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SUMMARY

Norberto Alejandro Hernandez Leandro.
Ph.D. candidate in Engineering with a Specialization in Systems Engineering.
Universidad Auténoma de Nuevo Leo6n.
Facultad de Ingenieria Mecéanica y Eléctrica.

Title of the study: SOLVING THE SHIFT SCHEDULING AND THE IMAGE SEGMEN-

TATION PROBLEMS USING SET COVERING FORMULATIONS.

Number of pages: 77.

OBJECTIVES AND METHODS OF STUDY: The main objective of this research is
the study of two applications of the set-covering problem: the multi-activity shift

scheduling problem and the image segmentation problem.

The multi-activity shift scheduling problem consists of determining the se-
quence of activities that each employee has to perform, in order to minimize the over
and under covering of the demand of each activity at each period of the planning
horizon. In this work we propose to use a set-covering formulation of this problem.
Furthermore, we present a matheuristic which uses a Lagrangian relaxation heuristic
in order to generate promising shifts, and a restricted set-covering formulation to find
the combination of the shifts generated by the Lagrangian heuristic that minimizes

the under and over covering cost.

xiil
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The image segmentation is an image processing problem which consists of
dividing the image into sections of similar characteristics, also named segments. The
objective of the segmentation is to provide a new representation of an image that
eases its analysis. In this work, we propose a bi-objective set-covering formulation for
the image segmentation problem, that uses the information of the image histogram.
The objectives of this model are to minimize the number of sets of the partition of
the histogram, and a heterogeneity measure of the elements of each set with the aim
of building the partition with a proper number of groups with similar elements. In
order to solve this problem, we propose to use an AUGMECON algorithm, which is
a variant of the e-constraint, to find the Pareto frontier of the bi-objective model,
with the objective to find efficient partitions for the histogram, and consequently to
generate a segmentation from each partition. Finally, we suggest to consider only
the solution provided at the first iteration of the AUGMECON, in order to select

automatically the number of sets in the partition.

CONTRIBUTIONS: In this thesis we propose a matheuristic method for the multi-
activity shift scheduling problem, and a new bi-objective set-covering formulation

for the image segmentation problem.

The experiments of the matheuristic show that this algorithm is able to provide
better solutions within a relatively low processing times than the best solutions found
in the literature; besides, we implement a column generation heuristic to compare
with the proposed matheuristic; the experimental results reaffirm the performance

of the proposed algorithm.

The result obtained from the bi-objective model for the image segmentation
reveals that the solution of the model provides good quality segmentation with a
relatively low processing time. The advantage of this work is that the size of the
model does not depend on the image size, which means that solution of the model
can produce a segmentation of large size images without affecting the processing

times considerably. Furthermore, the solution at the first iteration of the solution
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method provides the number of segments automatically.
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RESUMEN
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Titulo: SOLVING THE SHIFT SCHEDULING AND THE IMAGE SEGMENTATION PROB-

LEMS USING SET COVERING FORMULATIONS.

Niamero de paginas: 77.

OBJETIVO Y METODOLOGIA DE ESTUDIO: El objetivo de esta investigacion es
estudiar dos aplicaciones del problema de cobertura de conjuntos: el problema de
asignacion de horarios a empleados con miltiples actividades, y el problema de

segmentacion de imagenes.

El problema de asignacion de horarios a empleados consiste en asignar la se-
cuencia de actividades que cada empleado debe de realizar, con el objetivo de cubrir
la demanda de cada actividad a cada periodo de la mejor manera posible. Para
abordar este problema, se propone hacer uso de un modelo basado en el problema
de cobertura de conjuntos. Para solucionar este problema, se plantea resolver la

relajacion Lagrangiana del modelo, con el objetivo de generar turnos promisorios.

Xvi
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Finalmente, se propone resolver el modelo restringido para encontrar la combinaciéon
de turnos que minimiza los costos de incumplimiento y sobrecumplimiento de cada

actividad a cada periodo del horizonte de planeacién.

La segmentacion de iméagenes es un poblema de procesamiento de imégenes.
Dicho problema consiste en dividir la imagen en secciones con caracteristicas simi-
lares, las cuales son llamadas segmentos. El objetivo es encontrar una nueva repre-
sentacion de la imagen que ayude a facilitar su anélisis. En este contexto, se formula
un modelo bi-objetivo basado en el problema de cobertura de conjuntos que hace
uso de la informacién del histograma de la imagen. Los objetivos de este modelo se
basan en la idea de encontrar la particion del histograma de la imagen con la menor
cantidad de divisiones posible, minimizando una medida de heterogeneidad entre los
elementos de cada division. Para resolver dicho problema, se plantea utilizar el algo-
ritmo AUGMECON, que es una variante del algoritmo e-restriccion para resolver el
problema bi-objetivo y obtener el frente pareto para este problema. Posteriormente,
se sugiere tomar la solucion obtenida en la primera iteracion del AUGMECON para
obtener una solucién de manera automatica para este problema; i.e. el algoritmo no

necesita de la guia del usuario para la obtencién una segmentacion para la imagen.

CONTRIBUCIONES: En este trabajo se propone una matheuristica para el problema
de asignacion de horarios a empleados; ademaés, se formula un nuevo modelo bi-
objetivo basado en cobertura de conjuntos para la segmentacion de imagenes, y se

utiliza el algoritmo AUGMECON para solucionar el modelo.

La experimentacion del algoritmo propuesto para solucionar el problema de
asignacion de horarios a empleados, muestra que es capaz de obtener soluciones
de mejor calidad en un tiempo de procesamiento menor, en comparacion con las
mejores soluciones encontradas en la literatura. Ademas, se implementd una heuris-
tica basada en la generaciéon de columnas para fortalecer los resultados experimen-

tales y confirmar la eficiencia de la matheuristica.

La experimentaciéon para solucionar el modelo bi-objetivo propuesto para la
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segmentacion de iméagenes, revela que las soluciones del modelo son de buena calidad
y se obtienen en un tiempo de coémputo relativamente bajo. La ventaja de este
método radica en que el tamano del modelo no depende del tamano de la imagen; lo
que signica que a partir del modelo se puede segmentar imégenes tan grandes como

se desee sin afectar de manera considerable los tiempos de procesamiento.

Firma de directores:

Dr. Vincent André Lionel Boyer

Dra. Marfa Angélica Salazar Aguilar



CHAPTER 1

INTRODUCTION

The Set-Covering Problem (SCP) is a classic discrete optimization problem which
consist of covering all the elements of a given set U by the elements of the set
S C P(U) minimizing the total cost ¢(S) of using each element of S, where P(U)
is the power set of U. This problem has been studied since the mid 1960’s and,
consequently, several applications and solution methods have been proposed. Karp
(1972), proved that SCP is a NP-Hard problem; however, there are many methods
to solve the SCP efficiently (see: Christofides and Korman (1975) and Caprara et al.
(2000)).

In this thesis, we study SCP models applied to two particular problems: the
Multi-Activity Shift Scheduling problem and the Image Segmentation problem. The

following sections present both problems.

1.1 THE MULTI-ACTIVITY SHIFT SCHEDULING

PROBLEM

The Multi-Activity Shift Scheduling Problem (MASSP), also known as personalized
multi-activity shift scheduling problem (Coté et al., 2013), consists of assigning shifts

to a set of employees. These shifts are represented by a sequence of activities and

1
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can include resting or meal periods. Furthermore, each sequence is restricted by the

company rules and the activities that each employee is able to perform.

The activities represent daily operations of the company; besides, each activ-
ity has a demand at each period of the planning horizon, given by the number of

employees needed to provide an efficient service to the clients.

In this work, we consider a discretized planning horizon; on one hand, it is
senseless that an employee performs an activity just by a small period of time and
then perform another, because there may be no chance to complete any task in this
period; on the other hand, the transitions between activities have to deal with set
up times, for this reason is not relevant to consider small periods to perform these

transitions.

For example, let us suppose that a is an activity and its demand at each period

of the planning horizon is represented by Figure 1.1.

N W e Ot

Requirements

0 1 2 3 4 5 6 7 8 9 10 11 12

Planning Horizon

Figure 1.1: Requirements of activity a

If the assignment of the activity a is carried out in the way presented in Figure
1.2, then the requirements of the activity a at each period change. Particularly, the
new requirements after the fixing of these shifts are presented in Figure 1.3, where
in the periods zero, one, eight, ten and eleven the demand of activity a is met. For

the remaining periods, the demand of activity a is partially met; i.e., it is needed to
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assign the activity a to more employees, in order to satisfy the requirements of the

company.
H Work
Shifts |:| Break
Planning Horizon
Figure 1.2: Example of assignment of activity a.
5 4
wn
=
5| 47
=
£ 31 —
=
S| 27 - -
~
1 1
0 1 2 3 4 bt 6 7 8 9 10 11 12

Planning Horizon

Figure 1.3: New requirements of activity a

The objective of the MASSP is to assign the sequence of activities that each
employee has to perform, in order to minimize the total cost of undercovering or over-
covering activities at each period of time. The undercovering of a demand happens
when there are not enough employees performing a given activity at a certain period,
whilst the overcovering occurs when there are an excess of employees performing an

activity.

In this thesis, we consider two variants of the MASSP. Firstly, the working
periods of the shifts are fixed a priori and, secondly, the working periods of the

shifts are not fixed. Furthermore, the next characteristics are also considered:

e A discretized planning horizon.
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e Each employee can perform a subset of activities.

Each activity must be performed between a maximum and a minimum span.

Each activity has a demand at each period of the planning horizon.

The under and over covering of each activity at each period have a fixed cost.

The undercovering is more expensive than the overcovering.

The transition between activities has a fixed cost.

In this this context, if all the feasible shifts could be generated, then the MASSP
turns into the problem of covering the demand for each activity at each period of
the planning horizon with a feasible shift per employee. Particularly, each set of
the SCP is represented by the sequence of activities of each feasible shift and the

working periods of the planning horizon covered by each shift.

1.2 IMAGE SEGMENTATION PROBLEM

In recent years, Image Segmentation Problem (ISP) has been a very useful tool in
image processing; specifically to respect to pattern recognition, detection of objects
and edge detection. ISP consist of dividing an image into groups of similar char-
acteristics (color, intensity, texture, etc.) with the objective to obtaining a new

representation of the image, to facilitate its analysis.

The solution of an ISP is the set of segments that represent the objects of
the image. For example, let us suppose we want to detect the lamp in the image
presented in Figure 1.4a, then the IS algorithm must return a segment like the one

presented in Figure 1.4b in red.

In this work, we consider the Image Segmentation Problem (ISP) which consist

of detecting an image. In order to evaluate the algorithm, we select a set of images
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(a) Original image (b) Object to detect

Figure 1.4: Example 1

to detect an object and its respective ground truth, which is represented by the
desired solution. In this order, the objective is to maximize the similarity between
the segment that represents the object, obtained by the segmentation algorithm, and

the ground truth of the tested images.

