛼𝑧𝑎 (𝑠) 𝑑𝑎 (𝑠)𝑛𝑎11 (𝑠) 𝑛𝑎22 (𝑠) . (19)

Using these basic results from ICAD the first main
result is presented next. This result deals with the formal
characteristics of transfer functions 𝑐𝑗,𝑝𝑖(𝑠) which model the
effect of the perturbations over the secondary outputs when
the main output is operated in closed-loop. First, it is oppor-
tune to introduce the following definition.

Definition 5. Let (𝐴𝑗𝑖, 𝐵𝑗𝑖, 𝐶𝑗𝑖, 𝐷𝑗𝑖) be a minimal realization
of system ( 𝑔1,𝑢(𝑠) 𝑔1,𝑝𝑖(𝑠)𝑔𝑗,𝑢(𝑠) 𝑔𝑗,𝑝𝑖(𝑠)

). The transfer function matrix (TFM)
of this system is given by

𝐺𝑗𝑖 (𝑠) = ( 𝑛1,𝑢(𝑠) 𝑛1,𝑝𝑖(𝑠)𝑛𝑗,𝑢(𝑠) 𝑛𝑗,𝑝𝑖(𝑠)
)𝑑𝑗𝑖 (𝑠) , (20)

where𝑑𝑗𝑖(s) is the characteristic polynomial of𝐴𝑗𝑖, that is, the
system poles polynomial of 𝐺𝑗𝑖(s). This representation allows
expressing, for instance, 𝑔𝑗,𝑝𝑖(𝑠) = 𝑛𝑗,𝑝𝑖(𝑠)/𝑑𝑗𝑖(𝑠).

Note that whereas all the elements of the SIMO system
(1) are controllable and observable this condition does not
necessarily apply for the elements of (20). That is, there may
be zero-pole cancellations in the individual elements of (20).
The next theorem deals with the stability and the structure of𝑐𝑗,𝑝𝑖(𝑠).

The following two theorems present the main results of
the article. Theorem 6 sets the formalization of the charac-
teristics of 𝑐𝑗,𝑝𝑖(𝑠) and Theorem 7 shows the implications of
these characteristics for the perturbation rejection properties
of SIMO control systems.

Theorem 6. Each of the elements of the set S3 = {𝑐𝑗,𝑝𝑖(𝑠) : 𝑗 ∈{1, 𝑛}, 𝑖 ∈ {1,𝑚}} is stable iff ℎ(𝑠) is stable and transfer function𝑛1,𝑢(𝑠)/𝑑𝑗𝑖(𝑠) from Definition 5 has only stable nonobserv-
able/noncontrollable modes (i.e., stable zero/pole cancellations
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Figure 4: Decomposition of system (22).

between 𝑛1,𝑢(𝑠) and 𝑑𝑗𝑖(𝑠)). In particular:𝑐𝑗,𝑝𝑖 (𝑠) = 𝑛𝑗,𝑝𝑖 (𝑠) + 𝑘𝛼𝑘 (𝑠) 𝑧𝑗𝑖 (𝑠)𝑑𝑗𝑖 (𝑠) + 𝑘 (𝑠) 𝑛1,𝑢 (𝑠) , (21)

where 𝑧𝑗𝑖(𝑠) is a polynomial containing the transmission zeros
of TFM (20).

Proof. First, in order to establish the nature of transfer
functions 𝑐𝑗,𝑝𝑖(𝑠) it is necessary to consider the following
subsystem of the perturbed SIMO control system:(𝑦1 (𝑠)𝑦𝑗 (𝑠)) = (𝑔1,𝑢 (𝑠) 𝑔1,𝑝𝑖 (𝑠)𝑔𝑗,𝑢 (𝑠) 𝑔𝑗,𝑝𝑖 (𝑠))(𝑢1 (𝑠)𝑝𝑒𝑖 (𝑠))𝑢1 (𝑠) = 𝑘 (𝑠) 𝑒 (𝑠)𝑒 (𝑠) = ref (𝑠) − 𝑦1 (𝑠) . (22)

System (22) adjusts partially to the typical 2 × 2 structure
(Figure 3) with the difference that only one controller is
used. It is easy to modify the basic structure of ICAD
to accommodate system (22) by introducing the following
modifications 𝑘1(𝑠) = 𝑘(𝑠), 𝑘2(𝑠) = 0, 𝑢1(𝑠) = 𝑢(𝑠), 𝑢2(𝑠) =𝑝𝑒𝑖(𝑠), 𝑟1(𝑠) = ref(𝑠), 𝑔11(𝑠) = 𝑔1,𝑢(𝑠), 𝑔12(𝑠) = 𝑔1,𝑝𝑖(𝑠),𝑔21(𝑠) = 𝑔𝑗,𝑢(𝑠), and 𝑔22(𝑠) = 𝑔𝑗,𝑝𝑖(𝑠).

Then, according to Lemma 3:𝑦𝑗 (𝑠)𝑝𝑒𝑖 (𝑠) = 𝑐𝑗,𝑝𝑖 (𝑠)= 𝑔𝑗,𝑝𝑖 (𝑠) (1 − 𝑔1,𝑝𝑖 (𝑠) 𝑔𝑗,𝑢 (𝑠)𝑔1,𝑢 (𝑠) 𝑔𝑗,𝑝𝑖 (𝑠)) 𝑘 (𝑠) 𝑔1,𝑢 (𝑠)1 + 𝑘 (𝑠) 𝑔1,𝑢 (𝑠) . (23)

That is, 𝑐𝑗,𝑝𝑖(𝑠) is equivalent to channel 2 of a typical 2×2 ICAD
decomposition, as shown in Figure 4. The other elements of
this figure are obtained from Lemmas 1 and 2.

