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Ciencia y Tecnoloǵıa (CONACYT) for granting me the scholarship number 401834

and the means to realize this thesis. Also thanks to PRODEP-SEP for financial

support (grant 103.5/15/14156), under the collaboration project “Design of Brain

Computer Interfaces for the Control of Lower Limb Assistive Technologies.”

Also I would like to thank Dr. José M. Azoŕın, for receiving me as a guest
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Abstract

Due to the prevalence of disabilities that affect the lower limbs in the growing

population, it seems necessary to provide assistance to those that lost their ability

to walk and grant means to those that lack such function. A brain-computer inter-

face (BCI) is a useful technology that includes systems or devices that sense and

respond to neural processes, allowing a disabled user to interact with any device

by interpreting neurophysiological signals. BCI systems have been based on elec-

troencephalography (EEG) which consists of sensing electrical signals from the brain

using noninvasive sensors on the surface of the scalp. BCIs appear to be under two

categories: the discrete classification of human tasks and the continuous trajectory

reconstruction of kinematics. This research consists on proving that it is possible to

make a continuous trajectory reconstruction, also called decodification, from slow

cortical potentials, i.e., low frequencies of the EEG signals. In this study, two types

xxiii
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of lower limb mobility protocols are proposed: synchronous movements consisting in

raising and lowering the foot or the knee within fixed time periods, and asynchronous

movements consisting of self-paced continuous flexions and extensions of the knee in

a given set of time.

The first approach presents evidence of the nonlinear characteristics of the

EEG signals during synchronous lower limb mobility protocols. Whereas in the

literature, it has only been reported the characterization of these signals between

different mental states. To characterize the behavior of the EEG signal, the random-

ness, complexity, nonstationarity, and nonlinearity of the EEG were studied. Firstly,

randomness is analyzed by the Hurst exponent, which also is used to characterize

the nonstationary behavior of the EEG signals. In this thesis, the Hurst exponent

values of the brain signal show a nonrandom persistent time series, when consid-

ering small time windows. The correlation dimension is used as a measure of the

complexity of the system related to the number of degrees of freedom, and it is also

used to distinguish between random, periodic, or chaotic behavior. The correlation

dimension has shown that the underlying system of the brain can range in a rela-

tively low number of dimensions. Finally, the largest Lyapunov exponent is used to

confirm the presence of chaos in the underlying dynamics of the time series. In this

thesis, the largest Lyapunov exponent values seem to be strictly positive, which is

often considered as a definition of deterministic chaos. Implying that the underlying

dynamics is indeed nonlinear. With these insights, we could define a nonarbitrary

selection of a candidate model (e.g., computational model or neural network) to

classify motion tasks and/or to resolve the continuous trajectory reconstruction of

lower limb kinematics. This selection could provide reliable and affined methods

for EEG-based BCI systems to manipulate assistive devices useful in neuromuscular

rehabilitation.

The second approach presents additional evidence of decodification using slow

cortical potentials. Different electrode arrays and time ranges were tested to com-

pare performances of the reconstruction, proving certain electrodes contribute in

greater amount than others to the decodification. The decodification of segmented
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signals for different types of tasks gave a better performance compared to using a

single decoder for the entire signals. Finally, the usage of transformation functions

to the EEG signals in order to later be used by the decoder proved there exists com-

binations of equations that give better results than using the EEG signal directly.

In summary, the approach to characterize the EEG signals gives information

that can be useful for further studies regarding the mathematical modeling of neu-

ral activity during motor tasks. Whereas the second approach shows evidence of

improvement for decodification of the kinematics from neural signals. Both re-

sults could be starting points to further improve the understanding of neuro-motor

tasks and their application of artificial reproduction of movements from EEG signals

through a BCI.

Signature of the advisor:
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Resumen

Debido a la prevalencia de las discapacidades que afectan los extremidades inferi-

ores en la creciente población, parace necesario proveer asistencia a aquellas personas

que perdieron la habilidad de caminar u otorgar medios para aquellos que no cuentan

con esa función. Una interfaz cerebro-computadora (BCI, por sus siglas en inglés)

es una herramienta tecnológica que incluye sistemas o dispositivos que sensan y res-

ponden a procesos neurales, permitiendo a un usuario discapacitado interactuar con

cualquier dispositivo mediante la interpretación de sus señales neurofisiológicas. Los

sistemas BCI han estado basados en la electroencefalograf́ıa (EEG) la cual consiste

xxvi
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en sensar las señales electricas del cerebro usando sensores no invasivos en la super-

ficie del cuero cabelludo. Las BCI parecen estar bajo dos categorias: la clasificación

discreta de tareas humanas y la reconstrucción continua de trayectorias cinemáticas.

Este trabajo consiste en demostrar que es posible realizar una reconstruccioón con-

tinua de trayectoria, también llamada decodificación, a partir de potenciales corti-

cales lentos, i.e., bajas frecuencias de las señales EEG. En este estudio, dos tipos de

protocolos de movilidad de los extremidades inferiores son presentados: movimien-

tos śıncronos que consisten en levantar y bajar el pie o la rodilla dentro de periodos

de tiempo fijos, y movimientos aśıncronos que consisten de flexiones y extensiones

continuas de la rodilla a cierto ritmo en un tiempo determinado.

El primer enfoque presenta evidencia de las caracteŕısticas no lineales de las

señales EEG durante protocolos śıncronos de movilidad de una extremidad infe-

rior. Mientras que en la literatura sólo a sido reportada la caracterización de estas

señales durante differentes estados mentales. Para caracterizar el comportamiento

de la señal EEG, la aleatoriedad, complejidad, no estacionariedad y la no linealidad

de la EEG fueron estudiadas. En primer lugar, la aleatoriedad es analizada por el

exponente de Hurst, el cual también es usado para caracterizar el comportamiento

no estacionario de las señales EEG. En esta tesis, los valores del exponente de Hurst

de la señal cerebral muestran que es una serie en el tiempo persistente no aleatoria,

esto es cuando se consideran ventanas de tiempo pequeñas. La dimensión de cor-

relación es usada como una medida de la complejidad del sistema relacionado con el

número de grados de libertad, y también es usada para distinguir entre un compor-

tamiento aleatorio, periodico o caótico. La dimensión de correlación ha mostrado

que el sistema subyacente del cerebro puede oscilar en un número de dimensiones

relativamente bajo. Finalmente, el exponente de Lyapunov mayor es usado para

confirmar la presencia de caos en la dinámica subyacente de las series de tiempo.

Los valores del exponente de Lyapunov aparentan ser estrictamente positivos, esto es

frecuentemente considerado como una definición del caos determinista. Lo cual im-

plica que la dinámica subyacente es ciertamente no lineal. Con estos conocimientos,

podŕıamos definir una selección no arbitraria de un modelo candidato (e.g., modelo
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computacional o red neuronal) para clasificar tareas motrices y/o para resolver la

recontrucción continua de trayectoria de la cinemática de una extremidad inferior.

Esta selección podŕıa proveer métodos fiables y afines para los sistemas BCI basados

en EEG para manipular dispositivos de asistencia útiles en la rehabilitación neuro-

muscular.

El segundo enfoque presenta evidencia adicional de la decodificación usando

potenciales corticales lentos. Diferentes conjuntos de electrodos y rangos de tiempo

fueron probados para comparar los desempeños de la reconstrucción, demostrando

que ciertos electrodos contribuyen en mayor medida que otros en la decodificación.

La decodificación de las señales segmentadas para los diferentes tipos de tareas otor-

garon un mejor desempeño comparado con usar un solo decodificador a las señales

enteras. Finalmente, el uso de funciones de transformación a las señales EEG para

después ser usadas por el decodificador demostraron que existen combinaciones de

ecuaciones que dan mejores resultados que usar las señales EEG directamente.

En resumen, el enfoque de la caracterización de las señales EEG da infor-

mación que puede ser de utilidad para estudios posteriores sobre el modelamiento

matemático de la actividad neural durante actividades motrices. Mientras que el

segundo enfoque muestra evidencia de la mejora de la decodicación de la cinemática

a partir de la señales neurales. Ambos resultados pueden ser puntos iniciales para

mejorar el entendimiento de las funciones neuromotoras y su posterior aplicación de

la reproducción artificial de movimientos a partir de las señales EEG a través de una

BCI.

Firma del asesor:

Dra. Griselda Quiroz Compeán



Chapter 1

Introduction

1.1 Motivation

According to the World Health Organization (WHO), over 15% of the popula-

tion of the world has some kind of disability [1]. Just in the U.S. in 2014, around 39

million people had a disability associated with their ambulatory activities such as

having difficulty walking, climbing stairs, or had the necessity of using a wheelchair,

walker, cane or crutches [2]. In 2011, in the European Union, there were 16,817,587

people with a walking disability, and 9,902,557 had difficulty of standing or sitting [3].

In a similar way, the most constant type of disability present in the Asia-Pacific re-

gion is a physical type, involving upper and lower limb limitations [4]. Lower limb

disabilities can be caused by health conditions that belong to broad categories such

as congenital anomalies, chronic conditions or injuries. Congenital anomalies affect

an estimated one in 33 infants and result in approximately 3.2 million birth defect-

related disabilities every year [5]. In the U.S., one in 2858 births have spina bifida,

which includes leg weakness or paralysis. Also, musculoskeletal defects in the lower

limbs are estimated to be 701 cases each year [6]. The impairment in motor or sensory

function of the lower extremities, called Paraplegia, is caused by spinal cord injury

(SCI). Every year, around the world, between 250,000 and 500,000 people suffer a

spinal cord injury, that may result from trauma, disease or degeneration (cancer).

There is no reliable estimate of global prevalence, but estimated annual global inci-

dence is 40 to 80 cases per million population. Up to 90% of these cases are due to

traumatic causes, though the proportion of nontraumatic spinal cord injury appears

1
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to be growing [7]. Annually, 15 million people worldwide suffer a stroke. Of these,

5 million die and another 5 million are left permanently disabled [8]. According to

the Encuesta Nacional de Salud y Nutrición (ENSANUT) 2012 in Mexico, around

4.9% of male and 5.8% of female population (around 2.5 and 3 million respectively)

had the disability of walking or movement [9]. Briefing all these global statistics, it

can be seen that lower limb disabilities are prevalent, thus it comes as a challenge

to assist this disabled growing population.

The WHO defines congenital anomalies, also known as birth defects, as struc-

tural or functional anomalies, including metabolic disorders, which are present at

the time of birth [5]. The before mentioned congenital anomaly of spina bifida, more

accurately referred to as myelomeningocele, is a defect of primary neurulation that

results from failure of fusion in the caudal region of the neural tube [10]. According

to the Centers for Disease Control and Prevention (CDC), myelomeningocele is the

most serious type of spina bifida. With this condition, a sac of fluid comes through

an opening in the back of the baby. Part of the spinal cord and nerves are in this sac

and are damaged. This type of spina bifida causes moderate to severe disabilities,

loss of feeling in the legs or feet, and inability to move the legs [11]. Regarding

musculoskeletal disabilities, lower limb reduction defects occur when a part of or the

entire leg (lower limb) of a fetus fails to form completely during pregnancy. The de-

fect is referred to as a limb reduction because a limb is reduced from its normal size

or in some cases the limb is entirely missing. The cause of limb reduction defects is

unknown. However, research has shown that certain behaviors or exposures during

pregnancy can increase the risk of having a baby with a limb reduction defect [12].

According to the WHO, symptoms of spinal cord injury depend on the severity of in-

jury and its location on the spinal cord. Symptoms may include partial or complete

loss of sensory function or motor control of arms, legs and/or body. The most severe

spinal cord injury affects the systems that regulate bowel or bladder control, breath-

ing, heart rate, and blood pressure. Most people with spinal cord injury experience

chronic pain [7]. The WHO also mentions that stroke is caused by the interruption
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of the blood supply to the brain, usually because a blood vessel bursts or is blocked

by a clot. This cuts off the supply of oxygen and nutrients, causing damage to the

brain tissue. The most common symptom of a stroke is sudden weakness or numb-

ness of the face, arm or leg, most often on one side of the body. Other symptoms

include: difficulty walking, dizziness, loss of balance or coordination, severe headache

with no known cause, fainting or unconsciousness. The effects of a stroke depend

on which part of the brain is injured and how severely it is affected. A very severe

stroke can cause sudden death [13]. Due to the prevalence of disabilities that affect

the lower limbs in the growing population, it seems necessary to provide assistance

to those that lost their ability to walk and grant means to those that lack said ability.

According to the CDC, people with spina bifida on the upper part of the spine

(near the head) might have paralyzed legs and use wheelchairs. Those with spina

bifida on the lower part of the spine (near the hips) might have more use of their

legs and use crutches, braces, or walkers, or they might be able to walk without

these devices [14]. The goal for treatment of limb reduction defects is to provide

a limb that has proper function and appearance. Treatment may include the us-

age of prosthetics, orthotics, or rehabilitation (physical therapy). Treatments to

address SCI focus on restoring some degree of walking or locomotor activity, using

techniques like treadmill training, overground training, or functional electrical stim-

ulation [15]. In a similar way, gait recovery is a major objective in the rehabilitation

program for stroke patients [16]. Although some of the current methods, procedures

or techniques used for lower limb disabled people have good results, most consist on

prolonged periods of time in rehabilitation, or have a degree of discomfort to the user.

In order to provide the lower limb disabled people with a mean to restore

the mobility they once had, without the extensive or uncomfortable treatments,

the cyber physical systems (CPS) research community has shown great interest in

the integration of both cyber systems and biomedical systems. The typical CPS
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are known as brain-computer interfaces (BCI), also called brain-machine interfaces

(BMI). BCI are useful technologies that include systems or devices that sense and

respond to neural processes, allowing a disabled user to interact with any device by

interpreting neurophysiological signals. The signals acquired by the BCI systems

tend to control an external device, like a computer cursor, an internet browser, an

exoskeleton or prosthesis. BCI systems have been based on electroencephalography

(EEG) which consists of sensing electrical signals from the brain using noninvasive

sensors on the surface of the scalp. An EEG signal is a measurement of currents from

many neurons in the cerebral cortex, which generate an electrical field over the scalp

measurable by an array of electrodes. The amplitudes and frequencies of such signals

include information about the state and change of the neural activity, and reflect

the dynamics of electrical activity of the brain. On the scalp, these amplitudes com-

monly lie within 10 − 100 µV, and the different frequency ranges are distinguished

by brain waves, called (from low to high frequencies): delta (δ), theta (θ), alpha

(α), beta (β), and gamma (γ) [17]. The electrical discharge that the sensors record

possess relevant information of the brain signal. This signal can also be acquired

with invasive sensors, such as intracortical microelectrodes or electrocorticography

(ECoG). However, these types of approaches have certain risk of brain injury; this is

because there is the disadvantage of requiring a surgery to allocate the electrodes in

the brain. Although data acquired noninvasively via EEG has low signal-to-noise ra-

tio and spatial resolution [18, 19, 20], it is easier to repair or replace an EEG interface.

EEG signals tend to help in computer aided diagnosis (CAD) by characteriz-

ing between brain states, ranging from healthy, pathological or induced: predicting

seizures, classifying sleep stages, depth of anesthesia, Alzheimer, memory impair-

ments, coma, emotional states, depression, schizophrenia, cognition, dementia [21].

For example, Acharya et al. [22] reported that linear and nonlinear methods have

been applied to identify the changes in EEG signals in order to detect depression.

However, their focus was primarily on the nonlinear methods of higher order spectra

and recurrence quantification analysis. Ibrahim et al. [23] listed some of the EEG sig-
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nal processing and feature extraction methods used for aiding diagnosis of epilepsy.