Additionally, if we consider the set of all the possible segments of an image;
then the ISP can be seen as the problem of finding the segment that covers the
object presented in the ground truth image, with the objective of minimizing the
number of pixels which are not covered by the ground truth. Note that if the image

size grows, then the number of the possible segments increase considerably. For this
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reason, we propose to use the information provided by the histogram of the image,

in order to make tractable this problem.

1.3 MOTIVATION

The SCP is a well known and studied problem in operations research, therefore the
use of the models and the tools proposed, in the literature, to solve this problem can
help to provide an efficient solution to other problems and, in particular the MASSP
and the ISP.

On one hand, providing a good quality solution to the MASSP will help with
the hard task of managing workforce of a company and, consequently, will reduce
the operational cost. Furthermore, the efficient management of human resources
will define whether the demand of an activity will be met or not. A highly unmet
demand of an activity impacts directly in the utilities of the company and in the

costumer service.

On the other hand, proposing an algorithm that solves the ISP efficiently, will
help to simplify the analysis of an image. In particular, the object detection in the
image can be useful in several applications. For example, in medical imaging where
the diagnostic of cancer is made from the images provided by a Magnetic Resonance
Imaging MRI, the detection of anomalies in the digital image will help in the early

diagnosis of cancer and, consequently, will reduce the mortality due to this disease.

1.4 OBJECTIVE

The main objective of this research is to present a model based on SCP for the
MASSP and the ISP. Moreover, we design and propose solution methods using the
knowledge of the SCP, in order to provide efficient solutions to both problems.
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Particularly, the objectives for the ISP is to introduce a mathematical model
based on integer programming, and to present an automatic algorithm capable to

obtain the number of segments of an image without the guidance of the user.

Finally, the algorithms proposed in this thesis are tested and compared with

the best methods found in the literature.

1.5 ORGANIZATION

This thesis is organized as follows: In Chapter 2, we present a literature review of the
problems treated in this work; Chapter 3 shows some definitions and notations used
to formulate the SCP models for the MASSP and the ISP; Chapter 4 describe the
SCP model for the MASSP, the matheuristic proposed to solve this problem, and the
experimental results of the solution method; Chapter 5 introduces a new bi-objective
set covering model for the image segmentation problem, proposes an AUGMECON
algorithm to solve it, and presents the respective experimental results. Finally, in

chapters 6 and 7 the conclusions and the future work are discussed.



CHAPTER 2

LITERATURE REVIEW

In this chapter, we present a literature review of the most recent and relevant works

related to the SCP, MASSP, and IS.

2.1 SET-COVERING PROBLEM

The SCP is a well studied problem in operations research. Christofides and Korman
(1975), Vemuganti (1998), Caprara et al. (2000), and Farahani et al. (2012) present
a compilation of algorithms and applications of the SCP. Christofides and Korman
(1975) and Caprara et al. (2000) show a classification of heuristic and exact methods
proposed to solve the SCP. Vemuganti (1998) makes a review of more than 900
references to show the application of the SCP in capital budgeting, crew scheduling,
cutting stock, facility location, personnel scheduling, vehicle routing, and timetable
scheduling among others. Farahani et al. (2012) present a collection of 160 works

that show the use of SCP to formulate facility location problems.

Additionally, metaheuristics have been used to solve the SCP. The most used

algorithms are bioinspired metaheuristics.

Among other algorithms to solve the SCP, we can find the ones based in La-

grangian relaxation. Balas and Ho (1980) design a branch and bound method, where
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the reduced costs obtained from solving the relaxation with the subgradient method

are used to fix variables to generate feasible solutions to the SCP.

Beasley (1990) proposes a heuristic method, in which the reduced costs ob-
tained from the subgradient method are used to generate promising columns to the
problem. Balas and Carrera (1996) design a heuristic, in which the subgradient
method is embedded into the branch and bound scheme. The difference between
this method and the one presented by Balas and Ho (1980) is that this method
makes a preselection of the columns. Later, they branch over the columns with a

reduced cost equal to zero and with Lagrangian multipliers strictly positive.

Ceria et al. (1998), Caprara et al. (1999), and Yagiura et al. (2006) use the
reduced costs of the Lagrangian relaxation to fix to zero the variables with a reduced
cost greater to a threshold and, consequently, reducing the size of the problem. The

resultant variables are fixed by using a greedy procedure.

Umetani and Yagiura (2007) solve the problem using a variant of the column
generation procedure known as sifting method (Bixby et al., 1992). This algorithm
use the information of the reduced costs of the Lagrangian relaxation to fix rows of
the problem. Later, they fix variables using the reduced costs, then they generate

feasible solutions using a greedy heuristic.

Caserta (2007) designs a tabu search using an algorithm based on Lagrangian
relaxation in the intensification phase. Subsequently, he computes the reduced costs,
in order to generate a subproblem similar to the one handled by Umetani and Yagiura
(2007) and, finally, a feasible solution is produced by fixing variables and using a

greedy heuristic.

The papers reviewed in this section show that the solution methods based on
Lagrangian relaxation are efficient to solve SCP. For this reason, in this work we
propose to use the Lagrangian relaxation to solve the MASSP using the SCP model
for this problem similar to the ones presented by Coté et al. (2013) and Boyer et al.
(2014).
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2.2 THE MULTI-ACTIVITY SHIFT SCHEDULING

PROBLEM

To the best of our knowledge, few researchers have addressed this problem. Demassey
et al. (2006) model the subproblems of a column generation to solve the MASSP using
automatas and constraint programming. Lequy et al. (2012a) propose three integer
programing models and two algorithms to solve them; the first method consists in a
branch and bound for solving small instances, and the second is based on a rolling-
horizon heuristic for large instances. In this paper, they consider the case where the

working periods of the shifts are fixed a priori.

Quimper and Rousseau (2010) design a large-neighborhood search and use
formal languages and context-free grammars to model the constraints of the shifts.
Dahmen and Rekik (2012) use a branch and bound procedure for the improvement,
intensification, and diversification phases of a tabu search algorithm for solving the
MASSP. Coté et al. (2011a), Coté et al. (2011b) and Coté et al. (2013) propose two
grammar-based models and use a branch-and-price approach to solve them. In the
paper of Coté et al. (2013), the results obtained for the instances of Demassey et al.
(2006) and Lequy et al. (2012a) show an improvement with respect of the solutions
reported in the literature. This algorithm is able to solve instances with up to 100
employees and 10 activities over a planning horizon of 7 days, although in the worst
case it takes more than two hours to obtain a solution with a relative gap of 1%. Coté
et al. (2013) propose to solve the linear relaxation as a restricted master problem
(RMP) with a column generation which is embedded into a branch and price scheme
to solve the MASSP. Finally, Restrepo et al. (2012) present a case of study of the
MASSP which consists in assigning the employees to car parks in Bogoté, Colombia.
They use a column generation algorithm coupled with an auxiliary shortest path

problem with resource constraints to solve this problem.

Elahipanah et al. (2013) present the variant of the MASSP considering multiple
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tasks and use a two-phase heuristic for solving it; in the first phase, a partial shift
is generated where tasks are assigned using a mixed integer linear model, and in
the second phase, activities are assigned using a rolling-horizon procedure. Lequy
et al. (2012b) solve the multi-task MASSP using a two-stage heuristic. In the first
stage, the authors use a mixed integer linear model in order to assigns the tasks,
and in the second they employ a column generation heuristic to assign activities and
reassign the tasks. Boyer et al. (2014) present an multi-task MASSP with precedence
constraints. The authors propose two formulations for the precedence constraints

on the tasks and three branching strategies.

To the best of our knowledge, there is no work in the literature that uses
algorithms based on the Lagrangian relaxation. For this reason,we propose to use
the Lagrangian relaxation to design an algorithm capable to compete with the best
algorithms found in the literature for solving the MASSP, especially in the larger

instances.

2.3 IMAGE SEGMENTATION

In the literature, there are several applications and solution algorithms for the Image
Segmentation (IM). Pal and Pal (1993), Udupa et al. (2006), Wei and Mandava
(2010), and Garcia et al. (2015) present a recompilation of papers that use the
IM for the digital image analysis. In particular, Pham et al. (2000), Noble and
Boukerroui (2006), Heimann and Meinzer (2009), Gurcan et al. (2009), Ma et al.
(2010), and Menze et al. (2015) show a set of papers of the medical application of
the IM. In these reviews, the IM is used to analyze medical images for the detection

of cancer, cardiovascular deseases, and other medical conditions.

The k-means based algorithms (see Ng et al. (2006), Piqueras et al. (2015) and
Sammouda et al. (2015)) and artificial neural networks (see Torbati et al. (2014),

Havaei et al. (2015) and Zhang et al. (2015)) have been extensively used for the image
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segmentation. Furthermore, there are several articles that show the importance of
the information provided by the histogram in order to design efficient segmentation
algorithms. Tobias and Seara (2002) propose to use a threshold in order to divide the
histogram of a gray scale image; a threshold is the critical value where the histogram
is cut. Also, in order to improve the quality of the segmentation, they suggest to
use fuzzy sets. The weakness of this algorithm is that it only works efficiently over
images with bimodal or nearly bimodal histogram. Tan and Isa (2011), Rajinikanth
and Couceiro (2015), Bhandari et al. (2016), and He and Huang (2017) segment
RGB images by computing the histogram of each channel of color and applying a

threshold algorithm over each channel histogram.

Tan and Isa (2011) propose a fuzzy k-means algorithm which considers the
information of a multithresholding histogram algorithm in order to handle with the
sensibility of the algorithm. The experimental results show that this approach is
able to improve the results over the tested datasets, and provides a fewer number
of segments and more homogeneous sections in the segmentation. Rajinikanth and
Couceiro (2015), and He and Huang (2017) obtain the optimal threshold for the
three channels of color by using a firefly algorithms; the results show effectiveness of

the methods for multilevel color image segmentation.

Finally, Bhandari et al. (2016) design four algorithms to segment RGB im-
ages: the differential evolution, the wind driven optimization, the particle swarm
optimization, and the cuckoo search algorithm. These algorithms are based on the
information of the histogram of each channel of color and they are used to find the
optimal threshold combination. The algorithms proposed are tested over a satellital
and natural image dataset, the disadvantage of the methods is that they need the

number of thresholds to divide the histogram.

Among the most recent work found in the literature are Pont-Tuset et al.
(2017), Zheng et al. (2015), and Liu et al. (2015). Pont-Tuset et al. (2017) design

a multiscale combinatorial group that uses a hierarchical segmentation algorithm to
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detect objects in the images. This approach is able to provide contours, hierarchical
regions, and object proposals within 5 seconds. Zheng et al. (2015) present a gener-
alized hierarchical fuzzy k-means algorithm, which considers the spatial information
and the pixel value with the objective to perform a segmentation over images with
noise and with non euclidean distance data. They consider this type of images given
that its characteristics are the reason of the malfunctioning of the k-means and fuzzy
k-means algorithms. The results of this algorithm show that it is able to find good
segmentations that cannot be assured with the standard fuzzy k-means. Liu et al.
(2015) use the information of a Markov random field to perform a semantic seg-
mentation which is solved by using a convolutional neural network. This approach

achieves a 77.5% average accuracy on the detection of objects on the tested dataset.