Recalling Definition 5 it is possible to write

𝑦𝑗 (𝑠)𝑝𝑒𝑖 (𝑠) = 𝑐𝑗,𝑝𝑖 (𝑠) = 𝑛𝑗,𝑝𝑖 (𝑠)𝑑𝑗𝑖 (𝑠) (1
− 𝑛1,𝑝𝑖 (𝑠) 𝑛𝑗,𝑢 (𝑠)𝑛1,𝑢 (𝑠) 𝑛𝑗,𝑝𝑖 (𝑠) 𝑘 (𝑠) (𝑛1,𝑢 (𝑠) /𝑑𝑗𝑖 (𝑠))1 + 𝑘 (𝑠) (𝑛1,𝑢 (𝑠) /𝑑𝑗𝑖 (𝑠))) . (24)

With some algebraic manipulation it is possible to show
that

𝑦𝑗 (𝑠)𝑝𝑒𝑖 (𝑠) = 𝑐𝑗,𝑝𝑖 (𝑠) = 𝑛𝑗,𝑝𝑖 (𝑠)𝑝𝑗𝑖 (𝑠) (𝑛𝑗,𝑝𝑖 (𝑠) 𝑑𝑗𝑖 (𝑠) + 𝑘 (𝑠) (𝑛𝑗,𝑝𝑖 (𝑠) 𝑛1,𝑢 (𝑠) − 𝑛1,𝑝𝑖 (𝑠) 𝑛𝑗,𝑢 (𝑠))𝑛𝑗,𝑝𝑖 (𝑠) 𝑑𝑗𝑖 (𝑠) + 𝑘 (𝑠) 𝑛1,𝑢 (𝑠) 𝑛𝑗,𝑝𝑖 (𝑠) ) . (25)
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From Theorem 4 it follows that 𝑛𝑗,𝑝𝑖(𝑠)𝑛1,𝑢(𝑠) −𝑛1,𝑝𝑖(𝑠)𝑛𝑗,𝑢(𝑠) = 𝑘𝛼𝑑𝑗𝑖(𝑠)𝑧𝑗𝑖(𝑠); then:𝑦𝑗 (𝑠)𝑝𝑒𝑖 (𝑠) = 𝑐𝑗,𝑝𝑖 (𝑠)
= 𝑛𝑗,𝑝𝑖 (𝑠)𝑑𝑗𝑖 (𝑠) (𝑛𝑗,𝑝𝑖 (𝑠) 𝑑𝑗𝑖 (𝑠) + 𝑘𝛼𝑘 (𝑠) 𝑑𝑗𝑖 (𝑠) 𝑧𝑗𝑖 (𝑠)𝑛𝑗,𝑝𝑖 (𝑠) 𝑑𝑗𝑖 (𝑠) + 𝑘 (𝑠) 𝑛1,𝑢 (𝑠) 𝑛𝑗,𝑝𝑖 (𝑠))= 𝑛𝑗,𝑝𝑖 (𝑠) + 𝑘𝛼𝑘 (𝑠) 𝑧𝑗𝑖 (𝑠)𝑑𝑗𝑖 (𝑠) + 𝑘 (𝑠) 𝑛1,𝑢 (𝑠) .

(26)

The stability of (26) can be elucidated according to the
following. Let 𝑘(𝑠) = 𝑛𝑘(𝑠)/𝑑𝑘(𝑠); then:𝑐𝑗,𝑝𝑖 (𝑠) = 𝑑𝑘 (𝑠) 𝑛𝑗,𝑝𝑖 (𝑠) + 𝑘𝛼𝑛𝑘 (𝑠) 𝑧𝑗𝑖 (𝑠)𝑑𝑘 (𝑠) 𝑑𝑗𝑖 (𝑠) + 𝑛𝑘 (𝑠) 𝑛1,𝑢 (𝑠) . (27)

The denominator of (27) is similar to the denominator
of h(s) (3), which is the closed-loop of the main output,
and 𝑔1,𝑢(𝑠) = 𝑛1,𝑢(𝑠)/𝑑𝑗𝑖(𝑠) by Definition 5. However,𝑛1,𝑢(𝑠)/𝑑𝑗𝑖(𝑠)may have zero/pole cancellations which are not
present in 𝑔1,𝑢(𝑠) by assumption (i) (i.e., these cancellations
are the modes which are not observable/controllable with the
main input/output). Therefore the stability of (27) is equiva-
lent to the stability h(s) iff there are no unstable noncontrol-
lable/nonobservable modes in 𝑛1,𝑢(𝑠)/𝑑𝑗𝑖(𝑠).

In order to exploit fully the results from Theorem 6, the
following elements of the perturbation rejection properties of
the main and secondary outputs are defined:

(i) The main loop perturbation rejection (MPR) is equal
to S(s)𝑔1,𝑝𝑖(𝑠).This is the perturbation rejection of the
main control loop given by its sensitivity function and
the perturbation model considering the 𝑖th perturba-
tion input.

(ii) The open-loop secondary perturbation rejection
(OSPR) is equal to 𝑔𝑗,𝑝𝑖(𝑠). This is the perturbation
rejection of the secondary outputs when the system is
operated in open-loop.

(iii) The closed-loop secondary perturbation rejection
(CSPR) is equal to 𝑐𝑗,𝑝𝑖(𝑠). This is the resulting per-
turbation rejection of the secondary outputs when
the main control loop is used.

(iv) For simplicity, the notation 𝑓(𝑎) → 𝑏 will be intro-
duced to indicate lim𝑓(𝑥)𝑥→𝑎 = 𝑏

(v) High-MPR at frequency 𝜔0 is achieved when𝑔1,𝑝𝑖(𝑗𝜔0)𝑆(𝑗𝜔0) → 0 or equivalently ℎ(𝑗𝜔0) → 1.
(vi) High-CSPR at frequency 𝜔0 is achieved when𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0.
When controlling only one output of a perturbed SIMO

system such as (1) it is possible to stabilize the entire
output vector iff the main output is stable and all the
unstable modes are controllable and observable with the
selected input/main output pair, that is, the zero-pole can-
cellation restriction of Theorem 6. While this is obvious,

using Theorem 6 it is easy to assess whether a particular{𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛, 𝑚𝑎𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑜𝑢𝑡𝑝𝑢𝑡} triplet is
stabilizable by constructing the TFM (20) and verifying that
no unstable zero/pole cancellations occur in 𝑛1,𝑢(𝑠)/𝑑𝑗𝑖(𝑠).
This is akin to the Ackerman canonical form of system
(1); however, it allows visualizing better which outputs are
affected by each perturbation.