This includes linear methods on time domain, frequency domain, and some studies

using the time-frequency domain, as well as nonlinear methods including entropy,

largest Lyapunov exponent and others. In particular, they used a combination of

discrete wavelet transform and Shannon entropy as features for a feed-forward neu-

ral network which classified epilepsy states. Aldea et al. [24] focus on using some

of the mentioned nonlinear methods applied to EEG signals to compare between

healthy subjects, epileptic subjects, and subjects with Parkinson disease. The focus

in [24] was on methods of the nonlinear dynamics like: largest Lyapunov exponent,

correlation dimension and Hurst exponent, after using a wavelet transform on the

EEG signal.

EEG-based BCI systems are applied to treat a wide variety of motor disorders

like amyotrophic lateral sclerosis, stroke, or spinal cord injury. There are many

studies worldwide exploring this field. For example, Yu et al. [25] presented a brain

controlled lower extremity exoskeleton rehabilitation robot where left and right hand

motor imagery movements were classified in order to control the speed of the gait. In

their work, power spectral density was used to extract features from the EEG, and

the classifiers used were linear discriminant analysis and random forest algorithm.

On the approach taken by Sayed et al. [26], the features of the motor imagery tasks

were obtained from the nonlinear methods of affine-invariant moments and distance

series transform from the state space trajectory. Such features were then used on

different classifiers including the K-nearest neighbor, support vector machines, linear

discriminant analysis and quadratic discriminant analysis. He et al. [27] focused on

stroke neurorehabilitation, utilizing the X1, which is a powered robotic lower limb

exoskeleton from the NASA. That BCI consisted in applying principal component

analysis to the EEG signal to reduce the dimensionality and then using a 10th order

unscented Kalman filter, all these in order to decode lower limb joint kinematics

during walking. Their work showed preliminary evidence of integrating an EEG-

based BCI with a lower limb robotic exoskeleton.
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Recently He et al. 2018 [28] presented a review where studies of BCI were

used to control lower limb robotic systems. In that review, two categories were men-

tioned: the discrete classification and the continuous trajectory reconstruction. Such

literature showed that discrete classification has been widely addressed to classify

between walk versus stand tasks commonly using the EEG method. As examples,

the works of Do et al. 2013 [29], Kilicarslan et al. 2013 [30], Kwak et al. 2015 [31],

Garćıa-Cossio et al. 2015 [32], López-Larraz et al. 2016 [33], Donati et al. 2016 [34],

Lee et al. 2017 [35], and Zhang et al. 2017 [36] can be highlighted. The main

focus of these studies is in the classification of the brain signals during idling and

walking. With this, it can be seen that the BCI is subject to the activation of those

specific activities. The results provided evidence that ambulation using brain signals

is possible. These studies of discrete classification have outnumbered the studies of

the category of continuous trajectory reconstruction on the review of He et al. [28].

There, only two studies landed in this category, and only one was performed on

humans, He et al. 2014 [27]. That study showed the feasibility of decoding lower

limb joint kinematics and kinetics during walking using an exoskeleton as a potential

diagnostic, assistive, and therapeutic tool for stroke rehabilitation.

1.2 Problem Description

Many studies using EEG when implementing a BCI (or BMI) tend to use the

discrete classification approach, which starts by recording the mental task of a sub-

ject. The recorded signals pass through a preprocessing, followed by the extraction

of features that have characteristics of the brain signal. Then these features are dis-

criminated using a classification (pattern recognition). Finally, the identified signal

is associated with an action performed by the external device or computer. Sev-

eral studies of EEG signals have succeeded in classifying the movement intention

in lower limb motor tasks [37], generally using linear methods for the classification,

like linear discriminant analysis and support vector machines. However, the discrete

classification methods tend to have difficulty in increasing the number of classes,

thus having a limited number of tasks to be classified [28]. As the intent is detected
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by the BCI or BMI, the system should execute realistic movements according to

the mental process of the user, as if no disability was present. For this reason, a

continuous trajectory reconstruction from the EEG signals into the limb kinematics

is desired, instead of a limited number of classes of movements. Many techniques

have been used for the continuous trajectory reconstruction approach [38], including

Wiener filters, Kalman filters, particle filters, and artificial neural networks. In the

literature, the nature of the EEG signals is considered nonlinear, thus the nonlinear

methods probably lead to a better performance than the widely used conventional

linear methods, since they could not forecast brain behavior [39, 40]. There is a

limited number of studies that reconstruct the trajectories from the EEG signals

into lower limb kinematics [27, 41, 42, 43], and mostly linear methods are applied.

When a nonlinear method is used, its parameters are commonly arbitrarily selected.

The mentioned studies show results of the continuous trajectory reconstruction of

the lower limb kinematics obtained with the protocol of actual walking. However,

although the performances are considered to be relatively high or acceptable, this

could be further improve. Moreover, the walking protocol, i.e., the gait, is considered

a periodic trajectory since most of these studies performed the gait in treadmills.

Thus it comes to interest to reconstruct the continuous kinematics under a set of

different movements. For this reason, two types of lower limb mobility protocols are

proposed: (i) to perform synchronous movements consisting in raising and lowering

the foot or the knee within fixed time periods, and (ii) to perform asynchronous

movements consisting of a continuous movement of the knee freely in a set of time.

It also comes to interest to analyze the nonlinear features of the EEG signals in order

to propose feature-based methods that improve the solution of continuous trajectory

reconstruction problems.
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1.3 Hypothesis

The hypothesis of this research is that the continuous trajectory reconstruc-

tion (from here on called decodification) of the kinematics can be obtained from

slow cortical potentials, i.e., low frequencies of the EEG signals, during protocols of

synchronous lower limb movements.

1.4 Objectives

1.4.1 Main Objective

To decode lower limb kinematic variables from neural signals using EEG signals

acquired during lower limb mobility protocols.

1.4.2 Particular Objectives

1. To obtain a data base of neural and kinematic signals during lower limb mo-

bility protocols.

2. To analyze nonlinear characteristics to understand the neural signal.

3. To compare different EEG electrode arrays and time ranges for the decoding

of the signals.

4. Compare different decoding procedures to select the more reliable one for the

desired decoding during lower limb mobility protocols.

1.5 Thesis Contribution

The following contributions have been achieved by the development of this

thesis:

• This thesis presents evidence of the nonlinear characteristics of the EEG signals

during synchronous lower limb mobility protocols. Whereas in the literature,
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it has only been reported the characterization of these signals between differ-

ent mental states. Particularly, the evidence of the nonlinear characteristics

consists of:

1. The Hurst exponent values of the brain signal show a nonrandom persis-

tent time series, when considering small time windows.

2. The correlation dimension has shown that the underlying system of the

brain can range in a relatively low number of dimensions.

3. The largest Lyapunov exponent values seem to be strictly positive, which

suggests that the dynamics of the brain signal is nonlinear, this is based

on the premise that a linear system with a positive LLE implies unstable

trajectories, and also based in the fact that the brain signals are bounded.

• This thesis presents the methodology and additional evidence of decodification

with slow cortical potentials, which consists of:

1. Different electrode arrays and time ranges were tested to compared per-

formances of the reconstruction, proving certain electrodes contribute in

greater amount than others to the decodification.

2. The decodification of segmented signals for the different types of tasks

gave a better performance compared to using a single decoder for the

entire signals.

3. The usage of transformation functions to the EEG signals in order to later

be used by the decoder proved there exists combinations of equations that

give better results than using the EEG signal directly.
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Methods

The methods applied in order to fulfill the objectives are described in this chapter,

and cover the nonlinear characterization of the EEG signal, the decoding of the EEG

signals into kinematic values, and a genetic algorithm to perform an optimization of

the decodification.

2.1 Randomness & nonlinear dynamical analysis

It has been reported that nonlinear features are capable of capturing the com-

plex physiological phenomena of the EEG signal such as chaotic behavior or abrupt

transitions in the time series [44]. To carry out the analysis of the EEG signal, in

this thesis the randomness, complexity, and nonlinearity of the EEG signal during

lower limb motion tasks were studied. Firstly, randomness is analyzed by the Hurst

exponent (H), also H is used to characterize the nonstationary behavior of the EEG

signals [45]. After that, the correlation dimension (CD) is used as a measure of the

complexity of the system related to the number of degrees of freedom, also CD is

used to distinguish between random, periodic, or chaotic behavior [46, 45]. Finally,

the largest Lyapunov exponent (LLE) is used to confirm the presence of chaos in

the underlying dynamics of the time series; furthermore, the positiveness of LLE

is a necessary (but not sufficient) condition of chaos. In fact, according to Scarlat

et al. [47] if a time series exhibits an irregular pattern, nonlinear dependence, low

estimate of CD, and positive estimate of LLE, then the underlying system possesses

chaotic dynamics. The selected methods and a description are given next.

10
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2.1.1 Hurst exponent

Hydrologist Harold Edwin Hurst developed a statistical methodology for dis-

tinguishing random from non-random systems and to identify the persistence of

trends, known as rescaled range analysis or R/S analysis. However, Benoit Mandel-

brot recognized the potential of such methodology to be applied in fractal geometry.

In Hurst’s honor, H is used as a measure to evaluate self-similarity, autocorrelation,

predictability, and the degree of presence or absence of long-range dependence in a

time series [48]. H relates to the rate at which these evaluations decrease as the

lag between pairs of values increases. It is also a measure of the smoothness of a

fractal time-series based on the asymptotic behavior of the rescaled range of the

process [46].

In time series analysis of EEG, H is usually used to characterize the nonsta-

tionary behaviour [49]. For example, Natarajan et al. 2004 [45] obtained H values

that indicated that the randomness or the disorderliness of the EEG decreased after

music/reflexologic stimulation. Kannathal et al. 2005 [50] showed that there is a

negative correlation between the values of CD and H between a control group and an

epileptic group. Also a comparison between a control group and an alcoholic group

showed that, the former group has a value closer to being random. Acharya et al.

2005 [51] analyzed EEG signals during different sleep stages with the self-similarity

parameter of H. They showed that the value gradually decreases from the sleep

stage 0 (awake) to stage 1. Then it had a maximum value in sleep stage 2, from

which it decreased in the stages 3 and 4. Finally, they observed an increase on sleep

stage 5 (REM, rapid eye movement sleep). These studies, show that the H value,

can determine if the EEG time series have a random or non-random behavior under

different brain conditions.

The Hurst exponent rather than calculated, it is estimated. To estimate H,

one must first regress, or estimate the dependence of the rescaled range on the time

span of observation. To do this, a time series of full length N is divided into A

segments of shorter length n, so that A · n = N . Each segment is defined as wa for
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a = 1, 2, ..., A, where there are Xk,a elements for k = 1, 2, ..., n. The rescaled range

is calculated, for each of the A smaller time series, as follows:

1. Calculate the mean of the a segment of length n:

ma =
1

n

n∑

k=1

Xk,a. (2.1)

2. Calculate the cumulative deviate series Z from the mean-adjusted series as

Zk,a =
k∑

i=1

(Xk,a −ma), k = 1, 2, ..., n. (2.2)

3. The range Ra is defined as the difference between the maximum and minimum

values of Xk,a for each a segment:

Ra = max{Xk,a} −min{Xk,a}, where 1 ≤ k ≤ n. (2.3)

4. For each segment the standard deviation is calculated by

Sa =

√
√
√
√

1

n

n∑

k=1

(Xk,a −ma)2. (2.4)

5. For each segment, the range Ra is divided by the corresponding standard de-

viation Sa to calculate the rescaled range Ra/Sa [52].

After all the segments have their rescaled range, an average over all the partial time

series is performed. H is estimated by fitting the power law E[Ra/Sa] = CnH to

the data. This estimation can be done by plotting log[Ra/Sa] as a function of log n,

and fitting a straight line, where the slope of the line gives the H value. The Hurst

exponent is able to classify time series into types and provide some insight into their

dynamics [48]. Depending of the value taken by H, the time series can be classified

as the following types:

• Random series: If H = 0.5, the behavior of the time series is completely

random, and it indicates the absence of correlation between the increments of

the signal, as seen in the top part of Figure 2.1.
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• Anti-persistent time series: When 0 < H < 0.5, indicates of anti-persistent

or anti-correlated behavior and the closer the value is to 0, the stronger is the

tendency for the time series to revert to its long-term means value. In this type

of behavior, an increase will most likely be followed by a decrease or vice-versa,

as visualized in Figure 2.1.

• Persistent time series: If 0.5 < H < 1, the time series shows a persistent

or correlated process, the larger the H value the stronger the trend, i.e., an

increase in values will most likely be followed by an increase in the short term

and a decrease in values will most likely be followed by another decrease in the

short term, as seen in the bottom part of Figure 2.1.

Figure 2.1: Different types of time series with their respective log plotting, and the

estimated H values. Top: random series with an estimated H value close to 0.5;

middle: anti-persistent time series (sine wave) with an H value close to 0; bottom:

persistent time series (EEG) with an H value close to 1.

To emphasize the random or nonrandom behavior of the time series, and the

stationarity or nonstationarity, statistics (mean and standard deviation) of the stud-

ied signal are calculated. In order to do so, the mean x̄ is considered as the sum of
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the sampled values divided by the number of samples, as given by

x̄ =
1

n

n∑

i=1

xi =
x1 + x2 + ...+ xn

n
, (2.5)

where xi are the samples and n is the number of samples. The standard deviation,

i.e., the square root of the sample variance, which is the average of the squared

deviations about the sample mean, is given by the following:

σ =

√
√
√
√

1

n

n∑

i=1

(xi − x̄)2. (2.6)

In a stationary process, parameters such as the mean and variance (the square of

the standard deviation) do not change over time. Generally, for the EEG signals

during mental and physical activities, the mean and standard deviation change from

one segment to the next, thus considering the signal nonstationary. However, dur-

ing normal brain condition, the EEG is considered stationary only withing short

intervals, i.e., quasistationary [17].

2.1.2 Correlation dimension

In mathemathics, a set with space filling properties is usually quantified by

dimension measurements. Such set can be embedded in an abstract mathematical

space or a real space, which also has an associated dimension. According to Camastra

et al. 2003 [53], there are many kinds of dimensions, e.g., the topological dimension

of a point is 0, and a volume has dimension 3. It is important to note that the

topological dimensions are always integers. Fractal dimensions, on the contrary,

consider noninteger dimensional values. Nontrivial and simple examples of fractal

dimensions are a wiggly line or curve between any two points. These lines intuitively

fill up more space than a smooth line, but still do not fill up enough space to

be considered a surface (dimension 2). However, all three compared lines have a

topological dimension of 1. The former lines are deemed fractal if their fractal

dimension is greater than their topological dimension [54]. To measure this fractal

dimension in nonlinear dynamics time series, the simplest dimension measurement
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to perform is the CD, assessed with the Grassberger-Procaccia algorithm [55]. In

nonlinear dynamics, the time evolution of the system cannot be often obtained as a

closed formula but it can be represented as a path in an abstract mathematical space

called phase space. By using a process called phase space embedding, it is possible

to reconstruct the path that shares the same invariant properties as the phase space

trajectory. This process can be done by using just one time series component of the

system. Usually phase space trajectories of deterministic dynamical systems tend to

evolve towards a particular set of coordinates called an attractor and the dimension

of the attractor is less than that of the full phase space [56].

Most applications of the CD on nonlinear analysis to electrophysiological time

series have been to stationary time series such as an extended EEG or steady-state

response [56]. For example, Natarajan et al. 2004 [45] estimated the correlation

dimension of EEG data sets recorded for various mental states. They found that

the EEG signal becomes less complex when the person is subjected to music of

his/her choice or under reflexological stimulation, compared to a normal resting

state. Kannathal et al. 2005 [50], by the calculation of CD, encountered that such

value is lower during an epileptic activity compared to a nonepilectic one. They

also found that an EEG of an alcoholic subject exhibits more complexity than that

of an epileptic EEG, indicated by the correlation dimension values. Acharya et al.