To the best of our knowledge, there are algorithms that solve clustering prob-
lem, however there is no work in the literature that makes use of an optimization
model in order to segment an image. The main idea lays on the exploitation of the
information provided by the histogram of an image to design a bi-objective integer
programming model based on the set-covering formulation for the segmentation of

gray scale images.



CHAPTER 3

THEORETICAL FRAMEWORK

3.1 THE MULTI-ACTIVITY SHIFT SCHEDULING

PROBLEM

In this section, we present definitions and some notations that are used to formu-
late the SCP model for the MASSP. For more details of context-free grammar see
Hopcroft et al. (2001) and Sipser (2006).

3.1.1 CONTEXT-FREE GRAMMAR

A context-free grammar G is defined by the tuple (X, N, P, .S) where

> is an alphabet of symbols, called terminals;

N is a set of nonterminal symbols;

P is a set of productions of the form X — «a, where X € N and « is a sequence

conformed by terminal and nonterminal symbols;

S is the starting nonterminal symbol.

14
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A context-free grammar provides the rules and the symbols to generate a lan-
guage, which is conformed by a set of sequences of terminal symbols named words.
The set of productions rules is defined by the relations between the nonterminals
symbols and a sequence of terminals/nonterminal symbols. This relation determines

if a word belongs to the language or not.

EXAMPLE 3.1 If we consider the grammar G(X, N, P, S) where:

e Y =ua,b;
e N =A, B;
e and P is conformed by:

-S— AB, A — AA|a and B — BB|b

then G produces the language {a™0™ : n,m > 0}. The symbol | represents the logical
OR operator.

From example 3.1, if we want to generate the words of length three; then
the production rules should be applied iteratively, starting from symbol S, until a
sequence of three terminal symbols is produced. Table 3.1 shows the two possible
words that can be generated with grammar G in example 3.1. The column P displays
the production rules applied and the column Result gives the produced sequences
after applying the production rules. Note that the word aab is produced by applying
the production S — AB; then the sequence AAB can be derived from the production
rule A — AA, and finally each nonterminal symbol A and B can be substituted by
the terminals a and b by performing the productions A — a and B — b, respectively.
Moreover, one should consider that each terminal/nonterminal symbol represents a
node in a graph and the outgoing arcs of a node depict the execution of a production
rule; consequently, a derived word of a language can be represented by a tree, named

parse tree. Figure 3.1 presents the parse trees of the words aab and abb.



CHAPTER 3. THEORETICAL FRAMEWORK 16

Table 3.1: Derivation of the words aab (a) y abb (b)

(a) (b)
P Result P Result
- S - S
S—AB AB S — AB AB
A— AA AAB B —+ BB ABB
A—=a aAB B—b ABb
A—=a aaB B —=b Abb
B —b aab A—=a abb

oy

Figure 3.1: Parse trees of the words aab and abb

Finally, all the parse trees of the words of a certain length can be embedded
in a Directed Acyclic Graph (DAG T'). Figure 3.2 shows the DAG T of the words
of three letters produced with the grammar G; the DAG IT" is an AND/OR graph
where the AND-nodes are denoted with A and the OR-nodes with O. The nodes
Aff represent the AND-node that applies the production rule p to generate the
n — th sequence starting in the position ¢ with length j. Besides, the nodes ij{ is
the OR-node represented by the terminal/nonterminal symbol X, which derives a
sequence starting in the position ¢ with length j. Note that the inner AND-nodes

and OR-nodes represent production and non-terminal symbols, respectively; whilst

the leaves of the DAG I' correspond to the terminals symbols in their respective
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position in the word. In order to derive any word with the DAG T" of this example,
we should start in the 053 and choose one outgoing arc from the OR-nodes; then we
must select all the outgoing arcs, from the AND-nodes, until the leaves of the DAG

I are reached.

Figure 3.2: DAG T of the words of three letters

In the MASSP, a shift is represented by the sequence of the activities to be
performed; additionally, if the activities are represented as terminal symbols and
the constraint of the shifts are modeled by production rules, then the shifts of the
MASSP can be modeled using a context-free grammar. Modeling a shift with a

context-free grammar will allow to produce a feasible shift easily.

EXAMPLE 3.2 Let us suppose there is an employee who has a shift with 4 periods of
one hour and he/she is able to perform two activities (a1 and ay). Let us consider
that activity aqx must be perform before as, and the activities cannot be assigned for
less than 2 hours. Consequently, the feasible shifts for this employee can be modeled

by the following context-free grammar G':

o Y = {a1>a2}7'

o N = {Jl,JQ,AlyAQ};
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e P is defined by:
S —7[4,4] J1J1’J1J2
Jl — A1A1 JQ — A2A2

A1 — A16L1’CL1 A2 — A2&2|6L2.

2

where the symbol “— .17 indicates that the sequence derived from this production

must have a length between [ and r.

To generate the sequences of length four with the grammar of the example
3.2, the production rules presented in Table 3.2 must be applied. Consequently, this
grammar produces the two feasible shift for the employee: aia;a1a; and ajaiaqas.

Figure 3.3 show the DAG I representation for the feasible shifts.
Table 3.2: Derivations of the shifts aja,a;a1 (a) and ajajasas (b).

(a) (b)

P Result P Result
- S - S
S — Jih JiJp S — JiJy J1Js
J — A1 A A1 AT, J, — A1 A A1A T
J— AtAT ATATALA Jy — AsAs A1A1AL A
A — a a1 A A1 A A — aq a1 A1 A5 As
A — o ara1 A1 A, A — aq aja1 As Ay
A — a ajaia1Aq As — a9 a1a1a9As
A — a1a1a1a1 Ay — a9 1010209

3.2 THE IMAGE SEGMENTATION PROBLEM

In this section we present the definitions and notations that will be used to model

the ISP by a SCP model.
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AS—>J1J1,1 ANS—J1J2,2
14 14
J1~>A1A1, Jlg)AlAl, «]24)A2A27
A12 A32 A32
AA1—>(L1,1 AA1—>a1,1 AA1—>a1,l AA1—>a1,1 AA2—>a27 2—>a2,

Figure 3.3: DAG I representation for the feasible shifts

3.2.1 MODEL

The ISP consists of dividing the image into groups of pixels with similar characteris-
tics (color, intensity, texture, etc.) with the objective to obtain a new representation

of the image to make easier its analysis.

For this purpose, we propose the next mixed integer linear programming model:

i

N
i=1 j=1

subject to
Tij = Tj Vi,j=1,...,N (3.2)
Z:z:” > 1 Vi=1,...,N (3.3)
LUZ]—FSL’]']C < 14z V’L,j,kzl,,N (34)

Tij + Tjp > 2T Vi jk=1,...,N (3.5)
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z; € {0,1} Vi,j=1,....,N (3.6)

where d;; is a parameter that measures the dissimilarity between pixel ¢ and pixel j,
and N is the total number of pixels in the image. Furthermore, the decision variables

are defined as follows:
1 if iRy
flj'ij =
0  otherwhise
where the notation iR j indicates if pixel 7 is related with pixel j or not; i.e. if the

pixels ¢ and j are assigned to the same group.

Constraints (3.2) ensure that pixel ¢ will be related with pixel j if and only if
pixel j is related with pixel i. Constraints (3.3) establish that pixel j is related with
at least another pixel. In other words, these constraints forbid groups with only one
pixel. Likewise, constraints (3.4) and (3.5) settle a transitive relation between pixels;
i.e. if pixel 7 is related with j and j is related with k, then 7 is related with k. The

objective (3.1) of this model minimizes the dissimilarity between the related pixels.

Finally, it is relevant to point out that the cardinality of the set of constraints
(3.4) and (3.5) grows in order O(2N?3). This means that if we want to segment an
image of 1 megapixel (1 million of pixels), the model would have 1x10'? variables and
more than 2 x 10'® constraints, which makes the model unsolvable and unpractical
to implement. For this reason, we propose to use the information provided by
the image histogram under the hypothesis that this information contains relevant

characteristics to make an efficient segmentation.

3.2.2 THE HISTOGRAM

The main idea of this work lies in the use of the information provided by the his-
togram of an image, in order to reduce the number of variables and constraints
involved in the mathematical model. The histogram is a graphical representation of

the distribution of the intensity of the pixel of an image. Figure 3.4 shows an image
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and its respective histogram. Note that the histogram is composed by different dis-
tributions, for example the distribution of pixels over the interval [0, 130] is different

to the one found in [130, 200].

15000
|

10000
|

5000
|

Figure 3.4: Example of a histogram of an image

Figure 3.5 shows the distribution of the interval [0,130] and its respective
pixels represented in the original image. It is easy to note that the tree in the image
is contained in the distribution over the interval [0,130] in the histogram. This
observation gives us a clue that a good partition of the histogram can provide an

efficient segmentation for the image.
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15000
|

10000
1

5000
1

Figure 3.5: Example of a distribution of the histogram of Figure 3.4



CHAPTER 4

THE MULTI-ACTIVITY SHIFT

SCHEDULING PROBLEM

In this chapter, we present the mathematical model for solving the MASSP. Besides,
we describe the solution method proposed to solve this problem. Finally, we test
the proposed algorithm, and compare the experimental results with the best results

presented in the literature.

In this problem, we consider a set E of available employees; a set 2¢ of all
feasible shifts of employee e € F; a set A of activities to be performed; a set I of
time periods in the planning horizon, and b;, which is the demand of activity a € A
at period 7 € I. The set of feasible shifts 2° of each employee ¢ € F is determined
by the abilities of employee e, the duration of the shift, the resting periods, and the
company policies. Moreover, each activity in shift s must be performed between a

minimum and a maximum number of consecutive periods.

Additionally, we consider parameter 65, which is equal to one if activity a € A
is performed at period ¢ € [ in shift s € Q)¢ of employee ¢ € F, and zero otherwise.
The planning horizon [ is discretized into periods of equal length. Besides, each
shift s € Q¢ has a cost ¢¢ that considers the transition between activities in the shift

S, and the undercovering and overcovering demand b;, of activity a at period 7 are

23
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penalized by ¢, and cj,, respectively.

a’

The objective of the MASSP is to assign a shift s € ()¢ to each employee e € F,

so as to minimize the cost of assigning the shift s and the total undercovering and

overcovering costs.

