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José Alberto

A mi prometida

Margarita Cadena



Agradecimientos

Deseo agradecer a la Universidad Autónoma de Nuevo León (UANL) la oportunidad
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Número de páginas: 99.

Objetivos y método de estudio: Un autómata celular probabiĺıstico Marko-

viano para capturar el fenómeno esencial de la ruptura y agregación en presencia

de agitación externa es propuesto y su espacio de parámetros es explorado a fondo.

El modelo propuesto es una extensión multidimensional de un modelo conceptual
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Objectives and methods: AMarkovian probabilistic cellular automaton to cap-

ture the essential phenomenology of coalescence and fragmentation in the presence of

external agitation is proposed and its parameter space is thoroughly explored. The

proposed model is a multi-dimensional extension of a one-dimensional conceptual

model, reported to reproduce some basic features of floc-size distribution of heavy-

metal wastewater removal in a jar-test apparatus. We report extensive numerical

experiments of the parameter spaces for multi-dimensional automaton to identify

those that best reproduce observed floc-size distributions; the proposed extension

yields better quantitative agreement than the original model and reproduces in a
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Chapter 1

Introduction

In Mexico, water treatment is an issue that involves national security and has be-

come central to the environmental and economic policies, as well as a key factor of

social development. It is important that wastewater discharges do not mix to ensure

that clean water is provided to meet the needs of the population and contribute to

economic growth and quality of life [34].

The removal of heavy metals in wastewater is expensive. The industry must

dedicate significant budgets for fees that include contamination, bad treatment, and

floc (that is, a group of particles joined together to form a larger entity) size of

contaminants, among others. An important problem in Mexican industries is the

selection and dosage of chemical coagulants into the wastewater to promote floc

formation for its removal. Other questions of interest are determining the speed

at which the largest flocs are formed and the moment at which to carry out the

filtration. Usually, the decisions for these issues are made based on the operator’s

previous experience with jar-test apparatus experiments [99].

Our motivation for the present work is wastewater treatment: coalescence-

promoting chemicals are mixed with wastewater to achieve flocculation, i.e., the

1



Chapter 1. Introduction 2

formation of flocs in the suspended solids with sufficient size for the flocs to settle

or be removed [2, 95]. External agitation may improve the floc formation but also

promote instabilities that may fracture the flocs. Hence, our interest focuses towards

kernels that are influenced by an agitation speed, the primary goal being the identi-

fication of experimental conditions for which the resulting floc-size distribution has

an ideal shape for their removal from the wastewater.

One of the most studied mechanisms are coalescence-fragmentation processes

due to their presence on application such as colloidal chemistry, polymer science,

magnetic nanoparticles suspensions, and wastewater treatment, among many others

[40, 63, 102, 115, 119]. The usual approach is the framework given by the coalescence-

fragmentation equation [42, 115]:

dρn
dt

=
1

2

∑

i+j=n

[ρiρjAi,j − ρi+jFi,j]−
∞
∑

j=1

[ρkρjAn,j − ρn+jFn,j] . (1.1)

Equation (1.1) is a particular case of the Smoluchowski balance equation: a mean-field

description that provides no information regarding spatial dependencies or fluctua-

tions. Equation (1.1) describes the evolution of the density of a floc ρn (a cluster of n

aggregated particles, where n is the size of a floc) according to the densities ρi. The

coalescence kernel Aij is the reaction rate for an aggregation of a size i floc with a

size j floc, and the fragmentation kernel Fij is the reaction rate for a fragmentation

of a size i + j into one floc of size i and another floc of size j. The multiplier 1
2
is

included to eliminate the effect of having counted twice the interactions of floc sizes

i and j (for example, 1 + 2 = 3 and 2 + 1 = 3 for n = 3). The term coalescence is

also known as aggregation (two or more flocs are aggregated to form one single floc),

whereas fragmentation is sometimes called break-up (a floc breaks into two or more)

in the literature.

The mathematical solution of Equation (1.1) is an active research area [10, 11]
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where the analysis is centered in the study of the particular solutions by simplifi-

cations in the kernel rates. A simplification occurs only when pure coalescence is

present (F = 0), leading to stationary solutions of Equation (1.1) that give rise to a

single floc in infinite times with statistical properties that depend on the coalescence

kernel A. When F > 0, stationary states may emerge. If only fragmentation exists

(A = 0), the flocs at infinite times tend to stay at a certain size depending on the

initial condition. If both mechanisms are included, the tractability of the Equation

(1.1) grows due to all interactions, so it is necessary to develop a simulation technique

that captures the expected behavior of the coalescence-fragmentation while simul-

taneously simplifying the calculations involved in the interactions between flocs.

A popular model to simulate interactions between flocs is the cellular automa-

ton. This model has been employed for different applications in nature and specially

in chemistry process [25, 73, 111]. We focus on one application that captures the

essential phenomenon of coalescence-fragmentation processes in the presence of ex-

ternal agitation [4]. One of the principal problems in these processes is to determine

the interaction rule between the cells. Another problem is to determine the range of

the parameters that promote the ideal floc sizes for their removal.

In the first years of study of cellular automaton, different statistical and proba-

bilistic analysis were studied with simple rules in which there are decisions involving

if a cell is dead or alive [23, 52, 121]. We base our proposed model on that of

Almaguer et al. [4], where a one-dimensional cellular automaton reproduce quali-

tatively the behavior of flocculation for wastewater treatment. The present work

proposes an extension of this model into a multi-dimensional model. An exhaustive

parameter-space exploration is presented and the results show that the proposed

multi-dimensional extension improves the qualitative and quantitative agreement

with actual jar-test experiments in a more robust manner.
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1.1 Hypothesis

It is possible to model the coalescence-fragmentation process based on jar-test ap-

paratus data with an efficient computational model.

1.2 Objective

Capture the coalescence-fragmentation process using three approaches; two compu-

tational: a cellular automaton model based on a previous approach in one-dimensional

to a generalized version for any dimension and an urn model, and one theoretical:

a differential equation model. Each approach associates variables that capture the

fragmentation process, the coalescence process, and the experimental parameters:

chemical concentration and agitation velocity.

1.3 Structure of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents the back-

ground of theoretical concepts used in the elaboration of this thesis: coalescence-

fragmentation process, cellular automaton, Markovian models, and differential equa-

tions. Chapter 3 describes a literature review relative to our problem, including

different alternatives using simulated, mathematical, or theoretical approaches of

the coalescence-fragmentation process. Chapter 4 describes the laboratory exper-

iments of heavy-metal flocculation that the model seeks to reproduce. Also, the

mathematical formulation of the proposed models is described. Chapter 5 discusses

the implementation of the model and the numerical experiments performed with
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the original and the proposed cellular automaton. Finally, Chapter 6 concludes the

present work and discusses directions for future work.



Chapter 2

Background

In this chapter we define basic concepts to be used in Chapter 4 where we explain

our problem based on the case of study. First, in Section 2.1 the concepts of the

case of the study (wastewater treatment) are presented. Also, the theoretical expla-

nation of the principal process present in wastewater treatment, called coalescence-

fragmentation process, is presented along with the explanation of physical process.

Then, in Section 2.2 the general view of the most common methods used to explain

a physical phenomena or similar situations are presented as we seek to reproduce

the behavior of the coalescence-fragmentation process. After that, we introduce the

basic theory behind of our proposed numerical approaches. Finally, the definition of

the specific characteristics in the methodologies are presented.

2.1 Wastewater Treatment

The wastewater treatment process depends on the location due to the equipment

of the industry, the chemicals present in the wastewater and others, but the basic

steps of process of treatment occur in the same order. We structure the wastewater

treatment in the following four phases:

6
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1. Coagulation-Flocculation: In this step, a chemical (polymer or other) is

added to untreated wastewater. Upon mixing, the particles start to coagulate

(stick together). Next, the groups of coagulated particles start to form larger

and heavier particles called flocs. This flocs are easy to remove from the

wastewater once the mixing has concluded.

2. Sedimentation: Due to the floc-formation progress, the flocs start to settle

in the bottom of the recipient (i.e., tank).

3. Filtration: Several minutes after the sedimentation, the water flows to a filter

specially designed to remove the formed flocs depending on their sizes. Usually,

in the industry, the filters are made of layers of sand and gravel. In laboratory

tests the filters are paper layers.

4. Disinfection: The treated water is cleaned by collecting the suspended flocs.

On the other hand, if the flocs are dangerous to the environment, the residual

flocs are maintained and handed over to the environmental companies that can

take care of them.

In this work, we focus on the first step (coagulation-flocculation process), but as

we have no access to industry data, we base our work on a experimental process

conducted with laboratory equipment that replicates the basic steps of the wastew-

ater treatment to perform the analysis. The experimental process is called jar test

that consist in mixing chemicals with a wastewater-industry sample in jars and per-

form an external agitation, taking samples each minute to determine the floc-size

distribution. We focus on the shape of the floc-size distribution of the experiment.

Our proposal uses differential equations, cellular automaton theory, and urn models

based in Markovian theory to understand the behavior of the process. In the next

sections, an explanation of these methods is provided.
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2.1.1 Coalescence-Fragmentation Process

The principal step of treatment wastewater is the coalescence-fragmentation process

where the heavy-metal particles form flocs (larger particles) that are easier to remove.

In the absence of external agitation, gravitational force will, over time, result in

sedimentation on the bottom of the recipient. Without agitation, the particles are

less probable to collide and join together to form larger flocs. Flocs of size from

0.001 and 1 micrometers are often called colloids.

The principal objective of the coagulation process is to permit the surface of

the floc to be able to accept more particles in order to grow. This mechanism is

ideal for the removal of the formed flocs by filtration or sedimentation. Also, this

process is considered a chemical treatment, because it makes the particles unstable

(more able to join with others) by changing the electrical charges of the particles.

The suspended colloids and particles that have not been sedimented are of

special interest. These have a negative charge that makes the particles and colloids

to repel, thus unable to join them. So, the purpose of a coagulant is to neutralize the

surface charge. This allows particles to join together and form flocs that are easier

to remove. The usual coagulant is the aluminum sulfate Al2(SO)3 · 18H2O, although

other coagulants, such as FeCl3 and FeSO4, can also be used.

Basically, by adding the coagulant, the wastewater is ionized (changing its

charge to positive) and the ions of the coagulant neutralize the charges of the colloids.

The ions react with the water and form hydroxides that are insoluble. The hydroxides

create conglomerates that absorb unstable particles. The unstable particles can also

aggregate and grow through collision between themselves (i.e., those that are not

yet sedimented). The destabilization grade is measured by collision efficiency factor

α, the quantity of collisions result in aggregation. If the particles are completely
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unstable, all the collisions result in aggregation (α = 1), meanwhile if α = 0.25, a

quarter of the collisions end in aggregation.

In the industry, coagulants are added in the wastewater in a tank with external

agitation by paddle. The usual time of agitation in the tank is less than one minute.

But, the flocculation (process in which the colloids or particles collide to form the

flocs), continues with a gentle agitation for half an hour. During this period of time,

the hydroxide precipitates in a floc. The mixing in the flocculation tank needs to be

done carefully and has to be fast enough to promote the collision between flocs so

that they to grow in size, but not too fast because the colisions can break the flocs.

The mixing provokes the contrary effect of the sedimentation where the particles

have more opportunity to interact [83].

The agitation level on the tank is denotated by G, the intensity of the mixing; it

is the parameter used to maximize the collision rate between particles. The intensity

of mixing G depends on the energy applied to the rotational arms,

G =

√

P

µVb

, (2.1)

where P is the energy used for the rotation (or whichever other mixed system), Vb

is the volume of the tank, and µ is the viscosity of the water. As the intensity of

mixing G increases, a turbulent flow (the regime in which the fluid flows is chaotic

and present changes in pressure and flow velocity) is achieved. Otherwise, if the

intensity of mixing G decreases, a laminar flow (the regime which occurs when a

fluid flows in linear parallel layers) is achieved.

The agitation rate can be represented by the change of concentration of the

flocs. The concentration of the flocs n, where single particles or aggregated in flocs

exists, are obtained dividing by the volume. Every time two particles collide to form
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a floc, the concentration decreases. So the velocity of flocculation can be represented

mathematically in terms of dn/dt.

The coalescence-fragmentation process theory is extensive, so we present only

the part relevant to our problem. To comprehend the process we use simple assump-

tions: all the particles are the same size (monodisperse distribution), every particle

has the shape of a sphere, the mixing of the water is soft (laminar mixing), and

the volume of aggregates flocs in the sum of individual particles that form them

(coalescence). In this case, the flocculation velocity (change rate) can be expressed

by:

r(n) = −kn, (2.2)

where

k =
α4V G

π
, (2.3)

α is the collision efficiency factor, mentioned previously, V is the volume of the floc

assuming that is spherical is defined by

V =
πd3pn0

6
, (2.4)

where n0 is the initial number of monodisperse-particles concentration with a di-

ameter dp. The volume of the floc can also be represented by the total volume of

solids per volume of water, in other words, the volume of particle concentration.

The total volume of flocs is constant as the flocs are simply rearrangements of the

existing particles — no new particles arrive and none disappear — but the number

of individual flocs at any given time may vary due to the aggregation process.
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Figure 2.1: Typical setup of a jar-test apparatus.

2.1.2 Jar-Test Apparatus

The purpose of the jar test is to select different types of coagulants, estimate the ideal

conditions of dosage and agitation speed to remove the heavy-metal particles from

wastewater. The jar test helps understand the behavior of coalescence-fragmentation

process in the laboratory. Performing all the experimentation in the industry leads

to high costs and it may even be necessary to interrupt the operation of a plant to

carry out experiments.

Usually, the jar-test apparatus consists in six jars of one liter each, equipped

with a paddle mixer. The paddle mixer allows to move the fluid so the particles can

interact, regulating the agitation speed. Also, the equipment controls the agitation

speed, with a rotor that moves the paddle. A sketch of a typical jar-test apparatus

is shown in Figure 2.1.