2005 [51] quantified the cortical function at different sleep stages, tabulating that

CD decreases from the sleep stage 0 (awake) to the stages 1-4, and then the value

increases during the stage 5 (REM). With these studies, it can be seen that the use

of CD to evaluate transitory responses has been less explored [56].

The correlation dimension is a nonlinear parameter frequently used to measure

the dimensionality of a underlying process in relation to its geometrical reconstruc-

tion in phase space. The calculation of CD is based on the correlation integral, which

is the probability that any two randomly chosen points on the attractor are closer
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together than a given distance r. The correlation integral function is calculated as

C(r) =
1

N2

N∑

x=1

N∑

y=1,x 6=y

Θ(r − |Xx −Xy|), (2.7)

where r is the radial distance around each reference point, C(r) is the correlation

integral, Xx and Xy are points of the trajectory in the phase space, N is the number

of data points in phase space, and Θ is the Heaviside function, Θ(x) = 0 if x ≤ 0

and Θ(x) = 1 if x > 0. The integral (2.7) just considers the total number of pairs

of points which have a distance between them that is less than distance r. As the

number of points tends to infinity (N → ∞), and the distance between them tends

to zero (r → 0), the correlation integral takes the form of C(r) ∼ rCD, where a log-

log graph of the C(r) versus r gives an estimate of CD. Thus, CD is then calculated

using the fundamental definition:

CD = lim
r→0

logC(r)

log(r)
. (2.8)

The correlation dimension, as a quantitative parameter, is a measure of the complex-

ity of the dynamical system related to the number of degrees of freedom. Computing

CD, by distinguishing its convergence, the system can be understood as random, pe-

riodic, or chaotic [45, 46]. CD does not converge in the case of a random signal.

However, it converges to finite values for periodic or deterministic systems [46].

2.1.3 Largest Lyapunov exponent

In mathematics, the Lyapunov exponent of a dynamical system quantifies the

sensitivity to initial conditions by characterizing the rate of separation of infinitesi-

mally close trajectories. Quantitatively, two trajectories in phase space with initial

conditions separated L(k0) diverge or converge at a rate given by

|L(k)| ≈ eλk|L(k0)|, (2.9)

where λ is the Lyapunov exponent, L(·) denotes the distance between trajectories

at iteration k, and k0 stands as the initial point. This rate of separation can differ

depending of the initial separation vector. For this reason, there is a spectrum
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of Lyapunov exponents equal in number to the dimensionality of the phase space.

However, it is common to refer to LLE, because it gives a notion of predictability for

a dynamical system. λ is useful for distinguishing among the various types of orbits

and it works for discrete as well as continuous systems. The signs of the exponents,

in general, provide a qualitative picture of the dynamics of the system, where the

movement of the orbits can be of the next types [57]:

• λ < 0 : A negative exponent implies a stable periodic orbit or that the orbit

attracts to a stable fixed point. These types of exponents are characteristic

of dissipative or non-conservative systems, which exhibit asymptotic stabil-

ity. In some cases, the more negative the exponent the greater the stability.

For instance, when λ ∼ −∞ it is considered as a superstable fixed point or

superstable periodic point.

• λ = 0 : In this case, the value of zero stands for a marginally stable orbit, i.e.,

the orbit is a neutral or an eventually fixed point. A value of zero indicates that

the system is in a steady state mode, which means is a conservative system

exhibiting Lyapunov stability.

• λ > 0 : The orbit is unstable and probably chaotic. In this case, there is no

order to the orbit that ensues, i.e., nearby points will diverge to any arbitrary

separation, eventually visiting all neighborhoods in the phase space.

To indicate the long-term behavior of the EEG time series, some studies have

applied the LLE to quantify the predictability of the signal. Natarajan et al.

2004 [45], stated that a LLE value closer to one indicated a chaotic behavior of

the time series, and that the value fell due to the influence of the music and reflex-

ological stimulation. Kannathal et al. 2005 [50] with the LLE value, found that the

value drops on alcoholic EEG compared to a control group. Acharya et al. 2005 [51]

showed that the LLE value increased for sleep stage 3 and 5 due to the more variation

involved as compared to the other states. These studies showed that, in general, the
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EEG under different mental or brain conditions present a rate of divergence. EEG

just decreases in rate but never achieves a complete stability.

Generally, Lyapunov exponents can be extracted using two different ways. The

first method is based on the estimation of local Jacobi matrices from the mathemat-

ical model of the dynamical system and is capable of estimating all the Lyapunov

exponents. The second method is based on the idea of following the time evolution

of nearby points of a time series. This last method provides only an estimation of the

LLE, which as mentioned before gives a notion of predictability for the dynamical

system.

The algorithm proposed by Wolf et al. [58] allows to determine the LLE from a

time series and has the following approach: a point on the attractor is reconstructed

by

{x(k), x(k + τ), ..., x(k + (m− 1)τ)}, for k = 0, 1, 2, ...,M (2.10)

where x is the time series with an m-dimensional phase portrait and a delay coordi-

nate τ , and M is the total number of replacement steps. Then, the nearest neighbor

to the initial point is located at

{x(k0), x(k0 + τ), ..., x(k0 + (m− 1)τ)}. (2.11)

This procedure is repeated until the fiducial trajectory has traversed the entire time

series, then the mean exponential rate of divergence of two initially close orbits is

estimated through the following:

LLE =
1

kM − k0

M∑

l=1

log2
L′(kl)

L(kl−1)
, (2.12)

where the distance between two reconstructed points is L(k0). At a later time k1,

initial distance evolves to distance L′(k1). A new data point is searched that satisfies

two criteria reasonably well: its separation, L(k1), from the evolved fiducial point is

small, and the angular separation between the evolved and replacement elements is

small (Figure 2.2).
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Figure 2.2: A schematic representation of the evolution and replacement procedure

used to estimate Lyapunov exponents from experimental data. The largest Lyapunov

exponent is computed from the growth of length elements. When the length of the

vector between two points becomes large, a new point is chosen near the reference

trajectory, minimizing both the replacement length L and the orientation change θ

(Text and image taken from [56]).

The three methods described in this section are mainly used in order to study

the randomness, complexity, and nonlinearity of the EEG signals. Randomness is

analyzed by H [59], which also can characterize the nonstationarity behavior of

EEG signals [45]. The complexity of the system is related to the number of degrees

of freedom, and it can be measured with CD, which is also able to distinguish

between random, periodic, or chaotic behavior [46, 45]. The LLE can confirm the

presence of chaos in the underlying dynamics of a time series. Furthermore, its

positiveness is a necessary but not a sufficient condition of chaos. It has to be taken

in consideration that, according to Scarlat et al. [47], if a time series exhibits an

irregular pattern, nonlinear dependence, low estimate of CD, and positive estimate

of LLE, then the underlying system possesses chaotic dynamics. The set of indices

these methods provide are expected to give insight of the underlying dynamics of the

EEG signals during lower limb motor tasks. Such insights might give discernment

for the construction or usage of a proper method applied to the decodification of the

lower limb kinematics.
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2.2 Decodification

As mentioned at the end of Section 1.1, He et al. 2018 [28] stated two categories

of decodification: the continuous trajectory reconstruction and the discrete classi-

fication of tasks. However, such review was mainly focus on lower limb powered

robotics systems such as exoskeletons and orthoses enhanced by BMIs. Further-

more, the outputs of the BMIs can be grouped according to their level of control. As

claimed in their review, the highest and medium levels of control belong to the dis-

crete classisifaction category, and the lowest level of control belongs to the continuous

trajectory reconstruction category. The only reported study under that category in

the review that involved humans was He et al. 2014 [27], which reconstructed joint

angles and electromyography (EMG) envelopes of the lower limbs. Nevertheless,

the reason behind the inclusion of just one study is due to the criteria taken in the

review. If the criteria is reduced, the number of studies that perform a decodifica-

tion by a continuous trajectory reconstruction increases. For example, the review

mentions the study of Luu et al. 2017 [60], which adapted the method of He et al.

2014 [27], to control a virtual avatar on a screen in real time. Similar to the study

of Luu et al. [60], other studies solely focus on the decodification of the EEG signal,

i.e., the analysis of the signals without the need of a powered robotic system.

Fitzsimmons et al. 2009 [20] were the first to prove that linear decoders could

reconstruct lower limb trajectories based on intracortical recording in nonhuman

primates. Where 80 experimental records (10-15 min) were split in two halves used

for both training and testing. Pressaco et al. 2011 [42] also showed that neural

decoding could be performed with linear decoders to the locomotion in humans

using noninvasive EEG signals. Where 5 min data records were divided in five

segments, with multiple combinations of four segments for training and one segment

for testing. Pressaco et al. 2012 [61] extended their study, with the decoding of both

legs during locomotion. Using the same procedure as their previous work. Úbeda

et al. 2014 [41] also applied linear decoders to EEG signals, but only focusing on

the knee angle. Furthermore, different walking speeds were considered. Fold cross-
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validation was used depending on the number of runs performed by each subject.

These mentioned studies focused on the task of locomotion. However, Úbeda et al.

2015 [62] proposed single joint movements in order to decrease the noise provoked

by the gait. The works of Fitzsimmons et al. 2009 [20] and Pressaco et al. 2011,

2012 [42, 61] used the Wiener filter as the chosen linear decoder. This filter has been

used in many studies of BMI because of its relative simplicity and efficacy. In some

studies it takes the given name Wiener filter (see, e.g., [63, 64, 65, 66]). However,

some studies call the used algorithm multiple (or multidimensional) lineal regression

(see, e.g., [19, 62, 67, 68, 69, 70, 71, 72, 73]). The description of these algorithms

and their similarities are explained next.

2.2.1 Linear optimum filter

Consider the block diagram of Figure 2.3 built around a linear discrete-time

filter [74]

y(n) =
L−1∑

l=0

wlx(n− l), (2.13)

where the input of the filter consists of a time series x(n) at some discrete time n, and

the filter is itself characterized by the finite impulse response (FIR) w of length L.

Figure 2.3: Block diagram representation of the statistical filtering problem (modi-

fied from [73]).
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The output of the filter is denoted y(n), and it can be corrupted by an additive

measurement noise e(n), leading to a linear regression model for the observed output

or desired response

d(n) = y(n) + e(n) =
L−1∑

l=0

wlx(n− l) + e(n). (2.14)

This linear regression model can also be used even if the input-output relation of

the given data pairs [x(n), d(n)] is nonlinear, with w being the linear approximation

to the actual relation between the data pairs. In that case, in e(n) there would

be a component associated to the additive noise perturbations, but also another

one representing errors. In the context of (2.14), w can be seen as a quantity to

be estimated by a linear filter, with (2.13) giving the output of the filter. This

output is still considered as an estimate of the reference signal d(n) or the output

y(n). Therefore, the problem of optimal filtering is analogous to the one of linear

estimation [75].

The estimation error e(n) is defined as the difference between the desired re-

sponse d(n) and the estimation of the filter y(n), as seen in

e(n) = d(n)− y(n). (2.15)

The requirement is to make the estimation error e(n) as minimum as possible with

a statistical criterion, cost function, or index of performance [74]. Some common

optimization criteria in the literature are: least squares, minimum mean square

error (MMSE), least absolute sum, minimum mean absolute error, and least mean

fourth. Particularly, the MMSE criterion results in a second order dependence for

the cost function on the unknown coefficients in the impulse response of the filter.

In addition, the cost function has a distinct minimum that uniquely defines the

optimum statistical design of the filter [74]. The mean square error (MSE) is defined

by

ǫ = E
[
|e(n)|2

]
= E

[
|d(n)− y(n)|2

]
, (2.16)

where E [·] is the expected value, and if this criterion is selected, the optimal solution
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to the linear estimation problem can be presented as

wopt = argmin
w

ǫ. (2.17)

As (2.16) is in a quadratic form, the optimal solution will be at the point where the

cost function has zero gradient, i.e.,

∇wǫ =
∂ǫ

∂w
= 0. (2.18)

Using (2.13) to expand (2.16), the gradient can be calculated as

∂ǫ

∂w
= E









2

∣
∣
∣
∣
∣
d(n)−

L−1∑

l=0

wlx(n− l)

∣
∣
∣
∣
∣
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e(n)
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= 0. (2.19)

From (2.19), given the signals x(n) and d(n), the latter can be assume to be generated

by the linear regression model (2.14). In order to do this assumption, the system w

would have to be equal to the optimal filter wopt, in which the residual error e(n)

has to be uncorrelated to the input x(n) [75]. Therefore (2.19) implies that

E{e(n)x(n− l)} = 0, for l = 0, 1, ..., L− 1. (2.20)

This is called the principle of orthogonality, and it implies that the optimal condition

is achieved if and only if the error e(n) is decorrelated from the samples x(n− l), l =

0, 1, ..., L− 1, i.e., the error is orthogonal to all the data used to form the estimate.

Equation (2.20) is also defined as the cross correlation vector Rex(l) between the

error and the input. Note that

Rex(l) =E{e(n)x(n− l)} =

=E{(d(n)− y(n))x(n− l)} =

=E{d(n)x(n− l)} − E{y(n)x(n− l)} =

=Rdx(l)−Ryx(l), (2.21)

where Rdx(l) is the cross correlation between the desired response and the input,

and Ryx(l) is the cross correlation between the estimation of the filter and the input.
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Therefore, an alternative way of stating the orthogonality principle (2.20), based on

(2.21), is that

Rdx(l) = Ryx(l). (2.22)

In order to find the impulse response values, observe that since y(n) is obtained by

filtering x(n) through a linear time-invariant (LTI) system with impulse response

wl, the following relationship applies:

Ryx(l) = Rxx(l)wl, (2.23)

where Rxx(l) is the input autocorrelation matrix. Combining this with the alterna-

tive statement of the orthogonality condition (2.22), we can write

Rxx(l)wl = Rdx(l). (2.24)

Equation (2.24) defines the optimum filter coefficients, in terms of two correlation

functions. These equations are called the Wiener-Hopf equations. Under the as-

sumption on the positive definiteness of Rxx, the solution of (2.24) is given by

wopt = R−1
xxRdx, (2.25)

which is known as the Wiener filter. The FIR Wiener filter is related to the least

squares estimate, but minimizing the error criterion of the latter does not rely on

cross correlations or autocorrelations. Its solution converges to the Wiener filter

solution.

The statistical theory of regression is concerned with the prediction of a de-

pendent variable y by other measured independent variable x (the regressor). The

case of one independent variable is called simple linear regression. For more than

one independent variable, the process is called multiple linear regression (MLR) [76].

This term is distinct from multivariate linear regression, where multiple correlated

dependent variables are predicted, rather than a single variable [77]. Typically, an

exact a priori information about the relationship between y and x is not supplied [78].

Therefore, a suitable parametrization is estimated, constrained to be linear, by fit-
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ting y to a linear combination of x:

yi = β1xi1 + · · ·+ βLxiL + εi =
L∑

j=1

βjxij + εi, for i ∈ 1, 2, ..., n, (2.26)

where yi is the response for the i-th observation, βj is the coefficient of the j-th

predictor, xij is the j-th predictor for the i-th observation, and εi is the i-th error.