From these parameters, the MASSP can be modeled with the following Set-
Covering Model (SCM) proposed by Coté et al. (2013):

(SCM) Min z =
ecFE seQe
subject to
D D Flass + tia — 0t
ecE see

e
2

seNe

where

ZZcix

vV m

v

i + Z Z (Cébauia + C;)aoia)

i€l acA

bia iE[,aEA

1 eck
{0,1} e€ E,s€Q°
0 1e€l,ae A
0 1€l,ae A

o z¢ =1 if shift s is assigned to employee e, and 0 otherwise.

e u;, represents the undercovering of activity a in period .

e 0;, represents the overcovering of activity a in period 1.

The objective (4.1) minimizes the cost of assigning a shift to an employee and the

overcovering and undercovering costs. Constraints (4.2) ensure that the demand for

each activity a in each period i is satisfied. Constraints (4.3) ensure that only one

shift is assigned to each employee.
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The set €2° can be modeled by a context-free grammar and represented by its
DAG T as proposed by Coté et al. (2013). Notice, that the feasible shifts are not ex-
plicitly generated by modeling the set 2¢ with a contex-free grammar. Nevertheless,

the DAG T representation will be useful to solve this MASSP in the next sections.

4.1 SOLUTION METHOD

In this section, we present our matheuristic (MH), which uses Lagrangian relaxation
and the subgradient method to generate promising shift for the MASSP. Later,
these shifts are used to build a restricted SCM where the sets ¢ are replaced by
2, C Q°; notice that the restricted model is easier to solve because the size of 2, is

considerably smaller than €2°.

The principal reason for using Lagrangian relaxation to generate the shifts
for the MASSP lays under the hypothesis that the Lagrangian relaxation is able
to produce good quality shifts. Given that at each iteration of the subgradient
method the updated Lagrangian multipliers generate shifts that cover the demand

of activities that were not covered in the previous iteration.

4.1.1 LAGRANGIAN RELAXATION

In this work, we propose to relax the covering constraints (4.2) because they make
the SCM difficult to solve. The Lagrangian relaxation of the SCM (called RSCM)

is as follows:

(RSCM) Minz = Y Y cal+ > > (chuia+ c0i)

ecFE see i€l a€A

+ ZZ)\lCL<Z Z 5“151:3 + Uiq — Ojq — bia)

i€l a€A ecE seQe
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subject to

doat =1 ecE

s€Q°
¢ € {0,1} eeFE,se°
Uiq > 0 1e€l,ac A
0ijs > 0 1€l,ae A
e € R iclacA

where \;, are the Lagrangian multipliers that can take any real value because of the

nature of the relaxed constraints.
The RSCM can be simplified as follows:

Min z = ZZ c 4 Nia) wig + (65, — Nia) 0ia)

i€l a€A

+> ) <c§ +Y Y Amafas) ¢

ecFE see i€l a€A

=) Nabia

i€l acA

subject to

Zx§ =1 ee F

seqe
¢ € {0,1} eeFE,se°
Wi, > 0 1€l,ae A
0ia > 0 1€l,ae A
Nia. € R icl,ac A

We propose to use the classical subgradient method (Shor, 1985) to solve the
RSCM. Note that if the Lagrangian multipliers are fixed, then the RSCM can be
divided into two subproblems. On one hand, SubP1 determines the values of the

covering variables; On the other hand, SubP2 assigns a shift to each employee, such
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that the cost of assigning the shifts and the total weight of performing each activity

at each period are minimized. SubP1 and SubP2 are defined as follows:

(SubP1(A)) Minzi = > Y (ch+Xia)tia+ Y > (¢h = Nia) 04

i€l acA i€l acA
=) Nabia
i€l a€A
subject to
Wig > 0 Viel,ae A
0ia > 0 Viel,ae A

(SubP2(A)) Minz, = Y Y <c§ +Y > )\méfas> e

ecE se€Qe i€l a€A

subject to

Zx§ =1 Vee I/
seqe

e

g

{0,1} Vee E,s€Q°

m

At the beginning of the subgradient method, the Lagrangian multiplier should
be fixed. Later, SubP1 and SubP2 are solved to recompute the multipliers. Finally
the steps of solving the subproblems and recomputing the multipliers are iterated
until a given maximum number of iterations is reached or when the lower bound

cannot be improved.

Notice that the shifts generated by SubP2 are also feasible for the SCM, given
that the DAG I' for each employee considers the constraints of a valid shift. The
unfeasibility of the solution provided by RSCM lays on the values of the covering

variables.
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4.1.1.1 SOLVING THE SUBPROBLEMS

SubP1 has one set of constraints which state that the decision variables w;, and
0;q are positive, Vi € I and Va € A. Furthermore, the u;, and o0;, variables can
be bounded, given that the maximum value of u;, occurs when there are no shift
performing activity a at period ¢, and the maximum value of o0;, take place when
all the employees are performing activity a at period ¢. Hence, this variables are
fixed to the maximum value if its respective coefficient is negative, and fixed to zero

otherwise. Algorithm 1 shows the solution procedure for SubP1

Algorithm 1 Solution method for SubP1.
Input: Matrix A.

Output: Solution [U, O].
1: for alli € I do

2: for alla € Ado

3: if (¢, + \ia) < 0 then
4: Ujq < biq

5: else

6: Uiq — 0

7: end if

8: if (¢, — A\ia) < 0 then
9: 0iq < |E| — bia

10: else

11: 0;q < 0

12: end if

13: end for
14: end for

15: return [U, O]

In SubP2, the Lagrangian multiplier \;, can be seen as the weight of performing

activity a at period i. The objective of SubP2 is to assign one shift to each employee,
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such that the total weight and the cost of assigning the shifts are minimized. Since
¢ is a parameter that depends on the transition cost, then the problem is reduced
to finding the shift that minimizes the number of transitions and the total weight.

Constraints (4.3) are trivially satisfied since we choose one shift for each employee.

To solve SubP2, we propose to use the dynamic programing procedure based
on the DAG T" by Coté et al. (2013). This algorithm consists of labeling each leave
node corresponding to activity a at period ¢ with weight \;,. Later, the weights
should be backtracked in the DAG I' to obtain the minimum weighted shift; where
the OR-nodes are labeled with the minimum label of its children, and the AND-
nodes are labeled with the sum of its children weights. Finally, when the root node
is labeled, we track the path that generates the sequence of activities with minimum

weight.

For instance, consider the DAG T" from Figure 3.3 generated by the grammar

presented in example 3.2 with the following values of the Lagrangian multipliers:

1 0
-2 0
A=
0 1
1 -1

The sequence with minimum weight is aja;a2as. Figure 4.1 shows the weight
propagation that generates this solution; the path of this sequence is highlighted in
bold. Note that transition costs are associated with any AND-node. Specifically,

S—J1J2,2
A14

the transition of the sequence ajajasas occurs in the node in Figure 4.1.

The transition cost is added to the label of the corresponding AND-node.
4.1.1.2 UPDATING THE LAGRANGIAN MULTIPLIERS

Once the subproblems are solved, the Lagrangian multiplier must be recomputed

using the classical subgradient method introduced by Shor (1985). We use the
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Figure 4.1: Cost propagation for DAG T'.

following equation to update the Lagrangian multipliers at the k-th iteration (AF):

k—
A = igh1 o | e et (fior — fé_l)]

(4.7)

Isia 112

where €;,_; € (0,2], and fx_; and f, ; are the best bounds for SCM and RSCM

found at the (k — 1)-th iteration, respectively. Additionally,

k-1 _ E : E : e(k—=1) _e(k—1) k—1 k—1
Sia = 6ias L + Wi — 04 — bia'
eceF seqe

e(k—1)

where , e € F and s € ()., denotes the RSCM solution obtained at the

(k — 1)-th iteration.

Conventionally, parameter €, is fixed to two, and it is divided by two after a
given number of iterations without improvement in the relaxed bound value. The
procedure stops when the Lagrangian multipliers do not causes significant changes

in the solution of RSCM; i.e. when, at iteration k, ¢, < &, where ¢ is small enough.

The shifts generated with SubP2 at each step of the Lagrangian relaxation are
feasible to MASSP; nevertheless, the quality of the solution is poor. Furthermore,
the Lagrangian relaxation provides lower bounds for SCM which can be used to

compute the optimality gap.
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In algorithm 2 the subgradient method used to solve RSCM is presented.

Algorithm 2 Subgradient Method.
Input: RSCM, ¢, N

Output: Set Q)

1 Q«0
2: €g ¢ 2
3: LB+ —0o0
40 A 071,14

5: while e > ¢ do

6: LBl <+ SubP1(A)

7. LB2 « SubP2(A)

8: S < GetSolution(SubP2(A\))
9. Q+QUS

10 LB <+ max(LB,LB1+ LB2)

11:  if LB does not change in N iterations then

12: €r  €r/2
13:  end if
14:  Update A

15: end while

16: return {)

4.1.2 MATHEURISTIC

We now present a general description of MH. Under the hypothesis that the La-
grangian relaxation is able to obtain good-quality shifts at each step, then the new

problem is to find the combination of these shifts that provides an efficient solution

to SCM.

Model SSCM(f?), which allows only a subset 2 of the feasible shifts, is as

follows:
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(SSCM(£2)) Min =z

subject to
E E : 57,115335 + Uija — Oiq
ecE s€Q,
>
s€Q,
Ty
Ujq
Oiq

where () = LJQﬁ3 and €, C Q° is the set of feasible shifts for employee e, generated

ecE

e, .e
PIPIL=

ecE sl

+ Z Z (C;'iauia + C;‘jaoill)

m

v

>

at each iteration of the subgradient method.

Algorithm 3 shows the MH procedure.

i€l a€A

1€l,ac A
ec k&

ec€ B, ,se
1€l,ae A

1e€l,ae A

The function Subgradient Method

refers to the method described in Section 4.1.1, and the function Solve uses an exact

method (included in CPLEX) to solve SSCM(£2).

whole procedure is presented.

In figure 4.2 a flowchart of the

Algorithm 3 Matheuristic based on Lagrangian relaxation.

Input: Problem data

Output: Solution Sol
1: Q < Subgradient Method(RSCM)
2: Sol < Solve(SSCM(2))

3: return Sol
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e

Q < 0

€Er +— 2

LB +— —x

A Oppya

LB1 + SubP1(A)

LB2 + SubP2(A)

|

Add to € the shifts in the
solution of SubP2(A)

LB <+ max (LB, LB1+ LB2)

UB +SSCM(Q)
Return
UB
[ Stop }

Figure 4.2: Flowchart of the Matheuristic
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4.2 EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained with the MH over two
instance sets: the Demassey instances from Demassey et al. (2006) and the Lequy
instances from Lequy et al. (2012a). The difference between these sets of instances is
that Lequy et al. (2012a) consider shifts where the starting period and the duration
are fixed; In Demassey et al. (2006) the shift can start at any period of the planning
horizon and two durations for a shift are considered: part-time shifts and full-time
shifts. In both sets the planning horizon is divided into periods of 15 minutes.
The results obtained with the MH are compared with the ones reported by Coté
et al. (2013), which report the best solution presented in the literature for both
benchmarks and where obtained with a Branch and Price method (BP). Coté et al.
(2013) execute the BP on an Intel Xeon 2.4 GHz with 48 GB of RAM and using
CPLEX 11.2. For the BP, the Demassey results are obtained within a 2 hours limit;
whilst, the Lequy instances in the classes 1,3,4 and 7 are solved within 1 hour limit,

and for classes 2,5,6,y 8 the time is not limited.