Theorem 6 also allows expressing the perturbation rejec-
tion capabilities of the secondary outputs as follows:𝑐𝑗,𝑝𝑖 (𝑠) = 𝑆𝑗𝑖 (𝑠)𝑆 (𝑠) 𝑔𝑗,𝑝𝑖 (𝑠) , (28)

where 𝑆(𝑠) is the sensitivity of the main control loop and𝑆𝑗𝑖 (𝑠) = 11 + 𝑘 (𝑠) (𝑘𝛼𝑧𝑗𝑖 (𝑠) /𝑛𝑗,𝑝𝑖 (𝑠)) (29)

can be interpreted as a virtual sensitivity function of the
secondary control loop. Equation (28) introduces an intuitive
relation between the perturbation rejection of the secondary
outputs and the main control loop. For instance, it may be
desirable to design 𝑘(𝑠) such that the virtual bandwidth of
the closed-loop of 𝑘(𝑠)(𝑘𝛼𝑧𝑗𝑖(𝑠)/𝑛𝑗,𝑝𝑖(𝑠)) is greater than the
bandwidth of ℎ(𝑠), so that 𝑆𝑗𝑖(𝑠)/𝑆(𝑠) remains low for a certain
frequency range.

One of the most revealing facts of Theorem 6 is that it
allows introducing the following observation regarding the
maximumachievable perturbation rejection of the secondary
outputs. Let a SIMO system be defined as inTheorem 6; then
there exist real positive constants 𝑘1 > 𝑘2 such that the
following is true:󵄩󵄩󵄩󵄩󵄩𝑐𝑗,𝑝𝑖 (𝑗𝜔)󵄩󵄩󵄩󵄩󵄩 ≈ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑘𝛼𝑧𝑗𝑖 (𝑗𝜔)𝑛1,𝑢 (𝑗𝜔) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∀𝜔 : 󵄩󵄩󵄩󵄩𝑘 (𝑗𝜔)󵄩󵄩󵄩󵄩 > 𝑘1󵄩󵄩󵄩󵄩󵄩𝑐𝑗,𝑝𝑖 (𝑗𝜔)󵄩󵄩󵄩󵄩󵄩 ≈ 󵄩󵄩󵄩󵄩󵄩𝑔𝑗,𝑝𝑖 (𝑗𝜔)󵄩󵄩󵄩󵄩󵄩 ∀𝜔 : 󵄩󵄩󵄩󵄩𝑘 (𝑗𝜔)󵄩󵄩󵄩󵄩 < 𝑘2. (30)

To clarify this note that if ‖𝑘(𝑗𝜔)‖ is sufficiently large,
then by (21) ‖𝑐𝑗,𝑝𝑖(𝑗𝜔)‖ ≈ ‖𝑘𝛼𝑧𝑗𝑖(𝑗𝜔)/𝑛1,𝑢(𝑗𝜔)‖. On the
other hand, if ‖𝑘(𝑗𝜔)‖ is sufficiently small then ‖𝑐𝑗,𝑝𝑖(𝑗𝜔)‖ ≈‖𝑔𝑗,𝑝𝑖(𝑗𝜔)‖. This may be interpreted as characterizing the
limits of perturbation rejection on the secondary outputs by
modifying the perturbation rejection characteristics of the
main control loop. In particular:

(i) by increasing the MPR (i.e., increasing the gain of𝑘(𝑠)) the CSPR tends to the system 𝑘𝛼𝑧𝑗𝑖(𝑠)/𝑛1,𝑢(𝑠)
(ii) by decreasing the MPR (i.e., lowering the of 𝑘(𝑠)) the

CSPR tends to the OSPR, which is equal to 𝑔𝑗,𝑝𝑖(𝑗𝜔).
In practical applications it would be desirable for a high

level of perturbation rejection in the main input to be also
indicative of a high level of perturbation rejection in the
secondary outputs. In this sense, general conditions for hav-
ing high-MPR and high-CSPR at the same time are presented
next.

Theorem 7. If 𝑐𝑗,𝑝𝑖(𝑠) and 𝑔𝑗,𝑝𝑖(𝑠) are stable then the following
conditions apply: ℎ(𝑗𝜔0) → 1 ∧ 𝛾𝑗𝑖(𝑗𝜔0) → 1 ⇒ 𝑐𝑗,𝑝𝑖(𝑗𝜔0) →



10 Mathematical Problems in Engineering0 and ℎ(𝑗𝜔0) → 1 ∧ 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0 ∧ ‖𝑛𝑗,𝑝𝑖(𝑗𝜔0)‖ ̸= 0 ⇒𝛾𝑗𝑖(𝑗𝜔0) → 1 where 𝛾𝑗𝑖(𝑠) = 𝑛1,𝑝𝑖(𝑠)𝑛𝑗,𝑢(𝑠)/𝑛1,𝑢(𝑠)𝑛𝑗,𝑝𝑖(𝑠) and
“∧ ∨” denote the logical operators “and or.”
Proof. The first part of the proof of Theorem 7 consists on
rewriting the perturbed SIMO problem in the typical ICAD
structure, and therefore it is equivalent to the first part of the
proof of Theorem 6. The proof of ℎ(𝑗𝜔0) → 1 ∧ 𝛾𝑗𝑖(𝑗𝜔0) →1 ⇒ 𝑐𝑗𝑖(𝑗𝜔0) → 0 is obtained by noticing ℎ(𝑗𝜔0) →1 ∧ 𝛾𝑗𝑖(𝑗𝜔0) → 1 ⇒ (1 − 𝛾𝑗𝑖(𝑗𝜔0)ℎ(𝑗𝜔0)) → 0; thereforeℎ(𝑗𝜔0) → 1 ∧ 𝛾𝑗𝑖(𝑗𝜔0) → 1 ⇒ 𝑐𝑗𝑖(𝑗𝜔0) → 0 if ‖𝑔𝑗,𝑝𝑖(𝑗𝜔0)‖ →∞ is false, which has to be because ‖𝑔𝑗,𝑝𝑖(𝑗𝜔0)‖ → ∞
would imply that 𝑔𝑗,𝑝𝑖(𝑠) is critically stable contradict-
ing the requirements. This completes the first part of the
theorem.