The problem is to find a function of the regressors such that the error

εi = yi −
L∑

j=1

βjxij, (2.27)

becomes small. If y and x are described within a stochastic framework, the aim is

to minimize the following:

E [εi]
2 = E

[

yi −
L∑

j=1

βjxij

]2

, (2.28)

which leads to

Vn(β) =
1

n

n∑

i=1

[

yi −
L∑

j=1

βjxij

]2

. (2.29)

A suitable β to choose is the minimizing argument of (2.29):

β̂n = argminVn(β). (2.30)

This is the least square estimate (LSE) which is a set of formulations for solving

statistical problems involved in linear regression. Notice that this method of selecting

β makes sense whether or not there is a stochastic framework for the problem. The

parameter β̂n is the value that gives the best performing predictor when applied to

past data. The unique feature of (2.29) is that it is a quadratic function of β. Thus,

it can be minimized analytically, and also all β̂n that satisfy
[

1

n

n∑

i=1

xix
T
i

]

β̂n =
1

n

n∑

i=1

xiyi. (2.31)

yield the global minimum of Vn(β). The set of linear equations in (2.31) are known

as the normal equations. If the matrix on the left side is invertible, the LSE becomes

β̂n =

[

1

n

n∑

i=1

xix
T
i

]−1
1

n

n∑

i=1

xiyi. (2.32)
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The relation between the Wiener filter and the LSE can be appreciated by comparing

the minimization (2.17) and (2.30), that lead to (2.25) and (2.32).

For some calculations, (2.29) can be expressed in matrix form

Vn(β) =
1

n
|Y −Xβ|2 =

1

n
(Y −Xβ)T (Y −Xβ), (2.33)

where

X =











x11 x12 · · · x1L

x21 x22 · · · x2L

...
...

. . .
...

xn1 xn2 · · · xnL











, β =











β1

β2

...

βL











, and Y =











y1

y2
...

yn











.

Then, the gradient of error should vanish at minimum:

∇Vn(β) =
1

n

[
−2XTY + 2XTXβ

]
= 0. (2.34)

Hence, (2.31) takes the form

[XTX]β̂n = XTY, (2.35)

and the estimate becomes

β̂n = [XTX]−1XTY. (2.36)

Usually, the regressors X are extended with a constant, xi0 = 1 for all i = 1, 2, ..., n,

where the coefficient β0 corresponding to this regressor is called the intercept.

The Wiener filter, used in many studies (see, e.g., [20, 42, 61, 63, 64, 65, 66]),

is a class of linear optimum discrete-time filter, which focuses on optimizing a cost

function. The selected optimization for the filter is the minimization of the mean

square value of the estimation error, i.e., the least mean square (LMS) value. It

has been stated that there is a correspondence between the LMS algorithm and

the linear LSE [74]. One can appreciate the similarities mainly in the minimization

criterion. The least squares approach is often used to fit linear regression models,

like the MLR used in many studies (see, e.g., [19, 62, 67, 68, 69, 70, 71, 72, 73]),

where sometimes they are also called multidimensional linear regression models.
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These types of methods have been widely used because of their simple but powerful

solution [79]. Thus, the method of MLR was chosen for the decodification process

in this thesis. Furthermore, the MLR is expected to behave in a simple and efficient

manner, without displaying a heavy computational burden.

2.2.2 Genetic Algorithm

In 1975 John Holland presented the genetic algorithm (GA) as an abstrac-

tion of biological evolution and gave a theoretical framework for adaptation. The

genetic algorithm of Holland is a method for moving from one population of chro-

mosomes to a new population by using a kind of natural selection together with the

genetics-inspired operators of crossover, mutation, and inversion. The evolutionary-

computation community has no rigorous definition of genetic algorithm accepted

that differentiates them from other evolutionary computation methods. However,

GAs have at least the following elements in common: populations of chromosomes,

selection according to fitness, crossover to produce new offspring, and random mu-

tation of new offspring [80].

GAs have been used in some BMI or other types of wearable robots. However,

the implementation of the GA in these studies is to find the optimum model or opti-

mal set of parameters for an estimation of a biological signal from another biological

signal. For example, Oyong et al. 2010 [81], used a GA which performed two tasks.

The first task was to find the most appropriate mathematical model (7 proposed

models) that fitted the processed EMG data into the actual torque of the upper

limb movement. The second task was to find the optimum parameters associated

with the chosen model. Paek et al. 2013 [82] reconstructed surface EMG from EEG

signals using a linear model (the Weiner filter). However, they used a GA to find

the optimal set of EEG sensors (from 49 sensors) that maximized the performance

of the reconstruction. Hayashi et al. 2015 [83] estimated from EEG signals if tests

subjects moved the elbow joint. The motion of the elbow was estimated by using

an artificial neural network. Nevertheless, the weights for the hidden and output

layers were obtained with a GA. These studies show that the GA are mostly used
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to find an optimal solution for the different methods or models used for estimation

or reconstruction of one signal from another type of signal.

In a GA, a population of candidate solutions (called individuals) to an opti-

mization problem is evolved toward better solutions [80]. This collection of candidate

solutions to a problem is called the search space. Each candidate solution has a set

of properties which can be mutated and altered [84]. This set of properties (also

called chromosomes) need a genetic representation of the candidate solutions. The

chromosomes in a GA population typically take the form of bit strings or an array

of bits [84]. Arrays of other types and structures can be used in essentially the same

way. The main property that makes these genetic representations convenient is that

their parts are easily aligned due to their fixed size [80, 84]. The GA processes

populations of individuals, successively replacing one such population with another.

The GA most often requires a fitness function that assigns a score (or fitness value)

to each individual in the current population. The fitness value of an individual de-

pends on how well that individual solves the problem at hand [80]. After the genetic

representation and the fitness function are defined, a GA starts by generating an

initial population of solutions and then to improve it through repetitive application

of operators that include selection, crossover, and mutation. Each iteration of this

repetitive process is called a generation. An entire set of generations is called a run.

The genetic operators are explain next, which are included in the pseudo-code

(Algorithm 1).

Algorithm 1 Genetic algorithm pseudo-code.

Initialize population

repeat

Evaluation

Selection

Crossover

Mutation

until Generations completed
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Selection: During each iteration, a portion of the existing population is selected

to breed a new population. Individuals are selected based on their fitness value,

where solutions more fit have high probability to be selected to reproduce and gen-

erate the new population [80, 81].

Crossover: Crossover is a method of producing a new individual from a pair of

selected chromosome. This operator exchanges the subsequences before and after

a randomly chosen crossover point in the selected parent chromosomes to create a

new individual that shares their characteristics [80, 81].

Mutation: This operator is applied to an individual by randomly modifying a

part of its structure, enabling the GA to create a new individual for the next gener-

ation [80, 81].

Expanding in detail the pseudo-code, a GA follows the next list of steps [80]:

1. Begin with a randomly generated population of n chromosomes (candidate

solutions to a problem).

2. Calculate the fitness of each chromosome in the population.

3. Repeat the following steps until n offspring have been created:

(a) Select a pair of parent chromosomes from the current population, based

on the fitness value. Selection is done with replacement, meaning that the

same chromosome can be selected more than once to become a parent.

(b) With probability pc (the crossover probability or crossover rate), crossover

the pair at a randomly chosen point (chosen with uniform probability) to

form an offspring. If no crossover takes place, form the offspring that is

an exact copy of a parent.

(c) Mutate the offspring with probability pm (the mutation probability or

mutation rate), and place the resulting chromosome in the new popula-

tion.
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4. Replace the current population with the new population.

5. Go to step 2.

Generally, new generations have better overall fitness value than previous genera-

tions. Therefore, at the end of a run, there is often one or more highly fit chromo-

somes in the population. Since randomness plays a large role in each run, more runs

with different initial populations will generate different detailed behaviors. Here the

simple procedure for most applications of GAs was described. There are many pa-

rameters to consider when applying this method, such as size of the population and

probabilities of crossover and mutation. Success of the algorithm depends on these

details [80].

Several studies have implemented the GA to find an optimization of a model or

set of parameters (see, e.g., [81, 82, 83]). The GA applied in this study, attempts to

find an optimal set of functions that improves the performance of the MLR method

applied for the decodification. As mentioned in this section, the GA requires of a

fitness value for the selection operator. Some functions of evaluation are described

in the next section. These evaluation metrics are used to evaluate the decodification

itself. However, only one of these evaluation metrics is used for the fitness value.

2.2.3 Evaluation metrics

Estimating the performance of the prediction model is crucial to the decod-

ification of neural signals. Discrete classification methods have some established

performance metrics [85] and there exist some studies that compare those metrics

for the use in BCIs [86]. Most of these metrics include the number of correct clas-

sifications and the number of mistaken classifications presented in what is called a

confusion matrix. However, when using continuous trajectory reconstruction meth-

ods for the decodification of neural signals, there are different performance metrics

used in the literature. Spüler et al. 2015 [87] mention the following: correlation

coefficient (CC), normalized root mean square error (NRMSE), signal-to-noise ratio
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(SNR), coefficient of determination, and global deviation. Some of these metrics are

described next.

Correlation coefficient: The most used metric to evaluate the continuous

trajectory reconstruction decodification is the CC (also called Pearson’s correlation

coefficient, r-value, or Pearson’s r-value). The CC is a dimensionless measure of the

linear relation between two quantitative variables, in which usually the value lies in

the range of −1 to +1. Negative values of CC correspond to an inverse linear relation

between the variables, and positive values correspond to a direct linear relationship.

When the value approaches zero, it is an indication of the absence of correlation

(but not necessarily the independence of the two variables) [88]. A common form of

the correlation coefficient is the following:

CC(x, y) =

∑N
i=1(xi − x̄)(yi − ȳ)

√
∑N

i=1(xi − x̄)2
√

∑N
i=1(yi − ȳ)2

, (2.37)

where x and y are two variables, x̄ is the mean of x, ȳ is the mean of y, and N is

the number of samples.

Normalized root mean square error: Root mean square error (RMSE) is a

metric commonly used in regression analysis that measures the standard deviation

of the residuals (or prediction errors). Usually, the RMSE is considered a measure

of the differences between values predicted or reconstructed by a model and the real

or actually observed values. The RMSE (also called root mean square deviation,

RMSD) is defined by:

RMSE =

√
∑N

i=1(y − ŷ)2

N
, (2.38)

where y is the observed variable, ŷ is the predicted or reconstructed values of y, andN

is the number of samples. The RMSE is useful to compare different methods applied

to the same dataset, but should not be used when comparing across datasets that

have different scales [89]. Normalizing the RMSE facilitates the comparison between

datasets with different scales [87] and is usually represented as a percentage. Since
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there is no consistent means of normalization in the literature, the common choice is

the range (defined as the maximum value minus the minimum value) of the observed

data:

NRMSE =

√∑
N

i=1
(y−ŷ)2

N

(ymax − ymin)
, (2.39)

where ymax and ymin indicate the maximum and minimum values of the indicated

signal.

Signal-to-noise ratio: The SNR is a unitless measure that compares the level

of a desired signal to the level of background noise. This comparison is defined as the

ratio of the power of a signal (meaningful information) to the power of background

noise (unwanted signal):

SNR =
Psignal

Pnoise

, (2.40)

where P is average power. If the variance of the signal and noise are known, and

both have a mean of zero, the SNR can be calculated by:

SNR =
σ2
signal

σ2
noise

. (2.41)

However, if the variance or mean values are unknown, the power of a random variable

equals its mean-squared value. Thus, the signal power equals E [S2] [90], where S

can be the signal or the noise. SNR is widely used in science and engineering

and has been previously used to measure BCI and BMI decoding performance (see,

e.g., [20, 42, 61, 90, 91, 92, 93, 94, 95]). The SNR gives a measure of the accuracy of

estimated position in terms of the error variance. High SNR values are desired since

they are produced when the estimated output error variance is small [91]. Usually,

a ratio higher than 1:1 is favorable since it indicates more signal than noise.

In scientific practice is good to state multiple performance metrics. However

there is a need to decide on a specific metric when it comes to automatic parameter

optimization. Different metrics tend to capture different properties of the prediction

performance or accuracy. Therefore it is unclear which method is overall best suited

for evaluation purposes [87].
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In this chapter, the methods that provide a set of indices are described. Such

indices are expected to give insight of the underlying dynamics of the EEG signals

during lower limb motor tasks. These insights might give discernment for the con-

struction or usage of a proper method applied to the decodification of the lower limb

kinematics. Regarding the decodification method, in this work the linear optimum

filter is described, which has a correspondence with the MLR. It is expected that

the indices provide the insights of another type of decodification method or improve

the existing methods. On a similar approach, a genetic algorithm is also described

in this chapter. Such algorithm is implemented in order to search for an optimiza-

tion of the already described decodification method. The next chapter involves the

description of the experimental setups, where EEG signals are registered alongside

kinematic variables.
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Experimental Setups

This chapter describes the specifications for the experiments, which include the

recording of the EEG signals for synchronous and asynchronous lower limb mobility

protocols. Both protocols involve a data acquisition section describing the equip-

ment used, and the activities performed by the test subjects. After such sections,

preprocessing methods are described for each protocol.

When performing experiments for continuous trajectory reconstruction of the

lower limbs, most of the literature use the task of walking, generally over a treadmill.

This can be seen in the works of Fitzsimmons et al. [20] (performed by trained

monkeys), Pressaco et al. [42, 61], He et al. [27], Luu et al. [60, 95], and Úbeda et

al. [41]. These works show that using slow cortical potentials of the EEG, i.e., cortical

information in low frequency bands, it is possible to obtain kinematic information of

the gait cycle during locomotion. However, there are some time varying mechanical

artifacts associated with head movements during locomotion [96].

To avoid the influence of artifacts, or to reduce them significantly, another type

of experiments different than locomotion had to be taken into consideration. Úbeda

et al. 2015 [62] presented an experiment where only an individual joint movement

is decoded in order to reduce the influence of motion artifacts (described in Sec-

tion 3.2). Based on this experimental registry, a similar registry was carried out,

with tasks different than locomotion (described in Section 3.1). Furthermore, in

order to compare and improve the decodification performances, a collaboration with

three groups was established. The collaboration is under the project “Design of

34
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Brain Computer Interfaces for the Control of Lower Limb Assistive Technologies”

from the network “Biosystems and biomechatronics,” formed by the academical

groups of “Biosystems” (UDG-CA-789) and “Technology and Mechantronics Inno-

vation” (UANL-CA-272), and the investigation group of “Brain Machine Interface

Lab”. The main goal of such project is to generate directives for the innovation of

therapies and rehabilitation for neuromuscular pathologies, creating an impact in

the medical community mainly regarding innovative tools improving the treatment

to patients. The proposed tools involve the design of medical experiments, electro-

physiological signal processing, modeling and control of dynamical systems (robotic

systems, biomedic systems, and graph theory), and intelligent systems (with appli-

cation in parametric adjustment of mathematical models).

Regarding the experimental architecture presented by Úbeda et al. 2015 [62],

the subjects attempted to perform constant movements, i.e., the subjects were cued

to carry out the instructed task at their own pace for a certain period of time.

During the performance of the task, no further cues were used. Hence, in this work

such experimental architecture is called asynchronous protocols [97]. Bradberry

et al. [67] and Lv et al. [93] used this type of architecture on upper limb kinematic

decodification. Where they let the subjects self-chose the movements. Kim et al. [72]

and Zhang et al. [19] performed experiments that consisted of subjects following a

certain predefined trajectory for the upper limbs, which in a sense made the subjects

follow the pace of the trials. Nevertheless, this types of experiments behave in a

similar way in concept to those of the gait cycle, i.e., when a pace is established.

However, Kim et al. [98] performed experiments similar to Bradberry et al. [67],

but following a timeline of instructions, or cues. In this manner, the subjects followed

the established pace of the experiment, rather than their own pace. For this reason,

in this work, experiments are proposed in order for the subjects to perform tasks

in a controlled manner under provided instructions. This experiments are called

synchronous protocols [97] and are described next.
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3.1 Synchronous protocols

As it was stated at the beginning of this chapter, some studies found in the

literature carry out experiment registers where the test subjects perform an in-

structed task at their own pace after a single cue. Such cue marks the beginning of

the registry. However during the acquisition of the data, there is no knowledge of

the current activity performed by the requested limb. For this reason, synchronous

protocols were proposed in order to have the knowledge of the current activity of

the lower limb. The database of this protocol was acquired at the Mechatronics

Laboratory in the Center of Innovation, Research, and Development in Engineer-

ing and Technology of the Universidad Autónoma de Nuevo León (Mexico), under

the collaboration project “Design of Brain Computer Interfaces for the Control of

Lower Limb Assistive Technologies.” The equipment used for the acquisition of the

neural signal was the MOBITA-W-32EEG system of the Laboratory of Biomedical

Signal Processing from The Center of Research and Advanced Studies (Cinvestav)

at Monterrey.