The MH was coded using C++ and the SSCM((?) is solved using CPLEX 12.6.
The experiments were performed on an Intel Xeon E5-2687W 3.1 GHz with 64 GB
of RAM. We initialize the parameters ¢; = 2 and ¢ = 0.0001 for the Lagrangian
relaxation. Additionally, the Lagrangian multipliers are updated every 375 and 75
iterations for the Demassey and the Lequy instances, respectively. CPLEX stops
when the optimality gap and the partial solution of SSCM(() is less than 1% or if

after 300 seconds there is no improvement in the solution.

For the MH, the Demassey results are obtained within a 2 hours limit; whilst,
the Lequy instances in the classes 1,3,4 and 7 are solved within 1 hour limit, and for

classes 2,5,6,y 8 the time is not limited.

Furthermore, we have implemented a column generation heuristic (CGH). The

CGH replaces the Lagrangian relaxation of the MH with a column generation of the
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linear relaxation of SCM that uses the reduced costs to generate feasible shifts. Later,
the set of shifts generated by the column generation are passed to the SSCM((),
which is solved as in the MH. The results obtained with CGH are compared with

the corresponding results of MH.

4.2.1 PROBLEM INSTANCES

4.2.1.1 DEMASSEY INSTANCES

Demassey et al. (2006) introduce a set of 100 instances for the MASSP. This set
is conformed by 10 classes of 10 instances each, based on the number of available
activities, from 1 to 10. The employees have the ability to perform all the activities,
and they can start to work at any period of the planning horizon considering that
they should comply with a full-time or a part-time schedule. The part-time shift
consists of a working time with a duration between 3 and 6 hours and includes a
break of 30 minutes. The full time shift has between 6 and 8 hours of work with
2 breaks of 30 minutes and a lunch break of 1 hour. Finally, the breaks must be

located between two different activities.

4.2.1.2 LEQUY INSTANCES

Lequy et al. (2012a) propose a set of 40 instances divided into 8 classes of 5 instances.
The employees have skills and the starting period and the duration of a shift are fixed.
Besides, the activities should be performed between a minimum and a maximum
number of consecutive periods. Finally, the transitions in the shifts have a fixed

cost.

Table 4.1 shows a description of each class: the first column indicates de name

of the class, the second shows the number of working days, the third presents the



CHAPTER 4. THE MULTI-ACTIVITY SHIFT SCHEDULING PROBLEM 36

number of employees available and the fourth gives the number of activities to be
performed. Note that class 1 has the same size as class 2, and class 4 has the same
size as class 5. However, classes 1 and 4 have larger shifts and the employees have

more qualifications.

Table 4.1: Classification of the Lequy instances.

Set of Instances Days  Employees Activities

Class 1 1 50 10
Class 2 1 50 10
Class 3 2 75 12
Class 4 7 20 3
Class 5 7 20 5t
Class 6 7 50 7
Class 7 7 50 10
Class 8 7 100 15

4.2.2 MATHEURISTIC

4.2.2.1 DEMASSEY INSTANCES

Table 4.2 shows a summary of the solutions found by the MH, in the columns from
2 to 4, and the solutions reported by Coté et al. (2013), in the columns from 5 to 7.
The column Average Time presents, for the MH, the average processing time tested
over all the instances of each class; whilst, the average time for the BP is computed
only considering the processing time of the instances solved within 0.01% gap, for
the instances within 1% gap the limit time is reached. The columns NbS(0.01%) and
NbS(1%) represent the number of instances of each class where the solution reports

an optimality gap of 0.01% and 1%, respectively. For the MH, the optimality gap
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is computed with the formula 100 - (z — z;)/z;, where z is the objective function
value of the feasible solution bound obtained with the MH and z; is the lower bound

provided by the Lagrangian relaxation.

Table 4.2: Experimental results for the Demassey instances.

Matheuristic BP

Average Average
Instances NbS(0.01%) NbS(1%) NbS(0.01%) NbS(1%)

Time (s) Time* (s)
Class 1 7 10 12.01 ) 10 62.00
Class 2 8 9 75.64 6 9 100.00
Class 3 9 10 97.51 6 8 2074.00
Class 4 6 7 180.35 ) 9 2096.00
Class 5 9 9 35.29 0 10 7200.00
Class 6 7 7 95.91 9 10 915.00
Class 7 7 9 131.64 D 9 2426.00
Class 8 4 7 113.77 7 10 2163.00
Class 9 7 10 54.61 ) 7 1886.00
Class 10 6 8 172.14 6 8 3754.00
Average: 7 8.60 96.89 5.40 9 2267.60

*Average processing times of the BP are those reported by Coté et al. (2013)

The MH is able to find solution within 0.01% gap for 70 out of 100 instances,
while the BP achieves this result only in 54 instances. Furthermore, MH solves all
the instances within a 0.470% average gap. Although the experimental results were
obtained with different machines, the experimental results show that MH is able to
achieve better solution than the BP, without reaching the limit in the processing

times.

4.2.2.2 LEQUY INSTANCES

Table 4.4 shows the results obtained with the MH for each instance; the column
MH solution presents the feasible bounds obtained with the MH, and the column
Gap(%) shows the optimality gap computed with the feasible bound of the MH and
the lower bound provided by the Lagrangian relaxation. The columns related to BP

show the solutions and the processing times reported by Coté et al. (2013). Observe
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that the MH is able to find better or equivalent feasible bounds than the BP in 38
out of 40 instances; however, the instances where BP solution is better than the MH

differ only in 15 units which represents the cost of one transition.

Table 4.3 summarizes the results showed in the table 4.4. The column Gap
(MH/LR) presents the average gap between the MH solution and the Lagrangian
relaxation bound; the column Gap(BP/MH) corresponds to the average gap between
the BP solution and the Lagrangian relaxation bound, and Gap(BP/MH) shows the

average gap between the BP bound and the MH bound.

Table 4.3: Average solution obtained with the matheuristic for the Lequy instances.

Gap(MH/LR) Gap(BP/LR) Gap(BP/MH) Time Time
Instances

(%) (%) %) MH (s) BP* (s
Class 1 2.34 3.08 -0.70 49.72  1630.20
Class 2 1.79 1.63 0.16 9.06 53.78
Class 3 4.50 6.59 -1.92 2447.56  3600.00
Class 4 0.47 0.69 -0.21 94.81 411.40
Class 5 0.00 0.00 0.00 12.79 0.66
Class 6 0.28 0.28 0.00 231.07 36.59
Class 7 1.24 1.62 -0.37 1209.29  2014.80
Class 8 1.87 2.12 -0.24 2320.83  4936.84
Average: 1.56 2.00 -0.41 796.89  1585.53

* Average processing times of the BP are those reported by Coté et al. (2013)

On average, the MH reports a 1.56% of gap against the 2.00% obtained with
the BP. Additionally, the average Gap(BP/MH) is —0.41% which means that the
MH obtains better solution than the BP. Finally, although the experimental results
were obtained on different machines, the MH improves the quality of the solutions

reported by Coté et al. (2013) in a relatively low processing time.
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Table 4.4: Solutions obtained by the matheuristic for the Lequy instances.

Time MH BP Time
Instance (Id) ~ MH solution Gap (%)
(s)  solution BP (s)
Class 1: 1 day, 50 employees, and 10 activities.
1808 3225 4.90 71.46 3270 3600.00
5066 2440 2.43 36.69 2440 935.00
5135 2580 0.54 19.12 2580 8.00
5226 2725 0.34 20.72 2725 8.00
8854 2740 3.46 100.63 2800 3600.00
Class 2: 1 day, 50 employees, and 10 activities.
342 1875 1.60 8.02 1875 26.70
369 2315 0.66 12.48 2315 146.08
71 2050 0.00 4.83 2050 1.26
737 2065 2.82 9.73 2065 53.23
896 1890 3.88 10.20 1875 41.67
Class 3: 2 days, 75 employees, and 12 activities.
1855 5960 4.27 5314.58 6265 3600.00
2106 6540 5.99 2632.76 6525 3600.00
2435 5850 3.74 1740.24 6050 3600.00
4225 6150 5.19 1682.04 6255 3600.00
9863 5870 3.31 868.20 5870 3600.00
Class 4: 7 days, 20 employees, and 5 activities.
1024 7220 0.56 81.49 7220 11.00
1773 6345 0.01 86.14 6360 9.00
2732 7420 0.29 121.35 7420 19.00
4657 6400 1.34 78.36 6400 2003.00
5553 7535 0.16 106.70 7600 15.00
Class 5: 7 days, 20 employees, and 5 activities.
1024 2940 0.00 15.73 2940 0.80
1773 2770 0.00 13.24 2770 0.76
2732 3820 0.00 9.90 3820 0.54
4657 3210 0.00 14.22 3210 0.61
5553 3270 0.00 10.88 3270 0.59
Class 6: 7 days, b0 employees, and 7 activities.
5600 8440 0.64 200.03 8440 59.49
592 7345 0.27 235.63 7345 33.03
8597 7645 0.12 275.13 7645 31.58
9445 7900 0.06 169.51 7900 14.67
949 8155 0.33 275.07 8155 44.19
Class 7: 7 days, 50 employees, and 10 activities.
1007 14085 1.37 1157.05 14115 1321.00
156 13420 0.79 1139.32 13420 1793.00
237 13455 0.93 875.391 13610 3600.00
4369 13630 1.95 1703.35 13675 1536.00
5216 14770 1.15 1171.37 14800 1824.00
Class 8: 7 days, 100 employees, and 15 activities.
530 15155 1.48 2430.48 15200 5818.36
1024 15435 2.63 2790.49 15420 4602.99
2596 15765 1.76 2180.99 15855 10806.10
6384 15235 1.47 2100.24 15250 2064.81
7862 15880 1.98 2101.96 15940 1391.95
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4.2.3 COLUMN GENERATION HEURISTIC

In the previous sections, the results obtained with the MH are compared with the
results presented in Coté et al. (2013). However, the BP algorithm is not tested over
the same machine given that the algorithm is not available to perform these experi-
ments. For this reason, we implement and execute a column generation heuristic in

order to measure the performance of the MH.

Table 4.5 shows a summary of the result obtained with the CGH. The column
Gap(CGH/CQG) presents the average gap between the feasible solution obtained
with the CGH and the lower bound provided by the column generation; The column
Gap(MH/CGH) corresponds to the average between the bound of the MH and the
bound of the CGH; The column NbS(MH>CGH) shows the number of instances
where the bound of the MH is lesser or equal to the bound of the CGH, and the last
two columns display the average processing time of the MH and CGH, respectively.
One can note that the MH is able to find better or equivalent than the CGH in
98 out of 100 instances. Furthermore, the average Gap(MH/CGH) is —1.8% which
means that the MH obtains better solutions than the CGH, and the bounds of MH
are 1.8% better than the CGH bounds. Finally, the MH finds better solution than
the CGH in the 98% of the instances, with an improvement of 81.4% in the average
processing time of the CGH.

