
Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Subdirección de Estudios de Posgrado

Formulations and Algorithms for the

Kidney Exchange Problem

por

Lizeth Carolina Riascos Alvarez

como requisito parcial para obtener el grado de

MAESTRO EN CIENCIAS EN INGENIERÍA DE SISTEMAS

Abril 2017



Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Subdirección de Estudios de Posgrado

Formulations and Algorithms for the

Kidney Exchange Problem

por

Lizeth Carolina Riascos Alvarez

como requisito parcial para obtener el grado de

MAESTRO EN CIENCIAS EN INGENIERÍA DE SISTEMAS

Abril 2017





A

⌧DMT�

una mente brillante

mi bonito amor



Contents

Acknowledgments viii

Abstract x

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The cycle packing variant of the Kidney Exchange Problem 12

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 14

v



Contents vi

2.2.1 Cycle Formulation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Edge Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Extended Edge Formulation . . . . . . . . . . . . . . . . . . . 17

2.2.4 Partitioned Edge Formulation . . . . . . . . . . . . . . . . . . 18

2.2.5 Partitioned and Reduced Edge Formulation . . . . . . . . . . 21

3 Chains and Cycles variant of the Kidney Exchange Problem 29

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 30

3.2.1 Anderson’s Arc-based Formulation . . . . . . . . . . . . . . . 32

3.2.2 PC-TSP-based Formulation . . . . . . . . . . . . . . . . . . . 33

3.2.3 The Polynomial-sized SPLIT Formulation . . . . . . . . . . . 34

3.2.4 The Exponential-sized SPLIT Formulation . . . . . . . . . . . 36

3.2.5 The Reduced Exponential-sized SPLIT Formulation . . . . . . 37

4 Computational Experiments 39

4.1 Description of Database Instances . . . . . . . . . . . . . . . . . . . . 40

4.2 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Comparing Search Algorithms to find length-k paths in the KEP . . . 42

4.4 Selecting the best node-selection strategy for the SCC-Based Search

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Assessment of KEP Formulations . . . . . . . . . . . . . . . . . . . . 46



Contents vii

5 Conclusions 62

5.1 Summary of Research Contributions . . . . . . . . . . . . . . . . . . 64

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Appendices 67

A The Separation Problem 68

B Description of Data Sets 71

C Reduced instances for the Cycle Variant KEP Formulations 77

D Compatibility Evaluation 81

D.1 Blood Typing (ABO Compatibility) . . . . . . . . . . . . . . . . . . . 81

D.2 HLA Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

D.3 Cross-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Acknowledgments

Gracias México, cuyo apoyo he visto reflejado en todas las personas e instituciones

que han contribuido a mi exitoso fin de este programa de posgrado y a la investigación

que he desarrollado en esta tesis.

A mi director el Profesor Roger Z. Ŕıos Mercado, gracias por su tiempo, gúıa

y disponibilidad constante para el desarrollo y culminación de esta investigación.

A mi co-director, el Profesor Jonathan Bard por el interés, tiempo y herramientas

brindadas para fortalecer esta investigación durante mi estancia de investigación en

la Universidad de Texas y a mi Revisora la Profesora Ada Álvarez, para quien me

haŕıan falta palabras que describan las múltiples maneras en que me ha apoyado

a lo largo de estos dos años y poco más, incluso sin darse cuenta. Sus cursos han

contribuido a este trabajo y sus palabras me han servido de motivación.

Agradezco también al conjunto de profesores del posgrado, en especial a la Pro-

fesora Yasmı́n Ŕıos, al profesor Igor Litvinchev, al profesor César Villarreal y al pro-

fesor Arturo Berrones, quienes a través de sus cursos contribuyeron a mi aprendizaje

en áreas que despertaron mi interés. Gracias, a mis compañeros de generación, a mis

compañeras y compañeros de otras generaciones, algunos ya ausentes, con quienes

compart́ı momentos de estudio y de esparcimiento.

Agradezco también a los doctores Ross Anderson, de Google, y Vicky Mak-

Hau, de Deakin University, quienes generosamente han compartido sus instancias de

prueba, sin las cuales los experimentos llevados a cabo en esta tesis no habŕıan sido

posibles.

viii



Acknowledgments ix

A CONACyT, quien me ha otorgado dos becas, una de sostenimiento para el

programa nacional y otra para llevar a cabo una estancia en el exterior, mi más

sincero agradecimiento. Velaré por honrar los recursos que me han otorgado.

De igual manera agradezco a la Universidad Autónoma de Nuevo León y a la

Facultad de Ingenieŕıa Mecánica y Eléctrica por su apoyo económico en la forma

de excención de pago de inscripción y colegiatura. A University of Texas at Austin

por el acceso a sus instalaciones y equipos. A la Universidad Nacional de Colombia,

por proveerme acceso a su base de datos de archivos digitales, desde donde pude

consultar diversos textos cient́ıficos que contribuyeron a esta investigación.

Agradezco el apoyo de mis familiares, especialmente el de mi padre, quien me

ha acompañado en esta traveśıa en la distancia y ha sabido aguardar por verme

nuevamente cada vez que ha sido posible. A Lunita, mi mascota y compañera

durante doce años fallecida mientras he estado lejos, gracias por hacer de los que

fueron mis d́ıas de adolescencia y adultez, d́ıas de inolvidables alegŕıas.

Finalmente, quiero agradecerte ⌧DMT�. Si hay alguien en el mundo que haya

luchado junto a mı́ tantas batallas y permanecido conmigo para volver a intentarlo

has sido tú. Has hecho mis sueños tuyos y procurado que nunca le falte una sonrisa a

mis d́ıas. Para estos, precisamente, has llegado a rango “Leyenda”, aunque no pude

estar atenta por causa de este trabajo, quiero que sepas que te guardo admiración

hasta en los “pequeños” logros.



Abstract

Lizeth Carolina Riascos Alvarez.

Candidato para obtener el grado de Maestro en Ciencias en Ingenieŕıa de Sistemas.

Universidad Autónoma de Nuevo León.

Facultad de Ingenieŕıa Mecánica y Eléctrica.

T́ıtulo de la tesis: Formulations and Algorithms for the Kidney Ex-

change Problem.

Número de páginas: 90.

Important advances in healthcare management by means of Operations Re-

search techniques have been achieved over the past few years. One area in particular

is in helping patients in need of a kidney reduce their usually long waiting times.

One way to do this is through a kidney exchange program. If a patient needing a

kidney brings along a person (a relative or friend) willing to donate one of her/his

kidneys and if they both are clinically compatible then the donation can be done

immediately by mutual agreement. However, if this patient-donor pair (PDP) is not

compatible, an exchange with another PDP could take place. This could happen for

instance when the donor of one pair is compatible with the patient of another pair

and vice-versa. If such a pair is found, then they can agree to have a simultaneous

donation, have their kidney exchange surgeries relatively faster, avoiding the waiting

list. In some other cases, altruist donors, those without requiring a kidney in return,

x





List of Figures

1.1 Two-way cycle: This diagram illustrates a two-way cyclic exchange be-

tween two blood-type-incompatible recipient-donor pairs. . . . . . . . . . 2

1.2 Length-3 chain: This diagram illustrates a three-transplant chain involving

one non-directed donor and three blood-type-incompatible recipient-donor

pairs. The last donor -Donor 3- will continue the chain. . . . . . . . . . . 3

1.3 NEAD: In the first period, a chain of length 3 is found and is divided into

two segments. Donor 2 becomes a short-term bridge donor and Donor 3

becomes a (regular) bridge donor. In period 2, a chain beginning with

Donor 3 is found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 An example of a KEP instance and its possible solutions. (a) Original

compatibility graph; (b) Cycle-and-chain solution; (c) chain-only solution;

(d) cycle-only solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Cycle packing variant: Feasible solution with |P | = 8, w
ij

= 1 and k = 3. . 13

2.2 Sample graph: Finding length-3 paths. . . . . . . . . . . . . . . . . . . . 17

2.3 SCCs in G: Each shaded region is a strongly connected component of G.

Each vertex belongs to exactly one SCC. Vertex h forms a trivial SCC. . . 20

2.4 Removing sequentially a vertex from a strongly connected component. . . 23

xii



List of Figures xiii

3.1 Example of a KEP instance in presence of NDDs. . . . . . . . . . . . . . 30

3.2 Example of cut set constraints for the PC-TSP model. . . . . . . . . . . 34

4.1 Performance of Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Assessment of node selection strategy in the SCC-Based Search Algorithm. 45

4.3 Comparison of number of matches obtained from considering only cycles

and considering both cycles and chains. . . . . . . . . . . . . . . . . . . 59

4.4 Solution composition for the chain-and-cycle variant of the KEP. . . . . . 60



List of Tables

2.1 Full set of length-3 paths for Figure 2.1 . . . . . . . . . . . . . . . . . 24

4.1 Notation of KEP formulations. . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Experimental results for 3-way cyclic exchanges for data set DA1. . . 49

4.3 Experimental results for 3-way cyclic exchanges for data set DM. . . . 49

4.4 Experimental results for 3-way cyclic exchanges for data set DA1 [
DA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Size of formulations and savings on 3-path constraints for data set DM. 52

4.6 Size of formulations and savings on 3-path constraints for set DA1 [
DA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Assessment of eSPLIT and ReSPLIT formulations. . . . . . . . . . . 54

4.8 Comparison of formulations for 3-way cyclic exchanges and unbounded

chains on data set DA. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 Comparison of formulations for 3-way cyclic exchanges and unbounded

chains on set DM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 Comparison of formulations for 3-way cyclic exchanges and unbounded

chains on data set DA1 [ DA2. . . . . . . . . . . . . . . . . . . . . . 57

xiv



List of Tables xv

4.11 Size of formulation AA for DM instances. . . . . . . . . . . . . . . . . 58

4.12 Size of AA formulation for DA1 [ DA2 instances. . . . . . . . . . . . 59

4.13 Comparison of solutions under di↵erent policies for cycles and/or

chains allowed in the KEP. . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1 Full set of original instances. . . . . . . . . . . . . . . . . . . . . . . . 74

B.2 Codification of instances into sets PDPsR . . . . . . . . . . . . . . . 76

C.1 Instances for the cycle variant: Reduction on the input size. . . . . . 80

D.1 Blood type compatibility chart: O is the universal donor and AB is

the universal recipient. . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Chapter 1

Introduction

Typically, a patient receives a kidney transplant from a deceased donor, or directly

from a living donor who is frequently a relative. Unfortunately, deceased donors are

scarce and patient–donor incompatibilities may occur, adding thousands of patients

every year to the waiting lists around the world. In Mexico, 60% of people in

need of transplant are renal disease su↵erers and their waiting time for a deceased

donor is up to almost 3 years [40]. As a small fraction of the demand is satisfied,

some countries have adopted kidney exchange programs to increase the number

of living-donor transplants by bringing together incompatible donors and recipients

and conducting exchanges so that each recipient receives a compatible kidney [3, 29].

This is done in two ways. The first is when a living donor, who is incompatible with

the intended recipient, donates a kidney to another patient as long as the donor’s

recipient receives a compatible kidney from another donor (see Figure 1.1). Such

exchanges are known as two-way, three-way, ..., k-way cyclic exchanges, depending

on the number of incompatible patient-donor pairs (PDPs) involved in the cycle. The

surgeries in cyclic exchanges are conducted simultaneously because, in a cycle, every

patient-donor pair both gives a kidney and receives one, and so the cost of a broken

link would be very high to a pair that first donated a kidney and later did not receive

one in return. This simultaneity requirement increases substantially the operating

rooms and surgical teams: 2k in each case per every k-way cyclic exchange, i.e.

1



Chapter 1. Introduction 2

Figure 1.1: Two-way cycle: This diagram illustrates a two-way cyclic exchange between

two blood-type-incompatible recipient-donor pairs.

3-way cycle involves the simultaneous coordination of 6 operating rooms and surgical

teams. For these reason, cyclic exchanges with more than three patient-donor pairs

are rarely conducted [3]. The second is when a non-directed donor (NDD) (i.e., an

altruist donor who decides to donate without having an intended recipient) donates

a kidney to a patient from an incompatible patient-donor pair. Then, the donor

in this pair is further matched to another incompatible pair and so forth, forming

a chain with a NDD and l recipients (see Figure 1.2). As a chain is initiated by

a NDD, it can be organized so that no patient-donor pair has to donate a kidney

before they have received one, allowing the simultaneity requirement to be relaxed.

A debate around chains is whether they should be performed simultaneously

‘domino-paired donation’ (DPD) or non-simultaneously ‘non-simultaneous extended

altruistic donor’ chains (NEAD) [3, 6, 19]. In the first, the NDD triggers a short

simultaneous chain with the donor in the last pair donating to a candidate on the

waiting list for a deceased donor. In the second, the NDD initiates a long non-

simultaneous extended altruistic donor (NEAD) chain consisting of several short

segments, each carried out simultaneously. The last donor in each segment of a

NEAD chain becomes a bridge donor, i.e., a donor whose intended recipient has



Chapter 1. Introduction 3

Figure 1.2: Length-3 chain: This diagram illustrates a three-transplant chain involving

one non-directed donor and three blood-type-incompatible recipient-donor pairs. The last

donor -Donor 3- will continue the chain.

received a kidney and becomes a NDD for the next segment (see Figure 1.3). When

a bridge donor initiates a new segment within the current period is called a short-

term bridge donor whereas a regular bridge donor may take months to continue the

chain.

Gentry et al. [19] compared DPDs that involve at most two incompatible pairs

and end with a simultaneous donation to a candidate on the deceased donor waiting

list (three transplants) with NEAD chains in which each simultaneous segment has

three or fewer incompatible pairs and ends with a bridge donor (also three trans-

plants). Their simulations suggested that DPDs would provide as many or more

transplants than NEAD chains. Ashlagi et al. [6] tested both the same assumptions

as Gentry et al. [19] and new assumptions considering longer chains of length 4-6.

In the latter, Ashlagi et al. [6] showed (see Figure 5 in [6] ) that in approximately

80% of the instances, NEAD-6 provides more transplants than DPD, and in approx-

imately 60–65% of the instances NEAD-6 produces more transplants than NEAD-5.

Dickerson, Procaccia and Sandholm [16] also conducted simulations that let them to

conclude that although NEAD chains result in more transplants than DPDs, NEAD

chain segments should be constrained at four transplants whereas Anderson et al. [3]

pointed out the benefit of long chains (unbounded) specially when the pool consists



Chapter 1. Introduction 4

of highly sensitized patients (i.e patients who have many anti-bodies and are thus

not likely to accept a donor’s kidney) since the compatibility graph becomes sparse,

making short chains substantially suboptimal.

Figure 1.3: NEAD: In the first period, a chain of length 3 is found and is divided into two

segments. Donor 2 becomes a short-term bridge donor and Donor 3 becomes a (regular)

bridge donor. In period 2, a chain beginning with Donor 3 is found.

Mathematically, the longer the chains, the higher the number of matches. As

the solution space is bigger when considering unconstrained chains, the optimal

solution is at least as good or better than that of a model constraining the length

of chains. However, in practice this may not be true. If broken chains become

common, i.e bridge donors or incompatible pairs in a NEAD chain fail to donate

a kidney, the broken link will make the rest of that chain to fail, a↵ecting a large

number of incompatible pairs in the match. Several kidney exchange matching

services have adopted NEAD chains for arranging kidney exchanges in the United

States, including the National Kidney Registry (NKR) and the United Network for

Organ Sharing (UNOS). The former is the highest-volume kidney exchange program

today. Anderson et al. [3] reported that of its more than 1,000 transplants, more

than 67 percent of them have used NEAD chains and approximately 88 percent of

all its transplants have been achieved through chains and although most chains are

short the longest ones account for more than 11 percent of all transplants (see Figure



Chapter 1. Introduction 5

6 in [3]). The experience of UNOS program di↵ers from that of the NKR. Persistent

match-o↵er refusals and crossmatch failures after identifying matches (with only 8%

of matches resulting in a transplant, see [27]), but prior to conducting transplants,

led it to limit chain segments to 4. Note that this decision was not bridge donors-

related because these failures occur before the transplant procedure takes place, not

during or after it. Even with the restriction on chain length, most UNOS transplants

have come from chains and three-way cycles.

1.1 Problem Statement

Given the list of NDDs and PDPs, along with their compatibility information, it is

then possible to build the compatibility graph, which depicts the potential matches

between donors and patients. PDP nodes represent patient-donor pairs biologically

incompatible, while NDD nodes represent a single bridge or altruist donor, who can

initiate a chain. Then, an edge going from one node to another, implies that the

donor in the first node, either if it belongs to an incompatible pair (PDPs) or to a non-

directed donor (NDDs), is compatible with the patient in the next node. Thus, each

edge is a potential transplant, and has associated a weight determined by a medical

board, to distinguish the priority given to that transplant. Moreover, a maximum

cycle length k is established according to medical capacity in the transplant centers

conducting nephrologies. Chains, on the other hand, may or may not be constrained.

If they are, the maximum length l is also known in advance. The kidney exchange

program in every transplant center is in charge of making decisions regarding the

maximum length of cycles and chains.

All the previous information makes up an instance of the Kidney Exchange

Problem (KEP). The objective is then to allocate donors to patients, organized into

cycles (of length at most k) and chains (of length at most l and triggered by NDDs)

so that each donor gives a kidney once and each patient receives one also once,

while maximizing the sum of the weights of all transplants conducted. When every



Chapter 1. Introduction 6

edge has unit weight, the aim is to perform as many transplants as possible so that

patients can receive a compatible kidney.

Figure 1.4: An example of a KEP instance and its possible solutions. (a) Original compat-

ibility graph; (b) Cycle-and-chain solution; (c) chain-only solution; (d) cycle-only solution.

A KEP instance is illustrated in Figure 1.4. Figure 1.4a shows the initial

compatibility graph with a single NDD (node d) and six PDPs. Figure 1.4b depicts

a solution (bold edges) when considering chains and cycles. Although the cycle and

chain length for this solution is three and two, respectively, there are multiple values

of k and l that can yield this solution. We know k must be at least three and l

might be unbounded or constrained to two. The solution given in Figure Figure 1.4c

involves only a chain of length five, but again there are multiple variants of the KEP

that can produce this solution. These variants may or may not allow cycles and



Chapter 1. Introduction 7

perhaps l is unbounded or constrained to five. In any case, the optimal arrangement

turns out to be a unique chain. Figure 1.4d, on the other hand, depicts a solution

when only cycles of length three maximize the objective function. Similarly, chains

may or may not be allowed in this model and still cycles of length three (thus,

k 2 {3, 4, ...}) produce the best solution.

When we are allowed to find unbounded chains and cycles, the KEP turns

into the maximum weighted perfect matching problem on a bipartite graph, which

can be solved in polynomial time. When only 2-cycle exchanges are allowed, this

case is equivalent to the maximum matching problem, also solvable to optimality in

polynomial time through Edmonds’ maximum cardinality matching algorithm [17].

The general problem with k-way cyclic exchanges corresponds to the KEP and is

known to be NP-hard for k � 3 [1, 9].

1.2 Background

Roth, Sönmez, and Ünver [36] first proposed organizing kidney exchange on a large

scale and first applied Operations Research (OR) methods to the Kidney Exchange

Problem, also known as Kidney Paired Donation Problem (KPDP), including inte-

grating cycles and chains [36, 37, 35].

Abraham, Blum, and Sandholm [1] and Roth, Sönmez, and Ünver [38] intro-

duced the two fundamental Integer Programming (IP) models for kidney exchange:

the cycle formulation and the edge formulation. The former, includes one binary

decision variable for each feasible cycle or chain. The latter includes one decision

variable for each compatible pair. In the cycle formulation, the number of constraints

is polynomial in the input size, but the number of variables is exponential. In the

edge formulation, the number of variables is linear but the number of constraints is

exponential. They reported experimental results with simulated test instances (as

proposed by Saidman et al. [39]) with up to 10,000 incompatible pairs.