For the second part note that 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0 ⇒ℎ(𝑗𝜔0) → 1 ∧ 𝛾𝑗𝑖(𝑗𝜔0) → 1 is not necessarily true
because 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0 can be obtained by other means thanℎ(𝑗𝜔0) → 1 ∧ 𝛾𝑗𝑖(𝑗𝜔0) → 1. According to the proof of
Theorem6 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0 ⇔ 𝑛𝑗,𝑝𝑖(𝑗𝜔0)+𝑘𝛼𝑘(𝑗𝜔0)𝑧𝑗𝑖(𝑗𝜔0) →0 ∨ ‖𝑑𝑗𝑖(𝑗𝜔0) + 𝑘(𝑗𝜔0)𝑛1,𝑢(𝑗𝜔0)‖ → ∞. Note that ‖𝑑𝑗𝑖(𝑗𝜔0) +𝑘(𝑗𝜔0)𝑛1,𝑢(𝑗𝜔0)‖ → ∞ is not possible for real frequencies;
therefore 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0 ⇔ 𝑛𝑗,𝑝𝑖(𝑗𝜔0) + 𝑘𝛼𝑘(𝑗𝜔0)𝑧𝑗𝑖(𝑗𝜔0) →0. Note that 𝑛𝑗,𝑝𝑖(𝑠) + 𝑘𝛼𝑘(𝑠)𝑧𝑗𝑖(𝑠) is the numerator of (26)
which is zero if 𝑛𝑗,𝑝𝑖(𝑗𝜔0) → 0 or (1 − 𝛾𝑗𝑖(𝑗𝜔0)ℎ(𝑗𝜔0)) → 0.
If 𝑘(𝑗𝜔0) → 0; then 𝑛𝑗,𝑝𝑖(𝑗𝜔0) → 0 implies 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0.
That is, if the main control loop is deactivated the OSPR still
can reach zero, but if ‖𝑛𝑗,𝑝𝑖(𝑗𝜔0)‖ ̸= 0 then 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0 ⇒(1 − 𝛾𝑗𝑖(𝑗𝜔0)ℎ(𝑗𝜔0)) → 0. Combining both conditions yields‖𝑛𝑗,𝑝𝑖(𝑗𝜔0)‖ ̸= 0 ∧ 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0 ⇒ (1 − 𝛾𝑗𝑖(𝑗𝜔0)ℎ(𝑗𝜔0)) →0. On the other hand (1 − 𝛾𝑗𝑖(𝑗𝜔0)ℎ(𝑗𝜔0)) → 0 ⇒ℎ(𝑗𝜔0) → 1 ∧ 𝛾𝑗𝑖(𝑗𝜔0) → 1 is not necessarily true; note
that other combinations for ℎ(𝑗𝜔0) and 𝛾𝑗𝑖(𝑗𝜔0) may still
yield 𝛾𝑗𝑖(𝑗𝜔0)ℎ(𝑗𝜔0) → 1. However, ℎ(𝑗𝜔0) → 1 ∧ (1 −𝛾𝑗𝑖(𝑗𝜔0)ℎ(𝑗𝜔0)) → 0 ⇒ 𝛾𝑗𝑖(𝑗𝜔0) → 1 is true. Finally,ℎ(𝑗𝜔0) → 1∧ 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0∧ ‖𝑛𝑗,𝑝𝑖(𝑗𝜔0)‖ ̸= 0 ⇒ 𝛾𝑗𝑖(𝑗𝜔0) →1.

This shows that it is possible to attain high-CSPR (i.e.,𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0) if high-MPR (i.e., ℎ(𝑗𝜔0) → 1) and 𝛾𝑗𝑖(𝑗𝜔0) →1. Note that there are other possibilities to achieve 𝑐𝑗𝑖(𝑗𝜔0) →0. However, these cases will not be covered in this article
because while ℎ(𝑗𝜔0) → 1 can be attained with good
robustness margins through high controller gain, other cases
imply either low perturbation rejection or low robustness in
themain control loop.On the other hand, if the plant does not
have high-OSPR (i.e., ‖𝑛𝑗,𝑝𝑖(𝑗𝜔0)‖ ̸= 0) and high-MPR with
high-CSPR are desired then it is necessary for the MSF to be
equal to one (i.e., 𝛾𝑗𝑖(𝑗𝜔0) → 1).

Theorem 7 shows that in practice the possibility of
attaining high-CSPR and high-MPR at the same time for a
specific frequency can be evaluated by verifying if 𝛾𝑗𝑖(𝑗𝜔0) →1. In particular, it is possible to assess the closeness of 𝛾𝑗𝑖(𝑠) to
the critical point (1, 0) for all the frequencies using classical
Nyquist and Bode plots. Moreover, it is possible to calculate
this closeness using classical phase and gain margins. An
interesting observation is that 𝛾𝑗𝑖(𝑗𝜔0) → 1 typically implies𝑧𝑗𝑖(𝑗𝜔0) = 0 [27]. That is, simultaneous high-CSPR and
high-MPR at frequency 𝜔0 are possible if system (20) has

transmission zeros on the imaginary axis, specifically at j𝜔0.
Nonetheless care should be taken since 𝑧𝑗𝑖(𝑗𝜔0) → 0 does
not necessarily imply 𝛾𝑗𝑖(𝑗𝜔0) → 1. This fact is clear as it
is possible for 𝑛1,𝑢(s) and 𝑧𝑗𝑖(s) to have common factors. In
this case 𝛾𝑗𝑖(𝑗𝜔0) may not tend to (1, 0) even if 𝑧𝑗𝑖(𝑗𝜔0) → 0
due to cancellations of common factors. A further analysis
of the cases when 𝛾𝑗𝑖(𝑗𝜔0) → 1 is out of the scope of this
article.