The principal steps of the jar test are adding coagulant to the wastewater,

mixing rapidly to homogenize, followed by slow agitation to promote the collisions

that form the large flocs, and finally the sedimentation process to remove the formed

flocs. We are interested in the step where the slow agitation is performed because

the flocs are formed at that point. Also, we focus on the interactions that form the

flocs.

To start the test, a wastewater sample is placed in each jar (see Figure 2.2a).

Then, a chemical is added, usually sodium hydroxide, to raise the pH of the disso-
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(a) Adding the wastewater sam-
ple.

(b) Adding pH while stirring.

(c) Adding coagulant.

(d) Final stage of the jar test.

(e) Decantation stage.

Figure 2.2: The principal steps of the jar test.

lution until a certain pH is reached (i.e., pH = 10), while stirring at a fast agitation

speed (see Figure 2.2b); this depends on the specification of the jar-test apparatus

(i.e., 150 rpm). Next, the coagulant is added (see Figure 2.2c) and the agitation

speed is decreased until a slow agitation (i.e., 20 rpm) is reached. In this step the

pH is neutralized again to pH = 10. The coagulant solutions are prepared using the

salts. During the agitation, a sample of 10 mL is obtained every minute, put in a

filter, and left to dry. Usually, the duration of agitation is about half an hour. When

the agitation is finished, the mixture is left to permit the separation of the particles

(see Figure 2.2d). Finally, the mixture is decanted (see Figure 2.2e) to separate the

flocs.
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2.2 Mathematical Models

Since the XI century, it is accepted that nature is governed by mathematical laws. In

the beginning of the XX century, the researchers use mathematical laws to describe

and explain some phenomena under certain conditions (restrictions by the observer),

and feasibility of the solution [6].

A mathematical model uses mathematics to express the relationship between

variables, parameters, entities to study behaviors of complex systems under situ-

ations that are difficult to observe systems in the real world. There are different

classifications of the models according to their input information, representation,

randomness, or application [38].

The input information can be based on: explanations about causes and natural

mechanisms (heuristic model), or direct observations of an experiment of the studied

phenomena (empiric model).

The figures, graphics, or descriptions are used to represent the mathematical

model to predict in which direction the system is going. The description in which a

value is decreasing or increasing without any information is called a qualitative model,

or if the change of a value is described with formulas and mathematical algorithms

the description is called quantitative model.

The randomness in the model can happen if the result is always the same as

the data used has no variations (deterministic), or if the result is unknown and only

the probability of some aspects of the process are known (stochastic).

A final aspect in which models can differ is their application. Three types are

simulation that describes measured situations in a precise or a random way in order
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to predict what happens in a concrete situation, optimization to solve a problem by

obtaining the exact value that meets the requirements and structure of the problem,

and control to help to determine new measures, variables or parameters in order to

improve the results of the system.

The simulation of a process consists in the representation of a process or phe-

nomena with a logic-mathematical model capturing its particular behavior [57]. It is

a useful tool in the engineering, because of the detailed description that is capable to

show for a process. Some types of simulations can be modeled using discrete events,

agents theory, or differential equations [44, 61, 79].

In the following sections, we present different approaches to model the behavior

of a process through the variations of some property in the process. Also, we include

the basic theory to understand the dynamics and uncertainty of a process.

2.2.1 Differential Equations

A differential equation is a mathematical equation that describes the change of a

variable y respect to another variable x. Usually, the equation is represented by

the derivative of a function y that depends on x or another variables. In some

applications, the function represents physical quantities like heat or temperature.

In these cases, a derivative represents the rate of change of the quantity, and the

equation describes the relation between the variables. Because of the capability

to describe the relationship between two or more variables, differential equations

have been used in different disciplines such as engineering, physics, economics, and

biology, among others, as a main tool.

Differential equations are studied for different reasons, but the majority of
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the application of such models focus on their solutions (the set of conditions or

functions that satisfy the equation). If the differential equation is simple, it can be

solvable by an explicit formula, but in many cases the use of an explicit formula

cannot obtain the exact solution or even determine if there is a solution. Hence,

when no analytical solution is available, computational implementations of numerical

methods are applied [7].

Here, the main problem is to determine how many segments of the indepen-

dent variable x need to be taken into account. If there are too few segments, the

evolution of the dependent variable y is not described correctly. To solve differential

equations, many numerical methods have been developed over time. Method selec-

tion depends on the structure of the differential equation, because of the degree of

accuracy reached by the methods. Even with all the information available on find

a solution other methodologies to solve some differential equations are required. In

these cases, it is necessary to make simplifications but always seeking to represent

with the highest possible amount of detail.

If the case of study is a process that variate over the time as in a phenomeno-

logical process, the typical simplification is to treat the time t as a discrete interval.

First, time t starts with the value zero. Then, an increment ∆t is applied to increase

the value of the variable. That is repeated until the interval is covered as t reaches

the maximum desired value.

2.2.2 Stochastic Processes

Probability theory is a field that initiated with two French mathematicians, Blaise

Pascal and Pierre de Fermat, in the XVII century, and remains an active research

area today. Since then, many applications and discussion of the probabilistic theory
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have gained importance in the world. The different applications include computer

programming, physics, chemistry, music, whether forecasting, and medicine, among

others.

Probability theory is a branch of the mathematics that describes and calculates

the likelihood of an event occurs, expressed as a number between zero (impossible)

and one (certain). To describe probability in numbers, take the event of tossing a

coin where the possible results are heads or tails. A probability equal to one implies

that an event always occurs: for example, the probability that a coin toss result in

heads or tails, because there are no other options. A probability equal to one half

implies that an event is equally probable to occur; for example, the probability of a

coin toss result in heads is 0.5, on the other hand, the probability on resulting tails

is equally probable than to result in heads. A probability equal to zero implies that

the event cannot occur; for example, the coin lands in another result that is neither

heads nor tails, which is impossible because the coin only has two sides.

Also, with probability theory it is possible to measure the uncertainty of a

random event using precise calculations. The simple way to represent probability

mathematically is dividing the number of occurrences (success a) of a targeted event

by the total number of possible outcomes (successes a and failures b) of that event:

p(a) =
f(a)

f(a) + f(b)
. (2.5)

For a coin toss, the computation of the probability is simple, because the outcomes

are mutually exclusive: only one event, heads or tails, can occur. Also, each coin toss

is an independent event: the outcome of a toss does not rely on the previous toss.

No matter how many consecutive outcomes of a single result occur, the probability

of the result of the next toss is always 0.5 for either heads or tails.
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In the following sections, we present formulations of two methodologies that use

probabilistic theory: cellular automaton theory and urn models. These two method-

ologies are used to describe complex systems or processes using simple assumptions.

Specifically, the process of our interest (coalescence-fragmentation process) is com-

plex to model due to the number of flocs in the system and the interactions between

them. We believe that using these two methodologies, the most important character-

istics of the coalescence-fragmentation process, and taking into account the nature

of the process, the behavior of the real process can be accurately captured.

2.2.3 Cellular Automaton Theory

The cellular automaton was presented for the first time in the 1940’s by Stainslaw

Ulam and John Von Neumann. It became interesting to academia in 1970 with Con-

way’s Game of Life, followed by Wolfram [122] in the 1980’s, and since then has been

studied and researched by many others due to its capacity to obtain information with

simple models and rules; the analysis of the characteristics [60], the applicability in

areas like equilibrium physics, chemical reactions, population dynamics and parallel

computers [62], generation of signals [84], the study of connections between dynami-

cal and computational properties [37], the study on new paradigms for improvement

in computational using quantum devices [74, 85], the structure and topology [9], the

evolution of the cellular automaton in disorder states [88, 103], and configuration

[125], among others modeling and simulating some complex macroscopic phenomena.

A cellular automaton is a mathematical structure that models dynamic sys-

tems composed of arrays of cells that evolve their state following local rules that are

applied globally. The evolution process is carried out in discrete steps. The cellular

automaton is used to model and simulates natural systems or complex macroscopic
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Figure 2.3: Von Neumann neighborhood for a one-dimensional automaton.

(i, j)(i − 1, j)

(i, j − 1)

(i + 1, j)

(i, j + 1)

Figure 2.4: Von Neumann neighborhood for a two-dimensional automaton.

phenomena [35] with huge amount of objects (cells, particles, flocs, etc.) interact-

ing locally with each other following rules [122], represents an alternative approach

to the classical with partial differential equations, and it consists in the following

considerations:

• A dimension d in which the cellular automaton exists.

• A d-dimensional n-cell lattice space, where the lattice coordinates are a vector

with d elements.

• Each cell is denoted by an index c and characterized by its neighborhood, a

finite set of cells in its vicinity. Different structures of the neighborhood exist:

one of the most used is the Von Neumann neighborhood (see Figure 2.3 for

one-dimensional and Figure 2.4 for two-dimensional automaton) that consists

in all the cells that differ in exactly one lattice coordinate from the cell c. If

the lattice coordinates differ in more than one coordinate, it is not considered

a neighbor. No cell is considered its own neighbor.

• The lattice coordinates also can be of different types depending on bound-

ary condition. One condition is called regular lattice; for example, in two-

dimensional automaton, cells at the four corners of the lattice only have two
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(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)
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Figure 2.5: An example of a two-dimensional regular Cellular Automaton.

Figure 2.6: An example of a two-dimensional borderless Cellular Automaton.

neighbors and the cells along the four borders only have three neighbors (see

Figure 2.5). The other one is called borderless lattice; the first cell in each

dimension d is adjacent with the last cell (see Figure 2.6). There are more

neighborhoods but these two are the most commonly used in the literature.

• A set of local rules (also called a transition function) that governs the change

of each cell c between the current state of the automaton and the next state.

• A discrete global clock that provides homogeneously an update signal for all

cells.
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2.2.4 Urn Model

The urn model is used to illustrate the basic ideas of probabilistic theory in many

textbooks [97, 108, 117]. The usual examples presented in the textbooks deal with

balls of different colors that fill urns, then the balls are randomly drawn from a

selected urn. The typical questions are: how many draws are required to draw a ball

of specific color, what is the probability of drawing two balls of specific color, what

is the chance that in the i-th draw a ball of specific color is drawn, etc.

Urn models are easy to understand, so a variety of situations can be expressed

with these models. Some experiments of games of chance, such as coin tossing and

dice rolling, can be rearranged into urn models.

An urn model is represented by a set of n urns containing m balls of different

colors c. To represent the number of balls of a color in a urn cm is normally used .

The typical experiment is when the balls, according to some rules, are removed from

one or more urns but can be replaced or not depending on the experiment. Usually

when a ball is drawn from a urn, the probability to be chosen is the same for every

ball in the urn.

When an urn model is analyzed, the variables of interest are:

• the distribution of balls of various colors at the i-th draw,

• the number of balls of a certain color obtained after the i-th draw,

• the waiting time until a specific condition is reached, for example, how many

time until is draw the i-th ball of the urn?

Some examples of the most basic urn models are presented next:
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• An urn contains a white balls and b black balls, n balls are drawn at random

from the urn. The balls can or cannot be replaced after each draw. Examples

of events are: obtain a white ball in the first extraction, obtain a black ball

in the second extraction, etc; typical questions are: obtain the probability of

certain event, or what is the probability that in the fifth extraction to draw a

white ball.

• A teacher has a desk with two drawers. The first drawer contains a red pens

and b blue pens. The second one has c red pens and d blue pens. Typical

questions are: if a drawer is opened at random and a pen is drawn, find the

probability of that pen is red, or if a blue pen is drawn what is the probability

that it came from the second drawer?

The urn models are also used to capture the behavior of phenomena where

interactions between its entities are present. In order to capture the pnehonema, it

is used urns to represent its states, balls to represent its entities, and the movement

of a ball between urns to represent the changes of the state that allows to determine

the distribution of the entities between states [31, 45, 112]. This distribution is

one of the interesting characteristics of certain phenomena like in the coalescence-

fragmentation process where the floc-size distribution is the principal objective.
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Literature Review

In this chapter we present a literature review relevant to the coalescence-fragmentation

process. This process is an important phenomenon that has been studied to under-

stand its behavior due to the presence of such a process in many applications such

as colloidal chemistry, polymer science, magnetic nanoparticles suspensions, and

wastewater treatment [40, 63, 102, 115, 119]. Theoretical models are the first ap-

proaches that attempt to reproduce the coalescence-fragmentation process in order

to understand its behavior. In the following sections, a review of the theoretical

models, the balance equation, the laboratory analysis, the application in wastewa-

ter, approaches using cellular automaton techniques, and other similar process that

behave similarity to the coalescence-fragmentation process are presented. In the

literature sometimes coalescence is referred as aggregation and fragmentation is re-

ferred as break-up.

3.1 Coalescence-Fragmentation Process

There are many approaches to model the coalescence-fragmentation process. The

first approaches use a discrete, deterministic model which can be traced back to

22
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the work of Smoluchowski [104] and as well as Becker and Döring [14]. Since these

studies, several characteristics and solutions of the model have been studied provid-

ing a detailed information of what happens with the microscopic and macroscopic

interactions present in the coalescence-fragmentation process. Family et al. [42]

generalize the standard coalescence-fragmentation process including the effects of

fragmentation and develop a scaling description for floc-size distribution using the

Smoluchowski rate equation to obtain the critical exponents describing the steady-

state floc-size distribution with numerical simulation to test the predictions of the

scaling and the rate equation.