For this database, eight subjects (4 male and 4 female) with no motor patholo-

gies were asked, and gave oral consent, to perform the trials. Subjects were asked to

execute two lower limb tasks, both performed while remaining seated. The first task

(Task 1) consisted in raising the foot by performing an isotonic extension of the knee

(Figure 3.1a). The second task (Task 2) consisted in raising the knee by realizing

an isotonic flexion on the hip joint (Figure 3.1b). The trial began with the resting

time, were the subject was sitting comfortably on a chair maintaining the thigh in

an horizontal position and the shank around 90◦ with respect to the thigh. After 30

seconds, the subject was cued to raise the right limb by the isotonic movement to its

maximum position, and then held the limb up by performing an isometric exercise for

3 seconds. Next, the subject was cued to lower the limb maintaining this position for

another 3 seconds. After 10 repetitions, the subject rested for another 30 seconds. A

demonstration of a trial is shown in Figure 3.2. Each subject performed 10 trials for

both tasks. To have the trials controlled, the subjects were shown a video with the
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cues to raise or lower the limb. This video consisted of different simple illustrations

that indicate the activities, such as the resting time, that helps the subject to focus

on a single white dot in order to avoid get distracted. Followed by 10 repetitions of

green-upward and red-downward arrows, to indicate the raising and lowering of the

limb. The video counted with a start and finish frame. A diagram of this procedure

is shown in Figure 3.3.

(a) Task 1. (b) Task 2.

Figure 3.1: Tasks performed by the subjects: a) raising the foot by performing an

isotonic extension of the knee, and b) raising the knee by realizing an isotonic flexion

on the hip joint.

Figure 3.2: One subject using the EEG system and performing Task 1, following

indications displayed on the screen. From left to right: first resting period (indicated

by a white dot on the screen), raising of the right lower limb (indicated by a green

upward arrow), lowering of the right lower limb (indicated by a red downward arrow),

and second resting period (indicated by a white dot).
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Figure 3.3: Frames of the indications presented in the video to rest (white dot, 30 s),

raise or lower the limb (green and red arrow respectively, 10 repetitions, each lasted

3 s); from start to finish the entire trial lasted 120 s.

3.1.1 Data Acquisition

For the acquisition of the neural signals, the MOBITA-W-32EEG system was

used. The Mobitar was adapted to a 10/20 electrode cap with 19 channels available,

which are: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Cz,

Fz, and Pz. Figure 3.4 shows the distribution of the electrodes, which also covered

the relevant surface of the scalp, particularly the regions where motor activity occurs.

After placing the cap on the subjects, the impedance of the electrodes was checked

using the Model 1089NP ChecktrodeTM. After applying conductive gel, the desired

impedance range was kept at a value less than 5KΩ which means a good preparation,

according to the specifications of the product, or between 5KΩ to 10KΩ meaning it

was a sufficient preparation. In these experiments, the EEG signals were registered

with a sampling frequency of 1000 Hz. During the EEG recording, markers indicating

the raising and lowering of the limb were added on the software in order to specify

the beginning and ending of each task.

For the acquisition of the kinematic variables, the subjects were placed in a

controlled environment and wore dark clothes with three white spherical markers

(Figure 3.5). The markers were allocated on the right hip, knee, and ankle in order

to give their locations by the processing of the video taken by a NI 1752 Smart

Camera running at 60 frames per second (fps). After the videos were processed, the

locations of the markers served in order to obtain the joint angles of the hip and

knee by trigonometric functions.
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Figure 3.4: Electrode distribution of the International 10/20 System. 19 active

electrodes were connected to the MOBITA-W-32EEG system. Electrodes A1 and

A2 were used as references during the impedance checking.

Figure 3.5: Test subject wearing three spherical markers allocated on the right hip,

knee, and ankle, for video processing.
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3.1.2 Signal Preprocessing

Ten peripheral EEG channels were removed (namely Fp1, Fp2, F7, F8, T3,

T4, T5, T6, O1, and O2), as they are more susceptible to artifacts, thus F3, Fz, F4,

C3, Cz, C4, P3, Pz, and P4 were selected for this study. Afterwards, a preprocessing

of the EEG signal was carried out using the computational method of fast indepen-

dent component analysis (FastICA). This method was implemented to remove blink

artifacts embedded in the data. This method is described next.

Fast independent component analysis (FastICA): The independent com-

ponent analysis (ICA) is a technique to separate linearly mixed components [99], as

a random vector s = (s1, ..., sn)
T , by using a linear static transformation W (known

as the unmixing matrix) to an observed data x = (x1, ...xm)
T , i.e.,

s = Wx. (3.1)

However, one must assume that the components are non-Gaussian signals and that

they are statistically independent from each other [100]. For this reason, there are

some applicable techniques that make the problem of ICA estimation simpler and

better conditioned [101]. First, it is necessary for the observable variable x to be

zero mean. When this does not apply, the process of centering takes place. This

process is the subtraction of the mean vector m = E{x} to the variable x making

it a zero-mean variable. This also implies that s becomes zero-mean. After the

observed vector x is centered, it is useful to whiten the variables. This indicates the

observed vector x is transformed linearly to obtain a new white vector x̃, i.e., its

components are uncorrelated and their variances are equal to 1. This implies the

covariance matrix of x̃ equals the identity matrix, i.e.,

E{x̃x̃T} = I. (3.2)

A common and popular method for whitening is by performing an eigenvalue de-

composition on the covariance matrix of the centered data x, E{xxT} = QDQT ,

where Q is the matrix of eigenvectors of E{xxT} and D is the diagonal matrix of
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eigenvalues [101]. The whitened data is defined thus by

x̃ = QD−1/2QTx, (3.3)

Maximizing the non-Gaussianity of wTx gives us one of the independent compo-

nents, if vector w was one of the rows of W [99]. For ICA, the classical measure

of non-Gaussianity is kurtosis or the fourth-order cumulant. A second very impor-

tant measure of non-Gaussianity is given by negentropy. Negentropy is based on the

information-theoretic quantity of (differential) entropy. Although these are objective

functions for ICA estimation, in practice, one also needs an algorithm for maximiz-

ing the contrast function. FastICA is a very efficient method of maximization suited

for this task. To measure non-Gaussianity, FastICA relies on a nonquadratic non-

linearity function f(u), its first derivative g(u), and its second derivative g′(u) [101].

Examples of the functions are:

f(u) = log cosh(u), g(u) = tanh(u), and g′(u) = 1− tanh2(u), (3.4)

for general purposes, or more robust functions like

f(u) = −e
−u

2

2 , g(u) = ue
−u

2

2 , and g′(u) = (1− u2)e
−u

2

2 . (3.5)

The basic form of the FastICA algorithm is as follows:

1. Choose an initial (e.g., random) weight vector w.

2. Let w+ = E{xg(wTx)} − E{g′(wTx)}w

3. Let w = w+/‖w+‖

4. If not converged, go back to 2.

This one-unit algorithm estimates just one of the independent components, or one

projection pursuit direction. To estimate several independent components, it is

needed to run the one-unit FastICA algorithm using several units with weight vec-

tors w1, ...,wn. To prevent different vectors from converging to the same maxima,



Chapter 3. Experimental Setups 42

the outputs wT
1 x, ...,w

T
nx need to be decorrelated after every iteration. The Gram-

Schmidt-like decorrelation is a simple way to achieve decorrelation, which is a defla-

tion scheme [101]. This is based on the estimation of the independent components

one by one. When p independent components, or p vectors w1, ...,wp, have been

estimated, the one-unit fixed-point algorithm is run for wp+1, and after every iter-

ation step the projections wT
p+1wjwj, j = 1, ..., p are subtracted from wp+1 of the

previously estimated p vectors, and then renormalize wp+1:

1. Let wp+1 = wp+1 −
∑p

j=1 w
T
p+1wjwj;

2. Let wp+1 = wp+1/
√

wT
p+1wp+1.

The preprocessing performed by the ICA (or FastICA) is usually used in the litera-

ture to separate brain activity from artifacts of several types, e.g., eye movements,

blinks, anatomical or physiological processes [102, 103, 104, 105]. In this work, the

FastICA was used to remove the blinking artifacts of the EEG signal.

Other steps were considered for preprocessing after the FastICA was applied.

First the signals were filtered with two elliptic filters, a 5th order low-pass filter with

a cutoff frequency of 2 Hz, followed by a 3rd order high-pass filter with a cutoff

frequency of 0.1 Hz. Afterwards, the EEG data of each electrode was standardized

with the following equation:

EV[t] =
V [t]− V̄

SDV

, (3.6)

where the signal is V [t], the standardized value is EV[t], for each time sample [t], the

mean of the signal is V̄ , and the standard deviation of the signal is SDV . Regarding

the kinematic variables, after the videos were processed to obtain the joint angles,

they were upsampled to match the sampling frequency of the EEG signal.



Chapter 3. Experimental Setups 43

3.2 Asynchronous protocols

As mentioned at the beginning of this chapter, there are studies found in the

literature that carry out experiments where the test subjects perform an instructed

task at their own pace after a single cue. During the acquisition of the data, the task

performed by the test subjects is asynchronous, i.e., without cues. In this study, a

database provided by the Brain Machine Interface System Lab was used with their

permission. This database was taken into consideration because it has data from

people that are healthy and people who have a spinal cord injury (SCI). Furthermore,

since the experiments involve flexion/extension of the knee, the database can be

compared to the protocol described in Section 3.1.

The database is part of the BioMot project-Smart Wearable Robots with Bioin-

spired Sensory-Motor Skills, whose main goal is to analyze dynamic sensorimotor in-

teractions in realistic human locomotion and design an artificial cognitive system for

embodiment into bioinspired wearable assistive devices [106] (grant agreement num-

ber IFP7-ICT-2013-10-611695). The complete database consisted on experimental

trials performed by five individuals with incomplete SCI from the inpatients services

at the National Hospital for Spinal Cord Injury in Toledo, Spain, and four healthy

users. All participants signed the corresponding informed consent.

Subjects were asked to performed five types of simple movements divided in

two sequences. However, in this work only one of the movements of sequence 1

was taken into consideration. The movement consisted on a continuous isotonic

flexion/extension of a knee joint as shown in Figure 3.6. Subjects performed six runs

consisting of 30 seconds of continuous movements. However, since the movements of

the subjects were self-paced without cues for the flexions and extensions, these were

considered asynchronous protocols.
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Figure 3.6: Type of movement performed by the subjects with a self imposed pace,

i.e., an asynchronous movement.

3.2.1 Data Acquisition

EEG signals were recorded using two g.USBamp amplifiers (g.tec medical engi-

neering GmbH, Schiedlberg, Austria), interconnected through a g.INTERsync mod-

ule for correct synchronization. A total of 32 g.LADYbird active electrodes, com-

posed of a sintered Ag/AgCl crown with a 2-pin safety connector, were placed on

the scalp of the subjects using the g.GAMMAcap. Such active electrodes increase or

improve the signal-to-noise ratio. The application of conductive gel was necessary to

obtain more suitable signals from the active electrodes. Additionally, an antistatic

wrist strap was used to remove external noises during the experiments. The configu-

ration of the electrodes according to the international 10/10 system [107], follows the

next distribution: Fz, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2,

C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, P1, Pz, P2, P4, PO7, PO3, POz,

PO4 and PO8. In addition to the 32 mentioned electrodes, the ground electrode was

placed in AFz and the reference was place on the right earlobe. Figure 3.7 shows

the distribution of the electrodes, which covered the relevant surface of the scalp,

particularly the regions where motor activity occurs. EEG signals were registered

with a sampling frequency of 1200 Hz. The g.USBamp amplifiers internally filter

the signals with two filters: one low-pass filter with a cutoff frequency of 100 Hz,

and a notch filter at 50 Hz to remove the power line interference.
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Figure 3.7: Electrode distribution of the international 10/10 system. Highlighted are

32 g.LADYbird active electrodes, which were connected to two g.USBamp amplifiers

(g.tec medical engineering Gmbh, Schiedlberg, Austria) interconnected through a

g.INTERsync module.

To obtain the kinematics of the lower limbs, seven inertial measurement units

(IMUs) were used in the experiments. The IMUs were from the motion capture

system Tech MCS (Technaid, Arganda del Rey, Spain), which integrate three types

of sensors: accelerometers, a gyroscope, and a magnetometer. The data registered

by the IMUs had a sampling frequency of 30 Hz. The placement of the IMUs can be

seen in Figure 3.8. One IMU was placed on the back and six were placed on both

legs over the thighs, shanks, and feet. Using the information of the seven IMUs,

the angular velocity of the hip, knee, and ankle joints can be obtained. However,

as previously stated, only the movement of the knee joint from this database was

considered in this study.
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Figure 3.8: Tag numbers of the seven IMUs connected to the TechHub with the

following placement: one in the lumbar area, and the remaining six placed on both

thighs, shanks, and feet. This distribution allowed to obtain the angular velocities of

the hip, knee, and ankle joints of each leg. (Image taken with permission from [100]).

Figure 3.9 shows both equipments placed on the users. The lumbar IMU and

TechHub are shown on the left, the g.USBamp amplifiers in the middle, and the

IMUs of the right leg are shown on the right. Both the g.USBamp amplifiers and the

TechHub have input/output trigger connections used to synchronize the recordings

between the equipments.

3.2.2 Signal Preprocessing

The same filtering process described in Section 3.1.2 was used. Where two

elliptic filters were used: a 5th order elliptic low-pass filter with a cutoff frequency

of 2 Hz, followed by a 3rd order elliptic high-pass filter with a cutoff frequency of

0.1 Hz. Then, the EEG data of each electrode was also standardized with (3.6). As

for the kinematic variables, the IMUs data were upsampled to match the sampling

frequency of the EEG signal.
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Figure 3.9: Environment of the experiment showing both equipments and two users.

From left to right: the TechHub, the lumbar IMU, the EEG cap, the g.USBamp

amplifiers, the inertial sensor A over the thigh, and the inertial sensor B over the

shank.

The described experimental setups differ in that the first set is meant to be

designed for the user to perform simple movements of lower limb. However, with the

pre-established pace, the users were under a controlled process, i.e., synchronous.

Additionally, the subjects alternated between isotonic and isometric exercises. The

latter set of experiments were comprised of self-paced movements, i.e., asynchronous.

The users established a certain constant velocity in a free isotonic movement. The

EEG signals that were analyzed in this work came from the brain signals registered

during the experimental setups described in this chapter. The next chapter involves

the results obtained from using these data and using all the methods described in

Chapter 2.



Chapter 4

Results

This chapter shows the results of the procedures and simulations done for this re-

search, which includes: the nonlinear dynamical analysis of the EEG neural sig-

nals for the synchronous protocols, the decodification of the EEG neural signals

of the asynchronous protocols comparing different cortical regions and time inter-

vals, the decodification of the synchronous protocols by segmentation of the data

regarding the activity performed, and the optimization of the decodification with

the implementation of a genetic algorithm. The first section displays the results

for the Hurst exponent, correlation dimension, and the largest Lyapunov exponent

of the synchronous protocols. The decodification is divided in three sections, with

the asynchronous protocols being the focus of the parametric adjustments for the

decodification, then the synchronous protocols are used for the decodification by

segmentation, and by the genetic algorithm which uses transformations to the EEG

signals.