In this context, it is pertinent to recall that the MSF has
been historically used to measure the structural robustness of
multivariable systems [8–14, 16–21]. As such, 𝛾(𝑗𝜔0) → 1
is a sign of low structural robustness and it is undesired,
since in that case the transmission zeros may change from
minimum phase to nonminimum phase. In contrast, in
the SIMO case, it is actually desirable that 𝛾𝑖𝑗(𝑗𝜔0) → 1
since it indicates that the system has interesting perturbation
rejection characteristics.

4. Illustrative Example

In this section a very simple SIMO system is studied accord-
ing to the results of the last section. The simplicity and
straightforwardness of this particular system allow inferring
several of its properties intuitively. It will be shown that these
conclusions can be also derived using the theoretical results
from the past section. Therefore, it is possible to establish a
clear relationship between the theoretical and the intuitive
notions of a basic SIMO system. The aim is to illustrate the
mechanisms that will permit using the theoretical results with
more complex systems that do not allow an intuitive analysis.
Consider the three-tank system of Figure 5, where 𝑞𝑢 is the
main system input flow, ℎ1, ℎ2, and ℎ3 are the height of the
fluid in each tank,𝐴1,𝐴2, and𝐴3 model the capacity of each
tank, 𝑅1, 𝑅2, and 𝑅3 model the resistance to the flow of each
valve, 𝑞𝑎, 𝑞𝑏, and 𝑞𝑐 are internal flows, and 𝑞𝑝1 and 𝑞𝑝2 are
perturbation inputs. A simple linear approximation to this
system is given by ℎ̇1 = 𝑞𝑢 (𝑡) − 𝑞𝑎 (𝑡)𝐴1ℎ̇2 = 𝑞𝑎 + 𝑞𝑝1 + 𝑞𝑐 − 𝑞𝑏𝐴2ℎ̇3 = 𝑞𝑝2 − 𝑞𝑐𝐴3𝑞𝑎 (𝑡) = ℎ1 (𝑡) − ℎ2 (𝑡)𝑅1𝑞𝑏 (𝑡) = ℎ2 (𝑡)𝑅2𝑞𝑐 (𝑡) = ℎ3 (𝑡)𝑅3 .

(31)

System (31) can be considered a perturbed SIMO system
with main input 𝑞𝑢, perturbation inputs 𝑞𝑝1, 𝑞𝑝2, and outputsℎ1, ℎ2, and ℎ3. A space state representation of (31) is given by
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𝐴 = ((

(
− 1𝑅1𝐴1 1𝑅1𝐴1 01𝑅1𝐴2 − 1𝑅2𝐴2 − 1𝑅1𝐴2 1𝑅3𝐴20 0 − 1𝑅3𝐴3

))
)

𝐵 = ( 1𝐴1 0 00 1𝐴2 00 0 1𝐴3)𝐶 = (1 0 00 1 00 0 1)𝑥 = (ℎ1 ℎ2 ℎ3)𝑇𝑢 = (𝑞𝑢 𝑞𝑝1 𝑞𝑝2)𝑇 .

(32)

The objective is to design a tracking control system for
the main output ℎ1. In this case the control input is 𝑞𝑢

and the secondary outputs are ℎ2 and ℎ3. Before proceeding
to the formal analysis of the system the following intuitive
observations will be stated. The goal of the example is being
able to assess these observations formally through the tools
developed in the last section:

(a) It is possible to reject all perturbations over ℎ1 using
the control input 𝑞𝑢 given that the dynamic of the
third tank is stable.

(b) It will be possible to reject all perturbations overℎ2 to a certain degree, depending mainly on the
characteristics of 𝑅1.

(c) If the dynamics of the second tank are unstable then
stabilization is possible using the control input 𝑞𝑢 and
measuring ℎ1.

(d) If the dynamic of the third tank is unstable it is not
possible to stabilize the system.

(e) It is not possible to reject perturbations over ℎ3 using
control input 𝑞𝑢.

(f) The output ℎ3 is only affected by the perturbation 𝑞𝑝2.
Considering 𝐴1 = 1, 𝐴2 = 2, 𝐴3 = 1, 𝑅1 = 2, 𝑅2 = 1, and𝑅3 = 2 an irreducible expression for the systems is

(ℎ1 (𝑠)ℎ2 (𝑠)ℎ3 (𝑠)) = 𝐺𝑇 (𝑠)( 𝑞𝑢 (𝑠)𝑞𝑝1 (𝑠)𝑞𝑝2 (𝑠)) = (((
(

𝑠+ 3/4(𝑠 + 1/4) (𝑠 + 1) 1/4(𝑠 + 1/4) (𝑠 + 1) 1/8(𝑠 + 1/4) (𝑠 + 1/2) (𝑠 + 1)1/4(𝑠 + 1/4) (𝑠 + 1) 𝑠 + 1/22 (𝑠 + 1/4) (𝑠 + 1) 1/4(𝑠 + 1/4) (𝑠 + 1)0 0 1𝑠 + 1/2
)))
)

(𝑞𝑢 (𝑠)𝑞𝑝1 (𝑠)𝑞𝑝2 (𝑠)) . (33)

Using the structure of (1) yields

(ℎ1 (𝑠)ℎ2 (𝑠)ℎ3 (𝑠)) = 𝐺𝑇 (𝑠)( 𝑞𝑢 (𝑠)𝑞𝑝1 (𝑠)𝑞𝑝2 (𝑠))
= (𝑔1,𝑢 (𝑠) 𝑔1,𝑝1 (𝑠) 𝑔1,𝑝2 (𝑠)𝑔2,𝑢 (𝑠) 𝑔2,𝑝1 (𝑠) 𝑔2,𝑝1 (𝑠)𝑔3,𝑢 (𝑠) 𝑔3,𝑝2 (𝑠) 𝑔3,𝑝2 (𝑠))(𝑞𝑢 (𝑠)𝑞𝑝1 (𝑠)𝑞𝑝2 (𝑠)) .