The solution of the equation presented by Smoluchowski [104] became of inter-

est as it permits to better understand the behavior of the coalescence-fragmentation

process. Elminyawi et al. [40] numerically solve the Smoluchowski rate equation

for different combinations of coalescence and fragmentation kernels observing the

long-term equilibrium size, the characteristic time to reach the equilibrium and the

floc-size distribution. Bohin et al. [15] present experimental and theoretical results

for dispersion agglomerates, developing a model for the kinetics of the homogeneous

sparse of the agglomerates. To test the model, Bohin et al. [15] use agglomerates

of silica to demonstrate the mechanism, kinetics rates of dispersion, and floc-size

distribution. Broizat [21] formulate a theorem that uses compactness methods in

Lp-norms propagation (mathematical function of spaces for a finite-dimensional vec-

tor), the natural physical bound, and assumptions of finite number of flocs in the ki-

netic model of coalescence-fragmentation. Banasiak and Lamb [11] prove the unique

solution of the coalescence-fragmentation equation introducing coalescence and frag-

mentation rates. The proof is based on a monotonicity argument of the invariance

for the fragmentation.

Also, the study of inclusion of external forces began to gain interest. Collier
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and Hounslow [32] examine the relation between the growth and coalescence rates

as a function of the agitation rate, initial concentrations, and use a stirrer speed

with five speeds. Soos et al. [106] propose an approach based on measurement and

quantitative modeling of multiple moments of the floc mass distribution. They apply

this model to coalescence processes in turbulent conditions in order to test alternative

kernels for coalescence, fragmentation, and restructuring kinetics.

Another works implement in a practical application. Winterwerp [120] presents

a three-dimensional model for a the evolution of the settling velocity (velocity re-

quired to settle the flocs to the bottom of a liquid and form a sediment) of estuarine

mud resulting in coalescence and fragmentation processes. The mud flocs are treated

as fractal (geometric irregular object that repeats in different scales) entities. Also,

a new formula is proposed which account for the gelling process typical of cohe-

sive sediment at high concentrations. Kumar et al. [70] investigate the flocculation

properties of a natural silt-clay mud observing a range of suspended sediments con-

centrations, salinities, and turbulent shear rates. They use a paddle mixer to create

a turbulent sheared field for driving the flocculation process. They measure the floc

settling velocity and size attributes in a settling column with a camera system and

image analysis. They observe maximum floc sizes in sheared rates (rates at which

a progressive deformation due to collision is applied to flocs) less than 30 s−1. It is

suggested that this variability in fractal dimension (i.e., an index for characterizing

fractal patterns or sets by quantifying their complexity as a ratio their change in

detail to the change in scale) may physically be the result of many different floc sizes

of primary particles. Primary particles refers to particles which can affiliate to a

larger linked system such as flocs.

Recently, some important characteristic of the solutions have been determined,

such as the moments of a distribution; including mean and variance. Manning and
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Dyer [81] describe a new flocculation model based on observations of the settling floc

and turbulent agitation acquired from experiments conducted in European estuar-

ies. They identify the change in the macro-floc and micro-floc settling as the key

components that describe a floc population. Banasiak [10] studies discrete coales-

cence-fragmentation equations in a space where a distribution has finite moments,

shows by simply fragmentation rules the equations can be analyzed and character-

ized. The results obtained by Banasiak [10] show the existence of solutions for the

unbounded coalescence kernels. Also, Banasiak and Lamb [12] use a large range frag-

mentation rates to show that the continuous fragmentation operators are sectorial

and prove the solution of the coalescence-fragmentation equation with unbounded

coalescence kernels.

3.2 Coalescence Process

The coalescence process is also of interest in applications where the particle inter-

actions end in a group of particles with larger sizes that are easily to handle. The

particles that group are called aggregates. Brasil et al. [19] present a procedure to

characterize the proprieties, structural and fractal, of aggregates from a projected

images. From the images, they determine the particle diameter, maximum projected

length, projected area, and overlap coefficient. The data they use is from simula-

tions of aggregates that has fractal properties and primary particles to characterize

three-dimensional properties of aggregates.

Later, Brasil et al. [20] investigate the structure of cluster-cluster and particle-

cluster fractal-like aggregates. Also, they characterize the three-dimensional prop-

erties using statistically significant populations of simulated aggregates. The three-

dimensional properties include the fractal dimension, fractal prefactor, coordination
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number distribution function, and distribution of angles. They consider the effects

of coalescence process and coalescence size. They use a coefficient for allow the flocs

to approach each other, and also a process where two flocs join together and start

to collapse when a stable size is achieved. Gmachowski [48] explores the fractal

dimension when the structure of growing aggregations is scale invariant and con-

clude that the fractal dimension of an aggregate can be determined by the radius of

gyration1. Mokhtari et al. [86] study the behavior the effect of low shear rates on

a coalescence colloidal (microscopical disperse insoluble particles) systems made of

polystyrene particles. They conclude that the slow shear can enhance the coalescence

and gelation.

Xu et al. [123] study the influence of the transport of fine-gradient particles

in estuarine and coasal waters by both flocculation processes coalescence and frag-

mentation. Here the floc size varies over time in the water column. They simulate

the variations of floc size using size-resolved (flocs for which the particle sizes are

known) method, which approximates the real size distribution of flocs. They use a

constantcoalescence kernel where the interactions are simplified by the collision rate

in turbulent shear and differential settling2. Following the same approach, Xu et al.

[124] implement a size-resolved flocculation model for an ocean circulation to simu-

late fine-grained particles trapping in a turbidity maximum. They include flocs of

small sizes, about 30 µm, to very large flocs, over 1 000 µm. Also, they formulate a

two-dimensional model to simulate variations of suspended sediment concentrations.

Zahnow et al. [127] study the steady-state floc-size distributions in a three-

dimensional synthetic turbulent flow (generated velocity fluctuations that are close

to turbulence) flow based on the dynamics of individual particles. They introduce

effective densities and radius to capture the fractal-like structure in the coalescence

1The distribution of the components of an object around an axis; in this case the radial axis.
2Uneven floc sizes that sink during and after some time of a phenomenon with coalescence.
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and fragmentation model. Specifically, they apply this methodology in marine aggre-

gates in coastal areas. Three mode of fragmentation were studied: large-scale split-

ting (similar sizes in fragments), erosion (one fragment is smaller than the other),

and uniform fragmentation (all sizes occur with the same probability).

3.3 Population Balance Equation

The population balance equations are a set of integro-partial differential equations

that have been used in many areas like chemical engineering since the 1960’s because

they are capable to represent the behavior of a population of flocs from the analysis

of a single particle giving local conditions. Since then they are become one of the

most important tools for design and control of particulate processes and so many

studies have studied them [91].

Kumar and Ramkrishna [71] present a new framework to perform the discretion

of the continuous population balance equations. The framework proposes that the

discrete equation for coalescence or fragmentation process is consistent with the

desired moment of the floc-size distribution. Also, they consider floc population to

be concentrated at representative volumes. The technique is applicable to binary

or multiple coalescence, fragmentation, simultaneous coalescenceand fragmentation,

and can be adapted to predict the desired properties of an evolving size distribution

more precisely. Kumar and Ramkrishna [72] propose a discretization method to solve

population balance in simultaneous nucleation, growth and coalescence of flocs. The

features of the method are: properties of floc-size distribution, arbitrary grid control,

computational efficiency. They tested the method in pure growth, simultaneous

growth and coalescence, and simultaneous nucleation and growth. They analyze a

large number of combinations by changing, nucleation rate, growth rate, coalescence



Chapter 3. Literature Review 28

kernel and initial conditions. Verkoeijen et al. [113] propose a volume model based

on population balance equation in which the floc properties are the volumes of solid,

liquid, and air.

Flesch et al. [46] use a population balance equation to model coalescence-

fragmentation process in turbulent shear. They quantified the fractal-like structure

using a mass fractal dimension. They compare with experimental data (polystyrene-

Al(OH)3) of a water system in a stirred tank with paddle mixers: the aggregate size

increases before reaching a steady-state during the coalescence-fragmentation pro-

cess. Ramkrishna and Mahoney [92] discuss the application of population balance

modeling towards strengthening the approach as well as widening the application

scope with regard to formulation, computational methods for solution, inverse prob-

lems, control of floc populations and stochastic modeling. Mahoney and Ramkrishna

[78] evaluate the performance of two improvements of Galerkin’s method [94] on finite

elements to solve population balance equations for precipitation systems3. Qamar

and Warnecke [90] propose two methods to solve population balance models with

simultaneous nucleation, growth, and coalescence processes. The first method com-

bines a method of characteristics for growth process with a finite volume method4 for

coalescence process. The second method uses purely a semi-discrete finite volume

scheme for nucleation, growth and coalescence of flocs. Both schemes use the same

finite volume scheme for coalescence process.

Meanwhile, Kumar et al. [68] develop a discretization method for population

balance equations called cellular average technique. They assigns the particles to

cells by taking first the average of the new particles within the cell and then as-

3Creation of a solid from a liquid solution with chemical when a reaction occurs. The solid
formed is called the precipitate and the chemical that causes the solid to form is called the precip-

itant.
4A discretization technique for partial differential equations, especially those that arise from

physical conservation laws.
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signing them to the neighboring nodes such that pre-chosen properties are exactly

preserved. The technique is useful for systems with a gelling point. Later, Kumar

et al. [66] extend a cell average discretization to solve multi-dimensional population

balance equations in diffusion processes. The method is based on the prediction of

a certain moment of the population. Their methodology is simple to implement,

computationally not expensive and highly accurate. Next, Kumar et al. [67] solve

the population balance equation using the discretization for simultaneous coales-

cence, fragmentation, growth, and nucleation based on a cell average technique [68].

Finally, Kumar et al. [69] compare the results of two different approaches to solve

the population balance equation. The first one is the proposed by Kumar et al. [67]

based on a cell average technique and the second one is a finite volume method.

Waldner et al. [116] monitor a stirred tank with coalescence kinetics of colloidal

polymeric particles in diluted dispersion. They apply a population balance model in

the early stage when the fragmentation is in lesser proportion than the coalescence.

They determine analytically the coalescence rate and the effective fractal dimension

for aggregates produced by the initial growth regime. Soos et al. [107] study the coa-

lescence and fragmentation process for destabilized polystyrene latex particles under

turbulent flow. They use an optical image technique to monitor the process. They

use population balance equations to study the process and compare with experimen-

tal. They observe the evolution of the floc-size distribution, seeking to capture the

small flocs and large aggregates. Rollié et al. [96] simulate coalescence of nanoparti-

cles in binary particle mixtures using a population balance models in terms of their

coordinates. Parameter sensitivity with respect to the fractal dimension, aggregate

size, hydrodynamic correction, ionic strength, and absolute floc concentration are

assessed.
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3.4 Floc Distribution

Hill and Ng [56] propose a procedure to target the floc-size distribution using a

functional structure and the discretion of the population equations to determine the

feasibility. They illustrate this procedure in three examples: the production of salt,

alumina, and metronidazole tablets. Li et al. [76] perform numerical simulations to

determine the floc-size distribution in marine waters by accounting for floc influx,

coagulation, sedimentation and fragmentation. They state that a steady state in

the floc-size distribution can be achieved after a period of simulation regardless of

the initial conditions and follows a power-law5 function with three linear regions

on log-log scale corresponding to the three collision mechanisms: Brownian motion,

fluid shear, and differential sedimentation. They obtain that the environmental

condition does not change the floc-size distribution but can modify the position and

the concentrations of flocs.

Tansel and Sevimoglu [110] perform a investigation in the floc-size distribution

of oil droplets after coagulation extension of the cell average technique. Al-Thyabat

and Miles [3] propose a method to determine the floc-size distribution using the

equivalent area and mean Feret’s diameter6. Andres et al. [5] compare two tech-

niques to an image analysis of spherical standard powders to determine the floc-size

distribution. Ko and Shang [64] use a sensor with neural network based model and

image analysis to determine the floc-size distribution. Cheng et al. [24] measure the

turbidity of a mix with a turbidimeter coupled with data acquisition and obtain that

the standard deviation of the turbidity was proportional to the square root of the

floc size. Cheng et al. [24] use image analysis for validation.

5One quantity (bin size) varies as power of another (normalized frequency).
6A measure of an object size defined as the distance between two parallel tangential lines that

restrict the object.



Chapter 3. Literature Review 31

3.5 Wastewater Treatment Applications

Jiang and Graham [58] investigate the behavior in the hydrolysis/precipitation of

the poly-ferric sulfate and ferric sulfate under typical conditions for coagulation and

flocculation in water treatment by studying the rate of floc-size development, the

zeta potential, chemical structure of precipitates, and the isoelectric point7 of re-

suspended precipitates. Rossini et al. [98] study the parameters of rapid mixing

(rapid dispersal of a coagulant into the raw water followed by an intense agitation)

design: velocity gradient and rapid mixing time. They use aluminum (III) and iron

(III) salts to treat the wastewater from a tannery processing stored. They determine

an optimal combination of rapid mixing parameters and use the approaches for high

turbid synthetic water obtained by suspending kaolin in distilled water to compare

the results with tannery wastewater.

Bouyer et al. [17] investigate the coalescence-fragmentation process in water

treatment units using jar-test vessel to analyze the hydrodynamics and floc-size dis-

tribution. The parameters that control are the water quality (pH) and the coagulant

dose. Bouyer et al. [17] analyze the floc-size distributions by image processing. They

determine the evolution on the floc-size distribution by statistical analysis that leads

to velocity gradients. Battistoni et al. [13] present a physical-chemical pre-treatment

in the treatment of liquid wastes, optimizing the flow scheme. Battistoni et al. [13]

discuss the types, amount, and characteristics of the wastewater to reduce the use of

strong oxidative treatments, obtaining a significant reduction of the solids. Ramphal

and Sibiya [93] study the sizes and structural characteristics of floc in water treat-

ment. They optimize the coagulation-flocculation parameters with a photometric

dispersion analyzer coupled to standard jar test experiments while monitoring floc

7The pH where no net electrical charge of a particular molecule is carried.
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size and structure of the floc formation during coagulation using alum. Data reveals

that coalescence rate and steady-state variance are primary parameters as both have

substantial influence on coagulation-flocculation efficiency.