Chapter 1. Introduction 8

Constantino et al. [11] introduced the first two compact IP formulations (i.e.

that the number of variables and constraints are polynomial in the input size) for

the kidney exchange considering only cycles: the edge-assignment formulation and

the extended edge formulation. Although their extended edge formulation was em-

pirically e↵ective in finding the optimal solution where the length of cycles is greater

than 3, both formulations have a weaker linear program (LP) relaxation than the

cycle formulation, even when NDDs are not considered. They generated instances

with low, medium and high density, the largest with 1000 incompatible patient-donor

pairs.

Mak-Hau [28] introduced both a compact formulation integrating chains and

cycles EE-MTZ by using Constantino’s extended edge formulation to model cycles

and a variant of the Miller-Tucker-Zemlin model for the traveling salesman problem

to model chains; and an exponential version of the EE-MTZ, that modeled cycles

like Roth, Sönmez, and Ünver [38]. The largest instance size reported was 256 PDPs

and 6 NDDs.

Anderson et al. [4] introduced an exponential formulation in the number of

variables and constraints based on the price-collecting salesman problem (as in the

Traveling Salesman Problem we also must find a cycle visiting each city at most

once, but now we may skip some cities by paying a penalty). The smallest instance

reported had 162 agents (PDPs and NDDs) and the longest 1341 agents.

Dickerson et al. [14] introduced three new integer programming formulations

combining Constantino’s extended edge formulation and position-indexed variables

for subtour elimination. Dickerson used both real instances from The United Net-

work for Organ Sharing (UNOS) and the UK kidney exchange (NLDKSS); and

simulated data. On average, the UNOS instances considered 231 PDPs and 2 NDDs

and the NLDKSS instances considered 201 PDPs and 7 NDDs. Simulated data

was based on all historical UNOS data, reflecting the expected instances size in the

future, with instances up to 700 PDPs and 175 NDDs.



Chapter 1. Introduction 9

To avoid the need to keep the entire model in memory, column generation

(Branch & Price) and constraint generation (Branch & Cut) algorithms have been

implemented in literature. The fastest algorithms to date for the kidney exchange

problem use column generation over the cycle formulation, see Abraham, Blum and

Sandholm [1]; Dickerson Procaccia and Sandholm [15]; Glorie, Van de Klundert

and Wagelmans [20]; Klimentova, Alvelos and Viana [25]; Plaut, Dickerson and

Sandholm [34]; Dickerson et al. [14]. The only approach to date using constraint

generation over a variant of the edge formulation is Anderson et al. [4], which

is e↵ective for solving instances where the cycle-length limit is 3 and chains are

unconstrained in size, but it is outperformed by branch-and-price-based approaches

when chain size is constrained [34]. Alternative objectives to those of finding the

maximal number of exchanges or the maximal weighted sum of all exchanges for the

kidney exchange problem include maximizing the expected number of transplants

(Dickerson, Procaccia, and Sandholm [15]; Pedroso [33]; Alvelos et al. [2]) and

lexicographic optimization of a hierarchy of objectives (Glorie, Van de Klundert,

and Wagelmans [20]; Manlove and O’Malley [30]).

1.3 Motivation

Kidney exchange programs implemented worldwide, based on the successful resolu-

tion of the KEP, have saved thousands of end-stage renal disease su↵erers so far.

Talking about the KEP implies, indeed, talking about a set of problems, each one

adapted to the needs, regulations and experiences of every country and its corre-

sponding kidney exchange program. Such di↵erences make every KEP variant a

unique problem with its own complexity. The KEP evolved from considering only

cyclic exchanges in the last decade to integrating cycles and chains a few years ago,

as a result of the increase in the number of altruists. Variations on the two fun-

damental IP models [1, 38] have laid the foundations of the current state of the

art. Throughout the literature, the edge formulation is known to be impractical for



Chapter 1. Introduction 10

having exponentially many constraints, leading to an immediate need of large scale

approaches (B&C and B&P), even for small to medium size instances. In this re-

search, we show that only a subset of those many constraints keep the model correct

and the performance is much better in almost all instances (based on clinical data

from the National Kidney Registry program (NKR) in the USA) when compared

with other IP formulations. Moreover, we show that the strongly connected compo-

nents on the compatibility graph yield a natural partition of nodes and edges that

allow us to model a subgraph containing only the PDPs that can be involved in

a feasible solution, when either only cyclic exchanges are considered or chains and

cycles are allowed so that l < k. The study of the KEP connectivity structure and

concept applications of flow network theory on its resolution have not been addressed

so far. This research aims at setting up a starting point in this direction.

1.4 Objectives

• Evaluate through computational experiments the impact on the number of

exchanges when using the DPD and NEAD schemes.

• Compare experimentally the performance of current IP formulations encoun-

tered in the literature for several variants of the KEP on data from two refer-

ence papers (based on actual data from the NKR) and generated instances.

• Prove that the current number of constraints in the edge formulation can

be substantially reduced keeping the model correct and design an e�cient

algorithm to this end.

• Propose a natural partition of nodes and edges to model a compatibility graph

G as a set of split subgraphs so that the global solution is the sum over every

subgraph optimal solution.



Chapter 1. Introduction 11

1.5 Organization

To begin with, Chapter 2 presents the IP formulations for the cycle variant of the

KEP. Here, we introduce two new formulations as part of our contribution. In

Chapter 3, we address the chains and cycles KEP version. We show and analyze

most IP formulations currently found in literature. We also apply some results

from Chapter 2 to enhance some of them. An assessment on model performance

is presented in Chapter 4 as well as a description of the algorithms used to solve

the KEP. Additionally, the results are also used to measure the KEP impact on the

number of exchanges. In Chapter 5, we draw conclusions about our research and

state some final thoughts. Finally, Appendixes containing relevant information to

understand the KEP clinical background, details of the experiments conducted and

in-depth results of this research are presented at the end.



Chapter 2

The cycle packing variant of

the Kidney Exchange Problem

In this section we present the Kidney Exchange Problem (KEP) variant where fea-

sible solutions can only take the form of cycles. When NDDs are present in the

pool, besides cyclic exchanges it is also possible to find chains in form of fake cy-

cles by adding dummy edges from each PDP to each NDD. In absence of NDDs,

a cycle packing only corresponds to actual k-way cycles. This version is defined in

Section 2.1. Some existing and new IP formulations are then presented throughout

Section 2.2.

2.1 Problem Statement

Let P be the set of patient-donor pairs (PDPs) and N be the set of non-directed

donors (NDDs). We model the Kidney Exchange Problem on a directed graph G =

(V,E) where the set of vertices V = {1, ..., |V |} is partitioned into P = {1, ..., |P |}
and N = {|P |+ 1, ..., |P |+ |N |}. In absence of NDDs, as is the case with the cycle-

only version, V = P . The set of edges E contains edge (i, j) if and only if the donor

in node i is compatible with patient in pair j so that E = {(i, j) | i 2 V, j 2 P}.
Note that {(i, j) | i 2 V, j 2 N} = ; since NDDs do not have paired patients,

12



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 13

and therefore they do not have incoming edges. The digraph has no loops since we

assume every PDP is incompatible. Each arc (i, j) 2 E has a weight w
ij

2 R+ (set of

non-negative real numbers), representing the priority given by the transplant center

to that transplant. The weights are used to capture various prioritization schemes

and other value judgments. There is a maximum cycle length limit given by k due to

logistical issues as explained in Chapter 1. The largest chain length is constrained to

l; however, l may be long or even unbounded. The objective is to find a maximum

weight node-disjoint chain and cycle collection, bounded by l and k, respectively.

When each arc has unit weight, the objective function is to maximize the number of

transplants, otherwise, the objective is to maximize the weighted sum of the number

of transplants.

When the KEP considers only cycles, it can be modeled as the problem known

in graph theory as the Cycle Packing Problem in a directed graph [9]. Figure 2.1

depicts a compatibility graph and a feasible solution when cycles of length at most

k = 3 are allowed and there are not NDDs in the pool. The feasible assignment is

shown by the bold edges, while the dashed edges represent original compatible edges

that are not part of the feasible solution.

Figure 2.1: Cycle packing variant: Feasible solution with |P | = 8, w
ij

= 1 and k = 3.



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 14

2.2 Integer Programming Formulations

In this section, we present three existing integer programming formulations for the

cycle packing variant of the KEP . The first two formulations are the well-known Cy-

cle Formulation and Edge Formulation proposed independently by Abraham, Blum,

and Sandholm [1] and Roth, Sönmez, and Ünver [38]. The former uses an expo-

nential number of cycles and the latter an exponential number of constraints; later

on, we will see how to reduce the size of constraints for this model. The last for-

mulation is the Extended Edge Formulation, this is along with the Edge-assignment

Formulation, the two first known compact formulations for the KEP, proposed by

Constantino et al. [11]. As the Extended Edge Formulation dominates the Edge-

assignment Formulation we consider only the Extended Edge Formulation in our

analysis. Note that these formulations are easily scalable to introduce chains of

length l < k by adding a dummy edge with zero weight from each vertex to every

NDD, treating actual chains as cycles. Moreover, as part of our contribution we

introduce the Partitioned Edge Formulation and the Partitioned and Reduced Edge

Formulation, two more tractable versions of the Edge Formulation.

2.2.1 Cycle Formulation

Let ⇣

k

be the set of all cycles in G with length at most k and V (C) be the set of

vertices which belong to cycle C. Define a variable z

c

for each cycle C 2 ⇣

k

.

z

C

=

8
<

:
1 if cycle c is selected for the exchange

0 otherwise

Define w
C

=
P

(i,j)2C w

ij

. The Cycle Formulation (C) can be written as follows:



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 15

Maximize
X

C2⇣k

w

C

z

C

(2.1)

subject to
X

C:i2V (C)

z

C

 1 i 2 V (2.2)

z

C

2 {0, 1} C 2 ⇣(k) (2.3)

The objective function (2.1) maximizes the weighted number of transplants.

In the case of unitary weights, w
C

equals the number of edges in C, i.e., the number

of transplants associated with cycle C. Constraints (2.2) ensure that every vertex is

in at most one of the selected cycles since each donor may donate, and each patient

may receive only one kidney.

2.2.2 Edge Formulation

Let ⇧ be the set of all length-k paths in a graph, formed by k + 1 nodes or k edges.

In the Edge Formulation (E), a variable x

ij

is associated with each edge (i, j) 2 E

in the graph (V,E), defined as follows:

x

ij

=

8
<

:
1 if donor in pair i donates a kidney to a patient in pair j

0 otherwise

Then, the model can be expressed as follows:

Maximize
X

(i,j)2E

w

ij

x

ij

(2.4)

subject to
X

j:(i,j)2E

x

ij

�
X

j:(j,i)2E

x

ji

= 0 i 2 V (2.5)

X

j:(i,j)2E

x

ij

 1 i 2 V (2.6)



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 16

X

1pk

x

ipip+1

 k � 1 (i
1

, ..., i

k

, i

k+1

) 2 ⇧ (2.7)

x

ij

2 {0, 1} (i, j) 2 E (2.8)

The objective function (2.4) maximizes the weighted sum of matches – in the

case of unit weights, it maximizes the total number of transplants. Constraints

(2.5) guarantee that donor i donates a kidney if and only if patient i receives one

back. Constraints (2.6) guarantee that a donor can only donate a single kidney

and constraints (2.7) enforce the cycle-length to exclude cycles of cardinality longer

than k. Any feasible cycle will always contain a path with at most k � 1 edges (not

repeating edges). So, if we preclude all length-k paths from being part of a cycle,

cycles of length greater than k are ruled out from feasible solutions. It is believed so

far that all paths of length k are required to be considered explicitly in the model

[1, 11, 38], but in Section 2.2.4 and Section 2.2.5 we will prove the model remains

correct considering only a subset of such constraints, which can grow exponentially

with k.

Let us look in detail at constraints (2.7). Consider Figure 2.2 and suppose

k = 3. Observe that path (1 ! 2 ! 3 ! 5) cancels the infeasible cycle (1,2,3,5,1)

since the sum of its edges have to be less or equal to 2, forming only cycles of size

2 and 3. Once we find all length-3 paths, we observe that path (2 ! 3 ! 5 ! 1)

along with two more paths also delete cycle (1,2,3,5,1). A similar situation arises

with the other two infeasible cycles that can be covered for several paths. Then, one

idea might be to add only one path per every infeasible cycle, but that implies doing

an exhaustive search among all the exponentially many cycles that a graph may

contain. Therefore, it is less computationally expensive to find all length-k paths,

although the number of such paths can also be exponential. This is why the Edge

Formulation has shown to be impractical even in small instances [11].



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 17

Figure 2.2: Sample graph: Finding length-3 paths.

2.2.3 Extended Edge Formulation

Let G = (V,E) be cloned into |V | copies, and let L = {1, ..., |V |}. Note that L is an

upper bound on the number of cycles in a solution. In each copy l at most k edges

produce a cycle and each node i 2 V can belong to at most one cycle by adding

cardinality constraints for every graph copy. The model uses the following variables:

x

l

ij

=

8
<

:
1 if arc (i, j) is used in copy l of the graph

0 otherwise

The Extended Edge Formulation (EE) is given as follows:

Maximize
X

l2L

X

(i,j)2E

w

ij

x

l

ij

(2.9)

subject to
X

j2P :(i,j)2E

x

l

ij

=
X

j2P :(j,i)2E

x

l

ji

i 2 V, l 2 L (2.10)

X

l2L

X

j:(i,j)2E

x

l

ij

 1 i 2 V (2.11)

X

(i,j)2E

x

l

ij

 k l 2 L (2.12)



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 18

X

j:(i,j)2E

x

l

ij


X

j:(i,j)2E

x

l

lj

i > l, l 2 L (2.13)

X

j:(i,j)2E

x

l

ij

= 0 i < l, l 2 L (2.14)

x

l

ij

2 {0, 1} 2 E, l 2 L (2.15)

The objective function (2.9) also maximizes the weighted number of trans-

plants. Constraints (2.10) ensure the flow balance of a vertex, i.e., a paired donor

will donate a kidney to another patient in the pool if and only if her intended recip-

ient has received one in return. Constraints (2.11) guarantee that no more than one

kidney transplant is involved for each PDP. Constraints (2.12) guarantee that the

cardinality of each cycle and copy is not more than k. The Edge Extended Formu-

lation has symmetry. Constraints (2.13) and (2.14) avoid multiplicity of solutions

in the IP model induced by permutation of cycle indices. Symmetry elimination is

achieved by restricting the index of a cycle to be exactly the smallest vertex, i.e.,

the smallest index among all vertices involved in the cycle.

2.2.4 Partitioned Edge Formulation

In this section, we show that when a graph G is not itself a strongly connected

component (SCC), the partition of nodes and edges induced by the SCCs of G forms

a collection of subgraphs that split the original KEP problem into several vertex-

disjoint and arc-disjoint problems. A direct application of such a result is that now

we can find the global optimum by optimizing each subgraph separately, without

losing optimality. The Extended Edge Formulation is benefited from this, not only

for handling smaller instances split into subgraphs but for having a fewer number of

constraints (2.7). This is because such a decomposition discloses unnecessary paths,

which is the base for us to introduce the Partitioned Edge Formulation. Therefore,

the full set of all length-k paths can be reduced as long as the graph contains more

than one SCC. See Section 2.2.5 for a reduction method that works in any case.



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 19

2.2.4.1 Connectivity and its relation with the KEP

Now, we recall some concepts and properties [7, 12, 41] to prove that constraints

(2.7) can be reduced guaranteeing optimality. In graph theory, a strongly connected

component can be defined as follows:

Definition 2.1 A strongly connected component of a directed graph G is a maximal

subset of vertices S ✓ V such that for every pair of vertices u and v in S, we have

both u  v and v  u; that is, there is a directed path from u to v and a directed

path from v to u.

One property of strong connectivity is that it partitions the vertices in such a

way that each vertex belongs to exactly one SCC, as it is stated by the following

lemma:

Lemma 2.2 Let S and S

0
be distinct strongly connected components in a directed

graph G = (V,E). Let v 2 S, let v
0 2 S

0
. Suppose that u 2 S and u 2 S

0
. Then

S = S

0
.

Proof: If u 2 S and u 2 S

0
, then G contains paths v ! u ! v

0
and v

0 ! u ! v,

thereby contradicting the assumption that S and S

0
are distinct strongly connected

components.

At this point, we have proved that the compatibility graph for the KEP can be

divided into vertex-disjoint and arc-disjoint subgraphs (see Figure 2.3). However, we

still have to prove that when taking into account only the edges inside every SCC,

we are not missing feasible space. Observe that if there exists edges going out from

one SCC S to another distinct S
0
, they will never be part of a cycle since G does not

contain a path from S

0
to S that closes a potential cycle. This means, in fact, that

directed cycles are contained only in the SCCs of G. Therefore, adding constraints



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 20

Figure 2.3: SCCs in G: Each shaded region is a strongly connected component of G.

Each vertex belongs to exactly one SCC. Vertex h forms a trivial SCC.

of type (2.7) containing such edges turns out to be unnecessary and confirms our

decomposition correctness, as proved below.

Lemma 2.3 Let S and S

0
be distinct strongly connected components in a directed

graph G = (V,E), let u, v 2 S. Also, let u
0
, v

0 2 S

0
, and suppose that G contains a

path u! v

0
. Then G cannot contain a path u

0 ! v.

Proof: If G contains a path u

0 ! v , then it contains paths u ! v

0 ! u

0
and

u

0 ! v ! u. Thus, u and u

0
are reachable from each other, therefore contradicting

the assumption that they belong to distinct strongly connected components.

Consider again Figure 2.3, savings on constraints (2.7) come from disregard-

ing edges (c,b), (f,e), (f,b), (g,c), (h,g) and (h,d). Ruling out length-k paths that

use these edges does not remove feasible cycles at all, and therefore optimality is

guaranteed.

2.2.4.2 Integer Programming Formulation

Let Q be the set of subgraphs induced by the SCCs of G = (V,E) and q be the

number of non-trivial SCCs, so that Q = {Q
1

, ..., Q

h

, ...Qq}. Also, let G
h

= (V
h

, E

h

)

be the h-th subgraph in Q and ⇤
h

be the full set of length-k paths in the h-th SCC.



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 21

We keep the same variable x

ij

, now associated with each arc (i, j) 2 E

h

, defined

exactly as in Section 2.2.2.

Then, the Partitioned Edge Formulation (PE) can be expressed as follows:

Maximize
X

(i,j)2Eh

w

ij

x

ij

(2.16)

subject to
X

j:(i,j)2Eh

x

ij

�
X

j:(j,i)2Eh

x

ji

= 0 i 2 V

h

(2.17)

X

j:(i,j)2Eh

x

ij

 1 i 2 V

h

(2.18)

X

1pk

x

ipip+1

 k � 1 (i
1

, ..., i

k

, i

k+1

) 2 ⇤
h

(2.19)

x

ij

2 {0, 1} (i, j) 2 E

h

(2.20)

Constraints (2.19) are as before, all length-k paths (k+1 vertices) inside every

subgraph G

h

= (V
h

, E

h

).

2.2.5 Partitioned and Reduced Edge Formulation

The Partitioned Edge Formulation significantly reduces the number of constraints

(2.7) (see Chapter 4), but it can not be applied when G is itself a SCC and still

every infeasible cycle is covered by several paths. For these reasons, we went further

with our analysis.