Table 4.5: Comparison between MH and CGH for the Demassey instances.

Number of Gap(CGH/CG) Gap(MH/CGH) NbS Time Time
Activities (%) (%) (MH<CGH) MH(s) CGH(s)
1 2.06 -1.84 9 12.01 1.06
2 6.19 -4.32 9 75.64 5.83
3 2.24 -2.11 10 97.51 16.09
4 1.37 -1.15 10 180.35 131.55
5 0.76 -0.74 10 35.29 158.62
6 1.31 -1.17 10 95.91 617.7
7 1.94 -1.72 10 131.64 919.97
8 3.08 -2.32 10 113.77 1163.15
9 0.74 -0.73 10 54.61 827.03
10 2.25 -1.94 10 172.14 1369.66
Average: 2.19 -1.8 9.8 96.89 521.07

Table 4.6 reports a summary of the results obtained with the CGH for the
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Lequy instances. The results show that the MH is able to find better or equivalent
solutions for 39 out of 40 instances, and obtains better bounds than the CGH in
3.73% of the instances. Although the CGH reports, on average, a better processing
time (727.89s), the difference with the MH (796.89s) is not significant. Further-
more, in the Class 8 conformed with the largest instances, the MH reports a better
processing times than the CGH. Also, both algorithms present a similar behavior
(considering the Gap(MH/CGH)) in all the classes except Class 8, where the MH
reports bounds 26.26% better than the ones obtained with the CGH. This behav-
ior can be due to the size of the instances; given that planning horizon is over one
week with 100 employees and 15 activities, the number of feasible shift increase

considerably.

Table 4.6: Comparison between MH and CGH for the Lequy instances.

Gap(CGH/CG) Gap(MH/CGH) Time Time
Instances NbS (MH<CGH)

(%) (%) MH (s) CGH (s)
Class 1 2.99 -0.97 2 49.72 112.78
Class 2 1.83 -0.25 4 9.06 8.81
Class 3 4.11 -1.88 D 2447.56  1558.66
Class 4 0.47 -0.08 ) 94.81 15.97
Class 5 0.00 0.00 D 12.79 2.78
Class 6 0.20 -0.07 bt 231.07 00.06
Class 7 0.65 -0.34 ) 1209.29  1055.64
Class 8 87.12 -26.26 D 2320.83  3018.39
Average: 12.17 -3.73 4.87 796.89 727.89

4.3 (CONCLUSIONS

In this chapter, we have presented a matheuristic based on Lagrangian relaxation,
where the subgradient method was used to generate promising shifts and the best
combination of the shifts was found by solving the SSCM(€2). The subgradient
method takes advantage of the context-free grammar representation to generate the
shifts. Additionally, the shifts generated with the subgradient method allow us to

reduce the number of variables and the complexity of the problem.
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The solutions for the Demassey instances show that the MH obtains better so-
lutions than the BP and the CGH, in a relatively low processing time. The MH finds
solution within 0.01% of optimality gap for 70% of the instances. Furthermore, the
bounds obtained with the MH are, on average, 1.8% better than the ones obtained
with the CGH, also the MH reports better solution than the CGH in the 98% of the

instances, improving the average processing time of the CGH in 81.4%.

For the Lequy instances, the MH obtains solutions within a 1.56% of optimal-
ity gap with respect to the lower bound provided by the Lagrangian Relaxation.
Additionally, the MH finds better or equivalent solution than the BP for 38 of the
40 instances. Besides, the MH has better behavior than the CGH in the largest
instances, where the MH reports bounds 26.26% better than the CGH, improving

the average processing time of the CGH in 23.1%.

Finally, the MH obtains better or equivalent solutions than the CGH for the
97.8% of the instances, which highlights the efficiency of the MH.



CHAPTER 5

THE IMAGE SEGMENTATION PROBLEM

In this chapter we introduce a bi-objective set-covering model for the ISP. Further-
more, we propose to solve the bi-objective model using the AUGMECON algorithm
(Mavrotas, 2009). Finally, we present a detailed analysis of the results obtained with

the model.

5.1 PROBLEM DESCRIPTION AND FORMULATION

The ISP consists of dividing a given image into segments with similar characteristics.
Given that the model presented in the Section 3.2.1, it is impractically to solve or
even to implement, we propose to use the histogram of the image to reduce the
number of variables of the model. In this case, the problem can be seen as the
problem of partitioning the histogram. Considering that we must cluster only pixels
with similar colors, then the partition of the histogram has to be performed with sets
of consecutive intensities. The objectives of this problem are to minimize the total
number of sets considered in the partition and to minimize the maximum variance

of the sets in the partition.

Moreover, if all the possible partition sets are generated, then the problem

becomes a bi-objective set-covering problem which consists of finding the minimum

43
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number of sets that cover the histogram, minimizing the maximum variance of the
sets in the partition. In this thesis, we consider that the minimum set size is two and
the maximum is [ N/2], where N is the number of intensities (colors) in the image.
We consider the minimum set size as two, because it has no sense to have segments

with only one element.

We use the next parameters, to formulate the bi-objective set-covering model

(BSCM):

i is the index of the color in the histogram (i € {1,..., N});

Jj is the size of a set (j € {2,...,[N/2]};

Sij = {1,...,i +j — 1} is the set of size j starting from color index 3;

0;; is the variance of set s;;.;

° (55} is a parameter equal to 1 if k£ € s;;, and 0 otherwise.

Using the previous notation, the decision variables are defined as follows:

1, if s;; is a partition of the histogram;
ZEZ'j =
0, otherwise.

Consequently, the proposed BSCM for the image segmentation is formulated

as follows:

(BSCM) Min z = Jmax, (072i;) (5.1)
J=L..,[N/2]
N [N/2]

Min 29 = Z Tij (52)
i=1 j=1

subject to
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N [N/2]
SN sy = 1 Vk=1,...,N (5.3)
i=1 j=1

z; € {0,1} Vi=1,....,N, j=1,...,[N/2] (5.4)

The objective (5.1) minimizes the maximum variance of the sets in the par-
tition, whilst the objective (5.2) minimizes the number of sets in the partition.
Constraints (5.3) ensure that only one set covers each intensity in the histogram.
Note that the BSCM model is not linear because of objective (5.1); however BSCM

can be linearized as follows:

(LBSCM) Min 2z = y (5.5)
N [N/2]
Min 2 = » > (5.6)
i=1 j=1
subject to
N [N/2]
YN by = 1 Vk=1,...,N (5.7)
i=1 j=1
oy <y Vi=1,...,N, j=1,...,[N/2] (5.8)
y € R (5.10)

where y is a positive real variable and constraints (5.8) are the classical min-max

linearization constraints.

Furthermore, if we consider an 8-bit image, which contains 256 intensities, the
LBSCM model has 24, 384 variables, the same number of linearization constraints,
and 256 covering constraints. It is relevant to remark that the size of LBSCM
depends only in the pixel format of the image; which means that if we consider two
images of different size with the same pixel format, then the number of variables and

constraints does not change.

Note that the function z; in model BSCM represents a heterogeneity measure

of the elements in each set, and can be replaced by other measure. For example,
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Min z3 = l:IElaXN (Ufjxij)(ug—OQx,—j), (5.11)
=1, [N/2]

where, u, is the average of the variances over all the sets. This new function can be

linearized using the same technique as in z;.

Furthermore, in this work two types of histograms are considered: the original
histogram and the one with logarithmic frequencies. In fact, some values of the
histogram are very large which can cause numerical difficulties when the problem is
solved in a computer. The logarithmic frequencies allows to tackle these problems;
moreover, the new scale could identify different segments, particularly when the
peaks are pronounced. Table 5.1 shows the different variants of the LBSM discussed

in the following sections.

Table 5.1: Alternative Models

Model Objective Function Frequencies
Sigma.freq 2 = H%%X (afjxij) Original
Sigma.logfreq 21 = n}gx (afj:cl-j) Logarithmic

Media.freq 23 = max (1o — afjxij) Original

Media.logfreq 23 = max (uo — O’Z-le‘ij) Logarithmic
Z7J

Notice that the models generated from the variants showed in Table 5.1 differ

only in the objective function and the scale of the data.

5.2 AUGMECON

We propose to solve LBSCM using an AUGMECON algorithm, introduced by Mavro-
tas (2009), which is an iterative method used to generate the Pareto frontier for a
multiobjective problem. The AUGMECON is a variant of e-constraint method, the
difference between the two methods is that e-constraint optimize one of the objec-

tive function and uses the other objective functions as constraints; the AUGMECON
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uses the same formulation as e-constraint and adds, in the objective function, the
excess or slack variable of each constraint related to the objective functions, in order

to push their value as much as possible.

In our case, the algorithm solves a mono objective model at each iteration of the
algorithm by using one of the objectives as a constraint of the model, and penalizing
this change in the objective function. The mono objective version of the LBSCM is
obtained by limiting the maximum number of segments GG in the partition, and is

formulated as follows:

(TLBSCM(G)) Minz = y— =8 (5.12)
2
subject to
N [N/2]
i=1 j=1
N [N/2]
> obay; = 1 Vk=1,...,N (5.14)
i=1 j=1
v; € {0,1} Vi=1,...,N, j=1,...,[N/2] (5.16)
y € RT (5.17)
S € RF (5.18)

where S is a slack variable for the constraint (5.13) and e is a small value which
helps to minimize the objective z5 of the LBSCM, while z; is minimized. Note that
the objective function in TLBSCM will maximize variable S subject to constraint
(5.13). Consequently, the number of groups in the solution will be push down as

much as possible.

Algorithm 4 presents the AUGMECON proposed to solve LBSCM. Function
Solve() obtains the exact solution Sol for the TLBSCM(7); function Add() incorpo-
rate the solution Sol to the Pareto frontier, and the function NumberOfSegments()

obtains the number of groups in the solution Sol. In this case, we fix G with the
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value [N/2] at the first iteration, given that this is the maximum number of groups
in a solution considering that the minimum size of a set is two. Notice that the

Pareto frontier is conformed by all the possible segmentations.

Algorithm 4 Solution method for the (LBSCM)
Input: Histogram Data

Output: Pareto Frontier PF
1: PF «+ ()
2: G« [N/2]
3: while G > 1 do
4:  Sol +Solve(TLBSCM(G))
5. PF «Add(Sol)
6: GR <NumberOfSegments(Sol)
77 G+ GR-1
8: end while

9: return PF

5.3 EXPERIMENTAL RESULTS

In this section, we present the performance of the AUGMECON approach over the
four variants of the LBSCM showed in Table 5.1. This algorithm is tested using
two datasets: the Weizmann benchmark conformed by 100 gray scale images of one
object, and the high definition dataset introduced in this work. The details of the
testing sets can be found in the next sections. In both cases, the objective is to find

the segment which better fits to the object in each image.