(34)

A direct application of Lemma 1 reveals that the stabi-
lization of set S1 depends on the stability of the mode of𝑔3,𝑝2(𝑠) which is not present in 𝑔1,𝑢(𝑠) which is 𝑠 = −1/2.
Lemma 1 indicates that if thismode is unstable, thenS1would
be unstable. This is the only mode which is nonobservable
and noncontrollable with the main input-output pair, which
is amode corresponding to the third tank.This obvious result
is in line with observation (d). On the other hand, applying

Lemma 2 shows that stabilization of the main output also
implies stabilization of S2 because S1 was shown to be stable
and 𝑔2,𝑢(𝑠), 𝑔3,𝑢(𝑠) have no additional unstable modes which
are not modes of 𝑔1,𝑢(𝑠). This is in line with observation (c).
Another option for reaching these conclusions is using the
Ackerman canonical form of (32).

A simple stabilizing controller for the main input is given
by 𝑘𝑇 (𝑠) = 1.17 (𝑠 + 3)𝑠 (35)

TheBode plot of 𝑘𝑇(𝑠)𝑔1,𝑢(𝑠), presented in Figure 6, shows
that the main control loop has a bandwidth around 2 rad/s
and adequate robustness margins. This assesses the stability
and transient characteristics of the first element of set S, (8).

Using controller (35) Figure 7 summarizes the interac-
tions modeled by sets S1 and S2. As was defined in Section 2,
set S1 models the effect of the perturbations over the main
output and the set S2 models the effect of the reference over
all the secondary outputs.
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Figure 5: A perturbed three-tank SIMO system.
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Figure 6: Bode plot of the open-loopmain control loop 𝑘𝑇(𝑠)𝑔1,𝑢(𝑠).
In this case the effect of the reference over output ℎ3 is

omitted because it is equal to zero. A more thorough discus-
sion on these relationships is out of the scope of this article,
as they may be fully characterized in terms of traditional
classical perturbation rejection analysis. However, it is clear
that an increment of the bandwidth of the main control loop
by increasing the gain of controller 𝑘𝑇(𝑠) will decrease the
effect of the perturbations over the main input. This is in line
with observation (a).

In the following sections the main results of the article
are used to elucidate the effects of the perturbations over
the secondary outputs. The first step in the analysis consists
in constructing system (22) for each secondary output and
perturbation pair.

4.1. Case 1: Effect of 𝑞𝑝1 over ℎ2. By considering secondary
output ℎ2 and perturbation 𝑝𝑞1, system (22) yields

(ℎ1 (𝑠)ℎ2 (𝑠)) = ( 𝑠+3/4 1/41/4 0.5(𝑠+1/2) )(𝑠 + 1/4) (𝑠 + 1) ( 𝑞𝑢 (𝑠)𝑞𝑝1 (𝑠)) . (36)

In this case the MSF of system (36) results in 𝛾ℎ2,𝑝1(𝑠) =0.125/(𝑠 + 3/4)(𝑠 + 1/2); then, according to Theorem 4, the
transfer zeros polynomial of (36) is equal to 𝑧1(𝑠) = 1
and 𝑘𝛼 = 1/2. According to Theorem 7, it is not possible
to have high-MPR and high-CSPR at any frequency because‖𝛾ℎ2,𝑝1(𝑗𝜔)‖ ̸= 1 ∀𝜔 ∈ R. That is, even if an infinite
bandwidth controller for ℎ1 is used the perturbation rejection
of 𝑞𝑝1 over ℎ2 will be limited. In addition, according to The-
orem 6, imposing a high bandwidth control for ℎ1 will imply
that the perturbation rejection for ℎ2 yields ℎ2(𝑠)/𝑞𝑝1(𝑠) =0.5/(𝑠 + 3/4) which is in line with the previous result. On
the other hand the open-loop perturbation rejection for ℎ2
is equal to ℎ2(𝑠)/𝑞𝑝1(𝑠) = 1/2(𝑠 + 1/2). Finally, as the first
element of (36) does not have zero/pole cancellations all the
modes contained in (36) are stabilized with the main control
loop, and according toTheorem6, the perturbation dynamics
will also be stable. This is in line with observation (c).

Figure 8 presents the Bode plot of the 𝛾ℎ2,𝑝1(𝑠); the close-
ness of this plot to the point (1, 0) assesses the possibility of
achieving high-MPR and high-CSPR. Therefore, although it is
clear that this is not possible at any frequency, at lower
frequencies better CSPR could be expected by closing the
main control loop. Any other remaining perturbation rejec-
tion in the secondary output will come directly from the
OSPR. This indicates that if a bandwidth greater than 1 rad/s
(i.e., the frequency when the MSF reaches around −20 dB) is
used for the main output then the perturbation rejection of
output ℎ2 will be near to its maximum.That is, no significant
further reduction can be achieved by increasing the main
output bandwidth over 1 rad/s since themagnitude of 𝛾ℎ2,𝑝1(𝑠)
decrements at higher frequencies. Recalling Figure 6, then
controller (35) achieved sufficient bandwidth and no further
increment of its bandwidth is necessary for increasing the
CSPR.

Figure 9 shows the magnitude Bode diagrams of (1) the
CSPR when high-MPR is considered, (2) the CSPR when
controller (35) is used, and (3) when the main output is
operated in open-loop (i.e., the OSPR). In this figure the
CSPR using controller (35) andwhen high-MPR is considered
are almost the same as predicted by the analysis of theMSF of
Figure 8. That is, by closing the main control loop, the
perturbation rejection of the secondary output is improved,
as long as the MSF is close to (1, 0).