From Definition 2.1, we can draw that two vertices are strongly connected if

and only if there exists a general directed cycle that contains them both since by

definition all vertices are reachable from each other. A general directed cycle can

be either a circuit or a simple cycle. While the latter only repeats the first and last

vertex in the cycle, the former allows repeating several vertices. In other words,

any path within a SCC is part of a general directed cycle. This fact is very useful



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 22

because once we choose one vertex u as a potential starting and ending point of

a cycle and compute its length-k paths we are sure those paths actually lead to a

certain type of cycle containing node u. Notice that the next time we choose another

vertex to check for its paths, we can remove vertex u from the SCC as we only want

to find paths for infeasible cycles we have not covered yet. When removing a node

from a SCC, remaining vertices may form a new smaller SCC while some others are

no longer reachable. Even though graph in Figure 2.1 is itself a SCC, the previous

result can be applied to it as shown in Figure 2.4. Consider k = 3. In quadrant

I, vertex 4 is chosen, it gives rise to 7 paths (encoding by markers). In quadrant

II, after removing vertex 4, a new SCC is computed (shaded areas). In quadrant

III, vertex 7 is chosen, generating 1 path. In quadrant IV, after removing vertex 7,

SCCs are recomputed, but this time they are made up of a single node. Then, the

process ends with 8 length-3 paths.

The full set of length-3 paths in Figure 2.1 has 50 paths, which are illustrated in

Table 2.1. Thus, with our method the number of paths and, consequently the number

of constraints (2.7) decreases by 86% (see Chapter 4 for more results). However,

within the 8 paths we found only 7 are actually needed. As we said before, such

paths are part of either a circuit or a simple cycle. The path 4 ! 3 ! 7 ! 1

becomes a circuit. Note that, the only way this path leads to a cycle is repeating

(besides node 4) node 3. Constraints (2.6) eliminate circuits as they are infeasible

solutions, so adding the above-mentioned path is unnecessary because circuits are

not allowed. One idea to get rid of circuits when we are looking for simple cycles is

to perform a depth-first search to check whether or not an intended path becomes

a simple cycle. In Algorithm 2 we present the Double-Search Algorithm, which is

such as the SCC-Based Search Algorithm, except because now we have to determine

if a path leads or not to a simple cycle before storing it. In Chapter 4, we discuss

the trade-o↵ between time and path reduction.

In order to choose a specific node u at every step, we tested three priority rules:

(a) the maximal in-degree, (b) the maximal out-degree, and (c) the maximal degree



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 23

Figure 2.4: Removing sequentially a vertex from a strongly connected component.

of a vertex. Generally, the maximal in-degree yielded the highest reduction of paths.

This can be explained in part, because the number of general directed cycles u can

be part of, highly depends on the number of its predecessor vertices. As u can reach

all of them and viceversa, we know that at least one general directed cycle can be

formed per every predecessor of u. Thus, the larger the number of predecessors, the

higher the likelihood of covering more cycles and nodes so that once we remove u

from the graph, fewer nodes keep strongly connected and then fewer paths remain

to be found.

Algorithm 1 formally defines the process just described. Let StrCC(G) be

a procedure that finds the non-trivial SCCs of a directed graph G. To do so, we

implemented Kosaraju’s Algorithm [42], also known as the Kosaraju–Sharir algo-



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 24

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

1!2!3!4 2!3!4!5 3!4!5!6 4!3!7!1 5!4!3!7 6!4!3!7 7!1!2!3 8!4!3!7

1!2!3!7 2!3!4!7 3!4!5!8 4!3!7!5 5!4!7!1 6!4!5!8 7!5!4!3 8!4!5!6

2!3!7!1 3!4!7!1 4!3!7!8 5!4!7!8 6!4!7!1 7!5!6!4 8!4!7!1

2!3!7!5 3!4!7!5 4!5!8!7 5!6!4!3 6!4!7!5 7!5!8!4 8!4!7!5

2!3!7!8 3!4!7!8 4!7!1!2 5!6!4!7 6!4!7!8 7!8!4!3 8!7!1!2

3!7!1!2 4!7!5!6 5!8!4!3 7!8!4!5 8!7!5!4

3!7!5!4 4!7!5!8 5!8!4!7 8!7!5!6

3!7!5!6 5!8!7!1

3!7!5!8

3!7!8!4

Table 2.1: Full set of length-3 paths for Figure 2.1

rithm which runs in linear time. Other e�cient algorithms for finding SCCs are

Tarjan’s strongly connected components algorithm [43] and the path-based strong

component algorithm [18]. Let Pool be the set of connected components in which a

strongest connected component is decomposed. Let T and T

0
be auxiliary graphs.

Let Au be the set of edges that are incident to u. Additionally, let choose(T, g) be

a procedure for finding a node in T to be removed depending on the node selection

strategy given by ‘g’, where g = {indegree, outdegree, total degree}, i.e., choose(T, o)
returns the node in T with highest outdegree. Ties are broken-up arbitrarily. Let

DepthF irstSearch(k, u, T ) be the well-known algorithm for traversing graph data

structures, that, starting at node u, traverses T in the search of length-k paths. Thus,

it returns the set of length-k paths starting at node u. Also, let Pool max(Pool) be

a function that returns the subgraph in Pool with the largest cardinality node set.

Finally, let ⌦
h

be the set of length-k paths found by Algorithm 1 in each Q

h

and

⌦ =
P

1hq

⌦
h

.



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 25

Algorithm 1 SCC-Based Search for length-k paths in the KEP
Require: G = (V,E), k 2 N � 2

1: Q = {Q
1

, . . . , Q

q

} StrCC(G)

2: ⌦
h

 ;
3: ⌦ ;
4: for h = 1 to q do

5: Pool {Q
h

}
6: T = (V̄ , Ē) Pool max(Pool)

7: while ( ¯|V | � k + 1) do

8: Pool Pool \ T
9: u choose(T, g)

10: ⌦
h

 ⌦
h

[DepthF irstSearch(k, u, T )

11: V̄  V \ {u}
12: Ē  E \ Au

13: T

0  StrCC(T )

14: Pool Pool [ T

0

15: T = (V̄ , Ē) Pool max(Pool)

16: end while

17: ⌦ ⌦ [ ⌦
h

18: end for

19: return ⌦

In the following algorithm, let LeadtoCycle(!, T ) be a Boolean function that

determines if a length-k path ! in graph T leads to a cycle.



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 26

Algorithm 2 Double-Check Search for length-k paths in the KEP
Require: G = (V,E), k 2 N � 2

1: Q = {Q
1

, . . . , Q

q

} StrCC(G)

2: ⌦
h

 ;
3: ⌦ ;
4: for h = 1 to q do

5: Pool {Q
h

}
6: T = (V̄ , Ē) Pool max(Pool)

7: while ( ¯|V | � k + 1) do

8: Pool Pool \ T
9: u choose(T, g)

10: !  DepthfirstSearch(k, u, T )

11: while (! 6= ;) do
12: if (LeadtoCycle(!, T ) = true) then

13: ⌦
h

 ⌦
h

[ {!}
14: end if

15: !  DepthfirstSearch(k, u, T )

16: end while

17: V̄  V \ {u}
18: Ē  E \ Au

19: T

0  StrCC(T )

20: Pool Pool [ T

0

21: T = (V̄ , Ē) Pool max(Pool)

22: end while

23: ⌦ ⌦ [ ⌦
h

24: end for

25: return ⌦



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 27

2.2.5.1 Algorithm 1 Time Complexity

We now analyze the time complexity of Algorithm 1. Notice that our algorithm

performs three core tasks: find the SCCs, choose a new node, and form lenght-k

paths. These tasks are repeated as long as non-trivial SCCs remain in the graph

or until the number of remaining nodes in a SCC is � k + 1 (otherwise the graph

cannot contain infeasible cycles), whichever condition is reached first. Then, the

worst case would be when the digraph is complete, (i.e. every pair of distinct vertices

is connected by a pair of unique edges, one in each direction), because every time

we remove a single node, all the remaining ones form a new SCC.

For finding the SCCs, we know that Kosaraju’s Algorithm time complexity is

O(|V | + |E|). For selecting a node, basically we arrange vertices in non-decreasing

order of in-degree. To this end, we used the sorting function sort from the algorithm

library in C++, that runs in O(|V | log
2

(|V |)). For finding paths, the depth-first

search complexity time depends on k. For instance, if k = 2 and we have already

chosen a starting node, the first time we have (|V |�1)(|V |�2) ways to form paths of

size 2 (measured by the number of edges), if k = 3 we have (|V |�1)(|V |�2)(|V |�3)

ways to form paths of size 3 and so on. The next time, we will have |V |� 1 vertices

and |E|� 2(|V |� 1) arcs. Notice that at any step Kosaraju’s Algorithm complexity

is O((|V |� c) + (|E|� 2(|V |� c))) where c is the number of times we have removed

a node. Such complexity actually decreases. For simplicity let’s consider Kosaraju’s

Algorithm complexity as O(|V |+|E|) at any moment. Similarly, the sorting function

time complexity is O((|V |�c) log
2

(|V |�c)) at a specific round during the algorithm.

As the total number of vertices decrease, so does the expression (|V |�c) log
2

(|V |�c),
but again let us consider c = 0. As we saw above, finding paths of size k needs to

perform approximately |V |k operations every time. The previous three main tasks

are repeated (|V | � k) times for |V | � k. Therefore, the global time complexity of

our algorithm is:



Chapter 2. The cycle packing variant of the Kidney Exchange Problem 28

Finding SCCs : O(|V |+ |E|)
Choosing a node : O(|V | log

2

(|V |))
Finding k-paths : O(|V |k)

9
>>>>=

>>>>;

(|V |� k) ' O(|V |k+1)

2.2.5.2 Integer Programming Formulation

As stated before, let ⌦
h

be the set of length-k paths in the h-th SCC encountered

by the SCC-based search Algorithm (Algorithm 1), and let !

h

2 ⌦
h

. Then, the

Partitioned and Reduced Edge Formulation (PRE) can be expressed as follows:

Maximize
X

(i,j)2Eh

w

ij

x

ij

(2.21)

subject to (2.17)� (2.18) (2.22)
X

(i,j)2!

x

ij

 k � 1 ! 2 ⌦
h

(2.23)

x

ij

2 {0, 1} (i, j) 2 E

h

(2.24)

Notice that we can set a formulation either for every SCC (G
h

= (V
h

, E

h

)) of

the original graph by using ⌦
h

or a unique formulation for the full graph G = (V,E)

by using ⌦. In the Partitioned Formulation, however, we can only take advantage

of splitting the full graph if possible and then establishing a formulation for each

SCC. We might keep a single IP formulation either because the graph G is itself a

strongly connected component or because we desire to keep the full graph. In both

cases, V
h

= V and E

h

= E. In Chapter 4, however, we do split the graph when

considering the cycle packing version as our hypothesis is that coping with smaller

instances might make the original problem more tractable.



Chapter 3

Chains and Cycles variant of

the Kidney Exchange Problem

In this chapter we present a generalization of the KEP in which the solution involves

cycles and chains, although an optimal solution may be made up by either cycles or

chains. We need to find such paths in the same graph we find cycles. This implies

that, besides including cardinality-infeasible-cycle elimination constraints, we also

need to prevent chains from forming cycles. Throughout the chapter, we discuss

how some existing IP formulations deal with these new requirements. Most of them

only consider unbounded chains that can be performed in practice as NEAD chains.

Finally, we will see that results obtained in Chapter 2 can be applied to one of such

formulations.

3.1 Problem statement

Consider the same definition given in Section 2.1, noting that V = P [ N , where

N is the set of altruists or bridge donors and G = (V,E) unless stated otherwise.

Likewise, the objective is to find arc-and-vertex disjoint cycles and chains maximizing

the weighted number of transplants or, the total number of exchanges. Figure 3.1

depicts an example of a KEP instance in presence of NDDs and its optimal solution

29



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 30

when considering di↵erent values of w

ij

. To the left, the compatibility graph is

shown. To the right, the optimal solution is represented by bold arcs, with an

optimal value of 8.0.

Figure 3.1: Example of a KEP instance in presence of NDDs.

3.2 Integer Programming Formulations

In this section we present five IP formulations. The first two were proposed by

Anderson et al. [4], the next two by Mak-Hau [28] and the last one is a contribution

of this thesis.

The first model is an arc-based formulation, in which a binary variable repre-

sents chains as well as cycles. It also contains exponentially many constraints since

a family type of the Dantzig, Fulkerson, and Johnson formulation [26] constraints of

the TSP are introduced to cancel every infeasible cycle. Unlike the Edge Formula-

tion, it is impractical to exhaustively enumerate and explicitly add those constraints

to the model even for small instances, although they can be added as needed. The

most e�cient way known so far in Integer Programming to deal with this type of

constraints is to relax those constraints and then add only those that are needed by



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 31

solving an associated separation sub-problem. In Appendix A, we describe a solution

scheme for this formulation.

The second model is inspired by the Prize Collecting Traveling Salesman Prob-

lem (PC-TSP) [8, 21]. The substantial di↵erence with the TSP is that now, we are

allowed to form a cycle excluding some cities by paying a penalty. The PC-TSP is

similar to the KEP in that we want NDDs to form a long path, which the PC-TSP

closes o↵ as a cycle, without being required to visit every node. This analogy is

reflected on the way chains are held back from inducing cycles; a cut-set type of

Subtour Elimination Constraints (SEC) similar to the one used for the Asymmet-

ric Traveling Salesman Problem. The model borrows cycle variables from the Cycle

Formulation. Therefore, this formulation contains exponentially many constraints as

well as exponentially many variables. A similar solution algorithm to the arc-based

formulation can be used for this formulation. See Appendix A for more details on

this.

The third model is an extension of the Extended Edge Formulation. The orig-

inal variable used in that model, now is split into two to allow chains. Cycles are

treated as usual. For chains, however, constraints from the Miller–Tucker–Zemlin

(MTZ) Formulation [13, 26, 31] of the TSP are used as SECs. To reduce the num-

ber of them, continuous variables are added to the model, and serve to indicate a

position index in which a node, if part of a chain, is visited; keeping the formulation

polynomial in the input size of variables and chains.

While the previous formulation uses cycle variables as in the Cycle Formulation,

the fourth model, uses binary variables representing edges that belong to a cycle

as in the Edge Formulation. In fact, strong cardinality-infeasible-cycle elimination

constraints (2.7) are added to the model. Again, MTZ-type constraints are used

as SECs. As the number of paths in (2.7) can grow exponentially with k, this

formulation is exponential in the number of constraints.

The last formulation is based on the previous one. Here, we include the results



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 32

obtained in Chapter 2 in order to reduce the number of exponential constraints of

the Edge Formulation.

3.2.1 Anderson’s Arc-based Formulation

Keeping a similar notation to that used in Section 2.2.1, let ⇣ be the set of all cycles

in G, let also ⇣

k

be the set of all cycles in G with length at most k. Additionally, f e

i

and f

o

i

stand for the flow entering to i and the flow going out from i, respectively.

This formulation uses a variable x

ij

associated with each edge (i, j) 2 E, defined as

follows:

x

ij

=

8
<

:
1 if donor in pair i donates a kidney to a patient in pair j

0 otherwise

Notice that this variable is used indistinctly for chains as well for cycles. Then,

the Anderson’s Arc-based Formulation (AA) can be expressed as follows:

Maximize
X

(i,j)2E

x

ij

w

ij

(3.1)

subject to
X

(j,i)2E

x

ji

= f

e

i

i 2 V (3.2)

X

(i,j)2E

x

ij

= f

o

i

i 2 V (3.3)

f

o

i

 f

e

i

 1 i 2 P (3.4)

f

o

i

 1 i 2 N (3.5)
X

(i,j)2C

x

ij

 |C|� 1 C 2 ⇣\⇣
k

(3.6)

x

ij

2 {0, 1} (i, j) 2 E (3.7)



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 33

Constraints (3.4) say that patient–donor pair nodes give a kidney as long as

they have received at most one. Constraints (3.5) say that NDD nodes can donate

only one kidney. Constraints (3.6) rule out cycles of length greater than k. As chains

are considered unbounded, there are no additional constraints on this.

3.2.2 PC-TSP-based Formulation

Let S be a set of nodes, S ⇢ V , and let S̄ = V \ S. For each i 2 V , let ⇣
k

(i) be the

set of cycles from ⇣

k

containing an edge incident to i. For this formulation Anderson

et al. [4] split chain and cycle variables. Now, z
C

is a variable for every feasible cycle

C and x

ij

is a variable for edges in unbounded chains, as defined below:

z

C

=

8
<

:
1 if cycle C is selected for the exchange

0 otherwise

x

ij

=

8
<

:
1 if edge (i, j) is used in a chain

0 otherwise

Thus, the PC-TSP-based Formulation (PC-TSP) can be expressed as follows:

Maximize
X

(i,j)2E

x

ij

w

ij

+
X

C2Ck

z

C

w

C

(3.8)

subject to
X

(j,i)2E

x

ji

= f

e

i

i 2 V (3.9)

X

(i,j)2E

x

ij

= f

o

i

i 2 V (3.10)

f

o

v

+
X

C2⇣k(i)

z

C

 f

e

i

+
X

C2⇣k(i)

z

C

 1 i 2 P (3.11)

f

o

i

 1 i 2 N (3.12)



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 34

X

(j,m):j2 ¯

S,m2S

x

jm

� f

e

i

S ✓ P, i 2 S (3.13)

x

ij

2 {0, 1} (i, j) 2 E (3.14)

z

C

2 {0, 1} C 2 ⇣

k

(3.15)

Constraints (3.11) assure that every patient-donor pair, if involved in the so-

lution, must belong to either a cycle or a chain and the flow out of any node i is at

most the flow coming into this node. Constraints (3.13) say that if a node i is to be

involved in any chain, there must exist a flow coming from a NDD. See Figure 3.2

for a clarifying example. The graph contains a single NDD denoted by the square

node. Notice that if node i is to be involved in any chain, then f

e

i

= 1. As a result,

we must use at least one of the edges a or b that go across the cut separating S from

the remaining nodes and n.

Figure 3.2: Example of cut set constraints for the PC-TSP model.

3.2.3 The Polynomial-sized SPLIT Formulation

This is a Mixed Linear Integer Programming model, which is an extension of the

Extended Edge Formulation to allow chains. To this end, an auxiliary sink node

⌧ is introduced that serves for implementing Subtour Elimination Constraints, in

particular MTZ-constraints, broadly used in the context of the Asymmetric Traveling



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 35

Salesman Problem. This dummy node introduces some changes in our notation.