3.6 Laboratory Analysis

Kang and Cleasby [59] study the effect of low water temperature on flocculation

kinetics using ferric nitrate to coagulate kaolin clay in water. They measure the floc-

culation kinetics with floc-size distribution obtained by an automatic image analysis,

and with on-line measurement of the degree of turbulence. Manning and Dyer [80]

examine the turbulent shear generated water column is recognized as having a con-

trolling influence over both the flocculation of fine grained cohesive sediments within

estuary waters, and their respective coalescence or fragmentation. The use of algo-

rithms which were based either on a single characteristic floc, size or settling velocity,

or a mean fractal dimension, were seen not to accurately approximating the experi-

mental data. A multiple regression analysis of the experimental data produced the

following formula, based on mean values of the 20 largest flocs sampled under each

of the imposed environmental conditions.

Franceschi et al. [47] study the behavior of the variation in different scales

systems or same scale systems in the flocculation performances using different im-

peller geometries. Franceschi et al. [47] study the influence of raw water quality

and operating conditions on the efectiveness of the coagulation-flocullation process

using aluminum sulfate. Verney et al. [114] investigate the behavior of a floc pop-

ulation during a idealized radial cycle. They use suspended sediments at a small

concentration (93 mg/ℓ). Also, they use a jar-test apparatus to reproduce tidal-

induced turbulence and coupled with a Charge Coupled Device camera system and
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image post-processing software to monitor floc-size distribution and developed a

model based on the coalescence-fragmentation process to simulate changes in the

floc population over the tidal cycle.

3.7 Cellular Automaton

Grinstein et al. [50] study the conditions of a probabilistic cellular automaton ar-

guing in that with irreversible rules, continuous ferromagnetic transitions in prob-

abilistic cellular automaton with up-down symmetry. Also a non-stationary states

are achieved for asymptotically large time by certain probabilistic cellular automaton

rules. Seybold et al. [100] use a two-dimensional asynchronous cellular automaton

that simulates both the deterministic and the stochastic features of a first-order

chemical kinetic processes to avoid the numerical solution of either the deterministic

coupled differential rate equations or the stochastic master equation. They found

that deterministic solutions emerge as statistical averages in the limit of large cell

numbers and examine some additional stochastic and statistical features of the so-

lutions that they obtain. Nowak [87] study a microscopic mechanism of grain size

dependence of creep using simulation of damage development done by cellular au-

tomaton technique. Almaguer et al. [4] present a one-dimensional cellular automaton

that capture the essential of the coalescence-fragmentation process and is the base of

our model. Yan et al. [126] model the growth and coalescence of multiple cracks in

brittle material wit a continous-discontinuous cellular automatonṪhe method uses

the level set to track arbitrary discontinuities, and calculation grids are indepen-

dent of the discontinuities and no remeshing are required with the crack growing. A

mixed fracture criterion for multiple cracks growth in brittle material is proposed to

treat the junction and coalescence of multiple cracks.
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The lattice Boltzmann method which belongs to the cellular automaton tech-

niques is widely used to study the dynamics of fluids in physical phenomenal Perumal

and Dass [89]. Higuera and Jimenez [55] propose an alternative simulation for lattice

hydrodynamics based on lattice Boltzmann model instead of on the microdynamics

evolution. They simplify the method averaging the step and the associated fluc-

tuations, and selecting the collision operator independent of a particular collision

rule to decrease viscosity as much as desired. Ernst et al. [41] study the lattice gases

equation of Boltzmann comparing theoretical and molecular dynamics. Somers [105]

study turbulent flow using hexagonal lattices gas given a balance between robustness

and numerical accuracy with three-dimensional time-dependent flows in turbulent

flows. Cieplak [30] study the coalescence-fragmentation process in two liquid systems

using a two-dimensional non-linear, Galilean invariant8, and lattice Boltzmann cel-

lular automaton. They characterize the dynamics of rupture with parameters such

as the coefficient of the surface tension. The case study is a droplet in a gravitational

field to the bottom of a container. Three cases (a bare wall, a shallow liquid, and a

deeper liquid) are studied.

Di Gregorio et al. [36] apply a cellular automaton model to represent the dy-

namics of spatially extended physical systems instead of the classical partial dif-

ferential approach. They simulate the bio-remediation of contaminated soils. The

model is hierarchical and composed by a fluid dynamical layer, a solute description

layer, and a biological layer. They test the model in a pilot plan when there are

contamination by phenol. They use genetic algorithms to determine the values of

the phenomenological parameters. They prove that the model describe experimental

results in a wide range of experimental conditions. Therefore, their model represents

an example of an application of the cellular automaton in a real-world problem which

has a very high social and economic importance. D’ambrosio et al. [33] use a cellular

8The laws of physics are the same in all inertial frames of reference.



Chapter 3. Literature Review 35

automaton to model the soil erosion by water including the states altitude, water

depth, total head, vegetation density, infiltration, erosion, sediment transport, and

deposition. They perform a simulation and apply the model in an actual water

reservoir. Haslam et al. [53] model the deformation of a porous solid through which

fluid flow. They show an initial proof of concept for a coupling method solving

one-dimensional and multi-dimensional diffusion problems.

Chopard and Masselot [28] combine the cellular automaton and lattice Boltz-

mann to describe a system where point-flocs are transported in a fluid; the cases of

studies are: snow transport, erosion, and deposition by wind. Next, Chopard and

Luthi [27] discuss the connection between lattice Boltzmann computing and cellular

automaton and present a model to simulate propagation in complex environments.

To illustrate the behavior of the new model, they present three applications: wave

propagation in a city, solid body motion, and fracture phenomena. Chopard et al.

[29] simulate erosion, deposition, and floc transport in a streaming fluid with a sim-

ple lattice gas model. The fluid is described by standard lattice Boltzmann model

and the granular suspension by a multi-floc cellular automatonṪhey perform field

measurements to compare with the prediction obtained by the model. The case

of study is the ripples formation and simulation of the scour appearing around a

submarine pipe. Later, Chopard and Dupuis [26] use the combination of cellular au-

tomaton and lattice Boltzmann to model erosion processes in air or water currents,

emphasizing on explaining the formation of meanders in rivers.

Korner et al. [65] use the lattice Boltzmann method to formulate a two-

dimensional model that allows the investigation of the foam evolution process com-

prising bubble expansion, bubble coalescence, drainage, and foam collapse. Gupta

and Kumar [51] use a lattice Boltzmann method to understand the behavior of a bub-
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ble motion and bubble coalescence in liquid. The drag coefficient9 for single bubble

motion under buoyancy for both two-dimensional and three-dimensional simulations

compares well with existing correlations. For multiple bubbles, the bubble dynamics

is dictated by the vortex pattern of the leading bubble, which allows the bubbles to

coalesce. Coalescence can be described as a three stage process: collision, drainage

of the liquid film between adjacent bubbles to a critical thickness, and rupture of

this thin film of liquid.

3.8 Other Similar Processes

The following literature review introduces to some interesting similar processes of

the coalescence-fragmentation process. Ahsan and Alaerts [1] describe a mathe-

matical model for gravel bed in horizontal flow. The model was based on the

parallel palette settler where the sedimentation and flocculation processes occur.

Boisvert et al. [16] explore other areas where the process exist like the adsorption of

mono-phosphate from aqueous solutions where the flocs are formed upon hydrolysis

of alum (Al2(SO)3) and basic alum (poly-aluminum-silicate-sulfate), a coagulant is

added and the pH is adjusted to promote the adsorption. They focus on the floc

formed resistant to shear stress. Dzwinel et al. [39] propose a homogeneous com-

putational model for performing numerical experiments on liquids employing three

types of simulation techniques: molecular dynamics, dissipative floc dynamics and

smoothed floc hydrodynamics. Boyle et al. [18] present an experimental analysis on

the hydrodynamic forces involved in two types of dispersion regimes were examined,

uninfiltrated and partial infiltrated structures where the process occurs in spherical

agglomerate dispersion. They demonstrate the infiltration for silica agglomerates to

different extends by the suspended fluid.

9An a-dimensional quantity to represent the resistance of an object in a fluid environment.
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Al-Tarazi et al. [2] develop a mathematical model to describe the precipitation

process of metal sulfides in aqueous solutions containing two different heavy metal

ions where the solution is assumed well-mixed. Their model includes the transfer

of gaseous hydrogen sulfide H2S that is model using Higbie’s penetration model [54].

The conditions in the simulations are similar to those of industrial wastewater from

a zinc factory. Their model predicts the rate of H2S absorption, the size distribution

of the metal sulfide crystals, and the selectivity of precipitation. Another study on

precipitation is presented by Lewis [75] who reviews the disparate areas of study into

metal sulfide precipitation. The review includes studies that focus on mechanisms

of the processes and very low concentrations, applied studies on metal removal and

reaction kinetics, studies that focus on the solid phase and address the crystallization

kinetics of the formed flocs, studies into precipitation of metal sulfide nanocrystals,

and applications of metal sulfide precipitation to effluent treatment processes.

3.9 Discussion

The presented literature review covers some aspects of the phenomenology of the

physical-chemistry process called coalescence-fragmentation process. There are math-

ematical formulations of the floc interactions using differential equations or integro-

differential equations, also the transformation of these formulations into a discrete

models to reduce the tractability are performed, others use stochastic models to

reduce the interactions between flocs. Nevertheless, the reviews leave neglected

the comparison between experimental data and their models, and the statistical

validation and reproduction of the model in order to capture the behavior of the

coalescence-fragmentation process or similar processes.

We seek to capture similar characteristics that are studied in the reviewed lit-
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erature to reliably reproduce them for our case study of wastewater heavy-metal re-

moval in a jar-test apparatus. Our main interest lies in the coalescence-fragmentation

process. The characteristics of interest are the floc-size distribution, interactions be-

tween flocs, and the ability to reproduce some states like the gelation state of the

model or steady states in which the flocs reach sizes to easy remove them. Our model

introduces a basic feature of a global instability threshold h̄∗ that can be interpreted

as a physical constant that acts on all of the flocs in the system, similar to those

used in models for sandpiles [8], earthquakes [77, 82] and fracture of materials [43].

To our knowledge, only Almaguer et al. [4] adds such a mechanism in their one-

dimensional automaton but they are only able to capture some parts of the floc-size

distribution in some state and did not validated their model. We validate our model

with the analysis of the solutions obtained by Wattis [118] and a new proposed dif-

ferential equation models that use the global instability threshold h∗ to simplify the

interactions between flocs. The choice of a macroscopic automaton is motivated by

the goal to simulate large-scale systems. We perform an extensive analysis of the

parameters to better adjust our multi-dimensional model to the experimental data.

Also, we are able to reproduce the temporal evolution of floc of larger sizes that are

easy to remove as in the laboratory experiments.



Chapter 4

Methodology

In this chapter, we discuss the methodology of the thesis. In particular, we describe

the laboratory data for the case study of removing heavy metals from wastewater

with a coalescence-fragmentation process, controlling the agitation time and speed.

This data is our baseline against which the proposed models are compared, as we

seek to precisely capture the behavior of the process in the laboratory.

First, in Section 4.1, we describe the data and how it was obtained as well

as its statistical characteristics. Next, in Sections 4.2.1, 4.2.2, and 4.3 we propose

three mathematical models for the coalescence-fragmentation process. The first

model is a numerical approach that involves differential equations based on the

coalescence-fragmentation process described in Chapter 2. The second model is the

generalization of a one-dimensional cellular automaton described by Almaguer et al.

[4]. The third model is a novel approach with Markovian analysis using an urn

model.

39
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4.1 Case Study: Wastewater Removal

The industry wastewater with presence of heavy-metal floc is an issue of human

health [109]. Inadequate treatment of industrial sludge results in contamination of

rivers, oceans, and drinking water sources that represents a danger to the ecosystem.

Nevertheless, in some developing countries, the industry generates large amounts of

poorly treated wastewater because of the lack of regulations for environmental care

[22, 101]. Hence the removal of heavy-metal flocs that is both efficient and cost-

effective is important [101, 109].

We focus our work on the removal of heavy metals through coalescence and

fragmentation controlling agitation time and speed. The experimental data is from

a jar-test apparatus (see Figure 2.1), where controlling a rotor moving a paddle

regulates the agitation speed (a timer to control the agitation time is also included)

and the samples are placed into the jars to commence the treatment. The test sample

is based on the typical chemical composition of galvanic-industry wastewater. A

concentrated solution is used to prepare the treatment dissolution. First, to start

the heavy-metals removal process, sodium hydroxide is added to raise the pH of the

dissolution until a pH = 10 is reached, while stirring at 150 rpm.

Next, a coagulant substance is added and the agitation speed is decreased to

either 20 or 40 rpm, depending on the adjusted parameters of the test. The pH is

neutralized again to pH = 10. The solutions are prepared using salts of either zinc

chloride — Zn(II) at concentration of 750 mg/L — or iron chloride — Fe(III) at

concentration of 200 mg/L — in one liter of distilled water.

Two data sets from a jar-test apparatus are considered. The first data set is

from Almaguer et al. [4]. The second data set is from a laboratory experimentation
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of longer duration than the first data set to observe when the particles start to

aggregate, and also when the fragmentation process begins, as our analysis of the

first data set indicates that the latter does not occur in most of that data.

Data Set 1: A two-level factorial design was carried out, using the salt (zinc versus

iron) and the agitation speed (20 versus 40 rpm) as the two factors. Three

replicas were conducted for each of the four combinations. The total agitation

time for each experiment was set to ten minutes.

Data Set 2: A single experiment was carried out, using the iron salt and the ag-

itation speed 25 rpm. One single replica was conducted. The total agitation

time for the experiment was set to thirty minutes.

For both sets, every minute a sample of 10 mL was obtained and left to dry.