The time response of ℎ2 when 𝑞𝑝1 is a step signal is
presented in Figure 10 for the same cases of Figure 9. This
confirms the observations of the frequency domain analysis.

In order to explore further the effect of main control loop
bandwidth over the CSPR the following controllers for the
main output are considered:𝑘𝑇LB (𝑠) = 2.5 × 10−4𝑠 (𝑠 + 0.03)𝑘𝑇HB

(𝑠) = 180(𝑠 + 150)𝑠 . (37)

In this case 𝑘𝑇LB(𝑠) and 𝑘𝑇HB
(𝑠) achieve bandwidths of

0.02 rad/s and 200 rad/s, respectively, with similar robustness
margins compared to (35). The Bode plots of the CSPR using
both controllers and the OSPR are shown in Figure 11. This
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figure demonstrates that a lower bandwidth in the main
output decreases the CSPR whereas a higher bandwidth
yields no benefit compared with controller (35). In the low
bandwidth case the figure also shows that when the main
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output operates with high open-loop gain (i.e., at frequencies
lower than 0.02 rad/s) and with low open-loop gain (i.e., at
frequencies higher than 0.02 rad/s) the resulting CSPR can
be described by (1) the CSPR when high-MPR is attained
and (2) the OSPR, respectively. On the other hand, when the
main output has mid-open-loop gain (i.e., close to 0 dB or
close to 0.02 rad/s) the resulting CSPR increases.This is in line
with the discussion of Theorem 7. That is, for attaining high-
CSPR it is recommended to aim for high open-loop gain in
the main output (i.e., ℎ(𝑗𝜔0) → 1) when 𝛾ℎ2,𝑝1(𝑗𝜔0) is near(1, 0). Otherwise, the effects of high sensitivity around the
cross-over frequencywill introduce further uncertainty in the
resulting CSPR.

It is also possible to see how the perturbation rejection
of the secondary outputs can be manipulated through the
bandwidth of h(s). The designer can choose either the OSPR
or the CSPR when h(s) → 1 by decreasing or increasing the
open-loop gain of the main control loop. This is in line with
the discussion regarding (30).

The results can also be corroborated in the time domain
considering the step response of ℎ2 when 𝑞𝑝1 is a step
signal considering the controllers (37), which is presented in
Figure 12.This figure confirms that increasing the bandwidth
further does not provide further reduction of the CSPR. On
the other hand, decreasing the bandwidth introduces a mid-
frequency mode with similar amplitude compared to the
OSPRwhile conserving the same level of low frequencyCSRP
compared to the higher bandwidth controllers.

4.2. Case 2: Effect of 𝑞𝑝2 over ℎ2. The system comprising the
relevant variables yields, according to (22):(ℎ1 (𝑠)ℎ2 (𝑠)) = ( (𝑠+3/4)(𝑠+1/2) 1/8

0.25(𝑠+1/2) 0.25(𝑠+1/2) )(𝑠 + 1/4) (𝑠 + 1/2) (𝑠 + 1) ( 𝑞𝑢 (𝑠)𝑞𝑝2 (𝑠)) . (38)

The MSF of this system results in 𝛾ℎ2𝑝2(𝑠) = 0.125/(𝑠 +3/4)(𝑠 + 1/2), which is equal to the previous case. Therefore,
the frequency characteristics of the perturbation rejection are
similar to that of the last case andwill not be explored further.

On the other hand, the SM form reveals that system (38)
has no transmission zeros. Calculating (21) for this output and
perturbation configuration yields ℎ2(𝑠)/𝑞𝑝2(𝑠) = 0.25/(𝑠 +1/2)(𝑠 + 3/4). This case is interesting as the calculation of the
actual perturbation rejection using controller (36) results inℎ2 (𝑠)𝑞𝑝2 (𝑠) = 0.25 (𝑠2 + 1.67𝑠 + 3.51)(𝑠 + 1/2) (𝑠 + 0.78) (𝑠2 + 1.63𝑠 + 3.35) . (39)

It is clear that the mode with pole 𝑠 = −1/2 was not
affected by the main control loop. This is expected since
this mode is nonobservable/noncontrollable using the main
control loop. According to the proof ofTheorem 6 this results
in the zero/pole cancellation observed in the first element
of matrix (38). In the case of an unstable mode it would be
impossible to stabilize the perturbation dynamic. This is in
line with observations (c) and (d).

4.3. Case 3: Effect of 𝑞𝑝1 and 𝑞𝑝2 over ℎ3. The secondary out-
put ℎ3 is decoupled from the main output. That is, while this

variable has effect over the main output, the main input does
not have effect over ℎ3. Therefore an intuitive conclusion is
that perturbation rejection over this variable using the main
control loop is not possible, that is, observation (e). This can
be further validated by constructing the corresponding TFM
according to (22):(ℎ1 (𝑠)ℎ3 (𝑠)) = ( (𝑠+3/4)(𝑠+1/2) 1/8

0 0
)(𝑠 + 1/4) (𝑠 + 1/2) (𝑠 + 1) ( 𝑞𝑢 (𝑠)𝑞𝑝1 (𝑠))(ℎ1 (𝑠)ℎ3 (𝑠)) = ( (𝑠+3/4)(𝑠+1/2) 1/8

0 (𝑠+1/4)(𝑠+1) )(𝑠 + 1/4) (𝑠 + 1/2) (𝑠 + 1) ( 𝑞𝑢 (𝑠)𝑞𝑝2 (𝑠)) . (40)

In both cases theMSF results equal to zero; therefore there
cannot be CSPR. This leaves only the OSPR.

It is possible to confirm thatTheorem 6 correctly predicts
this for both cases. In the first case ℎ3(𝑠)/𝑞𝑝1(𝑠) = 0 according
to (21) which properly indicates that ℎ3 is not affected by 𝑞𝑝1.
In the other case ℎ3(𝑠)/𝑞𝑝2(𝑠) = 1/(𝑠 + 1/2) which confirms
that the third tank is only affected in open-loop by 𝑞𝑝2. These
conclusions are in line with observations (e) and (f). Thus all
the intuitive observations are now confirmed and extended.