Let E

0
= {(i, j) | i 2 V, j 2 P

⌧} where P

⌧ = P [ {⌧} and let us define G

0
as

G

0
= (V [ {⌧}, E 0

). This model has three types of variables: one set of continuous

variables t

i

to set a time stamp for vertex i should it be part of a chain, and two

sets of decision variables as defined below:

z

l

ij

=

8
<

:
1 if arc (i, j) forms part of the l-th cycle

0 otherwise

x

ij

=

8
<

:
1 if arc (i, j) forms part of a chain

0 otherwise

Thus, the Polynomial-sized SPLIT Formulation (pSPLIT) is defined below:

Maximize
X

(i,j)2E0

x

ij

w

ij

+
X

l2L

X

(i,j)2E

z

l

ij

w

ij

(3.16)

subject to
X

j2P :(i,j)2E

z

l

ij

=
X

j2P :(j,i)2E

z

l

ji

i 2 P, l 2 L (3.17)

X

j2P ⌧
:(i,j)2E0

x

ij

=
X

j2V :(j,i)2E0

x

ji

i 2 P (3.18)

X

j2P ⌧
:(i,j)2E0

x

ij

 1 i 2 N (3.19)

X

j2P ⌧
:(i,j)2E0

x

ij

+
X

l2L

X

j2P :(i,j)2E

z

l

ij

 1 i 2 P (3.20)

(2.12)� (2.14) replacing x

l

ij

by z

l

ij

(3.21)

t

i

� t

j

+ |P |x
ji

+ (|P |+ 2)x
ij

 |P |+ 1 i 2 V, j 2 P

⌧ (3.22)

t

i

= 0 i 2 N (3.23)

t

i

� 0 i 2 P

⌧ (3.24)

t

⌧

 |P |+ 1 i 2 P

⌧ (3.25)

x

ij

2 {0, 1} (i, j) 2 E

0
(3.26)



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 36

z

l

ij

2 {0, 1} (i, j) 2 E, l 2 L (3.27)

Constraints (3.17) and (3.18) are flow-balance constraints. The flow in must be

equal to the flow out for edges that belong either to a cycle or a chain and flow out

is at most one. Recall that ⌧ is a sink node that can be reached for every node, thus

guaranteeing that these constraints can be also satisfied by chain variables. Again,

constraints (3.19) say that a NDD can donate a single kidney. Constraints (3.20)

assure patient-donor pairs to be part of either a chain or a cycle. Constraints (3.21)

are borrowed from the Extended Edge Formulation to respect cycle feasibility and

avoid symmetry issues. Constraints (3.22) prevent chain-edge variables to induce

cycles. Constraints from (3.23) to (3.25) are bound constraints.

In order to see how constraints (3.22) operate, suppose there was a subtour

(i
1

, i

2

, ..., i

r

, i

1

) with 2  r  |P |. Writing constraints (3.22) for every edge of that

subtour gives

t

i

1

� t

i

2

+ 2(|P |+ 1)  |P |+ 1

t

i

2

� t

i

3

+ 2(|P |+ 1)  |P |+ 1
...

t

ir � t

i

1

+ 2(|P |+ 1)  |P |+ 1

Adding up these constraints yield 2r(|P |+ 1)  r(|P |+ 1), a contradiction.

3.2.4 The Exponential-sized SPLIT Formulation

Unlike the previous model, this one simply uses a binary variable z
ij

for each (i, j) 2
E to indicate (i, j) is being used in a cycle. Additionally, MTZ-constraints are

replaced by a stronger version of cardinality-infeasible-cycle elimination constraints:

length-k paths constraints as in equation (2.7). In Chapter 4, we present results

for this model, also considering paths from constraints (2.23). Let us define the



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 37

Exponential-sized SPLIT Formulation (eSPLIT) as follows:

Maximize
X

(i,j)2E0

x

ij

w

ij

+
X

(i,j)2E

z

ij

w

ij

(3.28)

subject to (3.18)� (3.19), (3.22)� (3.25) (3.29)

(2.7) replacing x

ij

by z

ij

(3.30)
X

j2P ⌧
:(ij)2E0

x

ij

+
X

j2P :(i,j)2E

z

ij

 1 i 2 P (3.31)

X

j2P :(i,j)2E

z

ij

=
X

j2P :(j,i)2E

z

ji

i 2 P (3.32)

x

ij

2 {0, 1} (i, j) 2 E (3.33)

z

ij

2 {0, 1} (i, j) 2 E (3.34)

Constraints (3.29) and (3.30) are borrowed from the Polynomial-sized SPLIT

Formulation and the Edge Formulation, respectively. Every node belongs to either

a cycle or a chain and the flow out of any node is at most one, which is met by

constraints (3.31). Constraints (3.32) say that for each patient-donor pair, the flow

in and the flow out are equal.

3.2.5 The Reduced Exponential-sized SPLIT

Formulation

A natural extension to the Exponential-sized SPLIT Formulation is to replace con-

straints (3.30) by constraints (2.23). Therefore, instead of finding the full set of

k-paths we only aim at finding a subset, as small as possible, while keeping the

model correctness. Notice that in this case, we cannot set di↵erent IP formulations

for each SCC because now we also have to find a collection of vertex-and-arc disjoint

paths. Recall that when we split the graph some edges are removed, losing feasible

paths and therefore optimality. The advantage of constraints (2.23) is that they can



Chapter 3. Chains and Cycles variant of the Kidney Exchange Problem 38

be applied regardless connectivity characteristics of the graph.

It follows that, the Reduced Exponential-sized SPLIT Formulation (ReSPLIT)

can be stated as follows:

Maximize
X

(i,j)2E0

x

ij

w

ij

+
X

(i,j)2E

z

ij

w

ij

(3.35)

subject to (3.18)� (3.19), (3.22)� (3.25) (3.36)

(2.23) replacing x

ij

by z

ij

(3.37)

(3.31)� (3.32) (3.38)

x

ij

2 {0,1} (i, j) 2 E (3.39)

z

ij

2 {0,1} (i, j) 2 E (3.40)



Chapter 4

Computational Experiments

The purpose of this chapter is to investigate a few key issues and to provide an

empirical assessment of the models and algorithmic solution strategies. In the first

experiment, we carry out a comparison between the SCC-based search algorithm

(see Algorithm 1 in Chapter 2) for computing subsets of length-k paths and the well-

known Depth-First Search Algorithm for computing the full set of length-k paths.

Then, a complete formulation assessment is performed considering the formulations

for the cycle packing version (seen in Chapter 2) of the KEP and formulations for

the chains and cycles version of the problem (seen in Chapter 3). In the former, we

include experiments for assessing our two proposed models when considering only

cycles, namely, the Partitioned Edge Formulation and the Partitioned and Reduced

Edge Formulation. In the latter, we include experiments for assessing our new model

when we are allowed to find cycles and chains, namely, the Reduced Exponential-

sized SPLIT Formulation. Finally, we present a computational study to illustrate

the di↵erence and practical impact of allowing a list of altruist donors (list of NDD

pairs).

39



Chapter 4. Computational Experiments 40

4.1 Description of Database Instances

We collected data from two sources: Anderson et al. [4] and Mak-Hau [28]. They

gave us some of the instances studied in their papers. In Table B.1, descriptive

information is presented in detail for the full set of instances.

• Anderson et al. [4] simulated the National Kidney Registry (NKR) Kidney

Pair Donation (KPD) pool over a two year time period from May 24, 2010

to May 24, 2012. The initial pool contained 63 patient-donor pairs, and an

additional number of 410 pairs arrive over the course of their simulation. The

dataset also contained 75 altruistic donors. Compatibility between donors

and patients was determined primarily by blood type and HLA compatibility

rules (see Appendix D), although some patient preferences were also taken into

account. To create representative snapshots of actual instances encountered

by a KPD program they considered the fact that easy-to-match patients tend

to wait little time to be involved in a solution, leaving in the pool the most

hard-to match patients after each match run. Based on this, they estimated

statistical parameters to reproduce this behavior. For full details, we refer the

reader to [4, 5]. It is worth mentioning that some instances included negative

weights for some academic experiments they perfomed, but the compatibility

graphs were still accurate, so we took the absolute value of those weights. In

overall, we study in this research 86 instances from their simulations.

• Mak-Hau gave us instances that were initially meant to consider only PDPs.

They were adapted to generate instances with the same graph density and

number of vertices in the PDPs and NDDs reported in Anderson et al. [4].

Thus, even though they are not the same problems, the graph density and

sizes are the same. She created some vertices on the graphs (NDDs or PDPs)

and allocated their blood type randomly, according to the proportions of the

blood type population in the USA. Arcs on the graph were created if a donor’s



Chapter 4. Computational Experiments 41

kidney is by blood type compatible with a patient from any other PDP. In

total, we received 7 instances of this type.

In spite of having similar descriptive information, Mak-Hau’s and Anderson’s

instances have significant structural di↵erences. Particularly, Mak-Hau’s instances

induce subgraphs that are all or about to be a single SCC, while Anderson’s could

be all partitioned into several non-trivial strong components. As we will see, this

fact a↵ects deeply the performance of the di↵erent formulations.

To evaluate the formulations we split the data into three subsets:

• DM1: corresponds to the set formed by 7 instances provided by Mak-Hau [28].

• DA1: This set is made up of those instances that Anderson et al. [4] found

di�cult and reported in their paper.

• DA2: These instances were not reported in [4] but are also part of the instances

generated by their simulations.

4.2 Experimental Conditions

For the following experiments, CPU times and bounds were obtained with CPLEX

12.7 in Concert Technology for C++ applications on a computer with an Intel Core

i7 processor at 2.00 gigahertz, 8 gigabytes of RAM. In general, all our implementa-

tions were coded using C++. Only one core of the processor was assigned to these

experiments.



Chapter 4. Computational Experiments 42

4.3 Comparing Search Algorithms to find

length-k paths in the KEP

As seen in Chapter 2, for The Edge Formulation we are required to feed the full set of

length-k paths (constraints (2.7) and constraints (2.19), respectively) into the MILP

solver, which can be found by using the well-known Depth-First Search algorithm,

while for the Partitioned and Reduced Edge Formulation we only need to provide

a subset of them given by the proposed SCC-Based Search Algorithm explained in

Chapter 2. Since our algorithm cannot di↵erentiate from paths leading to circuits

and simple cycles, it is desirable to know what proportion accounts for each one.

This is because the larger the number of paths leading to simple cycles, the more

non-redundant length-k paths are added to the MILP solver. Recall that circuits,

regardless of the KEP formulation, are always excluded from feasible solutions by

the balance constraints, thus we only need to focus on paths leading to simple cycles.

Therefore, in this experiment we aim at reaching the following goals:

• Determine whether the SCC-Based Search Algorithm is more e�cient than the

Depth-First Search Algorithm in terms of computational time.

• Determine in which proportion length-k paths found by the SCC-Based Search

Algorithm actually conduct to simple cycles.

• Compare the computational time spent by the Double-Check Search Algorithm

(see Chapter 2), which finds only leading-to-simple-cycles paths, to that of the

SCC-Based Search Algorithm.

In order to accomplish these goals, we plot in Figure 4.1 the following per-

formance measures where the horizontal axis represents the full set of instances in

Table B.1 and the vertical axis represents the ratio of the di↵erent performance

measures.:



Chapter 4. Computational Experiments 43

• Rt-SCC-DEPTH: The ratio between the running time for the SCC-Based

Search Algorithm to the time of the Depth-First Search Algorithm (line with

diamond markers).

• Rp-SCC-DOUBLE: The ratio of the number of k-paths found by the SCC-

Based Search Algorithm to the number of k-paths found by the Double-Check

Search Algorithm (line with asterisk markers).

• Rt-SCC-DOUBLE: The ratio of the running time of the SCC-Based Search

Algorithm to the time of the Double-Check Search Algorithm (line with circle

markers).

Instance
1 2 3 4 5 6 7

R
a
ti
o

0

0.5

1

1.5

Set DM

Rp-SCC-DOUBLE
Rt-SCC-DOUBLE
Rt-SCC-DEPTH

Instance
1 2 3 4 5 6 7 8 9 10

R
a
ti
o

0

0.5

1

1.5

Set DA1

Rp-SCC-DOUBLE
Rt-SCC-DOUBLE
Rt-SCC-DEPTH

Instance
10 20 30 40 50 60 70

R
a
ti
o

0

0.5

1

1.5
Set DA2

Rp-SCC-DOUBLE
Rt-SCC-DOUBLE
Rt-SCC-DEPTH

Figure 4.1: Performance of Algorithm 1.

As we can see the curve for Rt-SCC-DEPTH is almost always below y = 0.2,

which means that the time spent by the SCC-Based Search Algorithm is about 20%

the time of searching all length-k paths in the graph by the Depth-First Search Al-

gorithm. Consequently, it also means that time needed to fully introduce the Edge

Formulation in the MILP solver takes significantly longer than that employed by



Chapter 4. Computational Experiments 44

the Partitioned and Reduced Edge Formulation. We also see that for almost all in-

stances, more than 90% of paths found by the SCC-Based Search Algorithm lead to

simple cycles in the graph, as it can be drawn from Rp-SCC-DOUBLE. This means

that the number of non-redundant paths (leading to simple cycles) found by our al-

gorithm are a vast majority and the process to find them can be done very e�ciently.

Lastly, we see that Rt-SCC-DOUBLE is almost always below y = 1, meaning that

for most instances the Double-Search Algorithms takes more time. Judging by the

number of leading-to-simple-cycles paths found the SCC-Based Search Algorithm,

it is not worthwhile to check if length-k paths are actually part of a simple cycle.

For the Partitioned Edge Formulation we do not compare time needed to find

paths because we also need to find the full set of length-k paths like in the Edge

Formulation. The only di↵erence is that now, the graph is split into several SCCs

and some vertexes may not be part of any, making the full set of paths for the

Partitioned Edge Formulation smaller than the full set for the Edge Formulation.

4.4 Selecting the best node-selection

strategy for the SCC-Based Search Algorithm

Now that we have determined the e�ciency and accuracy of the SCC-Based Search

Algorithm, in this experiment we assess di↵erent node-selection strategies. It is

crucial to assess di↵erent node selection strategies since the algorithm relies on the

picked nodes to choose the number and type of paths that finally will be part of the

set of constraints. Specifically, we aim to find out the reduction in the number of

paths when each strategy is applied compared to the full set of constraints and to

determine how sensitive the number of paths is regarding each strategy. To this end

we plot in Figure 4.2 the number of paths of size k = 3 and k = 4 when considering

the full set of paths in the original graph (dashed line) and the paths within the SCCs

found by the SCC-Based Search Algorithm using di↵erent node selection criterion:



Chapter 4. Computational Experiments 45

maximal outdegree (dotted line), that selects the node with the largest number of

outgoing edges among the nodes forming a SCC; maximal indegree (dashed-dotted

line), that selects the node with the smallest number of incoming edges within a

SCC; and maximal total degree (solid line), that selects the node whose number of

incoming and outgoing edges is maximum in a SCC. The horizontal axis represents

instances in sets DM and DA1. The vertical axis represents the number of length-k

paths found by applying each strategy.

Instance
1 2 3 4 5 6 7

le
n

g
th

-k
 p

a
th

s

�106

0

0.5

1

1.5

2

2.5

3
Set DM, k = 3

All
Outdegree
Indegree
Degree

Instance
1 2 3 4 5 6 7

le
n

g
th

-k
 p

a
th

s

�107

0

0.5

1

1.5

2
Set DM, k = 4

All
Outdegree
Indegree
Degree

Instance
1 2 3 4 5 6 7 8 9 10

le
n

g
th

-k
 p

a
th

s

�105

0

2

4

6

8

10
Set DA1,k = 3

All
Outdegree
Indegree
Degree

Instance
1 2 3 4 5 6 7 8 9 10

le
n

g
th

-k
 p

a
th

s

�106

0

0.5

1

1.5

2

2.5

3
Set DA1, k = 4

All
Outdegree
Indegree
Degree

Figure 4.2: Assessment of node selection strategy in the SCC-Based Search Algorithm.

As we can see, the growth of the full set of length-k paths is explosive for some

DM instances. For example, generating the length-4 paths for instances 3 and 7 was

so large (taking over 1.5 gigabytes each) we were unable to open the corresponding

files. On the other hand, the number of paths in set DA1 remains relatively tractable,

although one of them almost reaches 3 million paths when k = 4. It can be clearly

seen that our proposed algorithm under any of the node selection strategies reduces

the needed number of paths considerably, specially under strategies of maximal

indegree and maximal degree. However, the nature of the number of paths continues

to be exponential. Due to this, we test the di↵erent formulations considering only



Chapter 4. Computational Experiments 46

Formulation Name Notation Authors KEP variant

Cycle Formulation C Abraham et al. [1] and Roth et al. [38] Cycles

Edge Formulation E Abraham et al. [1] and Roth et al. [38] Cycles

Extended Edge Formulation EE Constantino et al. [11] Cycles

Partitioned Edge Formulation PE This thesis Cycles

Partitioned and Reduced Edge Formulation PRE(‘g’) This thesis Cycles

Anderson Arc-based Formulation AA Anderson et al. [4] Cycles and Chains

PC-TSP-based Formulation PC-TSP Anderson et al. [4] Cycles and Chains

Polynomial-sized SPLIT Formulation pSPLIT Mak-Hau [28] Cycles and Chains

Exponential-sized SPLIT Formulation eSPLIT Mak-Hau [28] Cycles and Chains

Reduced Exponential-sized SPLIT Formulation ReSPLIT(‘g’) This thesis Cycles and Chains

Table 4.1: Notation of KEP formulations.

k = 3. It remains to be seen the performance when other values of k are considered.

4.5 Assessment of KEP Formulations

The following notation (see Table 4.1) is used to refer to each formulation studied

so far. The IP formulations that consider chains and cycles were presented in their

respective papers considering no upper bound on the chain size, although the authors

also pointed out how a bounded chain model can be transformed into an unbounded

chain model. For our experiments, we also consider unbounded chains. In Table 4.1,

the argument g in PRE(g) and ReSPLIT(g) refers to the node selection strategy used

by the SCC-based Search Algorithm to find the length-k paths in each formulation.

Let us formally define this notation as g 2 {i, d, o} with (i)-indegree, (d)-degree, and

(o)-outdegree.

Results for the cycle packing variant of the KEP

In this section we present results for the cycle packing variant considering

k = 3. As the KEP is solvable in polynomial time when k = 2 [1, 9], only values of

k � 3 are challenging and therefore of interest for this thesis.

Computational results for this experiment are provided from Table 4.2 to Ta-



Chapter 4. Computational Experiments 47

ble 4.6 where:

• PDPsR: Set of PDPs in which instances of sets DA1 [ DA2 were grouped.

Instances were ordered in non-decreasing order of the number of PDPs to form

such ranges. Every group, but the last, contains 10 instances. The last group

has 6 instances. See Appendix B for details on this.

• PRE(i): Partitioned and Reduced Edge Formulation when the node selection

strategy for the SCC-Based Search Algorithm is the maximal indegree.

• nf: Number of instances that failed to obtain a feasible solution, either because

CPLEX was unable to solve the initial LP relaxation after the time limit (q/⇤)
or because before starting branching CPLEX displayed a run-out-of-memory

status (⇤/r).

• nVars and aVars: Number of variables in a single instance and average number

of variables in a subset of instances, respectively, both according to a specific

IP formulation.

• nConsts and aConsts: Number of constraints for a single instance and average

number of constraints for a subset of instances, respectively, in a specific IP

Formulation.

• rConsts and rgCon: Relative decrease in the number of length-k paths as-

sociated to a single instance or to a group of instances, respectively, passing

from formulation E to PE or PRE(i). The former is given by (nConstsE �
nConstsX)/nConstsE, where nConstsE (nConstsX) is the number of con-

straints obtained by using the E (PE or PRE(i)) formulation. In the latter,

the reduction is given by (
P

(n)

nConstsE�P
(n)

nConstsX)/
P

(n)

nConstsE,

where n stands for each instance.

• tc and tp: Time employed for finding feasible cycles in order to determine the

variables needed in the Cycle Formulation and the time employed for finding

length-k paths in the graph according to each formulation, respectively. For



Chapter 4. Computational Experiments 48

searching feasible cycles, we implemented an adaptation of Johnson’s Algo-

rithm [24], which is as far as we know one of the fastest to do so.

• ts: Time needed to compute the SCCs of the graph using Kosarajus’s Algo-

rithm [42].

• t: Total CPU time employed for reaching an optimal solution in a single in-

stance. In case of a group of instances, t represents the average running time.

The CPU time limit was set to 1,200.00 seconds for all formulations. Notice

that the Partitioned Edge Formulation splits the original problem into inde-

pendent subproblems (see Section 2.2.4). Thus, times reported for instances

under the PE formulation are the sum of times for such subproblems.

• opt: Number of instances solved to optimality. In all cases, the weighted edge

sum optimization function was considered. This column does not appear when

all instances were optimally solved.