After that an optical microscope1 was used to measure the floc-size distribution

in the sample. The distribution is quantified in terms of bins of five units each,

determined by the laboratory equipment, the first bin being 10–15 due to lack of

sensitivity. Examples of the obtained images are given for the first and the second

data set in Figures 4.1 and 4.2, respectively. In both cases, several large flocs emerge

after a period of constant agitation. This effect is desirable as the presence of large

flocs promotes sedimentation and thus facilitates the removal.

The equipment has a minimum agitation speed of 5 rpm and a maximum agi-

tation speed of 150 rpm. We carried out initial experiments with different agitation

speeds in this rage. When the agitation is too fast (higher than 120 rpm) the frag-

mentation begins to dominate and only small flocs form. If the agitation is too slow

(less than 20 rpm) the coalescence becomes scarce and no relevant floc formation is

1Brand: Olympus, Model: BX60F5.
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(a) 1 minute (b) 3 minutes (c) 5 minutes

(d) 7 minutes (e) 10 minutes

Figure 4.1: Microscopic images of the flocculation process, for the data set 1, ob-
served at five different agitation times for iron chloride at an agitation speed of 20
rpm.

appreciated during the first 10 minutes but instead several hours are required for

interesting behavior to emerge.

Each microscopy image sample from each minute is processed using a compu-

tational vision methodology in order to obtain the laboratory floc-size distribution.

First, the image is transformed to its monochromatic version: we interpret white

pixels as background and use the number of black pixels as a measure of floc size.

Next, for each black area in the image (adjacent black pixels), the number of black

pixels in the image is computed to do a depth-first search; when all the black areas

are identified, we estimate the floc-size distribution for each sample. We consider

that the ideal scenario for the easy removal of the flocs occurs when there are many

flocs larger than fifty micrometers. In microscopic images, fifty micrometers is equal

to forty-one pixels. The computer-vision method records the absolute frequencies

that are then normalized to relative frequency.
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(a) 1 minute (b) 8 minutes (c) 16 minutes

(d) 24 minutes (e) 30 minutes

Figure 4.2: Microscopic images of the flocculation process, for the data set 2, ob-
served at five different agitation times for iron chloride at an agitation speed of 25
rpm.

We are interested in floc-size distributions where the frequency of floc-size is a

function of the floc size that gives rise to a power-law shape. This behavior is seen

in the laboratory floc-size distributions (see Figure 4.3). In a power law, a straight

line with a good fit appears on a plot of one quantity in the x axis (the floc size)

versus other quantity in y axis (the normalized frequency), both in logarithmic scale.

Therefore, we perform a linear regression on log-log plots to determine the goodness

of fit in term of R2 (how good the fitted line explains the floc-size distribution) and

the exponent of the power law (i.e. the slope of the fitted line). Once the goodness

of fit is obtained, we can determine the presence of a power law and its shape.

Also, we are interested in shapes of the distributions with negative values

(closer to zero) of slope because these values are observed in the laboratory floc-

size distribution of all experiments where large flocs are present to easily remove

them (see Figure 4.3). As not all agitation speeds leads to large flocs, the shape of

the power-law shape of the floc-size distribution is restricted to certain forms and
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Figure 4.3: Experimental floc-size distribution for iron chloride at an agitation speed
of 40 rpm after seven minutes of agitation. Both axes are in logarithmic scale.

negative values of the slope.

An example of the power-law shape from a floc-size distribution of the first

data set in the seventh minute of the experiment showed in the microscopy images

of Figure 4.1 is given in Figure 4.3 with R2 is 0.92 and the slope is −2.57.

4.2 Probabilistic Models

In this section, we formulate a multi-dimensional extension of the one-dimensional

automaton of Almaguer et al. [4] and a novel urn model that are based on the

behavior of the coalescence-fragmentation process. For each model, the relevant

concepts, considerations, and parameters are described. For the automaton, we

discuss initial conditions, rules of interaction, and stopping criteria. For the urn

model, the probabilistic models for coalescence and fragmentation are presented.
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4.2.1 Multi-Dimensional Cellular-Automaton Model

The proposed automaton is an n-cell d-dimensional lattice with two types of border

conditions — cyclic2 or regular3 — and the cell coordinates are represented as d-

element integer vectors. Two cells are neighbors if and only if their coordinate

vectors differ by exactly one unit in exactly one position.

An integer-valued state variable hc is assigned to represent the floc size at each

cell c of the lattice. The units that form the flocs are called particles. To initialize

the automaton, a total of m particles in the n cells of the lattice are placed, resulting

in an average floc size h̄ = m/n.

The rules, adapted from Almaguer et al. [4], govern the change of each cell

c between the current state and the next state of the automaton. These rules are

specified in terms of the floc size hc of each cell, the average floc size h̄ (stability

threshold to model the critic size that is when the flocs start the fragmentation

process), a coalescence rate f (to model the solution), and a fragmentation rate v

(to model the agitation speed). To provide an homogeneous update for all cells, we

rely on a discrete global clock, giving rise to synchronous behavior. The primary

unit of the clock is called step. Therefore, the evolution of the automaton is carried

out step by step until a certain step is reached. The visual representation for a

two-dimensional model in a steady state is given in Figure 4.4.

The parameter v represents floc instability: when v → 1, only flocs of sizes be-

low or equal to the average floc size h̄ are stable. The parameter f , on the other hand,

represents floc stabilization: floc growth depends on f when v < 1. Our threshold is

chosen based on the following experimental observation: with fast agitation, highly

2For example, in a one-dimensional automaton, the first cell is adjacent with the last cell.
3For example in two-dimensional automaton, cells at the four corners of the lattice only have

two neighbors and the cells along the four borders that are not corner cells have three neighbors.
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Figure 4.4: A visualization of a stationary state of a two-dimensional automaton.
The area of each dot is linearly proportional to the floc-size of the cell.

stable flocs of minimal mesoscopic sizes dominate. From the assumption of mass

conservation, the threshold being defined in terms of the average floc size h̄ follows

from v = 1 corresponding to the maximum agitation speed.

In the following sections the initial conditions, and the update schemes for the

automaton are described.

4.2.1.1 Initial conditions

Different initial conditions were implemented for the automaton, among which we

chose one for each experiment. Detailed analysis of the impact of initial conditions

are left to future work. We proceed to describe the initial conditions. The condition

is named with the word init before the number. The description for each initial

condition is presented next.
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init1: Place uniformly at random a total of m particles in the n cells of the lattice,

resulting in an average floc size h̄ = m/n.

init2: Place k particles in each cell c, resulting in an average floc size h̄ = k.

init3 Place at each cell c a number of particles chosen uniformly at random between

zero and ten.

init4 First, set the average floc size h̄ and the total number of cells n. Then, the

total particles m are obtained by multiplying the average floc size with the

total n cells given by m = h̄n. Next, for each particle a cell c is chosen at

random from the n cells to receive one particle, repeating until all particles

have been assigned to a cell.

init5 For each cell, draw the number of particles to be placed at that cell at random

according to the laboratory-obtained floc-size distribution.

init6 Load the floc size at each cell from a saved state of the automaton.

4.2.1.2 Update schemes

The update schemes of the cellular automaton are based on a discrete global clock

that provides homogeneously an update signal for all cells: at each step all cells

update their states synchronously (an update of each cell to a new state depends on

a previous state of all its neighbors cells) or asynchronously (an update of a cell to a

new state impact all its neighbors cells in the previous state) according to the set of

rules. We only consider the asynchronously update scheme for our experiments and

leave to future experimentation the analysis of including the other update schemes.

The description of the two update schemes of the cellular automaton are presented.
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Asynchronous At each step, each cell c updates asynchronously its receptions or

transfers according to the Rules 1A and 2A, the state variable hc of the cell c, and

its neighbors in the present state. The asynchronous update scheme is performed in

such a way that the new state of a cell c affects the calculation of states in neighboring

cells of the cell c itself.

Rule 1A: if hc ≤ h̄ then, with probability v, cell c absorbs the ⌊h̄⌋ − hc excess of

each of its neighbors.

Rule 2A: if hc > h̄ then, with probability f ·(1−v), the cell c absorb all the particles

of all of its neighbors (as in Rule 1A); otherwise the cell transfers a fraction

uniformly at random of its ⌊h̄⌋−hc excess particles, choosing the receptor cell

uniformly at random among its neighbors.

Synchronous According to the Rules 1S and 2S, first each cell c prepares by

scheduling its receptions and transfers according to the values of the state variables

of the cell itself and its neighbors in the present state, after which the schedules

receptions and transfers are executed, thus updating the state variables for the next

state.

Rule 1S: if hc ≤ h̄ then, with probability v, cell c schedules an absorption of all the

particles of all of its neighbors.

Rule 2S: if hc > h̄ then, with probability f · (1− v), the cell c schedules receptions

(as in Rule 1S); otherwise the cell schedules for transfer each of its ⌊h̄⌋ − hc

excess particles, choosing the receptor cell for each particle independently and

uniformly at random among its neighbors.

Any transfer decisions are canceled if the transferring cell’s particles are schedules

for absorption by a neighboring cell.
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For any of the update schemes, at the end of the simulation, the absolute floc-

size distribution is obtained and normalized into a relative floc-size distribution. In

order to be consistent with laboratory data that no record of flocs below size 10

due to lack of sensitivity of the equipment, we can strip the smallest flocs from the

simulated distributions. The initial bin includes the floc sizes from 10 to 15. In the

automaton, the smaller flocs (flocs with a floc-size less than 10) exist, but there are

not included in the floc-size distribution to be consistent with the laboratory data.

We observe in our initial experiments that using the average floc size h̄ leads

to poor results, meanwhile using the average floc size calculated in the local neigh-

borhood of cell c improve the behavior. We leave to future exploration the results of

the comparison between the global average floc size h̄ and the neighborhood average

floc size. We also leave as future work an alternative implementation of the Rules

1A and 2A: first each cell mark its state as a idle (do nothing), receptor (wiling to

receive particles), or donor (share particles). Last, the donors examine their neigh-

bors share an even part of their excess particles and calculate how many receptors do

they have and share an even part of its particles to each neighbor that is a receptor.

The receptors do not actively absorb, but instead passively receive from the donors.

4.2.2 Urn Model

Our proposed urn model has an urn for each floc size (technically from one to infinity,

but in a practical implementations only the floc sizes present in the system need to

be stored). We denote the number of flocs of size u by ρu. The update rules for the

urns are formulated in terms of a threshold h∗, a fragmentation parameter ϕ, and a

fragmentation parameter ξ. The threshold h∗ is a parameter that can be set to any

value; we propose h∗ = h̄, i.e., using the average floc size as a stability threshold.
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Note that the parameter ϕ has a function similar to that of v in the automaton,

whereas ξ acts similar to f . The initialization of the urn model can be done with

different methods as in the cellular automaton: i.e., place a total of m number of

particles into the urn of floc-size one, or create n urns and place particles uniformly

at random in each urn u yielding the initial value of ρu. The rules are as follows:

Fragmentation Rule: Each floc of size u breaks into two with probability pf(u,ϕ)

pf = 1 + exp

(

−u− h∗

ϕ

)

. (4.1)

Equation (4.1) has the shape of a sigmoid function (see Figure 4.5). The sizes

of the two resulting flocks are uniformly distributed (although this distribution

may also be varied to alter the behavior of the model).

Coalescence Rule: Each floc of size u joins an aggregation list with probability

pa(u, ξ, s), where s is the fraction of remaining salt

pa = ξs exp (−su). (4.2)

Equation (4.2) has the shape of an exponential distribution (see Figure 4.6).

The Pairs are drawn uniformly at random of the aggregation list that combines

the flocs of all sizes that entered the list. Each pair is joined into a new, larger

floc and a salt is consumed. When no more salt is available, the aggregation

ceases. Each aggregate between two flocs consumes a unit of salt. Any flocs

remaining in the aggregation list after the salt runs out are returned to their

original urns.

Experiments with this model are left to future work, although our initial tests

show promise in terms of precision, flexibility, and efficiency.
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Figure 4.5: Example of a sigmoid function.
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Figure 4.6: Example of an exponential distribution.

4.3 Differential Equation Model

The proposed differential equation model is based in the behavior of the coalescence-

fragmentation process when a external force is added. The expected behavior is that

the flocs4 above a stable size are unstable and can be fragmented. If the flocs are

below a stable size only coalescence of flocs can occur. This behavior is represented

in our model using the stable size h∗. If a floc of size n is above h∗ can be separated

into two flocs of sizes i and j, being one of them barely closer to the stable size h∗.

4The flocs are clusters of size n being n the number of particles.
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The fracture is similar to the microscopic behavior where the floc of size n transfers

its excess from h∗. We assume that the stable size h∗ in the differential equation

model represents the average floc size h̄ although it could take on arbitrary values.

The inclusion of the stable size h∗ simplifies the fragmentation F and coales-

cence A terms of the Smoluchowski-type model as Equation (1.1) on page 2. In

order to include multi-particle exchanges that are present in the general Smolu-

chowski equation, it is necessary to include two regimens in terms of the stable size

h∗:

n = i+ j > h∗ : (4.3)

dρn
dt

=
1

2

∑

i+j=n

Ai,jρiρj −
∞
∑

j=1

An,jρnρj −
F

2
ρn + Fρn+h∗ .

n = i+ j ≤ h∗ :

dρn
dt

=
1

2

∑

i+j=n

Ai,jρiρj −
∞
∑

j=1

An,jρnρj .

Equation (4.3) is a Smoluchowski-type balance equation and describes the evolution

of the density of a floc ρn according to the densities ρi and a stable size h∗. The

coalescence kernel Aij is the reaction rate for an aggregation of a floc size i floc with

a floc size j, and the fragmentation kernel F is the constant reaction that simplify

the interactions of floc sizes i and j. In both regimes, the multiplier 1
2
is included to

eliminate double counting the interactions of floc sizes i and j (for example, 1+2 = 3

and 2 + 1 = 3 for n = 3).