The datasets contain only grayscale images with an 8-bit pixel format, which
means that the size of the histogram has N = 256 intensities. Before solving TLB-
SCM(G), a preprocessing of the image must be executed to compute all the possible

partitions and the variance of each set in each partition. Besides, parameter € in the
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AUGMECON approach is fixed to 0.0001 for convention.

Finally, the algorithm is coded in C++ and the TLBSCM(G) is solved using
CPLEX 12.3. Additionally, the stopping criteria are a relative optimality gap less
than 1% and one hour of maximum processing time per iteration. The experiments
were performed on a machine with an Intel Xeon 3.1 GHz and 64 GB of RAM.
The statistical analysis presented in the next section was accomplished using the

statistical software R.

In order to measure the quality of each segmentation generated from the algo-

rithm, we use the function F (also named F-measure) computed as follows:

PR
F=2
P+ R
where P = P9OPS| 4pq g = EO0PS] respectively. PO is the set of pixels that

|PS]| |PO|

conforms the object in the image, and P.S is the set of pixels contained in the segment
related with the object. Furthermore, the set PO is indicated in the ground truth
image (generated by a human). A good segmentation implies that the F-measure is

close or equal to one.

5.3.1 HIGH DEFINITION IMAGES

We introduce a new set of high definition images of one object. Additionally, we
present the experimental results of the AUGMECON. The new dataset is composed
by 4 classes of 16 grayscale images taken from one object, where each class is rep-
resented by the size of the images: 2.4, 8, 12 and 16 mega-pixels (MP). Also, the

ground-truth of each image is provided.

Furthermore, we carried out a statistical analysis in order to identify the best
variant of the model (see table 5.1). Figures 5.1 and 5.2 show some examples of the

segmentation performed by the AUGMECON algorithm.
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a) Image of 2.4 mega-pixels (b) Ground truth of 2.4 (c) Segmented image of 2.4
mega-pixels mega—pixels

(d) Image of 8 mega-pixels ) Ground truth of 8 mega- (f) Segmented image of 8
pixels mega-pixels

(g) Image of 12 mega-pixels (h) Ground truth of 12 ) Segmented image of 12
mega-pixels mega—pixels

(j) Image of 16 mega-pixels (k) Ground truth of 16 ) Segmented image of 16
mega-pixels mega—pixels

Figure 5.1: Experimental results for the first example of the high definition images
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5.3.1.1 THE PARETO FRONTIER

In this section, we present the results obtained with the AUGMECON, which returns
the Pareto frontier, that is conformed by a set of solutions that generate the possible
segmentations of an image. Notice that the first efficient solution obtained with
the AUGMECON provides the minimum value for the heterogeneity measure with
the maximum number of segment. Consequently, the next solutions lead to a lower
number of segments but with an increase of the heterogeneity value. In order to
evaluate the quality of the segmentations generated from the Pareto frontier, we

compute the F-measure for each image in the dataset.

In practice, we have noted that the algorithm never reach the maximum pro-
cessign time, and discards a lot of possible number of segments at the first iteration,
because the slack variable added in the objective function of the TLBSCM is pushing
the number of groups as much as possible. Furthermore, if only the first solution
is taken, then the algorithm can be considered as an automatic procedure; i.e. the
algorithm is able to determine the number of segments and the segmentation. How-
ever, the algorithm provides a set of possible segmentations that gives to the decision
maker the possibility of choosing the best segmentation for him/her among all the

segmentations.

Tables 5.2, 5.3, 5.4 and 5.5 summarize the Pareto frontiers obtained with each
variant of the LBSCM for each class in the high definition dataset. The first two
columns corresponds to the average of the number of segments and the F-measure
for each image size with the first solution; the next three columns present the av-
erage of the number of iteration, the number of segments and the F-measure of the

best segmentation obtained with the frontier; the following two columns show the
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(a) Image of 2.4 mega- (b) Ground truth of 2.4 (c) Segmented image of

pixels mega-pixels 2.4 mega-pixels

(d) Image of 8 mega- (e) Ground truth of 8 (f) Segmented image of

pixels mega-pixels 8 mega-pixels

(g) Image of 12 mega- (h) Ground truth of 12 (i) Segmented image of

pixels mega-pixels 12 mega-pixels

(j) Image of 16 mega- (k) Ground truth of 16 (1) Segmented image of

pixels mega-pixels 16 mega-pixels

Figure 5.2: Experimental results for the second example of the high definition images
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average F-measure of the segmentations generated from Pareto frontier and its re-
spective standard deviation. Finally, the column Gap F(Best-First)% displays the

gap between the average F-measure of the best and the first solution.

Table 5.2: Summary of the Pareto frontiers with Sigma.freq

First Solution Best Solution Pareto Frontier

Gap
Segments F-measure Iteration Segments F-measure F-Avg Std-Dev  F(Best-First)

%
24 M 13.50 0.43 6.88 7.50 0.50 0.43 0.06 11.27
8 M 12.25 0.47 8.00 5.19 0.53 0.47 0.06 12.43
12 M 10.50 0.47 6.31 5.13 0.54 0.46 0.07 12.01
16 M 12.63 0.43 6.94 6.69 0.50 0.42 0.06 15.10
Average: 12.22 0.45 7.03 6.13 0.51 0.45 0.06 12.70
Table 5.3: Summary of the Pareto frontiers with Sigma.logfreq
First Solution Best Solution Pareto Frontier
Gap

Segments F-measure Iteration Segments F-measure F-Avg Std-Dev  F(Best-First)
%

24 M 12.38 0.46 7.31 6.00 0.51 0.44 0.07 10.59
8§ M 12.50 0.48 8.56 4.94 0.53 0.47 0.06 10.57
12 M 10.56 0.48 5.75 5.81 0.53 0.46 0.07 9.54
16 M 12.81 0.44 7.44 6.38 0.50 0.43 0.06 9.97

Average: 12.06 0.46 7.27 5.78 0.52 0.45 0.07 10.17
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Table 5.4: Summary of the Pareto frontiers with Media.freq

First Solution Best Solution Pareto Frontier

Gap
Segments F-measure Iteration Segments F-measure F-Avg Std-Dev F(Best-First)

%

24 M 3.56 0.41 1.44 3.13 0.47 0.41 0.07 6.64
8§ M 3.19 0.44 1.44 2.75 0.48 0.43 0.05 4.59
12 M 3.06 0.45 1.44 2.63 0.46 0.44 0.02 1.41
16 M 3.25 0.41 1.56 2.69 0.44 0.40 0.05 4.25
Average: 3.27 0.43 1.47 2.80 0.46 0.42 0.05 4.22

Table 5.5: Summary of the Pareto frontiers with Media.logfreq

First Solution Best Solution Pareto Frontier

Gap
Segments F-measure Iteration Segments F-measure F-Avg Std-Dev  F(Best-First)
%

24 M 4.44 0.43 2.19 3.25 0.47 0.42 0.07 7.17
8§ M 4.50 0.47 2.44 3.06 0.51 0.45 0.08 6.64
12 M 4.50 0.45 2.13 3.38 0.51 0.45 0.07 9.38
16 M 4.50 0.43 2.06 3.44 0.48 0.41 0.09 8.24
Average: 4.48 0.45 2.20 3.28 0.49 0.43 0.08 7.86

The results show that the first segmentation generated has not always the best
F-measure evaluation, although this solution has the minimum heterogeneity value.
Actually, the average gap between the F-measure from the first and the best solution
is between 4.22% and 12.70%. However the method can take hours to obtain the best
solution because it explores the complete frontier first. Also, we cannot estimate the
quality of a segmentation a priori, because it is no possible to obtain information

about the F-measure of a solution without computing it.

From the results, the best performance is reported by Sigma.logfrec model,
which can achieve an average F-measure of 0.52 with the best solution in the frontier,
and 0.46 with the first solution. Considering that the algorithm can take hours to
obtain the best solution, and given that the gap between the F-measures of the
first and the best solution is relatively low, it make sense to consider only the first

solution in order to obtain an automatic segmentation and reduce the processing
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times of the algorithm. In the next section, we present the computational result of
the algorithm considering only the first solution of the AUGMECON. Additionally,

we show a detailed statistical analysis of the results.

5.3.1.2 COMPARISON OF THE MODELS

In this section, we summarize the results obtained by choosing the first solution
returned by the AUGMECON. Table 5.6 and figure 5.3 show the average measure
obtained with each variant of the model tested over each image size set. The results
suggest that the quality of the segmentation has no relation with the size of the
image, given that the F-measure is maintained stable with respect of each variant
of the model. Actually, the average F-measure is around 0.4 in all cases, and the

variation is not greater than 0.03 in the average F-measures over each model.

Furthermore, the average processing times are presented in table 5.7 and figure
5.4. In general, the results does not show an explicit relation between the average
processing times and the size of the images; Although the processing times with
the Media.freq shows that the greater the image size, the greater the processing
times. The behaviors of the results suggest that the difference observed in the
processing time seems related to the convergence of CPLEX. Additionally, the models
Sigma.logfreq, Media.freq, and Media.logfreq obtains solution within a minute of

processing time.

Table 5.6: Average F-measure

Sigma.freq Sigma.logfreq Media.freq Media.logfreq

Size
F-measure F-measure F-measure F-measure
24 M 0.39 0.45 0.40 0.43
8M 0.37 0.47 0.42 0.46
12M 0.38 0.47 0.41 0.45

16 M  0.35 0.44 0.42 0.42
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Figure 5.3: Average F-measure

Table 5.7: Average time

Sigma.freq Sigma.logfreq Media.freq Media.logfreq

Size
Time (S) Time (S) Time (S) Time (S)
24 M 162.78 50.74 32.99 29.02
8 M 182.48 71.50 39.87 43.53
12 M 164.80 44.41 48.66 39.99
16 M 192.98 66.01 59.11 67.24

Consequently, we suggest to use the Sigma.logfrec given that is the best evalu-
ated model and it takes a relatively low processing time to obtain a solution. In the
next sections, only the Sigma.logfrec is considered to perform a detailed experiment

and a deeper statistical analysis of the results.
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Figure 5.4: Average time

5.3.1.3 F-MEASURE ANALYSIS

In this section, we present a statistical analysis of differences of the F-measure data
with respect to the size of the image. In this work, we propose to use an ANOVA
(Fisher, 1925) to identify if there is a difference or not, in order to determine if the

image size is a factor that impacts on the quality of the segmentation.