• gap(%): is the average relative optimality gap associated to a formulation, de-

fined by gap(%) =
(UB � LB)

LB

⇤ 100, where UB is the upper bound provided

by the linear relaxation of the formulation and LB is the best found lower

bound, replaced by the optimal value when known. Whenever a symbol “inf”

appears, it means CPLEX could not find an upper bound for that problem.

This column does not appear when all instances were optimally solved.

In Table 4.2 we present the computational results for the formulations considered

in Chapter 2 and the set of instances DA1. the Cycle Formulation outperforms the

others, specially the Extended Edge Formulation, taking substantially larger than

the others. Although this formulation is not dominated by the Cycle Formulation

(see [11]), we suspect there are two factors that may be provoking this result: first,

the size of the formulation is considerably larger in comparison to the others (see

Table 4.6) and second, the structure of these instances can be specially hard to

solve. The Partitioned Edge Formulation and the Partitioned and Reduced Edge

Formulation are the second best ranked, outperforming the Edge Formulation, to



Chapter 4. Computational Experiments 49

such an extent that their running times are frequently in the same order of magnitude

than those of the Cycle Formulation. Comparing the performance of PE and PRE(i),

we see they are similar, with PE being slightly better.

Instance
C E EE PE PRE

tc t tp t gap(%) t ts tp t ts tp t

1 0.09 0.02 0.38 0.22 0.0 10.69 0.02 0.04 0.08 0.02 0.03 0.06

2 0.03 0.001 0.46 0.17 0.0 6.14 0.02 0.03 0.06 0.02 0.03 0.13

3 0.02 0.02 0.27 0.09 0.0 6.86 0.02 0.01 0.05 0.02 0.02 0.06

4 0.07 0.001 0.44 0.20 0.0 43.80 0.03 0.05 0.08 0.03 0.02 0.06

5 0.04 0.001 0.42 0.41 0.0 45.86 0.03 0.03 0.06 0.03 0.04 0.09

6 0.07 0.02 0.65 0.27 0.0 81.38 0.06 0.07 0.09 0.06 0.03 0.06

7 0.10 0.03 2.58 42.53 5.9 1200.00 0.05 0.25 8.30 0.05 0.06 36.16

8 0.10 0.03 2.12 0.75 0.0 112.56 0.05 0.11 0.33 0.05 0.03 0.09

9 0.07 0.02 1.73 0.67 0.0 337.56 0.07 0.10 0.17 0.07 0.01 0.11

10 0.11 0.02 0.48 0.33 0.0 783.17 0.07 0.07 0.09 0.07 0.01 0.05

Table 4.2: Experimental results for 3-way cyclic exchanges for data set DA1.

In Table 4.3 the experimental results for 3-way cyclic exchanges for set DM

are shown. The symbol “-” in columns gap(%) and t represents instances that

were not solved by PE as their underlying graph is a SCC. On the other hand,

all the edge-based formulations perform poorly in set DM. The Extended Edge

Formulation performs much better than the others, since this formulation could

reach three optimal solutions out of seven and gave fairly good gap values. However,

the Cycle Formulation clearly outperforms all others. We elaborate on this behavior

when analyzing Table 4.5 and Table 4.6.

Instance
C E EE PE PRE

tc gap(%) t tp gap(%) t gap(%) t ts tp gap(%) t ts tp gap(%) T

1 0.08 0.00 0.08 0.21 64.0 1200.00 0.0 5.11 0.02 0.21 - - 0.02 0.09 93.7 1200.00

2 0.06 0.00 0.11 0.22 67.3 1200.00 0.0 12.50 0.02 0.20 94.7 1200.00 0.02 0.15 97.6 1200.00

3 0.44 0.00 10.89 15.57 inf 1200.00 10.6 1200.00 0.07 15.57 - - 0.07 3.98 inf 1200.00

4 0.19 0.00 0.67 1.83 37.8 1200.00 2.0 1200.00 0.03 1.83 - - 0.03 0.61 40.3 1200.00

5 0.34 0.00 0.25 1.46 66.1 1200.00 0.0 198.56 0.03 1.46 - - 0.03 0.64 70.2 1200.00

6 0.66 0.00 81.56 6.48 inf 1200.00 inf 1200.00 0.04 6.48 - - 0.04 2.96 34.5 1200.00

7 1.93 0.80 1200.00 16.58 inf 1200.00 inf 1200.00 0.05 16.58 - - 0.05 6.69 inf 1200.00

Table 4.3: Experimental results for 3-way cyclic exchanges for data set DM.



Chapter 4. Computational Experiments 50

P
D
P
sR

C
E

E
E

P
E

P
R
E

tc
op

t
ga
p
(%

)
t

tp
op

t
ga
p
(%

)
t

n
f

op
t

ga
p
(%

)
t

n
f

ts
tp

op
t

ga
p
(%

)
t

n
f

ts
tp

op
t

ga
p
(%

)
t

11
4-
21
6

0.
04

10
0.
0

0.
02

1.
57

9
0.
4

13
0.
15

9
0.
7

15
.3
9

0.
02

0.
53

9
0.
4

18
0.
23

0.
02

0.
06

9
0.
7

18
9.
30

22
1-
23
6

0.
06

10
0.
0

0.
02

2.
53

10
0.
0

80
.3
8

10
0.
0

17
9.
42

0.
03

0.
12

10
0.
0

4.
23

0.
03

0.
02

9
1.
0

16
0.
64

24
1-
28
5

0.
05

10
0.
0

0.
02

3.
18

8
0.
9

33
4.
04

8
1.
1

30
0.
40

0.
04

0.
09

10
0.
0

6.
62

0.
04

0.
02

10
0.
0

21
.1
2

28
9-
31
7

0.
08

10
0.
0

0.
02

3.
92

10
0.
0

82
.2
2

7
3.
2

22
9.
71

0.
06

0.
12

10
0.
0

1.
09

0.
06

0.
03

10
0.
0

4.
00

32
4-
34
3

0.
10

10
0.
0

0.
02

4.
86

8
0.
0

24
0.
67

8
1.
3

31
7.
71

(1
/0
)

0.
07

1.
26

9
0.
0

12
4.
14

0.
07

0.
04

9
0.
1%

16
2.
14

34
3-
34
8

0.
08

10
0.
0

0.
01

0.
56

10
0.
0

0.
52

6
21
.6

40
7.
10

0.
06

0.
08

10
0.
0

0.
15

0.
06

0.
01

10
0.
0

0.
08

34
8-
36
5

0.
11

10
0.
0

0.
01

2.
99

10
0.
0

1.
25

7
11
.6

26
6.
26

0.
08

0.
16

10
0.
0

0.
48

0.
08

0.
01

10
0.
0

0.
07

36
5-
37
9

0.
09

10
0.
0

0.
02

1.
79

10
0.
0

19
.9
5

7
15
.3

48
5.
78

0.
08

0.
11

10
0.
0

0.
33

0.
08

0.
02

10
0.
0

0.
23

38
6-
47
4

0.
64

6
0.
0

0.
10

43
.6
2

3
0.
0

47
4.
42

(1
/2
)

1
23
.1

37
7.
16

(1
/3
)

0.
12

9.
22

4
16
.2

40
1.
05

(2
/0
)

0.
12

0.
27

4
1.
1

40
7.
64

T
ab

le
4.
4:

E
xp

er
im

en
ta
l
re
su
lt
s
fo
r
3-
w
ay

cy
cl
ic

ex
ch
an

ge
s
fo
r
d
at
a
se
t
D
A
1
[
D
A
2.



Chapter 4. Computational Experiments 51

In Table 4.4, we present the results for the set DA1 [ DA2. First of all, we want

to point out that the reduction in instance size, after finding the SCCs in the graph,

is impressive (see Table C.1). This reduction has a positive impact, specially on

the PE performance, which is after the Cycle Formulation, the best one. However,

CPLEX could not solve the LP relaxation, and in consequence, it could not find

a relative gap for two instances in the last subset. PRE(i), on the other hand,

could solved those intances, obtaining a gap of only 1.1%. We observe that PRE(i)

performs better than PE as the number of PDPs increases, which suggests that a

deep reduction on the number of lenght-k paths for small instances might weaken

the IP formulation. Surprisingly, CPLEX ran out of memory three times with the

Extended Edge Formulation, which again is outperformed by the other formulations.

We will see below that despite mathbb a polynomial formulation, the size of EE can

be large enough so as to run out of memory. Constantino et al. [11] also proposed

a reduction scheme. It remains to be established whether that reduction improves

significantly EE performance on graphs with multiple SCCs.

In Table 4.5, the size of the di↵erent formulations is shown. We observe that

instances in DM cannot be partitioned, as they are a single SCC, except the second

instance, where the induced subgraph is a minor partition. The Cycle Formulation

has by far the smallest size, it means that the number of feasible cycles is relatively

small, making the constraints for the edge formulation families a large set. However,

the reduction on constraints, even when it is not possible to partition the original

graph, is substantial. The constraints decrease in PRE(i) regarding constraints in E

is at least 80%. Even though the number of constraints and variables for PRE(i) is

frequently less than those for the EE, the latter performs better on this subset as we

saw previously, which may suggest that the di�culty for edge-formulation families

when it comes to solve a graph that is itself a SCC relies heavily on the structural

nature of the graph rather than on dimension.

The size of formulations for instances in DA1 [ DA2 are presented in Table 4.6.

Now, we see that the reduction on the number of constraints for PE falls between



Chapter 4. Computational Experiments 52

Instance
C E EE PE PRE(i)

nVars nConsts nVars nConsts nVars nConsts nVars nConsts rConsts(%) nVars nConsts rConsts(%)

1 80 152 897 29 859 136 344 46 360 897 29 859 0.0 897 4 528 84.8

2 94 156 954 36 130 148 824 48 362 948 35 977 0.4 948 5 443 84.9

3 4 960 198 4 740 2 692 311 938 520 78 606 4 740 2 692 311 0.0 4 740 538 600 80.0

4 642 199 2 341 318 195 465 859 79 401 2 341 318 195 0.0 2 341 54 386 82.9

5 353 269 2 583 237 551 694 827 144 991 2 583 237 551 0.0 2 583 40 753 82.8

6 1 369 310 4 760 1 114 834 1 475 600 192 510 4 760 1 114 834 0.0 4 760 206 751 81.5

7 2 609 389 7 535 2 772 762 2 931 115 303 031 7 535 2 772 762 0.0 7 535 523 932 81.1

Table 4.5: Size of formulations and savings on 3-path constraints for data set DM.

66% and 97%. For the PRE model, this reduction is over 98% in all cases. The

reduction in the number of constraints has been shown to have a valuable impact

on this set of instances.

PDPsR
C E EE PE PRE(i)

aVars aConsts aVars aConsts aVars aConsts aVars aConsts rgCon(%) aVars aConsts rgCon(%)

114-216 274.4 170.1 3 959.1 270 128.4 740 889.0 54 468.9 661.5 91 659.7 66.1 661.5 4 527.4 98.3

221-236 162.7 229.9 6 853.1 436 337.7 1 575 163.6 98 460.4 544.5 20 308.9 95.3 544.5 1 098.10 99.7

241-285 146.0 264.1 9 100.1 542 560.2 2 405 233.3 115 846.2 446.5 16 201.8 97.0 446.5 1 022.3 99.8

289-317 133.4 305.7 11 907.3 655 658.6 3 658 318.1 160 640.6 592.7 21 579.9 96.7 592.7 754.7 99.9

324-343 201.8 334.9 13 718.7 797 499.4 4 587 889.1 135 198.9 1 376.9 220 374.5 72.4 1 376.90 1 606.6 99.8

343-348 99.4 346.5 13 191.5 72 391.1 4 557 000.5 90 040.4 513.6 14 706.4 79.7 513.6 303.8 99.6

348-365 162.1 355.0 13 591.2 480 167.3 4 828 165.4 135 416.5 587.9 27 975.8 94.2 587.9 384.20 99.9

365-379 110.5 371.2 15 135.3 279 233.2 5 618 812.2 141 954.9 831.5 19 399.4 93.1 831.5 667.2 99.8

386-474 904.0 425.3 19 973.3 7 079 568.2 10 636 474.5 295 032.0 4 090.7 1 603 992.8 77.3 4 090.7 18 959.8 99.7

Table 4.6: Size of formulations and savings on 3-path constraints for set DA1 [ DA2.

Results for the cycle and chains variant of the KEP

The following notation is used to interpret the results of this section:

• nlazyC and alazyC: Total number of violated lazy constraints found and added

to the AA formulation while solving a single problem and the average number

of all violated lazy constraints found and added in the same way, when solving

a subset of instances, respectively.

• tsep and atsep: Time needed to find and add all the violated lazy constraints

(i.e. nlazyC) to the AA formulation while solving a single problem and the



Chapter 4. Computational Experiments 53

average time used to find and add the average of all the violated lazy constraints

found in a subset of instances, respectively.

In the following experiment the goal is to compare the eSPLIT Formulation

with ReSPLIT(‘g’) formulations under the three di↵erent strategies for ‘g’. Recall

that ReSPLIT(‘g’) is obtained by replacing constraints (2.7) by (2.23). To this end,

we run those formulations on instances from DM and DA1 data sets. The results are

shown in Table 4.7. First of all, the new instances studied in this section are the same

as those just studied, except for the inclusion of NDDs. If we compare running times

given in Table 4.7 to Table 4.2 and Table 4.3, we can see that instances in set DA1

become harder to solve in presence of NDDs, but still times are reasonably small,

while instances in set DM become easier to solve by edge-based formulations. This

improvement might be caused by the strengthening of the edge-based formulations

by means of MTZ-type constraints or by the fact that cycles and chains are both

allowed. Regarding the performance of the di↵erent strategies, the ReSPLIT families

outperform the eSPLIT formulation in terms of lower running times and greater

number of optimum values, specially when the node selection strategy is the maximal

indegree and maximal degree. Although the maximal degree strategy solves one more

problem than the maximal indegree strategy, we prefer the indegree strategy in an

attempt of solving the largest instances without running out of memory. From now

on, ReSPLIT stands for ReSPLIT(indegree).

In the following experiment, the goal is to compare the performance of formu-

lations seen in Chapter 3, in terms of relative optimality gap and running time, for

instances in set DA1 (see Table 4.8). As can bee seen, the ReSPLIT formulation

outperforms the others as it reaches 9 optimal values out of 10, running significantly

faster. It is worthwhile mentioning that our implementation of the lazy constraint

scheme to solve AA is very competitive with respect to that of Anderson et al. [4],

solving to optimality one more instance in set DA1 (see Table S3 in [4]). However, it

is not possible to establish a direct comparison in terms of running time since there

are technological di↵erences. As we can see PC-TSP performs poorly when it is



Chapter 4. Computational Experiments 54

Data Set Instance
eSPLIT ReSPLIT(i) ReSPLIT(o) ReSPLIT(d)

t gap(%) t gap(%) t gap(%) t gap(%)

DM

1 12.70 0.0 1.44 0.0 5.81 0.0 0.67 0.0

2 16.03 0.0 1.14 0.0 6.86 0.0 0.92 0.0

3 1200.00 inf 1200.00 inf 1200.00 inf 1200.00 27.5

4 289.44 0.0 120.41 0.0 131.00 0.0 135.84 0.0

5 274.28 0.0 125.44 0.0 138.61 0.0 113.67 0.0

6 1200.00 inf 776.28 0.0 1200.00 0.6 904.27 0.0

7 1200.00 inf 1200.00 inf 1200.00 inf 1200.00 inf

DA1

1 146.42 0.0 107.27 0.0 140.25 0.0 118.14 0.0

2 0.59 0.0 0.49 0.0 0.55 0.0 0.39 0.0

3 13.67 0.0 15.69 0.0 16.39 0.0 16.99 0.0

4 55.47 0.0 52.81 0.0 62.56 0.0 51.83 0.0

5 14.59 0.0 10.05 0.0 11.22 0.0 10.39 0.0

6 21.75 0.0 16.45 0.0 22.99 0.0 21.81 0.0

7 1200.00 25.1 1200.00 25.1 1200.00 25.1 1200.00 25.1

8 107.19 0.0 40.09 0.0 78.17 0.0 55.77 0.0

9 37.41 0.0 18.95 0.0 22.59 0.0 27.22 0.0

10 134.28 0.0 115.14 0.0 156.05 0.0 154.09 0.0

Average time: 348.94 294.29 329.11 306.64

Table 4.7: Assessment of eSPLIT and ReSPLIT formulations.

solved by a lazy constraint scheme. In [4] a branch-and-cut algorithm was proposed,

instead, that is able to solve these instances in less than 9 seconds. The gap(%)

column does not appear for AA nor PC-TSP because any solution found by the

lazy constraint scheme, di↵erent from the optimal, is infeasible. Therefore, it is not

worthwhile analyzing solutions out of the feasible space. Additionally, it seems that

pSPLIT works better than AA and PC-TSP for the smallest instances. As we can

see in Table 4.12, even for small instances, the number of violated constraints in AA

exceeds 6,000 constraints. This implies that it was necessary to optimize the model

anew that number of times before reaching an optimal solution. Similarly, for the

largest instances, the number of violated constraints are roughly as many as those

of the smallest instances. Therefore, we suspect that pSPLIT converges faster than

AA and PC-TSP for small instances, because it is more e�cient solving only once a



Chapter 4. Computational Experiments 55

small-sized polynomial formulation than solving thousands of times an increasingly

larger formulation.

Instance
AA PC-TSP pSPLIT ReSPLIT

t t gap(%) t gap(%) t

1 1200.00 1200.00 0.0 448.48 0.0 107.27

2 0.13 1.14 0.0 6.83 0.0 0.49

3 119.09 1200.00 0.0 63.19 0.0 15.69

4 622.84 1200.00 0.0 251.44 0.0 52.81

5 48.27 449.34 0.0 92.22 0.0 10.05

6 55.70 721.03 0.0 215.42 0.0 16.45

7 1200.00 1200.00 25.1 1200.00 25.1 1200.00

8 320.75 1200.00 0.0 878.53 0.0 40.09

9 313.72 1200.00 0.0 1 110.55 0.0 18.95

10 1200.00 1200.00 87.5 1200.00 0.0 115.14

Table 4.8: Comparison of formulations for 3-way cyclic exchanges and unbounded

chains on data set DA.

By contrast, AA and PC-TSP perform better on the DM instances (see Ta-

ble 4.9). Looking at Table 4.11 we can notice that the number of violated lazy

constraints added by AA are small, reaching the optimal value quickly. Unlike the

cycle packing variant, now the extension of the edge formulation families outperform

the pSPLIT formulation, specially the ReSPLIT.

In Table 4.10, we compare four formulations in the set DA1 [ DA2, up to the

subset 324-343 and then we choose the best two ranked formulations in terms of time

and optimal values to continue to assess those two best formulations. Thus, symbol

“-” means the results are not shown for the less competitive formulations. Again, the

eSPLIT outperforms the other formulations, finding the highest number of optimal

solutions and spending in almost all cases the shortest running time. Hence, we can

conclude that the indegree selection node strategy works competitively, enhancing



Chapter 4. Computational Experiments 56

Instance
AA PC-TSP pSPLIT ReSPLIT(i)

t t gap(%) t gap(%) t

1 0.02 0.14 0.0 6.03 0.0 1.44

2 0.03 0.14 0.0 8.13 0.0 1.14

3 0.11 0.38 inf 1200.00 inf 1200.00

4 0.11 0.42 0.0 187.59 0.0 120.41

5 0.17 0.45 0.0 223.39 0.0 125.44

6 0.59 4.72 inf 1200.00 0.0 776.28

7 0.44 0.89 inf 1200.00 inf 1200.00

Table 4.9: Comparison of formulations for 3-way cyclic exchanges and unbounded

chains on set DM.

the original eSPLIT formulation. Most importantly, we see that for current realistic

instances, the ReSPLIT formulation provides in several cases the optimal solution

or gives a feasible one, with a gap of 22% in the worst case.