The combinatorial and exponential growth of Equation (4.3) persist on the

coalescence rate but not in the fragmentation rate as the interactions of flocs are

canceled with the inclusion of the stable size h∗. To simplify the coalescence inter-

actions between flocs, the separability of the densities ρ on Equation (4.3) and two

assumptions on the coalescence rate are considered.
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4.3.1 Constant Coalescence Rate

The first assumption used to simplify the model of Equation (4.3) is that the coa-

lescence rate is constant Ai,j = A, yielding

n = i+ j > h∗ : (4.4)

dρn
dt

=
1

2
A

n−1
∑

j=1

ρjρn−j − A
∞
∑

j=1

ρnρj −
F

2
ρn + Fρn+h∗,

n = i+ j ≤ h∗ :

dρn
dt

=
1

2
A

n−1
∑

j=1

ρjρn−j − A

∞
∑

j=1

ρnρj .

The system of couple ordinary differential equations in Equation (4.4) can be rep-

resented as single partial differential Equation (4.5) using a transformation (Z-

transform) with a generating function ρ̂(z, t) =
∑

∞

n=1 ρn(t)z
−n

∂ρ̂(z, t)

∂t
=

A

2
ρ̂2(z, t)− ρ̂(z, t)

[

Aρ̂(1, t) +
F

2
(1− 2zh

∗

)

]

− F

h∗
−1

∑

j=1

ρjz
h∗

−j. (4.5)

The solution of Equation (4.5) admits stationary solutions,

ρ̂(z) = ρ̂(1) +
F

2A
(1− 2zh

∗

)±
1

2

√

√

√

√

[

2ρ̂(1) +
F

A
(1− 2zh∗)

]2

+ 8

(

F

A

) h∗
−1

∑

j=1

ρjzh
∗
−j,(4.6)

where

ρ̂(1, t) =
F

2A
±

1

2

√

√

√

√

(

F

A

)2

− 8

(

F

A

) h∗
−1

∑

j=1

ρj , (4.7)

is the total number of flocs in the system.

In the stationary regime of Equation (4.5), a normalization factor 1/ρ̂(1) and

the derivatives of the characteristic function are used to obtain the first two moments
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— mean ⟨n⟩ represented by Equation (4.9) and variance ⟨n(n + 1)⟩ represented by

Equation (4.9) — of the stationary floc-size distribution:

⟨n⟩ =
−1

ρ̂(1)

dρ̂

dz
|z=1, (4.8)

⟨n(n + 1)⟩ =
1

ρ̂(1)

d2ρ̂

dz2
|z=1. (4.9)

Applying Equations (4.9) and (4.9) into Equation (4.5) result in a closed system:

−Aρ̂(1) ⟨n⟩+ ⟨n⟩
[

Aρ̂(1)− F

2

]

+ Fh∗ − F

ρ̂(1)

h∗
−1

∑

j=1

(h∗ − j)ρj = 0, (4.10)

Aρ̂(1) ⟨n(n+ 1)⟩+ Aρ̂(1) ⟨n⟩2 − 2Fh∗ ⟨n⟩

− ⟨n(n + 1)⟩
[

Aρ̂(1)− F

2

]

+ [Fh∗(h∗ − 1)]

− F

ρ̂(1)

h∗
−1

∑

j=1

(h∗ − j)(h∗ − j − 1)ρj = 0.

Isolating the two moments on the closed system in Equation (4.10), we obtain

1

2
⟨n⟩ = h∗ − 1

ρ̂(1)

h∗
−1

∑

j=1

(h∗ − j)ρj , (4.11)

1

2
⟨n(n + 1)⟩ = 2 ⟨n⟩ h∗ − A

F
ρ̂(1) ⟨n⟩2 − h∗(h∗ − 1)

+
1

ρ̂(1)

h∗
−1

∑

j=1

(h∗ − j)(h∗ − j − 1)ρj .

We introduce auxiliary notations

α ≡ 1

ρ̂(1)

h∗
−1

∑

j=1

ρj , (4.12)

β ≡ 1

ρ̂(1)

h∗
−1

∑

j=1

jρj , (4.13)

γ ≡ 1

ρ̂(1)

h∗
−1

∑

j=1

j2ρj (4.14)
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in order to express Equation (4.11) as

⟨n⟩ =
h∗(1− α)

1
2
− β

, (4.15)

〈

n2
〉

(1− 2γ) = ⟨n⟩ (4h∗ − 1)− 2A

F
ρ̂(1) ⟨n⟩2 − 2h∗(h∗ − 1)

+2(αh∗2 − 2βh∗ ⟨n⟩ − αh∗ + β ⟨n⟩).

The first two moments of the stationary floc-size distribution are defined in Equation

(4.15) when 0 < α < 1, 0 < β < 1/2, and γ > 1/2. Also, the mean ⟨n⟩ shows a linear

growth in terms of h∗ and the variance ⟨n2⟩ shows a second-order polynomial growth

in terms of h∗. If F/A is closer to zero but non zero, the mean and variance are large

and diverge which correspond to the limit F/A → 0, ρ̂(1) → 0, and β → 1/2. The

presence of stationary state under these conditions occurs in finite time; to explain

this behavior consider F/A ≪ 1 and the use of Equation (4.7),

F

A
=

1

1− 2
α

∑h∗
−1

j=1 ρj
. (4.16)

The consideration F/A ≪ 1 implies that the sum
∑h∗

−1
j=1 ρj ≪ ρ̂(1, t),

dρ̂(1, t)

dt
= −A

2
ρ̂2(1, t) +

F

2
ρ̂(1, t), (4.17)

leading to

ρ̂(1, t) =
F

A[1− e−(F
2
)t]
. (4.18)

Therefore, a stationary state at F/A ≪ 1 with large mean and variance is obtained

in the system described on Equation (4.11) under the time tc ≈ 2
F
. This kind of

behavior is absent when pure coalescence model is considered, as a gelation transition

occurs at infinite time; that is, the formation of a superparticle, also known as gel.
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4.3.2 Additive and Multiplicative Coalescence Rates

The second assumption used to simplify the model of Equation (4.3) is that the

coalescence rate A is additive Ai,j = A(i + j)/2 or multiplicative Ai,j = Aij. The

resulting system of equations for both additive and multiplicative are presented. The

first two moments on the results of these systems are not defined, but however some

important features of the stationary states can be derived.

First, the additive case Ai,j = A(i+ j)/2 leads to,

n = i+ j > h∗ : (4.19)

dρn
dt

=
An

4

n−1
∑

j=1

ρjρn−j −
Anρn
2

∞
∑

j=1

ρj −
Aρn
2

∞
∑

j=1

jρj −
F

2
ρn + Fρn+h∗ .

n = i+ j ≤ h∗ :

dρn
dt

=
A

4

∑

i+j=n

(i+ j)ρiρj −
A

2

∞
∑

j=1

(n + j)ρnρj .

The system of couple ordinary differential equations in Equation (4.19) can be rep-

resented as single partial differential Equation (4.20) using a transformation (Z-

transform) with a generating function ρ̂(z, t) =
∑

∞

n=1 ρn(t)z
−n

∂ρ̂(z, t)

∂t
= −A

2
zρ̂(z, t)

∂ρ̂(z, t)

∂z
+

A

2
zρ̂(1, t)

∂ρ̂(z, t)

∂z
− A

2
M1(t)ρ̂(z, t) (4.20)

−F

2
(1− 2zh

∗

)ρ̂(z, t)− F

h∗
−1

∑

j=1

ρjz
h∗

−j,

where M1(t) ≡
∑

∞

j=1 jρj is the total mass of the system. Introducing the mean ⟨n⟩

in Equation (4.20) leads into a stationary state defined as

⟨n⟩ = F

A

[

1− 2

(

∑h∗
−1

j=1 ρj

ρ̂(1)

)]

, (4.21)
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when the condition ρ̂(1) > 2
∑h∗

−1
j=1 ρj is given.

Second, the multiplicative case Ai,j = Aij leads to

n = i+ j > h∗ : (4.22)

dρn
dt

=
1

2

∑

i+j=n

ijρiρj −
∞
∑

j=1

njρnρj −
F

2
ρn + Fρn+h∗,

n = i+ j ≤ h∗ :

dρn
dt

=
1

2

∑

i+j=n

ijρiρj −
∞
∑

j=1

njρnρj ,

with the associated single partial differential function,

∂ρ̂(z, t)

∂t
=

A

2
z2

[

∂ρ̂(z, t)

∂z

]2

+ AzM1(t)
∂ρ̂(z, t)

∂z
(4.23)

−F

2
(1− 2zh

∗

)ρ̂(z, t)− F
h∗

−1
∑

j=1

ρjz
h∗

−j .

The study of pure coalescence case (F = 0) displays a number of interesting behav-

iors [118], but our interest lies in F > 0 and the emerging stationary states. This

behavior is obtained by introducing the definition of the mean ⟨n⟩ into Equation

(4.23),

⟨n⟩ =

√

√

√

√F

A

[

∑h∗
−1

j=1 ρj − 1
2
ρ̂(1)

]

ρ̂(1)
[

1
2
ρ̂(1)− 1

] . (4.24)

A stationary state of the floc-size distribution is shown in Equation (4.24) as the

system is concentrated in a finite number of flocs constricted to the interval 2 ≤

ρ̂(1) ≤ 2(h∗ − 1).
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Computational Experiments

In this chapter, we discuss implementation of our cellular automaton model as well

as the design and the results of computational experiments to validate, compare, and

explore this implementation. First, in Section 5.1 the computational implementation

of the cellular automaton is presented. Next, in Section 5.2 the experimental setup

of the cellular automaton is presented. Later, in Section 5.2.1 the validation of our

cellular automaton using the analysis and hypothesis of the Smoluchowski Equation

presented by Wattis [118] and the analysis of our differential-equation model. After

that, in Section 5.2.2 the comparison of our cellular automaton approach with the

experimental data is shown. Finally, in Section 5.2.3 a large-scale exploration of

the parameter space of the proposed multi-dimensional automaton is documented to

characterize the relation between f , v, d, and the similarity between simulated and

laboratory data.

58
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5.1 Implementation of the Cellular

Automaton Model

The cellular automaton model is implemented in Python1 and executed using

PyPy2. We analyzed and improved the efficiency by the implementation follow-

ing the methodology presented by Gorelick and Ozsvald [49].

The model implementation allows for the dimension d ≥ 1 to take arbitrary

integer values, but we restrict our reported experimentation to 1 ≤ d ≤ 5 as we

saw little change in behavior as we increased the dimension further in our initial

experiments.

We chose an object-oriented approach to implement the cellular automaton

due to the nature where interactions between particles occurs. Each cell is an object

with an unique label according to the order they are created. Also, the cellular

automaton is an object that controls the cells. The total number of cells t is given

as a parameter and k(1) × k(2) × . . . × k(d) regular lattice is formed where kd is as

close as possible to n.

The cellular automaton is represented with a Python class. The input param-

eters are the total desired numbers of cells t and the dimension d for the automaton.

The actual number of cells is obtained as n = ⌈ d
√
t⌉d in order to have the same range

of coordinates in all of the dimensions.

The objects representing cells are assigned unique numeric labels ℓ = 0, 1, . . . ,n−

1 and are stored in a dictionary object within the automaton. We use the rank and

unrank functions provided in Algorithms Algorithm 1 and 2, respectively, to map be-

1http://www.python.org/
2http://pypy.org/



Chapter 5. Computational Experiments 60

tween cell labels and their coordinate vectors, thus not having to store the coordinate

vectors in memory.

Algorithm 1 Label to Coordinates (ℓ, d, k)

1: c⃗ ← ∅
2: p ← kd−1

3: while p ≥ 0 do

4: i ← ℓ/p
5: ℓ ← ℓ− i ∗ p
6: c⃗i ← i
7: return c⃗

Algorithm 2 Coordinates to label (⃗c, d, k)

1: ℓ ← 0
2: p ← kd−1

3: for i ∈ c⃗ do

4: ℓ ← ℓ+ i ∗ p
5: p ← p/k
6: return ℓ

The simulation is initiated by a routine of the automaton class that receives

as input the values for f and v, the number of steps to compute, and the num-

ber of replicas. Each replica is initiated in the same state. We initialize each cell

with rule init1 (see page 46) and the automaton computes m as the total number

of particles over all of the cells, then computing h̄ = m/n and storing this con-

stant as an attribute. The Rules 1A and 2A (see page 48) are implemented as

subroutines of the cell. The implementation is available in a public repository at

https://luisbvzz@bitbucket.org/luisbvzz/proyecto-doctorado.git.

5.2 Experimental Setup

First, to validate our probabilistic cellular automaton, we chose the theoretical anal-

ysis of the Smoluchowski equation as represented by Equation (1.1) in page 2, for-
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mulated by Wattis [118]. We set the step count high enough to reach the gel state

(although this turned out to be impossible in the one-dimensional case). Our sec-

ond experiment is a comparison of our one-dimensional case to the one-dimensional

automaton of by Almaguer et al. [4].

Our final experiment consists in a parameter-space exploration to determine

which values of f and v yield the best quantitative agreement with laboratory data,

for which we propose a similarity measure to compare two steady states expressed

in different units of time and size, as the laboratory data is in terms of minutes

and pixel counts and the model data in terms of simulation steps and modeled floc

sizes. Our proposed similarity measure is based on statistical properties of centrality

and dispersion (captured by mean and standard deviation as the data mostly agrees

with a normal distribution) of the relative proportion of large flocs after reaching

the steady state. We use 50 micrometers as the threshold of a large floc for the

laboratory data and a particle count of 50 for the simulation data, although the

varying the values of the thresholds does not seem to alter the conclusions; we leave

to future work a sensitivity analysis of adjustments to these thresholds.

Next, in Section 5.2 the experimental setup to validate our approaches is pre-

sented. After that, the comparison of our cellular automaton approach with the

experimental data is shown. Finally, a large-scale exploration of the parameter space

of the proposed multi-dimensional automaton is documented to characterize the re-

lation between f , v, and the similarity between simulated and laboratory data.