4.1 Randomness & nonlinear dynamical analysis

The data acquired during the experiments described in Section 3.1 were used

in the nonlinear dynamical analyses mentioned in Section 2.1. Only the FastICA

preprocessing was applied to the data before these analyses, i.e., frequency filtering

and standarization of the data were not yet applied. As it was stated, markers

indicating the raising and lowering of the limb were added on the software in order

to specify the beginning and ending of each task during the EEG recording. Each

48



Chapter 4. Results 49

trial included 10 repetitions, where the raise-lower periods lasted 60 s divided in

20 windows of 3 s (3000 samples) each, as it can be seen in green-red windows at

the bottom of Figure 4.1. Also, both resting times were divided in 10 windows,

3 s each, which can be seen in the blue windows at the bottom part of Figure 4.1.

Each of these time windows are the inputs to the methods selected here to analyze

the nonlinear dynamics of the neural activity associated to lower limb movements

described in the experimental setup of Section 3.1.

Figure 4.1: Top: frames of the indications presented in the video to rest (white dot,

30 s), raise or lower the limb (green and red arrows respectively, 10 repetitions each,

lasting 3 s). The entire trial lasted, from start to finish, 120 s. Bottom: illustration

of the EEG signal segmentation of a full trial into forty time windows 3 s each (3000

samples), where blue is the resting time (20 windows, 10 at the beginning and 10

at the end), green the raising time (10 windows), and red the lowering time (10

windows) of the limb. Each time window served as inputs to the nonlinear analyses.

All the procedures presented in this work were numerically implemented in

Matlabr (R2015a). As it was stated in the experimental setup (Section 3.1), NS = 8

subjects were enrolled in the experiment. Each subject performed two lower limb

tasks (Task 1 and Task 2) consisting of NT = 10 trials each. The interest is to

analyze the EEG signal of the selected nine electrodes for each trial, according to

the window segmentation described at the bottom of Figure 4.1. The indices H, CD,

and LLE are computed from the EEG signal for each electrode (E), window (W ),

subject (S), and trial (T ). To show the reproducibility of the results, each index is

presented as averages between the subjects and trials for each window and electrode.
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This is expressed as:

µW,E,I =
1

NSNT

NS∑

S=1

NT∑

T=1

I(EEGT,S,W,E), (4.1)

where E ∈ {F3, F z, F4, C3, Cz, C4, P3, P z, P4}, W ∈ {1, ..., 40}, and I ∈ {H, CD,

LLE}. The corresponding standard deviation is also computed by

σW,E,I =

√
√
√
√ 1

NSNT

NS∑

S=1

NT∑

T=1

|I(EEGT,S,W,E)− µW,E,I |
2. (4.2)

4.1.1 Hurst exponent

The number of time spans of observations were limited to 50, since subseries of

smaller length lead to a high variance of the R/S estimates. In the following graphs

the mean and standard deviation of H (µH and σH , respectively) corresponding to

the nine electrodes and the 40 windows are shown. Figure 4.2 presents the results

of Task 1, whereas Figure 4.3 presents results of Task 2. The results show that the

time series are nonrandom and persistent because the means (µ) of the nine elec-

trodes in Figure 4.2 and Figure 4.3 are near to 1. Moreover, the mean and standard

deviation of the EEG signal are computed in order to quantify the nonrandomness.

As mentioned in Section 2.1.1, a stationary signal preserves constant values of mean

and standard deviation. On the other hand, nonconstant values are related to non-

stationary. As can be seen in Figures 4.4 and 4.5, the resting periods (windows

1-10 and 31-40) have small variations, meanwhile the raising and lowering periods

(windows 11-30) have larger variations, therefore they behave nonstationarily. This

behavior is more evident on electrodes Cz and Pz, which are located over the motor

cortex.
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Figure 4.2: Mean and standard deviations of H calculated between eight subjects

and ten trials, for nine electrodes during Task 1.

Figure 4.3: Mean and standard deviations of H calculated between eight subjects

and ten trials, for nine electrodes during Task 2.
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Figure 4.4: Mean and standard deviations of the EEG signal calculated between

eight subjects and ten trials, for nine electrodes during Task 1.

Figure 4.5: Mean and standard deviations of the EEG signal calculated between

eight subjects and ten trials, for nine electrodes during Task 2.
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4.1.2 Correlation dimension

For each window, an embedding dimension was calculated using the false near-

est neighbor algorithm, which in the case an embedding dimension was not found,

the value was limited to 10, as the saturation mentioned in [50, 51]. As for the

optimal delay, the average mutual information algorithm was used with 20 bins, in

order to be proportional to the simple cubic root of the number of samples. For

these reasons, each window had its own parameters for the calculation of the CD.

Afterwards, their mean and standard deviation (µCD and σCD) were calculated and

can be seen in Figures 4.6 and 4.7 for Task 1 and Task 2, respectively.

4.1.3 Largest Lyapunov exponent

Similar to the previous indices, each time window of samples had its own LLE

calculated. According to the CD results, the dimension of the underlying system

lies between 4 and 6, therefore a dimension of 5 was chosen to calculate the LLE

with a delay coordinate of one sample. Then, the means and standard deviations

(µLLE and σLLE) between subjects and trials were calculated, for nine electrodes and

40 time windows. These can be seen in Figures 4.8 and 4.9 for Task 1 and Task 2,

respectively.
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Figure 4.6: Mean and standard deviations of CD calculated between eight subjects

and ten trials, for nine electrodes during Task 1.

Figure 4.7: Mean and standard deviations of CD calculated between eight subjects

and ten trials, for nine electrodes during Task 2.
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Figure 4.8: Mean and standard deviations of LLE calculated between eight subjects

and ten trials, for nine electrodes during Task 1.

Figure 4.9: Mean and standard deviations of LLE calculated between eight subjects

and ten trials, for nine electrodes during Task 2.
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4.2 Parametric adjustment

A parameter tuning was performed in order to obtain a better decoding of

the joint angles. This parameter tuning consisted of three parts. One part was to

analyze different cortical regions of the brain by selecting different electrode arrays

from the acquired EEG signal. Another part consisted of analyzing how far in the

past the number of samples should be taken in consideration. The final part for the

tuning consisted of considering the mentioned evaluation metrics in Section 2.2.3 to

see the different behaviors and performances of the chosen parameters.

In this work, the linear optimum filter described in Section 2.2.1 was adapted

into the following MLR

x[t] = a+
N∑

n=1

L∑

k=1

bnkSn[t−G ∗ k], (4.3)

where x[t] is the decoded variable at time t, Sn is the voltage measured at electrode

n, N are the number of channels, L are the number of lags, G is the gap between

lags, and a and b are the weights of the linear regression. The process (4.3), for a

single time sample, can also be viewed in the following matrix form:

x =
[

S1 S2 · · · SNL

]











b1

b2
...

bNL











+ a (4.4)

where NL is the number of electrodes times the number of lags.

To analyze the different regions of the brain during the asynchronous protocols

described in Section 3.2, different electrode arrays from the EEG were evaluated,

thus varying N . This led to selecting 42 arrays, that are described in Table 4.1 and

can be seen in Figure 4.10. Also different time windows prior to the decoded variable

were analyzed. This was done by changing the gap G, since the lags were fixed to

L = 10. By changing gaps, the time window was limited to reach up to 5 seconds

into the past, by increments of 0.5 s.
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Cortical

Region

Markers designating locations

z z,1,2 z,3,4, z,1,2,3,4 z,5,6 z,1,2,3,4,5,6

FC 1 2 3 4 5 6

C 7 8 9 10 11 12

CP 13 14 15 16 17 18

FC-C 19 20 21 22 23 24

FC-CP 25 26 27 28 29 30

C-CP 31 32 33 34 35 36

FC-C-CP 37 38 39 40 41 42

Table 4.1: 42 combinations of electrode arrays. Colors define the combinations of

regions on the scalp. Each color possess six sets of electrodes, illustrated by six

markers. Each bold triangle indicates which electrodes were used.

Figure 4.10: 42 electrode array combinations used in the experimental setup from

Section 3.2. Top left: combinations for regions FC and C-CP. Top right: combina-

tions for regions C and FC-CP. Bottom left: combinations for regions FC-C and CP.

Bottom right: combinations for regions FC-C-CP. Table 4.1 gives the specifications

of these combinations.
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To obtain the regressors values of (4.4) for the different combinations of elec-

trodes arrays and time delays, the following matrices had to be created:

S =











1 S1,1 S1,2 · · · S1,NL

1 S2,1 S2,2 · · · S2,NL

...
...

...
. . .

...

1 STS,1 STS,2 · · · STS,NL











, and x =











x1

x2

...

xTS











, (4.5)

where the first column of S is the constant value to obtain the intercept regressor,

i.e., value a for (4.3) and (4.4), and TS are the different values of training samples,

which depend on the quantity of samples available after varying the G values. To

obtain the regressors, such matrices can be used as in (2.36) as follows:

β = [STS]−1STx, (4.6)

where β is the weight vector [a, b1, ..., bNL].

Out of the nine subjects stated in Section 3.2, four healthy (A05, A06, B11, and

B12) and five with SCI (C06, C07, C08, C09, and C10), only eight of the datasets

were chosen to perform the decodification, since subject C10 reported to had felt

tired during the sessions [106]. Each test subject performed six runs, where the

first five runs were concatenated to create the corresponding training models of S

and x. The run number six was used as the testing model. The training models

counted with 180, 000 samples (1200 Hz for 30 s for 5 trials) by electrode. How-

ever, as was previously mentioned, the matrices (4.5) varied in size, from using one

electrode (N = 1) with a delay of 0.5 s (600 samples) (NL = 10 and TS = 179, 400)

to using 21 electrodes (N = 21) with a delay of 5 s (6000 samples) (NL = 210 and

TS = 174, 000). The performances of the 42 electrode arrays, and 10 delays can

be seen in Figure 4.11 for the CC values. Figure 4.12 has the performance of the

NRMSE values, and Figure 4.13 for the SNR values.
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Figure 4.11: Correlation coefficient (CC) values for eight subjects, arranged in 42

arrays by 10 delays in the past, ranged from 0.5 s to 5 s. Colors represent the

different cortical regions described in Table 4.1.
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Figure 4.12: Normalized root mean square error (NRMSE) values for eight subjects,

arranged in 42 arrays by 10 delays in the past, ranged from 0.5 s to 5 s. Colors

represent the different cortical regions described in Table 4.1.
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Figure 4.13: Signal-to-noise ratio (SNR) values for eight subjects, arranged in 42

arrays by 10 delays in the past, ranged from 0.5 s to 5 s. Colors represent the

different cortical regions described in Table 4.1.

The three parts of the parametric tunning chosen for the decodification per-

formance led to 420 sets, with the 42 electrode arrays and 10 delays, using three

metrics for the eight selected subjects. In order to establish which set is the most

appropriate, the metrics were arranged by subject from best to worst. When con-

sidering the best 10% of all the sets, the mode amongst the subjects in the CC and

NRMSE values were the sets of 138, 264, and 348, which repeated for 4 subjects.
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Set Array # Delay(s)

138 12 2

180 12 2.5

264 12 3.5

294 42 3.5

348 12 4.5

376 40 4.5

420 42 5

Table 4.2: Combinations of sets with their respective electrode array and time delay.

As for the mode of the SNR values, they were 376 and 420, for 7 subjects. When

considering the top ten best of all the sets, the mode of CC and NRMSE values were

the sets of 180 and 348. However, they only repeated in 3 subjects. The mode of the

SNR was the set of 294, repeating 4 subjects. The corresponding electrode arrays

and time delays of these mentioned sets is shown in Table 4.2.

Looking at these modes, the selected array considered to have better perfor-

mance in CC and NRMSE is array number 12, i.e., all electrodes of the cortical

region C. Regarding the modes of the SNR, the most appropriate array is number

42, i.e., all electrodes of the cortical regions FC, C, and CP. With respect to the

time delays, it varied according to the subjects, ranging from 2 s to 4.5 s in the past.

In this case, the time delay of 3.5 s in the past was considered as it represented the

middle area of the time delay range.

Based on these selections, array number 12 has N = 7 electrodes, and the time

delay of 3.5 s (4200 samples) in the past with a sampling frequency of 1200 Hz lets

TS = 175, 800 samples for training. Thus having the following matrices:

S =











1 S1,1 S1,2 · · · S1,70

1 S2,1 S2,2 · · · S2,70

...
...

...
. . .

...

1 S175800,1 S175800,2 · · · S175800,70











, and x =











x1

x2

...

x175800











,
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applied to (4.6). This grants the vector β with the weights a ∈ R and b ∈ R
1×70.

These weights are applied to (4.4) in order to obtain the variable x for the testing

run, for the t samples. Figure 4.14 shows these decodifications of the asynchronous

protocols, where the actual joint velocity of the knee is compared to its respective

decoded variable.

Figure 4.14: Plots of the actual joint velocity of the knee (dotted line) compared to

their decodification (solid line) of eight subjects. These MLR decodifications were

performed with array 12 (7 electrodes) and a time delay of 3.5 s.
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4.3 Decodification by segments

As mentioned in Chapter 3, the literature has usually shown a continuous

trajectory reconstruction of cycled tasks, like walking or free repetitive movement

of the limbs, similar to the protocol described in Section 3.2. However, the protocol

described in Section 3.1, displayed in Figures 3.2 and 3.3, has a single task divided

into different activities. In this particular case the activities were rest, raise, and

lower the limb. With this notion, it was proposed to perform decodifications for

each activity separately, by segmentation of the data, as shown in Figure 4.1.

As stated, the subjects performed two type of tasks: raising the foot (Task 1)

and the knee (Task 2) while remaining seated. In this work different decoders were

created, described next. Decoder 1 (D1) used a single MLR equation to decode all

the trial involving the three activities of resting, raising, and lowering. Decoder 2

(D2) used a pair of transitioning MLR equations, one for the resting periods, and

another for the movement period. Decoder 3 (D3) used three MLR equations, one

for the resting periods, and two separate decoders for raising and lowering of the

movement periods. This can be visualized in Figure 4.15.

Three trials of each test subject were used for training to obtain the decoder,

and one trial was used for testing. Similar to the process described previously in

Section 4.2, (4.3) was implemented, or equivalently its matrix form (4.4). However,

since in this occasion there were two joint angles to decode, i.e., the hip and the knee

angles, the training portion of the decoder was performed with the MLR equation.

After the training was finished, the testing portion of this study was realized using the

multivariate linear regression. As mentioned in Section 2.2.1, a multivariate linear

regression is used when there are multiple correlated dependent variables predicted,
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Figure 4.15: Illustrative sections for which a MLR equation was created: (a) Decoder

1 (D1) where yellow corresponds to a single MLR equation for all activities, (b)

Decoder 2 (D2) where blue corresponds to resting periods, and cyan to the movement

period, (c) Decoder 3 (D3) where blue corresponds to resting periods, green for the

raising and red for the lowering period.

rather than a single variable. Therefore, for the testing portion, (4.4) expands to:

[

x1 x2

]

=
[

S1 S2 · · · SNL

]











b1,1 b1,2

b2,1 b2,2
...

...

bNL,1 bNL,2











+
[

a1 a2

]

(4.7)

where x are the decoded variables, S is the voltage measured at electrodes N and L

number of lags, and a and b are the weights of the linear regression. In the case of

the synchronous protocols, it was stated in Section 3.1.2 that only nine electrodes

were considered for this study. Also, as the results shown in the Section 4.2, the

chosen delay for the decodification was established to be 3.5 s into the past.
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To obtain the regressors values of (4.7) for the two joint angles, the following

matrices had to be created:

S =











1 S1,1 S1,2 · · · S1,NL

1 S2,1 S2,2 · · · S2,NL

...
...

...
. . .

...