In Table 4.11 and Table 4.12 the size of the AA Formulation is shown for

DM and DA1 [ DA2 instances, respectively. The nVars values were queried once

CPLEX ended, thus it may di↵er slightly from the total number of edges. The col-

umn named NDDsR represents the range of the number of NDDs according to each

group of instances. As seen in Table 4.11, DM instances violate lazy constraints a

few numbers of times, more precisely there are three instances reaching the optimal

solution without violating any constraint and only one instance reaches up to 25 vi-

olated constraints. These figures are smaller compared with the violated constraints

detected in the set DA1 [ DA2. Looking at Table 4.12, we notice that for the full

set of Anderson’s instances, AA Formulation needs to add a high number of violated

lazy constraints. In the event of PC-TSP is even worse, since it has to add con-

straints per every node contained in S, where S is every single cycle. Here, we do

not provide the size of the PC-TSP formulation, but certainly is much higher than

that of AA. More importantly is the fact that the separation problem was solved



Chapter 4. Computational Experiments 57

PDPsR NDDsR
AA PC-TSP pSPLIT ReSPLIT(i)

opt t opt t opt gap(%) t opt gap(%) t

114-216 3-21 7 371.95 6 480.35 8 11.7 302.43 8 11.7 262.92

221-236 22-34 5 600.07 5 600.28 5 13.2 606.95 5 13.2 600.11

241-285 5-39 5 674.07 4 841.62 5 11.8 670.33 5 11.4 608.43

289-317 6-39 4 721.40 4 724.24 5 31.6 730.62 7 21.7 507.42

324-343 6-46 6 596.46 2 960.38 4 33.6 998.93 9 1.7 178.68

343-348 46-46 2 1 018.03 - - - - - 10 0.0 172.10

348-365 43-49 6 543.09 - - - - - 10 0.0 90.64

365-379 39-50 9 127.03 - - - - - 9 5.9 121.98

386-474 49-50 4 401.90 - - - - - 4 11.0 415.46

Table 4.10: Comparison of formulations for 3-way cyclic exchanges and unbounded

chains on data set DA1 [ DA2.

very e�ciently in any case, we can see, for instance, the worst case was separating

18,965 infeasible solutions, for which the lazy constraint scheme took less than 5

seconds to identify the violated constraints and add them to the model.

Comparing the di↵erent KEP versions in terms of pairs matched

In the next experiment we selected 17 instances, that form part of sets DM

and DA1. We took optimal solutions and contrasted them to determine whether

the inclusion of NDDs to allow chains has an important impact on the number of

exchanges. To this end we plot the increase in the number of exchanges when passing

from the cycle variant to the cycles and chains variant, computed by Equation (4.1)

and the contribution of chains to solutions considering cycles and chains, as stated

by Equation (4.2). In Figure 4.3, the horizontal axis represents instances in sets DM

and DA1 and the vertical axis shows performance measures in percentages. It can be

observed the number of matches grows gently (line with square markers) regardless

of the set, although the growth seems to be more significant in the set DA1 than

in the set DM. Regarding chains contribution to the solution composition (line with

circle markers), there is a clear di↵erence between both sets. Solutions in set DM



Chapter 4. Computational Experiments 58

Instance nVars nlazyC tsep

1 960 0 1⇥ 10�4

2 992 0 1⇥ 10�4

3 4 927 3 1⇥ 10�4

4 2 382 7 1⇥ 10�4

5 2 607 5 1⇥ 10�4

6 4 776 23 1⇥ 10�4

7 7 565 9 1⇥ 10�4

Table 4.11: Size of formulation AA for DM instances.

are formed mainly by chains, while in set DA1 most solutions are reached in the

form of cycles.

NumberMatchesChainsandCycles�NumberMatchesCycles

NumberMatchesCycles

(4.1)

NumberChains

NumberChains+NumberCycles

(4.2)

For the same set, we present in Figure 4.4 the average length of cycles and

chains. The horizontal axis represents instances in sets DM and DA1 and the ver-

tical axis represents the average length of chains and cycles involved in a solution,

when k = 3 and chain length is unbounded. We can see that the average length of

chains for instances in the set DA1 is around three 3, with one exception. This re-

sult is interesting because having such size the transplants can be conducted as DPD

chains. On the contrary, the average length of chains for instances in the set DM is

by far larger than 3. For not too long chains, it is possible and likely advantageous

to perform them as NEAD chains, but for chains exceeding hundreds of transplants,

it seems unlikely to perform them all successfully, even under the scheme of NEAD

chains, because there are multiple complications related to health condition, reneg-

ing, last-minute incompatibilities and others, that may occur, making the chain fail



Chapter 4. Computational Experiments 59

PDPsR NDDsR aVars alazyC atsep

114-216 3-21 3 980.00 8 311.00 0.93

221-236 22-34 6 884.40 6 383.40 2.63

241-285 5-23 9 136.50 9 429.40 3.28

289-317 6-27 11 975.90 8 403.00 3.17

324-343 6-46 13 746.80 13 682.00 2.76

343-348 46-46 13 191.60 18 964.80 4.87

348-365 43-48 13 602.00 8 125.00 3.52

365-379 39-50 15 154.20 1 546.30 0.64

386-474 49-50 20 893.42 2 126.33 1.34

Table 4.12: Size of AA formulation for DA1 [ DA2 instances.

Instance
1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

 20%

 40%

 60%

 80%

100%
Set DA1

Matches Increase
Chains contribution

Instance
1 2 3 4 5 6 7

P
er

ce
nt

ag
e

  0%

 20%

 40%

 60%

 80%

100%
Set DM

Matches Increase
Chains contribution

Figure 4.3: Comparison of number of matches obtained from considering only cycles and

considering both cycles and chains.

and a↵ecting kidney-failure patients and living donors beyond the broken link.

In our last experiment, we have assessed the variation in the objective function

(the sum of weights) for instances in sets DA1 and DM considering di↵erent versions

of the KEP seen throughout this thesis. Columns k = 2 and k = l = 2 in Table 4.13,



Chapter 4. Computational Experiments 60

Instance
1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 le
ng

th
, k

 =
 3

, l
=
�

0

2

4

6

8

10

12

Set DA1

Chains
Cycles

Instance
1 2 3 4 5 6 7

A
ve

ra
ge

 le
ng

th
, k

 =
 3

, l
=
�

0

50

100

150

200

250

300

Set DM

Chains
Cycles

Figure 4.4: Solution composition for the chain-and-cycle variant of the KEP.

represent a maximum matching problem, which can be solved in polynomial time.

The models were solved with a time limit of 1,200.00 CPU seconds. The table

displays optimal objective function values, or best feasible solution found after the

time limit, indicated by a star (*). It is worth mentioning that although k = l,

the number of real exchanges in the graph arranged in chains are actually l � 1 as

we added a dummy edge (with zero weight) from each node to each NDD to treat

chains as cycles (see Chapter 2). Comparing the objective values of columns k = 2

and k = l = 2 to the others, we can see that the introduction of altruist donors

(NDDs) gives a significant benefit in the DA1 instances. This benefit is even higher

in the DM instances. Additionally, if we keep k constant and allow chains, then

we observe NDDs have a positive impact on the number of transplants conducted.

For set DA1, allowing chains of maximum length equal three has roughly the same

e↵ect in the objective function than having unbounded chains. On the contrary, for

set DM the increase is noticeable when chains can be longer than three. Moreover,

instances in set DA1 seem to be more sensitive to k, i.e., the objective improves as

k gets large. For instances in set DM, however, chains seem to have a heavier e↵ect

on the number of exchanges than cycles do.



Chapter 4. Computational Experiments 61

Instance
Only Cycles Cycles and Chains

k = 2 k = 3 k = 4 k = l = 2 k = l = 3 k = l = 4 k = 2, l =1 k = 3, l =1

DA1

1 6.000 11.005 15.005 9.110 14.115 18.115 9.110 14.115

2 4.000 6.005 8.015 5.005 7.010 9.020 11.020 11.020

3 4.000 8.010 10.015 5.000 9.010 11.015 5.000 9.010

4 4.000 11.010 13.005 7.000 14.010 16.005 7.000 14.010

5 4.000 6.005 8.500 7.000 9.005 11.500 7.000 9.005

6 4.000 6.205 7.305 5.005 9.205 10.305 7.000 9.205

7 12.005 17.005 21.015 14.015 20.025 24.035 15.025* 20.025*

8 6.005 8.100 10.100 7.010 10.105 12.105 8.010 10.105

9 4.100 6.005 8.005 6.100 8.105 10.105 6.200 8.105

10 5.000 7.005 14.010 8.000 10.005 17.010 8.000 10.005

DM

1 92.000 289.000 426.000 133.000 358.000 497.000 626.000 626.000

2 181.000 552.000 779.000 228.000 626.000 875.000 1 202.000 1 203.000

3 627.000 888.000 934.000* 656.000 903.000 947.000 988.000 988.000

4 279.000 662.000 817.000* 292.000 681.000 838.000 952.000 952.000

5 429.000 1 338.000 1 849.000* 455.000 1 380.000 1 893.000* 2 354.000 2 354.000

6 953.000 2 130.000 2 474.000* 961.000 2 140.000 2 514.000* 2 909.000 2 909.000

7 691.000 1 542.000 1 716.000* 701.000 1 549.000* 1 723.000* 1 929.000 1 929.000

Table 4.13: Comparison of solutions under di↵erent policies for cycles and/or chains

allowed in the KEP.



Chapter 5

Conclusions

In this thesis we addressed the Kidney Exchange Problem, also called the Kidney

Paired Donation Problem, which arises as an alternative solution for patients with

non-living compatible donors. Traditionally, patients in need of a kidney have two

sources to obtain one: a living compatible donor or a deceased donor from the waiting

list. In almost all countries around the world, deceased donors’ kidneys cannot cover

the high demand of patients in need, making the wait very long for many of them

and compromising their survival chances. The former, although preferable, was

limited to relatives and close friends, sometimes incompatible with the intended

recipient. A decade ago, Operations Research techniques were used for the first time

to solve the underlying optimization problem of a new centralized system of kidney

transplantation in the USA. This has been spread out years later in many developed

countries around the world, in the form of National Kidney Exchange Programs.

These kidney exchange programs have a primary role of gathering a collection of

biological incompatible patient-donor pairs and use KEP models for finding the

best possible ways of performing the kidney exchanges. Those swaps were initially

simultaneously performed in such a way that exchanges formed a cycle, limited by a

small number or pairs mainly for logistical issues. It was based on these conditions

that the first IP formulations started to emerge. But then, a new element, besides

incompatible pairs, came into play in this problem: altruist donors, that is, people

62



Chapter 5. Conclusions 63

willing to donate a kidney to anybody in need without requiring one in return.

The direct impact of this new element was that now chains, in addition to cyclic

exchanges, were also possible. The discussion became on how long these chains

should be and whether they should be conducted simultaneously or not, giving rise

to the current versions of the KEP, most of them addressed in this research.

Particularly, the Edge Formulation and the Cycle Formulation were the two

pioneering IP formulations. From the literature review, we observed how the “curse

of dimensionality” a↵ected specially the Edge Formulation and other IP formulations

based on it. Therefore, we oriented our research to the compatibility KEP graph

structure. As a result, we found its close relation with connectivity properties that,

to the best of our knowledge, were never applied before to the KEP. Based on

this, we proposed two new edge-related formulations when either the graph can be

partitioned into several SCCs or in any case, even when the graph is itself a strongly

connected component.

In this thesis we assess ten di↵erent IP formulations for several variants of the

KEP: seven from the existing literature (the Cycle Formulation, the Edge Formu-

lation, the Extended Edge Formulation, the Exponential-sized SPLIT Formulation,

the Polynomial-sized SPLIT Formulation, the Anderson’s Arc-based Formulation

and the PC-TSP Formulation) and three new formulations proposed in this work

(the Partitioned Edge Formulation, the Partitioned and Reduced Edge Formulation

and the Reduced Exponential-sized SPLIT Formulation.

The PC-TSP Formulation, which is based on the Cycle Formulation and the

cut-set families seen in Section 3.2.2 performed poorly, although the Cycle Formula-

tion by itself showed outstanding performance. For instances in the set AN, we ran

out of memory when implementing the Edge Formulation for the largest instances

and it took longer to find feasible and optimal solutions than the Partitioned Edge

Formulation and the Partitioned and Reduced Edge Formulation. The latter worked

better as the size of the instance increased. Overall, edge-based IP formulations



Chapter 5. Conclusions 64

failed to solve instances in set DM, only the Cycle Formulation could do it, finding

six optimal solutions out of seven. Additionally, when considering unbounded chains

and cycles, the proposed Reduced Exponential-sized SPLIT Formulation performed

clearly better than the other formulations, including the original Exponential-sized

SPLIT Formulation.

We also observed, when comparing cycle-only formulations (with k=2 and

k=3) and cycle-and-chain formulations, that the benefit of allowing cycles of size

3 over cycles of size 2 resulted in a gain of twice as much the objective function

value (see Table 4.13). In addition, when we also allow cycles (k=2) and chains we

generally obtained substantial benefits in terms of weighted matches when chains

are unbounded. This suggests that it is very important to set public policies that

encourage people the culture of altruistic donation.

5.1 Summary of Research Contributions

• We conducted a vast empirical comparison between existing and new IP formu-

lations for several variants of the KEP on data from realistic instances based

on the NKR pool and randomly-generated instances, as well.

• We apply graph theory concepts to produce a natural partition of the graph,

that allows us to solve separately each subgraph induced by the non-trivial

strongly connected components when we are concerned on finding only cycles.

In fact, any formulation can be used to solve separately such subproblems. To

this end, we presented three new formulations based on the Edge Formulation,

one of the pioneering KEP formulations, reducing significantly the number of

constraints needed by the initial formulation. Two of the proposed formula-

tions are flexible enough as they do not depend on whether the graph is a single

SCC or not to be useful, that is, these formulations can always be applied to

any graph. These findings helped us to show that if we model the Edge For-



Chapter 5. Conclusions 65

mulation as we illustrated throughout this thesis, we can frequently replace

the exponentially sized set of constraints into a set of significantly smaller

size, making the problem more tractable, and allowing the resolution of larger

instances.

• We designed an e�cient algorithm, the SCC-Based Search Algorithm, to re-

duce the set of constraints, i.e., length-k paths needed by the Edge Formulation

while keeping model equivalence. As we saw previously, the running time of

our algorithm is substantially lower that of finding the full set of length-k

paths while providing paths that in more than 70% of the cases led to infeasi-

ble cycles, guaranteeing that each cycle is forbidden by such constraints only

once.

• We provided insight on how the problem structure can a↵ect IP formulations

and conclude in which cases it is recommended the use of one or another.

• We implemented a lazy constraint scheme or recursive algorithm to solve the

AA and PC-TSP formulation. Our implementation showed to be very compet-

itive compared to the original version by Anderson et al. [4], even finding an

additional optimal solution when applying the AA formulation. Additionally,

we provided results on the PC-TSP performance, not found in the literature

to the best of our knowledge, when a similar scheme is used to solve that

formulation.

5.2 Future work

For current realistic instances it is possible to provide if not optimal a near-optimal

solution regardless the variant studied here of the KEP. However, as the size of

instances increases it is noticeable the problem becomes harder to solve and even

worst if we are allowed to find both chains and cycles. Therefore, the need of large



Chapter 5. Conclusions 66

scale optimization techniques is broadly justified. To the best of our knowledge the

size and complexity of current instances have not exceeded the best exact solution

methods in existence; however, some initiatives of multi-hospital kidney exchange

programs or even international collaborations may lead to the need of meta-heuristics

or specialized large-scale decomposition techniques in the near future.

On the other hand, there is still a huge potential of developing new KEP

versions as the needs of every country are very specific. These variants may include

considering only chains or multiple objectives. For instance, an associated problem

in practice is that patients and donors may live miles away one from each other,

making in practice a major logistic problem. Currently, this fact and some related

are taken into account within the scoring rubrics used to determine the weight of

edges. Recently, some advances on the stochastic version of the KEP have been

done in literature [2, 15, 33]. An interesting study is to compare the impact on the

number of matches passing from the deterministic version to the stochastic one in

terms of matches and to analyze which pairs are critic to get robust solutions.

From the practical standpoint, these models and algorithms can be used in

local/nation-wide databases as a tool for implementing similar kidney exchange pro-

grams in Mexico.



Appendices

67



Appendix A

The Separation Problem

In many combinatorial optimization problems there are models with an exponential

set of constraints that may yield a stronger IP formulation. Natural, these expo-

nential number of constraints cannot be explicitly written out and feed them to an

MILP solver; as it is the case for the Anderson’s Arc-based Formulation, the PC-

TSP-based Formulation, and the Edge Formulation, although in the latter we can do

so for small values of k. Instead, we start with a problem relaxation by dropping the

“di�cult” constraints, and add them only when needed. In order to detect violated

constraints and add them iteratively to the model we need to solve a separation

problem [22].

Consider the following problem OP: Maximize {cTx | x 2 X ✓ Rn}

The separation problem associated with OP is, given x̂ 2 Rn decide if x̂ 2
conv(X), and if not, find an inequality ⇡

T

x  ⇡

0

satisfied by all points in X, but

violated by x̂ : (⇡T

x � ⇡

0

).

Depending on whether x̂ is fractional or integer, there are two methods in inte-

ger programming algorithms to add such violated constraints [5, 23]: lazy constraints

and user cuts.

• Lazy constraints : When a model has a large number of constraints, sometimes

68



Appendix A. The Separation Problem 69

it is not possible to enumerate them all explicitly. One strategy to deal with

a large set of constraints is to solve initially a relaxed model leaving out those

constraints and then add them to the model only when they are violated. The

augmented model is resolved and the process continues until no violated con-

straints remain.Those constraints added iteratively are called lazy constraints.

They represent a subset of constraints of the original model. Thus, some

of such constraints or all of them, in the worst case, are needed in order to

keep model correctness. Unlike cuts, which we review below, lazy constraints

only rule out unfeasible integer solutions for the original problem. Once the

augmented model, whose solution is integer, has no more violations of lazy

constraints, that solution is optimal for the original model.

• Cuts : These are valid inequalities, that is, constraints that are satisfied by the

feasible integer solutions in a full model but violated by an infeasible point in

the solution space, so that we can eliminate that solution while guaranteeing

optimality. Cuts are not part of the original set of constraints, and therefore

they do not compromise model correctness. However, they do strengthen the

formulation and as a result speed up the convergence to optimal solutions of the

branch-and-bound algorithm. Moreover, cuts can eliminate solutions at nodes

in the branch-and-bound tree regardless of the values taken by the variables:

fractional or integer. There exists general cuts, those which can be added to

the entire model and local cuts, those which are only applicable to tree nodes.