4.4. Further Discussion on the Interpretation of the MSF for
CSPR. In the previous cases the limits for the CSRP were
analyzed for the example at hand. Although these limits may
be studied viaTheorem 6, an additional tool is available in the
form of Theorem 7 with the MSF.

According to Theorem 7, 𝛾(𝑗𝜔0) → 1 defines the possi-
bility of achieving high-CSPR by increasing the performance
of the main control loop. In the previous cases the MSF
(Figure 8) showed the CSPR is limited to a mild perturbation
rejection in the lower frequencies up to around 1 rad/s and
negligible at higher frequencies; this was confirmed later
(Figures 9 and 10). Consider now the same system with
different parameters 𝐴1 = 1, 𝐴2 = 2, 𝐴3 = 1, 𝑅1 = 0.05,𝑅2 = 1, and 𝑅3 = 2. The main change is the considerable
reduction of𝑅1. In this case the Bode plot of theMSF 𝛾ℎ2,𝑝1(𝑠)
and 𝛾ℎ2,𝑝2(𝑠) (both are the equal) is shown in Figure 13.

This figure indicates that the system has improved CSPR
characteristics with the new parameters. In particular, the𝛾ℎ2,𝑝1(𝑠) is closer to the point (1, 0) for a wider frequency
band. In order to exploit all the available CSPR the main
control loop requires a bandwidth of at least 40 rad/s. This
fact is also obvious physically since reducing the restriction
between tanks 1 and 2 (i.e., 𝑅1) will clearly result in better
perturbation rejection to ℎ2 by controlling ℎ1.

Controller (41) is a stabilizing controller with the same
bandwidth (2 rad/s) and robustness for the main output as
controller (35) was for the previous example (Figure 14).𝑘𝑇𝑎 (𝑠) = 3(𝑠 + 3.5)𝑠 . (41)

On the other hand controller (42) yields a bandwidth of
40 rad/s and the same robustness characteristics for the main
control loop. 𝑘𝑇𝑏 (𝑠) = 20(𝑠 + 88)𝑠 . (42)
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According to the previous discussion and recalling that
the MSF 𝛾ℎ2,𝑝1(𝑠) and 𝛾ℎ2,𝑝2(𝑠) are equal then the CSPR from
perturbation inputs 𝑞𝑝1 and 𝑞𝑝2 will be reduced near to its
minimum possible with controller (42) while controller (41)
will have a CSPR close to the OSPR for frequencies between
2 rad/s and 40 rad/s. Moreover, the resulting CSPR will be
lower due to the fact that 𝛾ℎ2,𝑝1(𝑠) and 𝛾ℎ2,𝑝2(𝑠) are closer to(1, 0).

Figure 15 presents the magnitude Bode plots of ℎ2(𝑠)/𝑞𝑝1(𝑠) and ℎ2(𝑠)/𝑞𝑝2(𝑠) considering the new system param-
eters and controllers (41)-(42), confirming all of the pre-
vious deductions. A comparison between ℎ2(𝑠)/𝑞𝑝1(𝑠) andℎ2(𝑠)/𝑞𝑝2(𝑠) also shows the effect that the differences in
OSPR have in the resulting CSPR. Note that the OSPR ofℎ2(𝑠)/𝑞𝑝2(𝑠) has a stepper slope than that of ℎ2(𝑠)/𝑞𝑝1(𝑠).This
is due to (38) being of greater degree than (36).

Finally, a complete assessment of the time domain
responses for all the perturbation rejection elements of the
system is presented in Figure 16 considering the new systems
parameters and controllers (41) and (42).The responses show
that (1) for ℎ1 the perturbation rejection can be increased
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Figure 14: Bode plot of 𝑘𝑇𝑎(𝑠)ℎ1(𝑠)/𝑞𝑢(𝑠), the open-loop main
control loop considering the new system parameters and controller
(41).

arbitrarily by increasing themain control loop bandwidth, (2)
for ℎ2 the perturbation rejection can be increased by increas-
ing the main control loop bandwidth but it is limited by
the structural properties of the system, and (3) for ℎ3 the
perturbation rejection cannot be modified by the main
control loop. All cases have been covered and predicted ac-
cordingly.

5. Conclusions

The multiple perturbations SIMO control case where a main
output-feedback control is imposed was fully analyzed, and
the resulting control system was segmented according an
intuitive classification.

According to this classification, the stability of the differ-
ent subsystems was formally defined.This classification of the
internal control loops results in a better understanding of the
eventual instability mechanisms of these control systems.

Particular attentionwas paid to the perturbation rejection
characteristics of the resulting control system. The relation-
ship between the frequency response characteristics of the
main control loop with the perturbation rejection capabilities
of the secondary outputs was fully analyzed.

This analysis resulted in several general conclusions
which help the control designer in understanding better the
nature of the process and making better design decisions.
In particular, the article explores and formally characterizes
the possibility of improving the perturbation rejection of the
secondary outputs by increasing the bandwidth of the main
control loop.

The results are first presented formally and then their
relevance is fully explained through an intuitive case study. In
the example it is shownhow it is possible to integrate themain
theoretical results with an intuitive understanding of SIMO
control systems.

The use of classical frequency analysis tools allows the
use of the results within an engineering context, improving
their applicability with other widespread analysis tools, such
as𝐻∞.
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Acronyms

SIMO: Single-Input-Multiple-Output
SISO: Single Input Single Output
MIMO: Multiple Input Multiple Output
ICAD: Individual Channel Analysis And Design

MSF: Multivariable Structure Function
TFM: Transfer function matrix
MPR: Main loop perturbation rejection
OSPR: Open-loop secondary perturbation

rejection
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CSPR: Closed-loop secondary perturbation
rejection

high-MPR: ℎ(𝑗𝜔0) → 1
high-CSPR: 𝑐𝑗,𝑝𝑖(𝑗𝜔0) → 0.
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