The execution of all experiments are on a computer with 8 Intel Xeon cores at

3.4 GHz, 16 GB of RAM, using a 64-bit Ubuntu 14.04 LTS operating system.



Chapter 5. Computational Experiments 62

5.2.1 Validation

In the following sections, to validate our cellular automaton model we perform the

comparison with the analysis of Equation (1.1) on page 2 presented by Wattis [118]

where a gel state is reached, and the expected behavior as seen in our differential-

equation model represented by Equation (4.3) on page 52.

5.2.1.1 Analysis of the Smoluchowski Equation

In order to validate our cellular automaton model, a comparison was performed

with the analysis and hypothesis of the Smoluchowski Equation — as represented

by Equation (1.1) on page 2 — presented byWattis [118]. In the analysis, Wattis uses

concentration cr to refer the density ρn. One particular case of Equation (1.1) is when

only the coalescence process is present. The elimination of terms of fragmentation in

Smoluchowsky equation represented by Equation (1.1) on page 2 leads to a equation

known as Smoluchowsky Coalescence equation:

dρn
dt

=
1

2

∑

i+j=n

[ρiρjAi,j]−
∞
∑

j=1

[ρnρjAn,j] . (5.1)

Wattis presents different phase transitions of Equation (5.1). The theoretical analysis

of Equation (5.1) presented by Wattis [118] focuses in the mass flux of the system

Jn (flux of flocs with sizes less than k to flocs of larger sizes than k):

Jn =
n

∑

j=1

[

∞
∑

i=1

ai,jρi

]

jρj , (5.2)

where the constant jρj is the total mass of size j and
∑

∞

i=1 ai,jρi is the encounter

rate of sizes i and j. A visual representation of the mass flux Jk is shown in Figure
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(a) State Jk (b) State Jk+1

Figure 5.1: Visual representation of the mass flux of Jk to Jk+1. The Figure 5.1a is
a state where flocs from sizes less or equal than k (Jk) are present. When the mass
flow occurs, the state Jk+1 emerges (Figure 5.1b), where floc sizes k + 1 (Jk+1) are
present.

5.1. If the existing flux of mass is out of the system, theoretically a superparticle (a

floc of infinite size) is formed. The superparticle is also known as gel. It is assumed

that the time to reach gel state in the system as the time tends to infinity according

to the analysis presented by Wattis [118].

Theoretically a cellular automaton can reach a stationary state without de-

pending on the initial state. To be consistent with the assumptions in the analysis

made by Wattis [118]: to start the automaton, a total of n cells with a floc size of

one (the density floc-size of one is equal to one, ρ1 = 1) are created, the parameter

f is fixed to f = 1 (pure coalescence), v = 0.001 (low fragmentation rate), and the

simulation stops when any cell c contains the floc of size n (gel state is reached).

The total number of cells n for each dimension was set to n = kd, where d is the

dimension and k = ⌈ d
√
t⌉, setting t = 1 000. A total of ten replicas are performed for

dimensions from two to five; the logarithm boxplot of the number of steps needed

to reach gel state are shown in Figure 5.2 for each dimension. The one-dimensional

is not included due to its inability to reach the gel state within the 230 steps (we

attempted increasing the step count but saw no progress towards a gel state for the

one-dimensional case). As shown in Figure 5.2, the number of steps required for
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Figure 5.2: Comparison between four dimensions reaching a gel state as a function
of the steps. The one-dimensional automaton is not presented because it cannot
reach the gel state. For the two-dimensional automaton, all but one repetition reach
the gel state.

reaching the gel state decreases as the dimension of the automaton increases.

The hypothesis for the behavior of the cellular automaton is that its structure

in higher dimensions increases the number of interactions between neighbors and

are better to correspond the turbulence effect of a fluid with external agitation. For

example, in a one-dimensional automaton each cell c has two neighbors, but in five-

dimension automaton, the number of neighbors is increased to ten. As the number

of neighbors increases, the distance between cells is reduced — Figure 5.3 shows the

average Manhattan distance3— in the automaton as a function of the dimension.

5.2.1.2 Differential Equation Model

To validate the proposed cellular automaton model, we present the comparison of

the analysis of our differential-equation model represented by Equation (4.3) on page

52 with the behavior of our cellular automaton. The cellular automaton model is

a counterpart of the constant kernels of coalescence A and fragmentation F of our

3The sum of all the absolute values of the differences between the coordinates.
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Figure 5.3: Average Manhattan distances between cells as a function of the dimen-
sion of the automaton. The total number of cells n for each dimension is set to
n = kd where d is the dimension and k = ⌈ d

√
t⌉.

differential-equation model.

To compare both models, we consider the following assumptions for the au-

tomaton: the average floc-size h̄ represents the stable floc size h∗ in the model of

Equation (4.3) on page 52, the coalescence rate f in the automaton represents the co-

alescence kernel A, and the fragmentation rate v represents the fragmentation kernel

F .

The fragmentation rate v acts as the floc instability: if v → 1, the flocs of

sizes above the average h̄ are unstable and tend to fragment. The coalescence rate

f , on the other hand, acts as the floc stability: the growth of the flocs above the

average h̄ depends on f when v < 1. Therefore, based on the analysis of Equation

(4.3) on page 52 when the coalescence rate A is constant, the limit F
A
→ 0 — low

fragmentation rate and high coalescence rate — corresponds to f → 1, v → 0, and

the limit F
A
≫ 1 — high fragmentation rate and low coalescence rate — corresponds

to f → 0 and v → 1. According to the these analysis of both automaton and

differential-equation models, we present two different cases where the automaton

model capture the predicted behavior by our Smoluchowski-type model.
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The first case is when the fragmentation rate is high and the coalescence rate

is low (limit F
A
≫ 1) where the expected behavior of the first two moments of the

stationary distribution (mean and variance) of Equation (4.15) on page 55 is that the

mean grows linearly according to the stable size h∗ and the variance grows parabolic

according to the stable size h∗. Therefore, to obtain the same behavior of both the

mean and the variance with our automaton model, we vary the average floc-size h̄

in the automaton from two to five, and set the coalescence rate f = 0.1 and the

fragmentation rate v = 0.9, to be consistent with the limit F
A
≫ 1. In Figure 5.4 is

clearly shown how there is a linear dependence with the average floc-size h̄ and in

Figure 5.5 is shown that again the behavior is the same as the predicted by Equation

(4.15) on page 55 in terms of the stable floc size h∗.

The second case is when the fragmentation rate is low and the coalescence rate

is high (limit F
A
→ 0) where the expected behavior of the first two moments of the

stationary distribution (mean and variance) of Equation (4.15) on page 55 is that

they have large values. Therefore, to obtain the same behavior of both the mean and

the variance in the limit F
A
→ 0 with our automaton model, we variate the average

floc-size h̄ from two to five, set the coalescence rate f = 0.9, and the coalescence

rate v = 0.1. In Figure 5.6 is shown the large values of mean and variance relative

to h̄ as predicted by Equation (4.15) on page 55.

For both cases ten replicas are executed with 105 time steps of the automaton.

The number of steps that take the automaton was chosen as we observed that the

floc-size distribution is approximately stationary.
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Figure 5.4: Linear growth of the floc-size distribution mean of the automaton relative
to h̄. The figures correspond (from left to right, top to bottom) to h̄ = {2, 3, 4, 5}.
The automaton’s parameters are f = 0.1 and v = 0.9.
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Figure 5.5: Second-order polynomial growth of the floc-size distribution variance
relative to h̄. The setup is the same as in Figure 5.4.
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Figure 5.6: A stationary state with large mean and variance of the floc-size distri-
bution relative to h̄ = 3 is reported for f = 0.9 and v = 0.1.

5.2.2 Comparison with Previous Model

Our implementation of the multi-dimensional extension for one-dimensional automa-

ton can reproduce the same behavior observed in the laboratory distributions for big

flocs as reported by Almaguer et al. [4]. The comparison between the models is vi-

sualized in Figure 5.7. Each laboratory floc-size distribution is chosen at the seventh

minute of the experiment, each automaton-generated floc-size distribution is chosen

at the 106 step, the automaton is set to one dimension, and total number of cells to

1 000. To reproduce the behavior of the previous model presented by Almaguer et al.

[4], we used their assigned values for the step count, dimension, and parameters for

each case; these values are shown in Table 5.1.
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Table 5.1: Parameters of the simulation for the one-dimensional cellular automaton
as reported by Almaguer et al. [4].

Metal rpm v f
Iron 20 0.00317 0.8215
Iron 40 0.03770 0.6210
Zinc 20 0.02950 0.8440
Zinc 40 0.07390 0.6551

As the data of Almaguer et al. [4] was unavailable we extract the estimate

of the coordinate of the data points of the floc-size distribution illustrated in their

Figure 5 with a computational image processing coded in Python using the library

PIL. For both floc-size distributions it is assume that a steady state is reached in the

last step, 106. As there is no a quantitative unit that would permit scaling between

the floc sizes of the automaton and laboratory data, we compare the distributions

qualitatively using the shape of each distribution on a log-log scale. Figure 5.7 shows

that our model has good qualitative agreement with the both the previous model

and the laboratory data.

5.2.3 Parameter-Space Exploration

To characterize the relation between the coalescence rate f , fragmentation rate v,

the dimension d, and the similarity between automaton-simulated and laboratory

data in terms of the floc-size distribution we perform a large-scale exploration of the

parameter space of the proposed multi-dimensional automaton.

Before engaging in the exploration, we perform an analysis of the laboratory

experiments to quantitative explain the evolution in time of the floc-size distribution.

The analysis of the four metals — Fe 20 at rpm, Fe 40 rpm, Zn 20 rpm, and Zn

40 rpm — consists in determining the evolution of the floc-size distribution for each
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Figure 5.7: Comparison of the floc-size distribution between our one-dimensional
cellular automaton (solid line), the previous one-dimensional cellular automaton
from by Almaguer et al. [4] (dashed line), and the laboratory data (points). A
binned histogram where the frequency is presented in the vertical axis and the floc
size is presented in the horizontal axis. Both axes are in logarithmic scale. In our
one-dimensional cellular automaton, a gray scale is used to differentiate the three
replicas shown.

minute (1, 2, 3, 4, 5, 6, 7, and 10), specifically in terms of the proportion of flocs

greater or equal to fifty micrometers. The chosen size of fifty micrometers represents

the ideal scenario in which the removal of metals is efficient in wastewater treatment.

For simplicity, the flocs of size above or equal to fifty micrometers are referred as
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Table 5.2: Normality results for the Shapiro-Wilks test in each laboratory-
experiment data using the large flocs variation. In the Test column, the laboratory
experiment that do not pass the test is indicated with an × and those that pass the
test are indicated with a !.

Experiment p-value Test
Fe20rpm 0.03012 ×
Fe40rpm 0.63309 !

Zn20rpm 0.05692 !

Zn40rpm 0.79581 !

large flocs, and we denote the number of large flocs by n>50.

The evolution of the proportion of large flocs in each laboratory floc-size dis-

tribution is presented in Figure 5.8. It is assumed that all laboratory experiments

reach a steady state from the first minute. We want to compare the performance

of the laboratory and automaton floc-size distributions in terms of the steady state

evolution. A simplification in the variation of the steady state into an interval us-

ing the mean n̄>50
lab and the standard deviation σlab is performed. For a statistical

examination of the hypothesis we performed a test for normality of the laboratory-

experiment data using the Shapiro-Wilks test. The results of the test are presented

in the Table 5.2 showing that three of the four laboratory experiments pass the test

for normality4. We therefore assume that the proportion of large flocs during the

steady state is normally distributed.

To characterize the parameter space (f and v) and the dimension d of the

proposed multi-dimensional automaton, we perform a large-scale exploration. We

let both parameters f and v to take values from the set {0.1, 0.2, · · · , 0.8, 0.9} thus

yielding a 9 × 9 matrix of 81 parameter combinations, and the dimension to take

values from one to five. For each combination, the total number of cells n for each

4If the p-value is higher than the α = 0.05, the assumption of normality (null hypothesis) for
the tested distribution cannot be rejected.
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(b) Zn(II) experiment at speeds of 20 and 40 rpm

Figure 5.8: The four laboratory-experiment steady states in terms of the proportion
of large flocs. For each of the laboratory experiment, the speed of 20 rpm is indicated
as a solid line with points and the speed of 40 rpm is indicated as the dotted line
with squares.

dimension was set to n = kd where d is the dimension and k = ⌈ d
√
t⌉ with t = 1 000,

and five replicas were executed. We let the automaton take 105 step count to reach

the steady state for each of the simulations. To simplicity, each combination of

parameters, dimension, and replica is called a simulation s, abbreviated as sim.

We evaluate the effect of the parameter values in terms of the agreement of the

proportion of large flocs at the steady state between the simulated and the laboratory

data.

Our focus for each simulation is the same as in the laboratory experiments:
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Figure 5.9: The proportion of large flocs evolution an example simulation according
to the step count where a steady state and two outliers exist. The steady state is
represented by the black dashed lines with points and the outliers are drawn in a
gray dashed line with points.

the steady state. The number of flocs larger than the size of fifty particles n>50
sim is

obtained in all the simulations to be consistent with the laboratory experiments.

Also, the flocs of size fifty particles or above are also called large flocs for all simula-

tions. It is assume that a particle in the automaton is a micrometer in the laboratory

experiment to easily compare the simulations with the laboratory experiments.

We perform the following procedure to obtain the section of the steady state in

a simulation. First, the mean n̄>50
sim and the standard deviation σ>50

sim of the large flocs

of each simulation is obtained. Next, the absolute difference between the number

of large flocs n>50 and the mean of the number of large flocs n̄>50
sim at each step of

the simulation is calculated (∆n>50 = |n>50
sim − n̄>50

sim |). Finally, if a difference ∆n>50

is greater than the standard deviation σ>50
sim it is treated as an outlier5 and removed

of the simulation. A visual example of the proportion of large flocs evolution in a

simulation with the presence of steady state and outliers is shown in Figure 5.9.