1 STS,1 STS,2 · · · STS,NL











, and x =











x1,1 x1,2

x2,1 x2,2

...
...

xTS,1 xTS,2











, (4.8)

where the first column of S is the constant value for the intercept regressor, i.e.,

value a for (4.3) and (4.4), and TS are the different values of training samples, which

depend on the quantity of samples available after varying the G values. Another

value that affected TS, for the synchronous protocols, was a sub-sampling performed

during the creation of the training model (and the testing model). Due to the

high number of samples, a sub-sampling of the available data allowed to obtain a

smaller matrix. Sampling by increments of 10, assisted the dimensions of the training

matrices S and x, reducing TS from 349, 500 to 34, 950. After the training models

were created, to obtain the regressors, such matrices can be used as in (2.36) in the

following manner:

βKnee = [STS]−1STx1, and βHip = [STS]−1STx2, (4.9)

where x1 and x2 are the columns of x, and β is composed of the weight vectors

a ∈ R
2×1 and b ∈ R

2×NL.

The selected metrics to evaluate the performance of the decodifications were

the metrics mentioned in Section 2.2.3. The performance of the three decoders, i.e.,

D1, D2, and D3, for eight subjects can be seen in Tables 4.3 to 4.5. It can be seen

that in general, the performance turns better when more decoders are applied. It can

also be appreciated in the average between subjects. Figures 4.16 to 4.23 show the

decodifications of Task 1 for the hip and knee joint angles of the eight subjects, and

Figures 4.24 to 4.31 display the decodifications for Task 2. It is worth to mention

that a different test trial of the same subject was used for further validation of each

created decoder. Such additional test trials had the same improved performance

when more decoders were used.
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CC Task 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.2360 0.9038 0.9017 0.4003 0.8002 0.9365

2 0.5895 0.5954 0.6021 0.3493 0.7534 0.9405

3 0.2857 0.7221 0.8518 0.2883 0.7418 0.8447

4 0.3513 0.0736 0.0499 0.4777 0.8212 0.8987

5 0.1795 0.4448 0.4072 0.2252 0.6442 0.9101

6 0.3888 0.7776 0.8927 0.4089 0.7747 0.9076

7 0.2397 0.4574 0.4625 0.1951 0.7298 0.8503

8 0.0154 0.2635 0.5325 -0.0343 0.4933 0.8169

µ 0.2857 0.5298 0.5876 0.2888 0.7198 0.8882

σ 0.1674 0.2762 0.2933 0.1619 0.1059 0.0454

Task 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.2614 0.7249 0.8625 0.2483 0.7743 0.8229

2 0.5416 0.8841 0.9109 0.2664 0.4980 0.5162

3 0.4182 0.8341 0.8895 0.4164 0.8351 0.8830

4 0.4746 0.7977 0.9095 0.2830 0.4568 0.5809

5 0.3996 0.7563 0.8955 0.3879 0.7405 0.8571

6 0.4541 0.8060 0.9155 0.4134 0.7990 0.8999

7 0.2657 0.7073 0.8889 0.2689 0.7242 0.8855

8 0.5032 0.8560 0.9315 0.4872 0.8267 0.8976

µ 0.4148 0.7958 0.9005 0.3465 0.7068 0.7929

σ 0.1035 0.0626 0.0210 0.0902 0.1471 0.1538

Table 4.3: Correlation coefficient (CC) values of the decodifications of the hip and

knee angles for eight subjects and their mean and standard deviations for Tasks 1

and 2. D1, D2, and D3 stand for the decoder used.
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NRMSE Task 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.3002 0.1511 0.1571 0.3513 0.2313 0.1354

2 0.1400 0.1428 0.1446 0.3501 0.2422 0.1267

3 0.3352 0.2434 0.1910 0.3488 0.2441 0.2027

4 0.1444 0.1701 0.1751 0.3445 0.2250 0.1727

5 0.1251 0.1166 0.1220 0.3679 0.2882 0.1569

6 0.3346 0.2349 0.1736 0.3422 0.2404 0.1644

7 0.7408 0.7306 0.7416 0.3729 0.2731 0.2288

8 0.5766 0.5792 0.5740 0.4179 0.3485 0.2279

µ 0.3371 0.2961 0.2849 0.3619 0.2616 0.1769

σ 0.2212 0.2293 0.2354 0.0251 0.0410 0.0392

Task 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.3719 0.2761 0.2136 0.3795 0.2847 0.2740

2 0.2688 0.1488 0.1354 0.2658 0.2479 0.2594

3 0.3244 0.1980 0.1647 0.2755 0.1681 0.1517

4 0.3176 0.2278 0.1587 0.2871 0.2897 0.2740

5 0.3212 0.2374 0.1609 0.2509 0.1861 0.1431

6 0.2681 0.1814 0.1276 0.2984 0.2241 0.1921

7 0.3493 0.2561 0.1694 0.3378 0.2434 0.1691

8 0.3078 0.1841 0.1298 0.2646 0.1713 0.1332

µ 0.3161 0.2137 0.1575 0.2949 0.2269 0.1996

σ 0.0357 0.0428 0.0280 0.0434 0.0481 0.0604

Table 4.4: Normalized root mean square error (NRMSE) values of the decodifications

of the hip and knee angles for eight subjects and their mean and standard deviations

for Tasks 1 and 2. D1, D2, and D3 stand for the decoder used.
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SNR Task 1

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.0980 4.8191 5.1885 0.3147 2.2031 7.8723

2 0.8171 1.0110 1.1626 0.3465 1.6110 7.9651

3 0.1486 1.3825 3.4224 0.1475 1.3757 3.2322

4 0.1388 0.3000 0.3437 0.2810 2.2336 4.2457

5 0.1165 0.5124 0.5786 0.1518 0.9493 4.8824

6 0.1488 1.6534 3.9935 0.2458 1.8538 5.4486

7 0.1332 0.6836 1.0774 0.0841 1.2675 3.4362

8 0.2792 0.6691 1.2934 0.1133 0.5976 2.2429

µ 0.2350 1.3789 2.1325 0.2106 1.5114 4.9157

σ 0.2415 1.4613 1.8063 0.0989 0.5802 2.1024

Task 2

Subject
Hip decoders Knee decoders

D1 D2 D3 D1 D2 D3

1 0.2655 1.6725 3.7560 0.2244 1.8709 2.8454

2 0.6229 3.5816 5.6095 0.3753 0.6800 1.0456

3 0.1933 1.9889 4.0166 0.2400 2.5279 4.3702

4 0.5853 2.5493 5.7744 0.6088 1.0664 1.4345

5 0.3463 1.9669 4.9028 0.2899 1.6731 3.4213

6 0.3511 2.1779 5.4153 0.2439 1.8248 3.8605

7 0.1408 1.1869 4.4749 0.1432 1.2915 4.3675

8 0.2436 2.5197 6.5461 0.2125 1.7586 3.8268

µ 0.3436 2.2055 5.0620 0.2922 1.5867 3.1465

σ 0.1758 0.7108 0.9489 0.1441 0.5657 1.2802

Table 4.5: Signal-to-noise ratio (SNR) values of the decodifications of the hip and

knee angles for eight subjects and their mean and standard deviations for Tasks 1

and 2. D1, D2, and D3 stand for the decoder used.
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(a) Hip angles decoded using three decoders for Subject 1 during Task 1.

(b) Knee angles decoded using three decoders for Subject 1 during Task 1.

Figure 4.16: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 2 during Task 1.

(b) Knee angles decoded using three decoders for Subject 2 during Task 1.

Figure 4.17: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 3 during Task 1.

(b) Knee angles decoded using three decoders for Subject 3 during Task 1.

Figure 4.18: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 4 during Task 1.

(b) Knee angles decoded using three decoders for Subject 4 during Task 1.

Figure 4.19: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 5 during Task 1.

(b) Knee angles decoded using three decoders for Subject 5 during Task 1.

Figure 4.20: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 6 during Task 1.

(b) Knee angles decoded using three decoders for Subject 6 during Task 1.

Figure 4.21: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.



Chapter 4. Results 76

(a) Hip angles decoded using three decoders for Subject 7 during Task 1.

(b) Knee angles decoded using three decoders for Subject 7 during Task 1.

Figure 4.22: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 8 during Task 1.

(b) Knee angles decoded using three decoders for Subject 8 during Task 1.

Figure 4.23: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 1 during Task 2.

(b) Knee angles decoded using three decoders for Subject 1 during Task 2.

Figure 4.24: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 2 during Task 2.

(b) Knee angles decoded using three decoders for Subject 2 during Task 2.

Figure 4.25: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 3 during Task 2.

(b) Knee angles decoded using three decoders for Subject 3 during Task 2.

Figure 4.26: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 4 during Task 2.

(b) Knee angles decoded using three decoders for Subject 4 during Task 2.

Figure 4.27: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 5 during Task 2.

(b) Knee angles decoded using three decoders for Subject 5 during Task 2.

Figure 4.28: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 6 during Task 2.

(b) Knee angles decoded using three decoders for Subject 6 during Task 2.

Figure 4.29: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 7 during Task 2.

(b) Knee angles decoded using three decoders for Subject 7 during Task 2.

Figure 4.30: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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(a) Hip angles decoded using three decoders for Subject 8 during Task 2.

(b) Knee angles decoded using three decoders for Subject 8 during Task 2.

Figure 4.31: Graphs of the actual hip and knee joint angles (dotted line) compared

to their decodification (solid line). These decodifications were performed with a time

delay of 3.5 s. For each sub-figure from top to bottom: D1, D2, and D3.
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4.4 Optimization by genetic algorithm

As mentioned in Section 2.2.2, the implementation of the GA in the BMI liter-

ature are mostly used to find an optimal solution for the different methods or models

used for estimation or reconstruction of one signal from another type of signal. In this

work, the linear optimum filter by segmentation remained as the chosen decodifica-

tion method of the EEG signal into the lower limb kinematics. As previously stated,

multiple linear regression models are often used as approximating functions, i.e.,

the relationship between y and x1, x2, ..., xk, is unknown, but over certain ranges of

the independent variables, the linear regression model is an adequate approximation

even for models complex in structure. However, the linear regression model in some

occasions is inappropriate because the true regression function is nonlinear. Since

the EEG was consider nonlinear and quasistationary in Section 2.1, and the results

shown in Section 4.1 seem to strengthen this consideration, a suitable transforma-

tion was applied. Nonlinear models that can be transformed into a straight line are

called intrinsically linear [88]. Examples of nonlinear models that are intrinsically

linear are considered in functions:

y = β0e
β1x, and y = β0 + β1

(
1

x

)

. (4.10)

These functions are intrinsically linear since they can be transformed to a straight

line by a logarithmic transformation and the reciprocal z = 1/x respectively, lin-

earizing the models into

ln y = ln β0 + β1x, and y = β0 + β1z. (4.11)

There are other types of transformations for the nonlinearities of a model, for exam-

ple

y = β0 + β1x+ β2x
2 + β3x

3, and y = β0 + β1x1 + β2x2 + β12x1x2. (4.12)

Where the cubic polynomial can be changed by x1 = x, x2 = x2, x3 = x3, and the

interaction effects changed by x3 = x1x2, and β3 = β12, to form the same linear

regression model

y = β0 + β1x1 + β2x2 + β3x3. (4.13)
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Applying similar transformations, the GA searched for an optimal function that

transformed the EEG signal used in the multiple linear regression model. As stated

in Section 2.2.2, there is a need for a genetic representation of the candidate solutions.

For this work, the chromosomes were vectors of dimension [1×9], where each of the 9

arrays take the values 0− 5, which represent the different transformations functions

from Table 4.6. Those functions were selected for being considered simple nonlinear

functions, thus not giving more load to the computational process of the GA. Each

of the arrays affects individually the 9 electrodes used on the synchronous protocols.

Value Transformation Function f(Sn)

0 Sn

1 eSn

2 S2
n

3 S3
n

4 sin(Sn)

5 cos(Sn)

Table 4.6: Values of the genetic representation and their respective transformation

function. Sn represents the n-th electrode of the EEG signals.

The fitness function selected for this work was the NRMSE, described in Sec-

tion 2.2.3. This was the chosen function because the NRMSE value displays the

difference between the actual values and the predicted or decoded ones in a per-

centage manner. The tournament selection was applied in this work, where each

individual competed with another random individual, and the one with the best

fitness value was selected for the crossover. Selection was done with replacement,

i.e., the same chromosome could have been selected more than once to become a

parent. In this work, the crossover between the randomly chosen pair of parents was

always executed, since the crossover probability pc was fixed at 100%. Regarding

the mutation probability pm, the chosen value was 40%. It was considered rather

high, since the literature tends to use really small values (e.g., 0.001) [80]. These
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high values of pc and pm were chosen in order to have a high probability of an entire

new population of individuals. Such populations consisted of 25 individuals, which

participated in several runs with different number of generations. The parameters

used on the GA are summarized in Table 4.7. Also it is worth mentioning that the

segmented decodification was performed using the nine electrodes of the controlled

mobility protocols with a time delay of 2.5 s.

Parameter Information

Individuals 25

Fitness Function NRMSE

Selection Tournament

Crossover probability 100%

Mutation probability 40%

Generations Various (from 10 to 100)

Runs Various (from 5 to 8)

Table 4.7: Parameters chosen for the genetic algorithm.

Table 4.8 shows the fitness values comparison between the segmented decodi-

fication without any transformation and the best segmented decodification obtained

after running the GA for the eight subjects for Task 1, focusing on the knee joint

angle. Alongside the fitness values are the respective different chromosomes for

each individual test subject, additionally the other metrics are displayed. Similarly,

Table 4.9 shows the values for Task 2, focusing on the hip angle.

Table 4.10 shows the test subject with the best fitness value among the eight

subjects for Task 1 for the knee joint angle. This table shows the best fitting chromo-

some with their respective transformation function applied to the set of electrodes.

In a similar way, Table 4.11 shows the values for Task 2 for the hip joint angle.

Figures 4.33 to 4.39 display the comparison between the actual knee joint an-

gles, the segmented decodification without transformations, and the best segmented
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decodification obtained with the GA, for the eight subjects. Figures 4.41 to 4.47

display in a similar way the comparison for the hip joint angles.

CC SNR NRMSE
Chromosome

No f(S) f(S) No f(S) f(S) No f(S) f(S)

0.9318 0.9374 6.9661 7.6388 0.1382 0.1324 0 0 3 5 4 0 4 0 4

0.9444 0.9545 8.3188 10.0639 0.1223 0.1115 0 4 3 3 3 0 1 2 2

0.8461 0.8624 3.3091 3.5944 0.2031 0.1891 2 2 5 1 2 0 1 1 1

0.9145 0.9163 4.8973 5.3078 0.1592 0.1566 5 4 3 3 2 4 4 0 3

0.9060 0.9060 4.7015 4.7015 0.1597 0.1597 0 0 0 0 0 0 0 0 0

0.9052 0.9099 5.2767 5.4252 0.1645 0.1600 4 5 4 4 0 0 4 1 3

0.8742 0.8742 4.0348 4.0348 0.2139 0.2139 0 0 0 0 0 0 0 0 0

0.8318 0.8772 2.4405 3.2893 0.2178 0.1903 2 2 4 1 3 0 3 1 0

Table 4.8: Comparison of the segmented decodification with and without transfor-

mation function. The last column displays the chromosome of the best performance

obtained by the GA using the NRMSE fitness value for the knee joint angle decodi-

fication during Task 1. Additionally, the metrics of CC and SNR are also displayed.