To get optimal solutions, Anderson et al. [4] proposed an iterative procedure

that uses branch and bound and a lazy constraint generation scheme for the Ander-

son’s Arc-based Formulation and, a branch-and-cut approach for the PC-TSP-based

Formulation. In this thesis we implemented our version of that lazy constraint gen-

eration scheme within a branch-and-bound framework in order to solve the above

mentioned formulations and for the remaining ones we used the branch-and-bound

method as usual, so that we can compare all the approaches under the same con-

ditions. Then, the idea of the lazy constraint generation scheme is as follows: By



Appendix A. The Separation Problem 70

relaxing constraints (3.6) and (3.13), we obtain a problem that can be solved by

branch and bound as normal. The solution to this relaxed problem is checked for

cycles of size greater than k when dealing with Anderson’s Arc-based Formulation

and for any single cycle for the PC-TSP-based Formulation. Then, a separation

problem is solved. Anderson’s implementation takes O(|V |) when the input given

is the edges involved in the solution or O(|V |+ |E|) when it is necessary to inquire

all edges in the graph to see which ones are part of the solution and then build and

adjacency list in order to obtain the violated constraints. This is justified since in a

solution every node has indegree and outdegree of at most one, triggering the vio-

lated constraint to be added as the scheme goes on. In our case this lazy-constraint

scheme takes O(|E|) because our data structure is shaped as an adjacency list, thus,

as we query the variable values (zero or one), we build the violated constraints. Once

our procedure finds a unit weight, it goes directly to the adjacent-node row in the list

to continue checking the values until unfeasible cycles, if any, are detected. Hence,

our implementation is more e�cient when a query on the variables is required, as it

is the case when optimizing a model. In order to obtain consisting times with An-

derson’s we also implemented a Lazy Constraint Callback Function within CPLEX

to add lazy constraints while the problem is being solved, without restarting the

branch and bound.



Appendix B

Description of Data Sets

The following notation was used to characterize the instances:

• PDPs: the number of patient-donor pairs in the graph.

• NDDs: the number of altruists or bridge donors in the graph.

• Edges and EdgesPDP: the number of edges in the original graph and the

number of edges in the graph in absence of NDDs, respectively.

• w

min: the minimum value assigned to arc weights.

• w

max: the maximum value assigned to arc weights.

• File name: name given to instances by the authors who generated them.

• DM1: corresponds to the set formed by 7 instances provided by Mak-Hau [28].

• DA1: This set is made up of those instances that Anderson et al. [4] found

di�cult and reported in their paper.

• DA2: These instances were not reported in [4] but are also part of the instances

generated by their simulations.

71



Appendix B. Description of Data Sets 72

Data set Instance File name w

min

w

max

PDPs NDDs Edges

DM

1 Clin152-10-ME.dat 1.00 5.00 152 10 897

2 CLIN156-10.dat 1.00 10.00 156 10 9993

3 Clin198-7.dat 1.00 5.00 198 7 4 927

4 Clin199-3.dat 1.00 5.00 199 3 2 382

5 Clin269-3.dat 1.00 10.00 269 3 2 607

6 Clin310-1.dat 1.00 10.00 310 1 4 776

7 Clin389-2.dat 1.00 5.00 389 2 7 565

DA1

1 BinputData198 7.csv 1.00 2.00 198 7 4 882

2 BinputData202 3.csv 1.00 1.05 202 3 4 706

3 BinputData215 6.csv 1.00 1.05 215 6 6 145

4 BinputData261 6.csv 1.00 2.00 261 6 8 915

5 BinputData263 6.csv 1.00 2.00 263 6 8 939

6 BinputData284 5.csv 1.00 2.00 284 5 10 126

7 BinputData312 6.csv 1.00 1.05 312 6 13 045

8 BinputData324 6.csv 1.00 2.00 324 6 13 175

9 BinputData328 6.csv 1.00 2.00 328 6 13 711

10 BinputData330 6.csv 1.00 3.00 330 6 13 399

DA2

1 r10p114t0e1785time196.0.csv 0.10 2.00 114 10 1 785

2 r13p115t0e1519time224.0.csv 1.01 2.00 115 13 1 519

3 r13p120t0e1744time224.0.csv 1.01 2.00 120 13 1 744

4 r17p155t0e2629time364.0.csv 1.01 2.00 155 17 2 629

5 r17p175t0e5608time343.0.csv 1.10 2.00 175 17 5 608

6 r21p191t0e3965time490.0.csv 1.01 2.00 191 21 3 965

7 r22p216t0e6817time532.0.csv 0.15 2.00 216 22 6 817

8 r22p221t0e7184time539.0.csv 0.15 2.00 221 22 7 184

9 r22p224t0e7365time546.0.csv 0.15 2.00 224 22 7 365

10 r22p230t0e7687time553.0.csv 0.15 2.00 230 22 7 687

11 r23p230t0e7592time560.0.csv 0.15 2.00 230 23 7 592

12 r23p236t0e8015time567.0.csv 0.15 2.00 236 23 8 015

13 r23p241t0e8595time574.0.csv 1.10 2.00 241 23 8 595

14 r23p246t0e8967time581.0.csv 1.10 2.00 246 23 8 967

15 r23p248t0e9104time609.0.csv 0.15 2.00 248 23 9 104

16 r23p254t0e9547time616.0.csv 0.15 2.00 254 23 9 547

17 r27p274t0e10127time707.0.csv 0.10 2.00 274 27 10 127

18 r27p285t0e9006time784.0.csv 1.01 2.00 285 27 9 006

19 r27p289t0e9771time784.0.csv 1.01 6.00 289 27 9 771

20 r34p230t0e6015time672.0.csv 1.01 2.00 230 34 6 015

21 r34p231t0e6309time672.0.csv 1.01 2.00 231 34 6 309

22 r34p232t0e6125time672.0.csv 1.01 2.00 232 34 6 125

23 r34p232t0e6138time672.0.csv 1.01 2.00 232 34 6 138

24 r34p233t0e6414time672.0.csv 1.01 2.00 233 34 6 414

25 r34p304t0e12925time756.0.csv 0.10 2.00 304 34 12 925

26 r34p310t0e13539time763.0.csv 0.10 2.00 310 34 13 539

Continued on next page.



Appendix B. Description of Data Sets 73

Data set Instance File name Lowest wij Greatest wij PDPs NDDs Edges

27 r34p334t0e18109time763.0.csv 1.10 2.00 334 34 18 109

28 r35p305t0e10941time840.0.csv 1.01 2.00 305 35 10 941

29 r35p312t0e14001time812.0.csv 0.10 2.00 312 35 14 001

30 r35p317t0e13895time791.0.csv 0.10 2.00 317 35 13 895

31 r35p317t0e14600time812.0.csv 0.15 2.00 317 35 14 600

32 r35p326t0e16889time812.0.csv 1.10 2.00 326 35 16 889

33 r36p300t0e8683time868.0.csv 1.01 2.00 300 36 8 683

34 r39p285t0e8039time903.0.csv 1.01 2.00 285 39 8 039

35 r39p291t0e8359time903.0.csv 1.01 2.00 291 39 8 359

36 r39p367t0e18615time938.0.csv 0.10 2.00 367 39 18 615

37 r43p364t0e14665time1015.0.csv 1.01 2.00 364 43 14 665

38 r43p365t0e14772time1015.0.csv 1.01 2.00 365 43 14 772

39 r45p342t0e11474time1050.0.csv 1.01 2.00 342 45 11 474

40 r46p339t0e12528time1001.0.csv 1.00 1.00 339 46 12 528

41 r46p341t0e12619time1001.0.csv 1.01 2.00 341 46 12 619

42 r46p342t0e12932time1001.0.csv 1.01 2.00 342 46 12 932

43 r46p343t0e12632time1001.0.csv 1.00 1.01 343 46 12 632

44 r46p343t0e13072time1001.0.csv 1.01 2.00 343 46 13 072

45 r46p345t0e12827time1001.0.csv 1.00 1.01 345 46 12 827

46 r46p346t0e13498time1001.0.csv 1.01 2.00 346 46 13 498

47 r46p346t0e13835time1001.0.csv 1.01 6.00 346 46 13 835

48 r46p347t0e12682time1001.0.csv 1.00 1.01 347 46 12 682

49 r46p347t0e13057time1001.0.csv 1.00 1.01 347 46 13 057

50 r46p347t0e13209time1001.0.csv 1.01 6.00 347 46 13 209

51 r46p348t0e13189time1001.0.csv 1.00 1.01 348 46 13 189

52 r46p348t0e13201time1008.0.csv 1.01 2.00 348 46 13 201

53 r46p348t0e13346time1008.0.csv 1.01 2.00 348 46 13 346

54 r46p348t0e13484time1001.0.csv 1.01 6.00 348 46 13 484

55 r46p348t0e13490time1001.0.csv 1.01 6.00 348 46 13 490

56 r46p349t0e12545time1001.0.csv 1.00 1.00 349 46 12 545

57 r46p349t0e13269time1001.0.csv 1.01 2.00 349 46 13 269

58 r46p350t0e13112time1001.0.csv 1.00 1.01 350 46 13 112

59 r46p350t0e13614time1001.0.csv 1.01 6.00 350 46 13 614

60 r46p366t0e15573time1036.0.csv 1.01 2.00 366 46 15 573

61 r47p379t0e15206time1071.0.csv 1.01 2.00 379 47 15 206

62 r47p379t0e15246time1071.0.csv 1.01 2.00 379 47 15 246

63 r48p365t0e14014time1092.0.csv 1.01 2.00 365 48 14 014

64 r48p365t0e14133time1092.0.csv 1.01 2.00 365 48 14 133

65 r48p366t0e14295time1092.0.csv 1.01 2.00 366 48 14 295

66 r48p368t0e13651time1089.0.csv 1.01 2.00 368 48 13 651

67 r48p374t0e15390time1092.0.csv 1.01 2.00 374 48 15 390

68 r48p377t0e15918time1092.0.csv 1.01 2.00 377 48 15 918

69 r49p362t0e13055time1113.0.csv 1.00 1.01 362 49 13 055

70 r49p414t0e22616time1092.0.csv 0.10 2.00 414 49 22 616

Continued on next page.



Appendix B. Description of Data Sets 74

Data set Instance File name Lowest wij Greatest wij PDPs NDDs Edges

71 r49p434t0e27100time1092.0.csv 0.15 2.00 434 49 27 100

72 r49p457t0e32295time1092.0.csv 1.10 2.00 457 49 32 295

73 r50p371t0e13515time1127.0.csv 1.01 2.00 371 50 13 515

74 r50p386t0e14856time1127.0.csv 1.00 1.01 386 50 14 856

75 r50p387t0e15771time1134.0.csv 1.01 2.00 387 50 15 771

76 r50p474t0e34772time1127.0.csv 1.10 2.00 474 50 34 772

Table B.1: Full set of original instances.

Table B.2 shows instances in Table B.1 ordered by increasing number of PDPs

and allocated within subsets named PDPsR. Each of them contains 10 instances,

except the last one with 6 instances.

PDPsR Data set Instance File name

114-216

DA2 1 r10p114t0e1785time196.0.csv

DA2 2 r13p115t0e1519time224.0.csv

DA2 3 r13p120t0e1744time224.0.csv

DA2 4 r17p155t0e2629time364.0.csv

DA2 5 r17p175t0e5608time343.0.csv

DA2 6 r21p191t0e3965time490.0.csv

DA1 1 BinputData198 7.csv

DA1 2 BinputData202 3.csv

DA1 3 BinputData215 6.csv

DA2 7 r22p216t0e6817time532.0.csv

221-236

DA2 8 r22p221t0e7184time539.0.csv

DA2 9 r22p224t0e7365time546.0.csv

DA2 10 r22p230t0e7687time553.0.csv

DA2 11 r23p230t0e7592time560.0.csv

DA2 20 r34p230t0e6015time672.0.csv

DA2 21 r34p231t0e6309time672.0.csv

DA2 22 r34p232t0e6125time672.0.csv

DA2 23 r34p232t0e6138time672.0.csv

DA2 24 r34p233t0e6414time672.0.csv

DA2 12 r23p236t0e8015time567.0.csv

241-285

DA2 13 r23p241t0e8595time574.0.csv

DA2 14 r23p246t0e8967time581.0.csv

DA2 15 r23p248t0e9104time609.0.csv

DA2 16 r23p254t0e9547time616.0.csv

DA1 4 BinputData261 6.csv

DA1 5 BinputData263 6.csv

DA2 17 r27p274t0e10127time707.0.csv

Continued on next page



Appendix B. Description of Data Sets 75

PDPsR Data Set Instance File name

DA1 6 BinputData284 5.csv

DA2 18 r27p285t0e9006time784.0.csv

DA2 34 r39p285t0e8039time903.0.csv

289-317

DA2 19 r27p289t0e9771time784.0.csv

DA2 35 r39p291t0e8359time903.0.csv

DA2 33 r36p300t0e8683time868.0.csv

DA2 25 r34p304t0e12925time756.0.csv

DA2 28 r35p305t0e10941time840.0.csv

DA2 26 r34p310t0e13539time763.0.csv

DA1 7 BinputData312 6.csv

DA2 29 r35p312t0e14001time812.0.csv

DA2 30 r35p317t0e13895time791.0.csv

DA2 31 r35p317t0e14600time812.0.csv

324-343

DA1 8 BinputData324 6.csv

DA2 32 r35p326t0e16889time812.0.csv

DA1 9 BinputData328 6.csv

DA1 10 BinputData330 6.csv

DA2 27 r34p334t0e18109time763.0.csv

DA2 40 r46p339t0e12528time1001.0.csv

DA2 41 r46p341t0e12619time1001.0.csv

DA2 39 r45p342t0e11474time1050.0.csv

DA2 42 r46p342t0e12932time1001.0.csv

DA2 43 r46p343t0e12632time1001.0.csv

343-348

DA2 44 r46p343t0e13072time1001.0.csv

DA2 45 r46p345t0e12827time1001.0.csv

DA2 46 r46p346t0e13498time1001.0.csv

DA2 47 r46p346t0e13835time1001.0.csv

DA2 48 r46p347t0e12682time1001.0.csv

DA2 49 r46p347t0e13057time1001.0.csv

DA2 50 r46p347t0e13209time1001.0.csv

DA2 51 r46p348t0e13189time1001.0.csv

DA2 52 r46p348t0e13201time1008.0.csv

DA2 53 r46p348t0e13346time1008.0.csv

348-365

DA2 54 r46p348t0e13484time1001.0.csv

DA2 55 r46p348t0e13490time1001.0.csv

DA2 56 r46p349t0e12545time1001.0.csv

DA2 57 r46p349t0e13269time1001.0.csv

DA2 58 r46p350t0e13112time1001.0.csv

DA2 59 r46p350t0e13614time1001.0.csv

DA2 69 r49p362t0e13055time1113.0.csv

DA2 37 r43p364t0e14665time1015.0.csv

DA2 38 r43p365t0e14772time1015.0.csv

DA2 63 r48p365t0e14014time1092.0.csv

365-379

DA2 64 r48p365t0e14133time1092.0.csv

Continued on next page



Appendix B. Description of Data Sets 76

PDPsR Data Set Instance File name

DA2 60 r46p366t0e15573time1036.0.csv

DA2 65 r48p366t0e14295time1092.0.csv

DA2 36 r39p367t0e18615time938.0.csv

DA2 66 r48p368t0e13651time1089.0.csv

DA2 73 r50p371t0e13515time1127.0.csv

DA2 67 r48p374t0e15390time1092.0.csv

DA2 68 r48p377t0e15918time1092.0.csv

DA2 61 r47p379t0e15206time1071.0.csv

DA2 62 r47p379t0e15246time1071.0.csv

386-474

DA2 74 r50p386t0e14856time1127.0.csv

DA2 75 r50p387t0e15771time1134.0.csv

DA2 70 r49p414t0e22616time1092.0.csv

DA2 71 r49p434t0e27100time1092.0.csv

DA2 72 r49p457t0e32295time1092.0.csv

DA2 76 r50p474t0e34772time1127.0.csv

Table B.2: Codification of instances into sets PDPsR



Appendix C

Reduced instances for the Cycle

Variant KEP Formulations

The following instances are those from Table B.1 but considering that the graphs

contain PDPs only. These instances were used to test the cycle variant IP formula-

tions.

The following notation is used to characterize the instances:

• EdgesPDP: Number of remaining edges in the graph after removing NDDs.

• EdgesPDP(p): Number of edges in all the non-trivial SCCs, in which the

original graph could be partitioned.

• PDP(p): number of pair nodes in all the non-trivial SCCs, in which the original

graph could be partitioned.

• nSCC: number of SCCs in which the original graph could be partitioned.

Data set Instance File name PDPs EdgesPDP nSCC PDP(p) EdgesPDP(p)

DM

1 Clin152-10-ME.dat 152 897 1 152 897

2 CLIN156-10.dat 156 954 1 154 948

3 Clin198-7.dat 198 4 740 1 198 4 740

4 Clin199-3.dat 199 2 341 1 199 2 341

Continued on next page

77



Appendix C. Reduced instances for the Cycle Variant KEP Formulations78

Data Set Instance File Name PDPs EdgesPDP nSCC PDP(p) EdgesPDP(p)

5 Clin269-3.dat 269 2 583 1 269 2 583

6 Clin310-1.dat 310 4 760 1 310 4 760

7 Clin389-2.dat 389 7 535 1 389 7 535

DA1

1 BinputData198 7.csv 198 4 874 1 67 474

2 BinputData202 3.csv 202 4 704 1 55 266

3 BinputData215 6.csv 215 6 137 1 48 183

4 BinputData261 6.csv 261 8 902 1 60 437

5 BinputData263 6.csv 263 8 926 1 55 286

6 BinputData284 5.csv 284 10 113 1 68 547

7 BinputData312 6.csv 312 13 041 1 95 791

8 BinputData324 6.csv 324 13 172 1 65 311

9 BinputData328 6.csv 328 13 692 1 75 393

10 BinputData330 6.csv 330 13 381 1 63 583

DA2

1 r10p114t0e1785time196.0.csv 114 1 779 2 42 358

2 r13p115t0e1519time224.0.csv 115 1 500 1 58 356

3 r13p120t0e1744time224.0.csv 120 1 722 1 63 489

4 r17p155t0e2629time364.0.csv 155 2 608 1 87 678

5 r17p175t0e5608time343.0.csv 175 5 538 1 121 3 036

6 r21p191t0e3965time490.0.csv 191 3 945 1 81 335

7 r22p216t0e6817time532.0.csv 216 6 784 2 49 440

8 r22p221t0e7184time539.0.csv 221 7 143 2 56 482

9 r22p224t0e7365time546.0.csv 224 7 324 2 58 534

10 r22p230t0e7687time553.0.csv 230 7 644 2 62 599

11 r23p230t0e7592time560.0.csv 230 7 545 2 59 552

12 r23p236t0e8015time567.0.csv 236 7 968 2 66 697

13 r23p241t0e8595time574.0.csv 241 8 536 2 61 605

14 r23p246t0e8967time581.0.csv 246 8 908 2 62 612

15 r23p248t0e9104time609.0.csv 248 9 054 2 59 482

16 r23p254t0e9547time616.0.csv 254 9 497 2 61 503

17 r27p274t0e10127time707.0.csv 274 10 038 2 60 539

18 r27p285t0e9006time784.0.csv 285 9 006 1 40 330

19 r27p289t0e9771time784.0.csv 289 9 771 1 45 448

20 r34p230t0e6015time672.0.csv 230 5 996 1 98 537

21 r34p231t0e6309time672.0.csv 231 6 289 1 107 533

22 r34p232t0e6125time672.0.csv 232 6 107 1 111 469

23 r34p232t0e6138time672.0.csv 232 6 119 1 99 475

24 r34p233t0e6414time672.0.csv 233 6 396 1 102 567

25 r34p304t0e12925time756.0.csv 304 12 852 2 37 156

26 r34p310t0e13539time763.0.csv 310 13 466 2 39 173

27 r34p334t0e18109time763.0.csv 334 18 013 1 237 9 311

28 r35p305t0e10941time840.0.csv 305 10 809 1 101 791

29 r35p312t0e14001time812.0.csv 312 13 846 2 57 417

30 r35p317t0e13895time791.0.csv 317 13 815 2 73 874

31 r35p317t0e14600time812.0.csv 317 14 484 2 60 492

Continued on next page



Appendix C. Reduced instances for the Cycle Variant KEP Formulations79

Data Set Instance File Name PDPs EdgesPDP nSCC PDP(p) EdgesPDP(p)