Again, after remove the outliers for each simulation s, the mean n̄>50
sim and the

standard deviation σsim of the large flocs is obtained to be able to compare with the

5A value that falls outside the expected behavior of the steady state.
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Table 5.3: Normality results for the Shapiro-Wilks test in a sample of the simulation
data using proportion of large flocs data without outliers. In the Test column, the
simulations that do no pass the test are indicated with an × and those that pass the
test are indicated with a !.

Dimension f v p-value Test
1 0.7 0.1 0.6246 ×
1 0.8 0.2 0.1388 ×
1 0.9 0.2 0.0271 !

2 0.6 0.1 0.5517 ×
2 0.8 0.2 0.0205 ×
2 0.9 0.2 0.0125 !

3 0.6 0.1 0.6472 ×
3 0.9 0.3 0.3343 ×
3 0.9 0.2 0.0170 !

4 0.7 0.1 0.3115 ×
4 0.9 0.3 0.7766 ×
4 0.8 0.1 0.0001 !

5 0.6 0.8 0.0011 ×
5 0.7 0.6 0.3794 ×
5 0.7 0.1 0.0689 !

interval of the laboratory experiment data. Also, for each simulation s a Shapiro-

Wilks test for normality was performed. The results of the test are presented in Table

5.3 showing that the majority of the simulations pass the test which is consistent

with the results in laboratory data. Therefore, normality is assumed in the variation

of evolution in terms of the proportion of large flocs for all simulations. We leave for

future work: the exploration of every simulation where the assumption of normality

is not necessary due to the hypothesis that the variation on the velocity (rpm) may

be deviate from normality, and the definition of an alternative interval in terms of the

first and fourth quartile, or other pair of quartiles instead of the mean and standard

deviation.

After the demonstration of the statistical test to use a singular interval for both

laboratory and simulation data it is needed to measure some similarity between the
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laboratory experiments and the simulation. We propose a new similarity measure-

ment as other measurements were tested but fail to compare the distributions among

their evolution: the differences between the slopes and the R2 between the labora-

tory data and the automaton-produced floc-size distributions, and the Sum Squared

Error between the two distributions.

Before starting the definition of the proposed similarity measurement, it is

obtained for each experiment and each simulation, the length of the interval by the

subtraction of the upper value (mean plus the standard deviation) between the lower

value (mean minus the standard deviation). Using the assumption for normality in

both laboratory experiment and simulation data, the length of the interval is chosen

to be two times the standard deviation (ℓlab = 2σ>50
lab , and ℓsim = 2σ>50

sim ). Therefore,

the similarity measurement is defined in terms of the length of the laboratory ℓlab,

the length of the simulation ℓsim, and the presence of an overlap. An overlap exists

if the length of the simulation ℓsim and the length of the experiment ℓlab are one

above the other (see Figure 5.10a). No overlap exists if the intervals are separated

(see Figure 5.10b).

Our interest is that the overlap cover the whole laboratory interval and there

is no excess. If an overlap exists, the cover φ and the excess ξ are defined in terms of

its own the length ℓovl. Besides, the cover is defined in terms of the length laboratory

interval ℓlab, and the excess is defined in terms of the length simulation interval ℓsim.

Thus, the cover φ is obtained as a proportion between the length of the overlap ℓovl

and the laboratory interval ℓlab.:

φ =
ℓovl

ℓlab
. (5.3)

The maximum and minimum values of the cover φ in Equation (5.3) are one and

zero, respectively. The cover equal to one (φ = 1) indicates that the length of the

overlap is the same as the length of the laboratory-experiment interval (ℓovl = ℓlab).
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ℓlab ℓsim

ℓovl ℓexc

(a) An example with an overlap. The length interval in the simulation ℓsim

is larger than the length interval of the experiment ℓlab.

ℓlab ℓsim
(b) An example without an overlap. The length interval in the simulation
ℓsim is smaller than the length interval of the experiment ℓlab.

Figure 5.10: Examples with and without an overlap between the laboratory experi-
ment and the simulation intervals. The laboratory experiment interval is the dotted
line with the mean represented as a point and the simulation interval is the solid
line with a square representing the mean.

On the other hand, a cover of zero (φ = 0) indicates that length of the overlap is

completely different that the length of the laboratory-experiment interval. In other

words, as the cover is closer to one the better coverage of the overlap, and as the

cover is closer to zero the worst coverage of the overlap.

The excess ξ refers to length of the simulation interval ℓsim that is not part of

the overlap (see Figure 5.10b). Therefore, the excess ξ of an overlap is obtained as

a difference between the length of the simulation interval ℓsim and the length of the

overlap ℓovl, and normalized by the length of the simulation interval ℓsim:

ξ =
ℓsim − ℓovl

ℓsim
. (5.4)

The maximum and minimum values of the excess ξ in Equation (5.4) are one and
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zero, respectively. The excess equal to one (ξ = 1) indicates that the excess of the

length of the overlap is zero as no overlap exists (ℓovl = 0). On the other hand, an

excess of zero (ξ = 0) indicates that length of the overlap is the same as the length

of the laboratory-experiment interval (ℓovl = ℓlab).

As our objective is to maximize the cover and minimize the excess of the

overlap, a similarity δ between the laboratory experiment and the simulation is

proposed:

δ =
1 + φ− ξ

2
. (5.5)

The maximum and minimum values of the excess ξ in Equation (5.5) are one and

zero, respectively. A similarity δ equals to one means that the laboratory interval

is totally cover by the simulation interval (φ = 1) and there is no excess (ξ = 0)

thus, we assume that the laboratory and simulation floc-size distributions are more

similar to each other. On the other hand, similarity equal to zero implies no overlap

between the two intervals (φ = 0) and while the excess is the simulation interval as

a whole (ξ = 1).

The top five results for the comparison of each laboratory and simulation data

using the similarity δ data are shown in Table 5.4. The threshold was set at 0.59 in

order to have at least five replicas above the threshold for each of the four laboratory

experiments.

The results in terms of the similarity measurement are presented in Table 5.4

showing that the highest similarities have v equals to 0.1 and f equals to 0.7 or 0.8,

and for the other similarities 0.1 ≤ v ≤ 0.3 and 0.6 ≤ f ≤ 0.9. The fine-tuning

of the parameters in intermediate values for 0 < v ≤ 0.2 and 0.6 ≤ f < 1 may

lead to further improvement in the similarity between laboratory results and the

simulated data but are leaved to future work as they are not considered within the
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81 parameter combinations in this work.

Table 5.4 shows that the three-dimensional automaton for both the agitation

speeds in the Zn(II) experiment and the one-dimensional automaton for both the ag-

itation speeds in the Fe(III) experiment are the best at capturing the behavior of the

laboratory data. Our hypothesis for this is that different coagulants are more easily

to be captured by automatons of different dimensions, and in future experimentation

we need to study more coagulants to demonstrate this hypothesis. Furthermore, it

is shown in Table 5.4 that the variation of the agitation speed apparently produces

has no systematic effect in either the best combination of f and v or in the best

dimension.

The results shown in Table 5.4 for the space exploration of the parameters

where greater values of coalescence rate f and lower values of fragmentation rate v

matches the behavior presented in jar-test apparatus where faster agitation speed

is expected to promote floc fragmentation, whereas slow agitation speed is expected

to result in few interactions between flocs.
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Table 5.4: Top five parameter combinations f , v, and d of the automaton compared
with each laboratory experiment using a similarity threshold greater or equal to
0.59. The maximum value of similarity δ in each laboratory experiment is indicated
in bold text.

Experiment Dimension f v δ

Fe20rpm 1 0.7 0.1 0.98882

Fe20rpm 1 0.8 0.2 0.77515
Fe20rpm 4 0.6 0.1 0.77095
Fe20rpm 1 0.9 0.3 0.76135
Fe20rpm 2 0.8 0.2 0.74564
Fe40rpm 1 0.8 0.1 0.77776

Fe40rpm 3 0.7 0.1 0.69504
Fe40rpm 1 0.8 0.1 0.69275
Fe40rpm 1 0.8 0.1 0.66860
Fe40rpm 1 0.8 0.1 0.66767
Zn20rpm 3 0.7 0.1 0.61183

Zn20rpm 1 0.9 0.3 0.60523
Zn20rpm 2 0.8 0.2 0.59891
Zn20rpm 1 0.8 0.1 0.59667
Zn20rpm 1 0.9 0.2 0.59644
Zn40rpm 3 0.7 0.1 0.73714

Zn40rpm 1 0.8 0.1 0.70499
Zn40rpm 1 0.9 0.2 0.70451
Zn40rpm 4 0.7 0.1 0.70326
Zn40rpm 4 0.8 0.2 0.70009
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Conclusions

A Markovian probabilistic cellular automaton to capture the essential phenomenol-

ogy of coalescence and fragmentation in the presence of external agitation was pro-

posed and reproduced some basic features of floc-size distribution of heavy-metal

wastewater removal in a jar-test apparatus. The validation of the cellular automa-

ton was performed through the comparison with analysis and hypothesis reported by

Wattis [118] and our analysis of the Smoluchowski balance equations, and the exten-

sive numerical experiments of the parameter spaces (f , v, and d) was performed to

identify those that best reproduce the observed floc-size distributions in laboratory

data.

In this chapter the conclusions and analysis results of our proposed model are

shown. First, in Section 6.1, the principal contributions in this thesis are presented.

Next, in Section 6.2, it is discussed the results to our proposed models, and the

general conclusion of this thesis are presented. Then, in Section 6.3, the future work

to explore new methodologies and new approaches are presented.

80
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6.1 Contributions

Amulti-dimensional extension of a Markovian probabilistic cellular automaton model

that capture the expected behavior of the coalescence and fragmentation process in

the presence of external agitation as shown in the laboratory-experiment of the jar-

test apparatus based on the industrial wastewater treatment was proposed.

We propose a new quantitative-similarity measurement that permits the com-

parison with the evolution of the laboratory-observed floc-size distributions as the

previous one-dimensional model presented by Almaguer et al. [4] does not include

any quantitative comparison. Also, using the similarity measurement, the multi-

dimensional model captures and improves the agreement of floc-size distributions

for laboratory data from a heavy-metals wastewater removal experiment with high

accuracy than the previous one-dimensional model presented by Almaguer et al. [4].

Therefore, the multi-dimensional model provides a computationally cheaper and in-

tuitively appealing alternative to integro-differential coupled equations models. We

propose an integro-differential coupled equations models to validate the behavior of

our multi-dimensional model.

6.2 Discussion

Our proposed multi-dimensional cellular automaton is capable of reaching the the-

oretical gel state as well as replicating the steady-state behavior of laboratory data.

To our knowledge, our model with adjustable parameters f and v is the first general

analytic model for the coalescence-fragmentation process.

We found that the best dimension according to our proposed similarity mea-
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surement appears to depend on the coagulant: the laboratory experiment Fe(III) is

best captured with a one-dimensional automaton while the laboratory experiment

Zn(II) is best captured with a three-dimensional automaton. Also, the parameters

that maximize the similarity between the laboratory data and the multi-dimensional

model-generated floc-size distribution are in a limited interval for both the flocculant

f and the agitation speed v. The interval for the coalescence rate f is between 0.6

and 0.9, 0.8 being the most frequent value, and for the fragmentation rate v the

value never exceeds 0.3, 0.1 being the most frequent value. The future exploration

of the intermediate values in [0.6, 0.9] for f is needed, with special attention to the

range [0.7, 0.8], and the exploration for v < 0.3 using values 2i for i ≤ −2.

6.3 Future Work

Further exploration is needed to improve our results for the multi-dimensional au-

tomaton model. Some characteristics to improve the multi-dimensional model are:

the parameter optimization, the model performance, the effects of the neighborhood

topology (including periodic boundary conditions and higher-dimensional lattices),

the initial floc-size distribution, the behavior of the model with different rules, and

the temporal variation of the coalescence rate f and fragmentation rate v to model

experimental situations where the control parameters are not fixed but instead are

adjusted during the process.

Additionally, increase the jar-test experiments using more levels for the current

factors: the flocculant and the agitation speed, more factors: the concentration of the

flocculant, for example, higher concentration levels reduce the coalescence’s efficiency

and lower levels reduce the coalescence, and more time that the experiment is leaved

not only until ten minutes. Our hypothesis for the increasing in experimentation is
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that more data permit statistically deduce jar-test parameters from the parameters of

the best-fitting cellular automaton. In addition, it is needed to capture the behavior

using an evolutionary analysis of the whole laboratory floc-size distribution not only

the part of the distribution with large flocs.

Future experimentation is needed to study different behaviors of the model

and the way in which it corresponds to laboratory observations of the coalescence-

fragmentation process when changing the global average floc size h̄ to neighborhood

average floc size h̄∗ of cell c, restructure Rule 1A and 2A (donors and receptors), or

using Rule 1S and Rule 2S. Other rules of the automaton change the behavior of the

model presented in this work. One of the implementation of the Rules 1A and 2A is

that first, each cell c mark its states as a idle (do nothing), receptor (wiling to receive

particles) or donor (share particles). Another rules are that each donor obtain how

many neighbors receptors they have and share an even part of its particles to each

neighbor that were receptor.

We leave for further implementation other initial configurations of the au-

tomaton as the showed in Chapter 4 and different neighborhood topologies. We

also contemplate the use of a multi-agent model where the flocs move and interact

instead of using cellular automaton. This approach it is only feasible with parallel

computing and using GPU analysis due to the elevated of computational effort. We

also plan to incorporate aspects such as the size and shape of the tank, the size,

shape, movement of the paddle, and the chemical composition of the wastewater

into detailed versions of our models in the future.
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