Chapter 4. Results 90

CC SNR NRMSE
Chromosome

No f(S) f(S) No f(S) f(S) No f(S) f(S)

0.8479 0.9220 3.3389 6.4570 0.2234 0.1702 4 5 5 5 2 0 1 4 2

0.9142 0.9370 5.8515 7.7908 0.1332 0.1115 3 3 5 5 3 0 1 3 1

0.8723 0.8897 3.4835 3.9421 0.1755 0.1627 3 4 5 4 0 4 1 3 4

0.9093 0.9243 5.7645 6.8052 0.1588 0.1402 4 5 1 3 1 1 4 2 0

0.9077 0.9184 5.1985 5.8307 0.1462 0.1375 0 5 4 4 0 0 1 0 4

0.9206 0.9295 5.6284 6.1692 0.1232 0.1170 2 4 4 4 4 0 3 3 4

0.8897 0.9019 4.4156 4.9341 0.1671 0.1573 5 1 4 4 0 0 0 2 0

0.9279 0.9329 6.1902 6.5195 0.1334 0.1286 3 4 5 4 4 0 5 0 0

Table 4.9: Comparison of the segmented decodification with and without transfor-

mation function. The last column displays the chromosome of the best performance

obtained by the GA using the NRMSE fitness value for the hip joint angle decodifi-

cation during Task 2. Additionally, the metrics of CC and SNR are also displayed.

Electrode F3 F4 Fz C3 C4 Cz P3 P4 Pz

Chromosome 0 4 3 3 3 0 1 2 2

Transformation

function f(Sn)
S1 sin(S2) S3

3 S3
4 S3

5 S6 eS7 S2
8 S2

9

Table 4.10: Chromosome and its respective transformation functions of the subject

with the best performance of the fitness value from Table 4.8.

Electrode F3 F4 Fz C3 C4 Cz P3 P4 Pz

Chromosome 3 3 5 5 3 0 1 3 1

Transformation

function f(Sn)
S3
1 S3

2 cos(S3) cos(S4) S3
5 S6 eS7 S3

8 eS9

Table 4.11: Chromosome and its respective transformation functions of the subject

with the best performance of the fitness value from Table 4.9.
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Figure 4.32: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 1 during Task 1.

Figure 4.33: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 2 during Task 1.
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Figure 4.34: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 3 during Task 1.

Figure 4.35: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 4 during Task 1.
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Figure 4.36: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 5 during Task 1.

Figure 4.37: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 6 during Task 1.
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Figure 4.38: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 7 during Task 1.

Figure 4.39: Graph of the actual knee joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 8 during Task 1.
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Figure 4.40: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 1 during Task 2.

Figure 4.41: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 2 during Task 2.
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Figure 4.42: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 3 during Task 2.

Figure 4.43: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 4 during Task 2.
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Figure 4.44: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 5 during Task 2.

Figure 4.45: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 6 during Task 2.
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Figure 4.46: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 7 during Task 2.

Figure 4.47: Graph of the actual hip joint angle (blue dot line) compared to the

segmented decodification without transformation functions (green dash-dot line) and

with transformation functions (red solid line) for Subject 8 during Task 2.
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Conclusions and Future Work

5.1 Conclusions

The main contribution of this thesis consists on proving that it is possible to

make a continuous trajectory reconstruction, also called decodification, from slow

cortical potentials, i.e., low frequencies of the EEG signals. The approach of decodi-

fication had previously been applied in the literature to periodic trajectories like the

gait cycle. This work focused on comparing different sets of movements, attempting

to decode the kinematics of the lower limbs during synchronous mobility protocols.

The following contributions have been led by the development of this thesis:

• One focus of this thesis was to analyze the nonlinear characteristics of the

EEG signals during synchronous lower limb mobility protocols. Whereas in

the literature, it has only been reported the characterization of these signals

between different mental states. In order to obtain insight of the underlying

dynamics of the EEG signals three indices were chosen.

According to the obtained Hurst exponent (H) values, the EEG signal shows a

nonrandom persistent behavior, when considering the selected time windows.

Usually for diagnostic purposes, prolonged amounts of time are considered.

However, this thesis has proven that since actions or movements are rather fast

(short time windows), H reveals that the brain signals behave in a persistent

manner during these short intervals. With the results here presented, it can be

appreciated that on average when the subjects raise the limb, the randomness

99
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decreases since H moves away from the 0.5 value. Furthermore, on the resting

periods, the average leans toward 0.5 values, showing that when the subjects

rest the signal leans to randomness, as depicted in Figures 4.2 and 4.3. These

results are consistent with the statistics reported in Figures 4.4 and 4.5, where

it is clear that mean and standard deviation during the resting periods have

small variations, in comparison to the large changes of raising and lower periods

indicating a nonstationary behavior. This is more evident in the electrodes Cz

and Pz, which sense the neural activity of the motor cortex above the lower

limb region.

Since the correlation dimension (CD) values are related to the minimum num-

ber of variables or equations needed to model the behavior of a system in

phase space, Figures 4.6 and 4.7 show that the complexity of the dynamics

of the underlying system is contained in a space of dimension between 4 and

6, suggesting the order of the dynamical model constructed from observable

time series. However, these results reflect that such dimensions might relate to

model the behavior of a single electrode. The entire underlying system of the

brain most likely possess a bigger dimensionality, considering all the cortical

regions affect each other when using EEG recordings.

Based on the CD, the largest Lyapunov exponent (LLE) values were computed

from reconstructed time series of dimension 5 for each electrode. The strictly

positive LLE values obtained from the EEG time series suggest that the dy-

namics of the underlying system is nonlinear, this is based on the premise

that a linear system with a positive LLE implies unstable trajectories, and

with the evidence that the EEG signals are bounded and stable as it is shown

in Figure 4.4 and Figure 4.5. Also as mentioned before, the cortical regions

might have nonlinear interactions among each other, which could show how

the underlying system of the brain tends for a higher dimensionality.
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• Mainly this thesis gives additional evidence regarding the decodification of the

kinematics of lower limbs in humans from low frequency EEG components.

The results for the decodifications were performed with three approaches.

An exhaustive search for the best suited parameters of decodification was held.

This was done by using the electrodes that cover the cortical regions FC, C, and

CP, with different time delays ranging from 0.5 s to 5 s in the past. According

to their performance, the best array to obtain good results of decodification,

with the evaluation metrics of CC and NRMSE, is array number 12; which

is the set of electrodes that cover specifically the cortical region C. From an

electrophysiological point of view, this seems rather logical since this region is

related to the motor control of the brain. Also it is considered that the most

exterior C electrodes might have had the relevant information of the lower

limb movement derivated from the main electrode Cz, since this electrode is

allocated over the lower limb region of the motor cortex. However, the array

number 42 which includes all the electrodes of regions FC, C, and CP, gives the

best SNR. This is also appears to be quite a logical outcome, since the amount

of desired decodification stays higher above the noise obtained. Nevertheless,

more electrodes does not necessarily mean better performance, since this array

did not gave good results for the CC and NRMSE values.

On the other hand, in the literature and some other works on decodification,

the time range of delays reaches from 0.5 s to 1.5 s. However, the brain sig-

nal potentials related to the voluntary movements, such as the preparation

potentials or premotor potential (Bereitschaftspotential, BP in German), hap-

pen approximately 2 seconds before the beginning of the movement. And in

a work of Úbeda et al. [62], it is mentioned that the performance improves

between 2 s and 2.5 s. This helps the assumption that longer time delays

contribute to the motion planning in the brain, meanwhile immediate delays

could be related to the execution of the movement. This is why in Table 4.2,

the time delays have a wider range, compare to literature, from 2 s to 4.5 s.
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In the case of decoding kinematics by segments, creating different MLR models

according to the action performed seems to give better results than using a

single one. However, as can be seen in Tables 4.3 to 4.5, the decoders gave

better performance for the joint angle the subject focused on moving. That is,

in Task 1 the subject focused on extending the knee and the multiple decoders

improved better for that joint angle specifically; meanwhile the decodification

of the other joint angle gave mixed results between subjects. Similarly during

Task 2, the decoders improved for the hip decodification, giving mixed results

for the knee joint angle decodification between subjects. This could mean that

only the joint angle of the limb movement in which the subject is focusing is

embedded in the EEG signal, and the decodification of the other joint angle

is not entirely embedded in the EEG signal. Also the current results of CC,

NRMSE and SNR, although good, might not reveal the desired movement

accurately. This could be appreciated in the transitioning of the MLRs for

each action. If there is an abrupt transition, it might lead to a bad outcome of

the output signal. Also, in this work, the specific periods of each action were

known for the testing of the decoder since it is a complete and strictly offline

study.

To optimize the decodification by segments, a transformation of the EEG sig-

nals was performed using five simple nonlinear functions. However, only using

nine electrodes, the possible combinations for these transformations were an

enormous quantity. For this reason, a genetic algorithm (GA) was used. The

GA worked in order to find the most appropriate combination of transfor-

mation functions for each test subject. As shown in Tables 4.8 and 4.9, the

evaluation metrics do show improvement for most subjects. The exceptions

been subjects 5 and 7 for Task 1, which remained constant on not using any

transformation for the decodification. Nevertheless, although the evaluation

metrics show improvement with the transformation functions, there are some

unexpected noisy behaviors of the decoded joint angle. This can be appreci-

ated on some of the Figures 4.33 to 4.47, mostly during the resting periods.
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With these results it can be seen that for most subjects, applying transforma-

tions to the signal of each electrode has improvements. However, in this thesis

only simple transformations functions were considered.

The contributions of this thesis have provided an enhancement in the under-

standing of the dynamical behavior of the EEG signals, as well as opening new

possibilities to apply more appropriate decodification methods.

Usually the nonlinear dynamical analysis of the EEG signals is used to charac-

terize between mental states, rather than being applied to understand the behavior

of the brain signals during common movements of an individual. With the under-

standing of the dimensionality and persistent behavior of the EEG signals during

lower limb movement in short intervals, more appropriate preprocessing of the sig-

nal could be performed. For example, the dimensionality could be reduced for the

decoders to be more simpler. Along these lines, using simpler decoders could also

mean the usage of smaller sampling frequencies. This could be applied in order to

avoid over-fitness of the decoder. Applying simple decoders to BCIs or BMIs, allows

for the computational load to be smaller, thus allowing the interface to be more user

accessible.

This thesis continues to demonstrate the feasibility of applying linear decoders

in order to reconstruct the trajectories of lower limbs by noninvasively acquired

brain signals. The fact that the decoder remains linear allows for the BCIs or BMIs

to use multiple decoders for different tasks without overloading the computational

capacity. Also the usage of several simultaneous decoders co-working, grants the

user to reduce the training. Thus allowing a disabled individual to incorporate to

the casual daily living in a more faster time.

5.2 Future Work

The three selected indices in this thesis provided insight of the underlying

system of the brain. The H values suggest that the system is nonrandom and
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persistent on average for short time intervals. The CD values allowed to determine

that the dimension of the dynamical system lies between 4 or 6. Furthermore, the

positive LLE values suggest that the underlying dynamics is indeed nonlinear. These

values apply for individual electrodes, making the assumption that if the cortical

regions interact between each other the brain tends to be a nonlinear system of

higher dimension. With these insights, we could define a nonarbitrary selection of a

candidate model to classify motion tasks and/or to resolve the continuous trajectory

reconstruction of lower limb kinematics. This selection could provide more reliable

and affined methods for EEG-based BCI systems to manipulate assistive devices

useful in neuromuscular rehabilitation.

The exhaustive search for better parameters of the decodification led to find

that the cortical region C, is appropriate for the decodification. However, the num-

ber of electrodes varies from the international 10/10 system to the 10/20 system.

Perhaps, using more electrodes on this region provides a better performance, which

could be possible to achieve using the 10/5 system. The other parameter to still

work on in the future is the appropriate time delay, since the values obtained in

this thesis are various. Perhaps even intermediate values, i.e., gaps in increments

different than 0.5 s, could reveal the exact or more adequate time delay, that possess

the embedded limb movement.

Using different MLR models for the different actions proved to give better

results in CC, NRMSE, and SNR values. However, the transitioning between MLR

models should be taken into consideration. Also, since this work was strictly offline,

the different action periods were known. On the other hand, the decoders seemed

to give a good performance for the appointed joint angle of the task performed.

This could mean that the slow cortical potentials only have embedded an specific

limb movement. Further study involving different tasks simultaneously should be

taken in consideration for the future. Along this lines, a better transitioning between

models should be considered. Furthermore, the classification of each action could be

obtained during the testing period in order to perform the appropriate decodification
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without prior knowledge of the action. All of these considerations should be taken

into account in order to focus the study into future BCI applications, be them

prosthetic, using exoskeletons, or virtual reality rehabilitation.

The transformations performed to the electrodes individually, found by the GA,

proved to give a better performance for the decodification. However, only simple

nonlinear functions were applied. In the future, more complex nonlinear functions

could be applied for better manipulation of the EEG signals. Also, interaction

effects between electrodes should be considered. This comes from the idea that

somatosensory cortex could give a certain degree of information that could be used

to give another type of signal in contrast to the somatomotor cortex.

5.3 Scientific Production

5.3.1 Journal papers

• Luis Mercado, Griselda Quiroz, Miguel Platas, and Angel Rodriguez-Liñan.

Analyzing the Dynamics of the EEG Time Series During Lower Limb Motion.

Journal of Biomedical Signal Processing and Control.

Status: Revision.

• G. Quiroz, A. Espinoza-Valdez, R.A. Salido-Ruiz, L. Mercado. Coherence

analysis of EEG in locomotion using graphs. Revista Mexicana de Ingenieŕıa

Biomédica. Vol. 38, No. 1, Jan-Apr 2017, pp 235-246

Status: Published.

5.3.2 Book Chapter

• Andreas Wulff-Abramsson, Adam Lopez, and Luis Mercado. Paint With

Brainwaves – A step towards a low brain effort active BCI painting proto-

type. Human-Computer Interaction Series. Springer 2019.

Status: Accepted.
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5.3.3 Divulgation papers

• Luis Mercado. Decoding kinematic variables from Electroencephalographic

(EEG) signals during lower-limb mobility protocols. Vol. 3, Núm. 2 (2017):

Revista Doctorado UMH - Ciencia y Tecnoloǵıa.

Status: Published.

5.3.4 Scientific conferences

• Luis Mercado, J.M. Azoŕın, Miguel Platas, A. Úbeda, and Griselda Quiroz. Of-

fline Lower-Limb Kinematic Decodification by Segments of EEG Signals. 2018

40th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC). Honolulu, Hawaii, 2018.

Status: Published.

• L. Mercado, A. Úbeda, G. Quiroz, J.M. Azoŕın. Análisis de las regiones cor-

ticales y rangos de tiempos para la decodificación del movimiento de rodilla a

partir de señales EEG. IX Congreso Iberoamericano de Tecnoloǵıa de Apoyo

a la Discapacidad (iberdiscap 2017).

Status: Published.

• G. Quiroz, Aurora Espinoza-Valdez, Ricardo A. Salido-Ruiz, Luis Mercado.

Estudio de Coherencia de Señales Electroencefalográficas en Locomoción Medi-

ante Grafos. XXXIX Congreso Nacional de Ingenieŕıa Biomédica (CNIB2016).

Status: Published.

• Luis Mercado, Angel Rodriguez-Liñan, Luis M. Torres-Treviño, and G. Quiroz.

Hybrid BCI Approach to Control an Artificial Tibio-Femoral Joint. 2016 38th

Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC). Orlando, FL, 2016, pp. 2760-2763.

doi: 10.1109/EMBC.2016.7591302

Status: Published.
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5.3.5 Research internships

• At Brain-Machine Interface Systems Lab in the Miguel Hernández University

(UMH), Elche, Spain.

Time period: March 15, 2017-January 15, 2018.

Coursed: Bases de la Investigación Cient́ıfica.

• At Centro Universitario de Ciencias Exactas e Ingenieŕıas (CUCEI) in the

Universidad de Guadalajara (UDG), Jalisco, México.

Time period: September 5-16, 2016.
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