Before applying the ANOVA, we should corroborate that the data accomplish
with its assumptions. First, the independence of the treatments is assured because
each treatment is represented by the image size, which is totally different in each
class; second, the homogeneity of the variance is confirmed with 95% of confidence by
the Fligner-Killeen test presented in Table 5.8, given that the p-value in the table is
greater to 0.05; finally, the normality assumption is validated with 95% of confidence
by the Anderson-Darling test presented in Table 5.9, given that the p-value is greater
to 0.05.
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Table 5.8: Homogeneity of the variances test

Fligner-Killeen Test
chi-squared Degrees of freedom p-value Critical value
0.081264 3 0.994 7.81

Table 5.9: Normality test

Anderson-Darling Test
Size  A-value p-value Critical value
24M  0.55435 0.1276 2.92
8M  0.29086 0.5633
12M  0.43949  0.2555
16M  0.33393 0.4666

The ANOVA test for the difference in the F-measure is presented in Table 5.10.
The analysis shows that there is not a significant difference in the values among the
image sizes with a confidence level of 95%; given that the Pr(> F) value is greater
to 0.05 and the F-value (0.039) is lesser than the Critical Value (2.75). Therefore,
the quality of the solution does not depend of the size of the image. Figure 5.5

presents a boxplot of the F-measure results to support the analysis.

Table 5.10: ANOVA

Critical
DF Sum Sq Mean Sq F-value Pr(>F)
Value
Treatments 3 0.10 0.0032 0.039 0.99 2.75

Residuals 60 5.01 0.0836

5.3.1.4 TIME ANALYSIS

The statistical analysis of differences in the processing times cannot be performed
by using an ANOVA, because the samples does not comply with the normality
assumption. For this reason, we propose to use the non parametric Kruskal-Wallis

test (Kruskal and Wallis, 1952) to identify the differences in the processing times
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Figure 5.5: Distributions of measures

among the size of the images. Table 5.11 displays the results of the Kruskall-Wallis
test and shows that there is a difference in the processing times with a confidence
level of 95% given that the p-value is less to 0.05. Also, the value of the y-squared
(10.65) for this experiment is greater to the critical value (7.81) which corroborates
the results of this test. This means that there is a difference in the processing times
for, at least, two different image size, although the model maintains the same number

of variables an constraint for all the images.

Table 5.11: Kruskal-Wallis test

Kruskal-Wallis Test
chi-squared Degrees of freedom p-value Critical value
10.652 3 0.01376 7.81

Consequently, the Nemenyi test is performed in order to identify the differences
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in the precessing times. This test is presented in Table 5.12 and indicates that the
difference in the processing times occurs, with 95% of confidence, in the comparison
of the results of the 2.4M and 16M datasets; given that the respective p-value is
less than 0.05. The results of the test suggest that there is a statistical difference in
the processing times corresponding to the 2.4M and 16M datasets. Figure 5.6 shows
that there is a small increase in the processing times, however this increment can be
due to the convergence of CPLEX because the number of variables and constraints

of the model does not change.

Furthermore, Figure 5.5 shows that the algorithm is more stable with the 12M

set. Given that this case presents the smallest deviation in the processing times.

Table 5.12: Test of differences

Nemenyi Test

Size Differences p-value
8M-2.4M 8.00 0.6171
12M-2.4M 10.50 0.3814
16M-2.4M 21.25 0.0068

12M-8M 2.50 0.9814
16M-8M 13.25 0.1832
16M-12M 10.75 0.3599

5.3.2 WEIZMANN IMAGES

In this section, we present the computational results of the algorithm tested over the
Weizmann benchmark, which is conformed by 100 grayscale images of 8-bit with one
object. Also, this dataset provides the ground truth for each image. The objective is
to obtain the segment that better fits to the principal object. This experiment was
executed considering only the first solution of the Sigma.logfrec, since this model have
reported the best F-measure. Figure 5.7 shows some examples of the segmentations
obtained with the first solution of the AUGMECON. Table 5.13 compares our score

with the best scores reported in the literature for this benchmark.
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Figure 5.6: Distributions of processing times

Table 5.13 shows that the proposed approach achieves an average F-measure
of 0.59 with 0.032 of variance. These results place our algorithm at the fifth position
among the best scores reported. Furthermore, the algorithm provides a segmentation
within 41.42 seconds of computational time. Also, we observe that 90% of the images
were segmented in less than 100 seconds. These results are supported by Figure 5.8,

which presents the cumulative distribution of the processing time.

5.4 CONCLUSIONS

In this chapter, we have formulated a novel bi-objective set-covering model for the
image segmentation based on the data of the histogram of a given image. Like-

wise, we have presented four variants of this model combined with two different
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Figure 5.7: Examples of the experimental results of the Weizmann dataset
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Table 5.13: Table of scores

Algorithm Score Remarks
Interactive
Bagon et al. (2008) 0.87+0.010
Segmentation
Automatic
Alpert et al. (2012) 0.86 £+ 0.012
Segmentation
Automatic
Galun et al. (2003) 0.83 £ 0.016
Segmentation
Automatic
Shi and Malik (2000) 0.72 £ 0.018
Segmentation
Automatic
Sigma.logfreq 0.59+ 0.032
Segmentation
Automatic
Comaniciu and Meer (2002) 0.57 &+ 0.023
Segmentation

heterogeneity measures and two scales for the frequencies of the histogram. The ad-
vantage of considering the data of the histogram is that the models does not depend
on the images size, which conduced to a model with considerably less variables and
constraints. Furthermore, we have proposed to use the AUGMECON approach to
provide a set of efficient solutions to the BSCM, that gives the decision maker the
possibility of choosing the best segmentation based on his/her experience. Notice
that if the first solution of the Pareto frontier is taken, then the algorithm is able to
determine the number of segments automatically in a relatively low computational

time.

Additionally, we performed a detailed experimental work of the AUGMECON
approach through the use of a new high definition dataset. The results show the
robustness of the method, maintaining the stability in the quality of the solutions
and in the processing times independently of the size of the input image. We have

identified that the Sigma.logfrec model provides the best quality segmentations.
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Figure 5.8: Cumulative distribution of the processing time

Likewise, the statistical analysis proves that the quality of the segmentation is not
affected by the number of pixels in the image; although the analysis shows a slight
increase in the processing times given a greater image size. This increment in the

processing times can be due to the convergence of the solver (CPLEX).

Furthermore, the proposed algorithm was tested and compared considering the
Weizmann dataset. Our algorithm with the Sigma.logfrec variant of the model was
able to obtain an average F-measure of 0.59 with a variance of 0.032, which position
our algorithm in the fifth place among the best results reported in the literature.
Finally, the procedure take less than 50 seconds to find the first solution of the

frontier for 80% of the images.

Finally, the proposed approach gives to the user the flexibility to provide differ-
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ent heterogeneity measures and ways to define the partition sets, in order to improve
the quality of the segmentation. Notice that this algorithm is relevant in the case
of very large size images because it can perform an efficient segmentation within a

relatively low processing time.



CHAPTER 6

CONCLUSIONS

In this thesis we have presented two applications for the set-covering problem: the
multi-activity shit scheduling problem and the image segmentation. The SCP was

very useful to model each problem and to derive efficient dedicated solution methods.

On one hand, the structure of SCP for the MASSP allowed us to divide this
problem into smaller ones thanks to a Lagrangian relaxation. Also, we took ad-
vantage of the context-free grammar representation of the feasible shifts of each
employee to facilitate the solution of the subproblems. In this context, we have
proposed a matheuristic method which uses the set of the feasible shifts generated
at each step of the subgradient method, in order to build a restricted set-covering

model which is solved exactly to provide the best combination of the shifts. Note

that the SSCM has considerably less variables than the SCM.

The MH for the MASSP was tested over two datasets provided in the literature:
the Lequy instances and the Demassey instances. The experimental results show
that the MH is able to find better or equivalent solution for 137 out of 240 instances
compared with the column generation heuristic for both datasets. Furthermore,
the MH is able to provide better or equivalent solutions for 38 of 40 instances of
the Lequy dataset; this information cannot be obtained for the Demassey instances

given that Coté et al. (2013) only show the summary of the results; however, from

66
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table 4.2, it can be seen that the MH is able to find better quality solutions than
the BP with and improvement of 95.7% of the BP average processing time. Finally,
it is important to remark that the MH is able to obtain better quality solution in
a shorter processing time than the CGH and the BP algorithms, specially for the

biggest instances in both datasets.

On the other hand, we introduce a new bi-objective set-covering formulation
for the image segmentation, which takes advantage of the histogram information
in order to reduce the number of variables of the model. Besides, we propose four
variants for the BSCM that differ on the heterogeneity measure and on the scale of
the histogram. Also, we propose to use the first solution obtained with AUGME-
CON to obtain the number of groups automatically. This idea is justified for the
relatively low difference between the first and the best solution in the frontier and
the high processing time taken to obtain the best evaluated solution. Nevertheless,
the AUGMECON algorithm provides a set of possible segmentation that gives to
the decision maker the flexibility of choosing the best solution based in his/her own

criteria.

The experimental results show that the model with a heterogeneity measure
based on the variance of the segments with logarithmic scale has the best perfor-
mance with respect to the F-measure. The statistical analysis shows that there is
no significant difference in the measure with respect to the image size. However, the
results show a statistical difference in times between the 2.4MP and 16MP images;

although, we note that the difference is relatively low.

Furthermore, the proposed algorithm was tested and compared considering the
Weizmann dataset. Our algorithm with the Sigma.logfrec variant of the model was
able to obtain an average F-measure of 0.59 with a variance of 0.032, which position
our algorithm in the fifth place among the best results reported in the literature.
Finally, the procedure takes less than 50 seconds to find the first solution of the

frontier for 80% of the cases.
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Finally, the advantage of taking the first solution provided by the algorithm is

that it is able to identify the number of segments of the image.



CHAPTER 7

FUTURE WORK

As a future work, we propose to reduce the processing times of the proposed matheuris-
tic for the MASSP. The exact solution of the model takes the most of the processing
times; for this reason, we propose to use a heuristic method to solve the SSCM based
on one of the several heuristics that can be found in the literature (see for instance
Christofides and Korman (1975) and Caprara et al. (2000)). The reason of this idea
is that, in the literature, there are several works that show that the set-covering

problem can be solved efficiently using heuristic and metaheuristic algorithms.

Furthermore, the MASSP can be extended to the multi-task variant where a
task is a mandatory activity which is not performed on a daily basis. Additionally,
this variant presents precedence constraints and time windows for the tasks. For
example, the machinery maintenance in a company is not performed daily and it is

planned to be performed in certain periods of time.

For the images segmentation problem, it is planned to test this algorithm
over medical images in order to make the detection of anomalies. Furthermore, the
histogram partition can be executed using a heuristic approach in order to achieve
better processing times. Also, we propose to design a fuzzy version of the BSCM
in order to improve the F-measure evaluation; given that BSCM consider only the

frequencies of each intensity in the image to make a partition, then the algorithm

69
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is not able to group those pixels that conforms an object that have very different
intensity. In this order, the fuzziness in the intensities can give to the BSCM the

possibility of grouping these pixels.
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