32 r35p326t0e16889time812.0.csv 326 16 752 2 85 1 098

33 r36p300t0e8683time868.0.csv 300 8 647 1 100 811

34 r39p285t0e8039time903.0.csv 285 8 021 2 28 124

35 r39p291t0e8359time903.0.csv 291 8 342 1 150 974

36 r39p367t0e18615time938.0.csv 367 18 488 2 97 1 493

37 r43p364t0e14665time1015.0.csv 364 14 619 1 170 675

38 r43p365t0e14772time1015.0.csv 365 14 728 1 162 582

39 r45p342t0e11474time1050.0.csv 342 11 466 1 60 357

40 r46p339t0e12528time1001.0.csv 339 12 528 1 44 340

41 r46p341t0e12619time1001.0.csv 341 12 619 1 48 372

42 r46p342t0e12932time1001.0.csv 342 12 932 1 53 538

43 r46p343t0e12632time1001.0.csv 343 12 632 1 50 466

44 r46p343t0e13072time1001.0.csv 343 13 072 1 54 530

45 r46p345t0e12827time1001.0.csv 345 12 827 1 57 532

46 r46p346t0e13498time1001.0.csv 346 13 498 1 55 584

47 r46p346t0e13835time1001.0.csv 346 13 835 1 54 578

48 r46p347t0e12682time1001.0.csv 347 12 682 1 51 472

49 r46p347t0e13057time1001.0.csv 347 13 057 1 52 502

50 r46p347t0e13209time1001.0.csv 347 13 209 1 53 522

51 r46p348t0e13189time1001.0.csv 348 13 189 1 51 487

52 r46p348t0e13201time1008.0.csv 348 13 200 1 49 391

53 r46p348t0e13346time1008.0.csv 348 13 346 1 53 538

54 r46p348t0e13484time1001.0.csv 348 13 484 1 54 527

55 r46p348t0e13490time1001.0.csv 348 13 490 1 54 559

56 r46p349t0e12545time1001.0.csv 349 12 545 1 48 392

57 r46p349t0e13269time1001.0.csv 349 13 269 1 55 560

58 r46p350t0e13112time1001.0.csv 350 13 112 1 53 532

59 r46p350t0e13614time1001.0.csv 350 13 614 1 56 595

60 r46p366t0e15573time1036.0.csv 366 15 565 2 53 249

61 r47p379t0e15206time1071.0.csv 379 15 199 1 28 191

62 r47p379t0e15246time1071.0.csv 379 15 239 1 67 676

63 r48p365t0e14014time1092.0.csv 365 14 006 1 106 1 106

64 r48p365t0e14133time1092.0.csv 365 14 124 1 107 1 103

65 r48p366t0e14295time1092.0.csv 366 14 287 1 108 1 146

66 r48p368t0e13651time1089.0.csv 368 13 651 1 53 446

67 r48p374t0e15390time1092.0.csv 374 15 382 1 113 1 270

68 r48p377t0e15918time1092.0.csv 377 15 903 1 116 1 481

69 r49p362t0e13055time1113.0.csv 362 13 045 1 40 351

70 r49p414t0e22616time1092.0.csv 414 22 394 2 54 407

71 r49p434t0e27100time1092.0.csv 434 26 879 2 75 925

72 r49p457t0e32295time1092.0.csv 457 32 086 1 330 17 055

73 r50p371t0e13515time1127.0.csv 371 13 515 1 39 260

74 r50p386t0e14856time1127.0.csv 386 14 856 1 43 329

75 r50p387t0e15771time1134.0.csv 387 15 764 1 64 513

Continued on next page



Appendix C. Reduced instances for the Cycle Variant KEP Formulations80

Data Set Instance File Name PDPs EdgesPDP nSCC PDP(p) EdgesPDP(p)

76 r50p474t0e34772time1127.0.csv 474 34 537 2 161 5 315

Table C.1: Instances for the cycle variant: Reduction on the input size.



Appendix D

Compatibility Evaluation

To find out if a patient and a potential donor are a kidney match, there are three

main blood tests that are typically applied. These are blood typing, HLA typing,

and cross-matching. The following information was taken from [10, 32, 44, 45, 46].

D.1 Blood Typing (ABO Compatibility)

Blood typing is the first blood test that determines if the potential donor’s blood is

a compatible match with the patient’s blood. This test measures blood antibodies

that react with di↵erent blood groups. There are 4 di↵erent blood types. The most

common blood type in the population is type O. The next most common is blood

type A, then B, and the rarest is blood type AB. The blood type of the donor must

be compatible with the recipient. The rules for blood type in transplantation are

the same as they are for blood transfusion. Some blood types can give to others and

some may not. Blood type O is considered the universal donor. People with blood

type O can give to any other blood type. Blood type AB is called the universal

recipient because they can receive an organ or blood from people with any blood

type. The Rh factor (+ or -) of blood does not matter. Table D.1 depicts which

blood types are compatible.

81



Appendix D. Compatibility Evaluation 82

Recipient’s Blood Type Donor’s Blood Type

O O

A A or O

B B or O

AB A, B, AB or O

Table D.1: Blood type compatibility chart: O is the universal donor and AB is the

universal recipient.

If the donor’s blood type works with the patient blood type, the donor will

take the next blood test (tissue typing).

D.2 HLA Typing

HLA typing is also called “tissue typing”. HLA stands for human leukocyte antigen.

The first blood test is to determine the tissue (HLA) type of the patient and the

potential donor to see how well they match. This test identifies certain proteins in

a patient’s blood called antigens. Antigens are markers on the cells in people body,

which help the body, tell the di↵erence between self and non-self. This allows the

body to protect itself by recognizing and attacking something that does not belong

to it such as bacteria or viruses.

The body also sees antigens on a transplanted organ that are di↵erent from its

own and it sends white blood cells to attack the organ. When the body attacks the

new organ, it is rejecting it. Although there are many di↵erent antigens, there are

six, which have been identified as having an important role in transplantation. They

are the A, B, and DR antigens. There are two antigens for each letter and they are

identified by numbers. Thus, a HLA type might look something like this:

A2, A30 B8, B70 DR3, DR8

People inherit these from their parents, three (A, B, and DR) from their mother



Appendix D. Compatibility Evaluation 83

and three (A, B, and DR) from their father. Children born of the same parents may

inherit the same combination or a di↵erent combination of antigens. If someone

has brothers or sisters, there is a 25% chance that she will have inherited the same

six antigens as one of them, a 50% chance of having three of the same antigens

and a 25% chance of having none of the same antigens. Except for identical twins

and some brothers and sisters, it is very rare to get an exact match between two

people, especially if they are unrelated. The chance of finding an exact match with

an unrelated donor is about one in 100,000. Although transplantation centers try

to match antigens as much as possible for kidney and pancreas recipients, they do

transplant organs into recipients who have no antigens in common, and these patients

do very well.

The second blood test measures antibodies to HLA; this test is done for the

patient only and is repeated frequently (sometimes monthly but less often depen-

dent upon the transplant program policy). HLA antibodies can be harmful to the

transplanted organ and they can increase or decrease over time so they must be

measured while waiting for a transplant, immediately before a transplant surgery,

and sometimes following transplantation. If a patient has HLA antibodies in their

blood, they are considered HLA “sensitized” and it is best to find a donor with

HLA types that avoid the HLA antibodies in the patient’s blood. Importantly, HLA

antibody levels can change following events such as blood transfusions, miscarriages,

minor surgeries (including dental work or fistula replacement) or severe infections.

In order to determine whether or not a patient already has any specific HLA

antibodies, a lab specialist will test a patient’s blood (serum) against lymphocytes

(white blood cells) obtained from a panel of about 100 blood donors. These 100

donors represent the potential HLA makeup for a donor from that area. Percent

PRA (%PRA) is the number of reactions within that panel. PRA stands for Panel

Reactive Antibodies. If a candidate’s serum does not react with any of the donor

samples, the candidate is not sensitized and has a PRA of 0. If a candidate’s serum

reacts in 80 out of 100 samples, the patient has a PRA of 80%. Theoretically, that



Appendix D. Compatibility Evaluation 84

means that if a donor becomes available from that donor pool, the recipient would

experience acute rejection 8 out of 10 times. That patient might have to wait a very

long time until a compatible donor becomes available. As mentioned above, HLA

antibodies can vary over time and so the %PRA can also change.

D.3 Cross-matching

A serum cross-match is a blood test applied several times to both a patient and

the donor, including right before the transplant surgery. To do the test, cells from

the donor are mixed with patient’s serum. If patient’s serum has antibodies against

the donor’s cells, the antibodies will bind the donor cells and be detected using

a fluorescent detection method. If these antibodies are at high levels, the donor

cells will be destroyed. This is called a positive cross-match and it means that the

transplant cannot take place. To do so would result in immediate rejection of the

transplanted kidney.



Bibliography

[1] D. J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter

exchange markets: Enabling nationwide kidney exchanges. In Proceedings of

the 8th ACM Conference on Electronic Commerce, pages 295–304, San Diego,

USA, June 2007.

[2] F. Alvelos. Maximizing expected number of transplants in kidney exchange

programs. Electronic Notes in Discrete Mathematics, 52:269–276, 2016.

[3] R. Anderson, I. Ashlagi, D. Gamarnik, M. Rees, A. E. Roth, T. Sönmez, and

M. Utku Ünver. Kidney exchange and the alliance for paired donation: Opera-

tions research changes the way kidneys are transplanted. Interfaces, 45(1):26–

42, 2015.

[4] R. Anderson, I. Ashlagi, D. Gamarnik, and A. E. Roth. Finding long chains

in kidney exchange using the traveling salesman problem. Proceedings of the

National Academy of Sciences, 112(3):663–668, 2015.

[5] R. M. Anderson. Stochastic Models and Data Driven Simulations for Healthcare

Operations. PhD thesis, Massachusetts Institute of Technology, Cambridge,

USA, 2014.

[6] I. Ashlagi, D. S. Gilchrist, A. E. Roth, and M. A. Rees. Nonsimultaneous

chains and dominos in kidney-paired donation – Revisited. American Journal

of Transplantation, 11(5):984–994, 2011.

85



Bibliography 86

[7] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network

Flows. Wiley, New York, USA, 2009.

[8] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on

the prize collecting traveling salesman problem. Mathematical Programming,

59(1):413–420, 1993.

[9] P. Biro, D. F. Manlove, and R. Rizzi. Maximum weight cycle packing in directed

graphs, with application to kidney exchange programs. Discrete Mathematics

Algorithms and Applications, 1(4):499–517, 2009.

[10] J. M. Blumberg, H. A. Gritsch, E. F. Reed, J. M. Cecka, G. S. Lipshutz,

G. M. Danovitch, S. McGuire, D. W. Gjertson, and J. L. Veale. Kidney paired

donation in the presence of donor-specific antibodies. Kidney International,

84(5):1009–1016, 2013.

[11] M. Constantino, X. Klimentova, A. Viana, and A. Rais. New insights on integer-

programming models for the kidney exchange problem. European Journal of

Operational Research, 231(1):57–68, 2013.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, Cambridge, USA, third edition, 2009.

[13] M. Desrochers. Improvements and extensions to the Miller-Tucker-Zemlin sub-

tour elimination constraints. Operations Research Letters, 10(1):27–36, 1991.

[14] J. P. Dickerson, D. F. Manlove, B. Plaut, T. Sandholm, and J. Trimble. Position-

indexed formulations for kidney exchange. In Proceedings of the 2016 ACM

Conference on Economics and Computation (EC’16), pages 25–42, ACM, New

York, USA, 2016.

[15] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Failure-aware kidney ex-

change. In Proceedings of the 14th ACM Conference on Electronic Commerce

(EC’13), pages 323–340, ACM, New York, USA, 2013.



Bibliography 87

[16] J.P. Dickerson, A. D. Procaccia, and T. Sandholm. Optimizing kidney ex-

change with transplant chains: Theory and reality. In Proceedings of the 11th

International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS’12), Volume 2, pages 711–718, International Foundation for Autonomous

Agents and Multiagent Systems, Richland, USA, 2012.

[17] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,

17:449–467, 1965.

[18] H. N. Gabow. Path-based depth-first search for strong and biconnected com-

ponents. Information Processing Letters, 74(3–4):107–114, 2000.

[19] S. E. Gentry, R. A. Montgomery, B. J. Swihart, and D. L. Segev. The roles

of dominos and nonsimultaneous chains in kidney paired donation. American

Journal of Transplantation, 9(6):1330–1336, 2009.

[20] K. M. Glorie, J. J. van de Klundert, and A. P. M. Wagelmans. Kidney ex-

change with long chains: An e�cient pricing algorithm for clearing barter ex-

changes with branch-and-price. Manufacturing & Service Operations Manage-

ment, 16(4):498–512, 2014.

[21] M. X. Goemans. Combining approximation algorithms for the prize-collecting

TSP. arXiv:0910.0553 [cs.DS], October 2009.

[22] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-

quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[23] IBM. Concert technology version 12.1 C++ API reference manual. URL:

ftp://ftp.software.ibm.com/software/websphere/ilog/docs/optimization/cplex/

refcppcplex.pdf, 2009.

[24] D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM

Journal on Computing, 4(1):77–84, 1975.



Bibliography 88

[25] X. Klimentova, F. Alvelos, and A. Viana. A new branch-and-price approach

for the kidney exchange problem. In B. Murgante, S. Misra, A. M. A. C.

Rocha, C. Torre, J. G. Rocha, M. I. Falcão, D. Taniar, B. O. Apduhan, and

O. Gervasi, editors, Computational Science and Its Applications – ICCSA 2014,

Part II, volume 8580 of Lecture Notes in Computer Science, pages 237–252,

Cham, Switzerland, 2014. Springer.

[26] G. Laporte. The traveling salesman problem: An overview of exact and approx-

imate algorithms. European Journal of Operational Research, 59(2):231–247,

1992.

[27] R. Leishman, D. Stewart, A. Kucheryavaya, L. Robbins, T. Sandholm, and

M. Aeder. Reasons for match o↵er refusals and e↵orts to reduce them in the

OPTN/UNOS kidney paired donation pilot program (KPDPP). Presented at

the American Transplant Congress, Philadelphia, USA, May 2015.

[28] Vicky Mak-Hau. On the kidney exchange problem: Cardinality constrained

cycle and chain problems on directed graphs: A survey of integer programming

approaches. Journal of Combinatorial Optimization, 33(1):35–59, 2017.

[29] S. Malik and E. Cole. Foundations and principles of the Canadian living donor

paired exchange program. Canadian Journal of Kidney Health and Disease,

1(6):1–7, 2014.

[30] D. F. Manlove and G. O’Malley. Paired and altruistic kidney donation in the

UK: Algorithms and experimentation. ACM Journal of Experimental Algorith-

mics, 19(2):2.6:1–2.6:21, 2014.

[31] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation

of traveling salesman problems. Journal of the ACM, 7(4):326–329, 1960.

[32] National Kidney Foundation. Blood tests for transplant. URL:

https://www.kidney.org/atoz/content/BloodTests-for-Transplant. Last visited:

February 2017.



Bibliography 89

[33] J. P. Pedroso. Maximizing expectation on vertex-disjoint cycle packing. In

B. Murgante, S. Misra, A. M. A. C. Rocha, C. Torre, J. G. Rocha, M. I. Falcão,

D. Taniar, B. O. Apduhan, and O. Gervasi, editors, Computational Science

and Its Applications – ICCSA 2014, Part II, volume 8580 of Lecture Notes in

Computer Science, pages 32–46, Cham, Switzerland, 2014. Springer.

[34] B. Plaut, J. P. Dickerson, and T. Sandholm. Fast optimal clearing of capped-

chain barter exchanges. In Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence, pages 601–607, AAAI Press, Phoenix, USA, 2016.

[35] A. E. Roth, T. Sönmez, M. U. Ünver, F. L. Delmonico, and S. L. Saidman.

Utilizing list exchange and nondirected donation through ‘chain’ paired kidney

donations. American Journal of Transplantation, 6(11):2694–2705, 2006.

[36] A. E. Roth, T. Sönmez, and M. Utku Ünver. Kidney Exchange. The Quarterly

Journal of Economics, 119(2):457–488, 2004.

[37] A. E. Roth, T. Sönmez, and M. Utku Ünver. Pairwise kidney exchange. Journal

of Economic Theory, 125(2):151–188, 2005.

[38] A. E. Roth, T. Sönmez, and M. Utku Ünver. E�cient kidney exchange: Co-

incidence of wants in markets with compatibility-based preferences. American

Economic Review, 97(3):828–851, 2007.

[39] S. L. Saidman, A. E. Roth, T. Sönmez, M. U. Ünver, and F. L. Delmonico.

Increasing the opportunity of live kidney donation by matching for two- and

three-way exchanges. Transplantation, 81(5):773–782, 2006.

[40] Secretaŕıa de Salud, Centro Nacional de Transplantes. Estad́ısticas. URL:

http://www.cenatra.salud.gob.mx/interior/trasplante estadisticas.html. Last

visited: February 2017 (in Spanish).

[41] R. Sedgewick and K. Wayne. Algorithms. Pearson Education, Upper Saddle

River, USA, fourth edition, 2011.



Bibliography 90

[42] M. Sharir. A strong-connectivity algorithm and its applications in data flow

analysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.

[43] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972.

[44] UC Davis Transplant Center. Matching and compatibility. URL:

http://www.ucdmc.ucdavis.edu/transplant/livingdonation/donor compati-

ble.html. Last visited: February 2017.

[45] United Network for Organ Sharing (UNOS). Living donation: Information

you need to know. Document 107 R4.16, Richmond, USA, 2016. URL:

http://www.unos.org/wp-content/uploads/unos/Living Donation.pdf.

[46] U.S. Department of Health and Human Services. About

CPRA. Organ Procurement and Transplantation Network, URL:

https://optn.transplant.hrsa.gov/resources/allocation-calculators/about-

cpra/. Last visited: February 2017.



Autobiography

Lizeth Carolina Riascos Alvarez

Candidata para obtener el grado de

Maestro en Ciencias en Ingenieŕıa de Sistemas

Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Tesis:

Formulations and Algorithms for the Kidney Exchange

Problem

Naćı en Planeta Rica, municipio del departamento de Córdoba, ubicado a 45

minutos de su capital Monteŕıa. Mis padres son Simón Riascos Abdala y Licel

Alvarez Herazo. A los 16 años ingresé a la Universidad Nacional de Colombia Sede

Medelĺın al programa de Ingenieŕıa Industrial. La tesis que desarrollé fue premiada

a Mejor Trabajo de Grado en Ingenieŕıa Industrial, haciéndome acreedora de una

beca para un posgrado de mi preferencia en dicha universidad. Comencé a trabajar

desde que era estudiante, como monitora del curso Estad́ıstica II en la universidad,

trabajo que sostuve durante año y medio. Mientras cursaba mi último semestre

ingresé como practicante de loǵıstica en la fábrica de motocicletas AUTECO S.A

en Itagǘı, Colombia. Al graduarme entré en la firma de análisis de datos IDATA

S.A.S en Medelĺın hasta mi inscripción en este programa de posgrado. Durante



Bibliography 92

mis estudios de posgrado en la UANL, llevé a cabo una estancia de investigación de

cinco meses en el Programa de Posgrado de Investigación de Operaciones e Ingenieŕıa

Industrial de la Universidad de Texas en Austin, EUA.


	tesisM_2017_Caro-cover
	tesis_h1
	tesisM_2017_Caro_p4-10
	tesis_h2
	tesisM_2017_Caro_p12-107

