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Abstract

Culex quinquefasciatus Say is a vector of many pathogens of humans, and both domestic

and wild animals. Personal protection, reduction of larval habitats, and chemical control are

the best ways to reduce mosquito bites and, therefore, the transmission of mosquito-borne

pathogens. Currently, to reduce the risk of transmission, the pyrethroids, and other insecti-

cide groups have been extensively used to control both larvae and adult mosquitoes. In this

context, amino acids and acylcarnitines have never been associated with insecticide expo-

sure and or insecticide resistance. It has been suggested that changes in acylcarnitines and

amino acids profiles could be a powerful diagnostic tool for metabolic alterations. Monitoring

these changes could help to better understand the mechanisms involved in insecticide resis-

tance, complementing the strategies for managing this phenomenon in the integrated resis-

tance management. The purpose of the study was to determine the amino acids and

acylcarnitines profiles in larvae of Cx. quinquefasciatus after the exposure to different insec-

ticides. Bioassays were performed on Cx. quinquefasciatus larvae exposed to the diagnos-

tic doses (DD) of the insecticides chlorpyrifos (0.001 μg/mL), temephos (0.002 μg/mL) and

permethrin (0.01 μg/mL). In each sample, we analyzed the profile of 12 amino acids and 31

acylcarnitines by LC-MS/MS. A t-test was used to determine statistically significant differ-

ences between groups and corrections of q-values. Results indicates three changes, the

amino acids arginine (ARG), free carnitine (C0) and acetyl-carnitine (C2) that could be

involved in energy production and insecticide detoxification. We confirmed that concentra-

tions of amino acids and acylcarnitines in Cx. quinquefasciatus vary with respect to different
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insecticides. The information generated contributes to understand the possible mechanisms

and metabolic changes occurring during insecticide exposure.

Introduction

The Culex pipiens complex comprises three main species: Culex pipiens Linnaeus, Culex quin-
quefasciatus Say and Culex pallens Coquillet [1]. Cx. pipiens complex are major vectors of lym-

phatic filariasis caused by Wuchereria bancrofti in tropical and subtropical regions of Asia,

Africa, Central and South America, and the Pacific Islands. Cx. quinquefasciatus is also the

main vector for arboviral infections, such as West Nile virus, St. Louis encephalitis, Sindbis

and Rift Valley fever viruses. Members of the Cx. pipiens complex demonstrate a significant

variation in their host range, feeding behavior and female diapause [2–15]. In Cx. quinquefas-
ciatus the pyrethroid resistance has been documented [16–24]. Pyrethroid resistance in Culex
spp are conferred by two major mechanisms: detoxification by enhanced cytochrome P450

monooxygenases [25] as well as target site insensitivity (kdr) (i.e. an L1014F mutation in the

voltage sodium channel gene) [26]. Previously, Hardstone [27] selected a permethrin resistant

(1.300-fold) strain of Cx. quinquefasciatus (ISOP450) through backcrossing permethrin-resis-

tant JPAL into an SLAB (susceptible) genetic background. Permethrin resistance in ISOP450 is

mono factorial and due solely to cytochrome P450-mediated detoxification. On the other hand,

it has been well documented that deltamethrin is one of the most potent insecticides targeting

Cx. quinquefasciatus [27–30]. Besides, Culex populations may be affected by the extensive and

intensive use of insecticides even when these species are not being targeted [31]). In this con-

text, organophosphate (OP) and carbamate (CM) insecticides prevent the hydrolysis through

inhibiting the enzyme acetylcholinesterase [32]. The cross-resistance is a problem involved in

Culex where cytochrome monooxygenases (P450s) have particular interest as they are critical

for the detoxification and/or activation of xenobiotics such as drugs, pesticides, plant toxins,

chemical carcinogens and mutagens [33].

Selective pressure from xenobiotics (antibiotics, insecticides, herbicides) is a serious prob-

lem threatening the control programs for the organism of medical or economic importance.

Furthermore, there are some cases documenting that resistance is increasing in a broad range

of target organisms [34, 35]. Insecticide resistance in mosquitoes can be divided into two main

mechanisms: (a) the overproduction of detoxifying enzymes that sequester and/or degrade the

insecticide before it reaches the nervous system (metabolic detoxification) and (b) mutations

in the target site that render them less sensitive to the insecticide [36–38]. In this context, stor-

age proteins constitute a primary source of amino acids and energy for metamorphosis [39],

hormones and components of the cuticle and participate in immunity [40, 41].

Previous investigations of mitochondrial physiology in flight muscles from Ae. aegypti
revealed that the mitochondria performs an important role in DDT-sensitive reactions in both

respiration and ADP phosphorylation [42].

Acylcarnitines are metabolites of beta oxidation of fats which are good biomarkers for early

diagnosis of metabolic disorders in mammals [40–43]. With the introduction of tandem mass

spectrometry (MS/MS) in clinical chemistry in the 1990s, it became relatively easy to measure

acylcarnitines profiles. In these profiles, the mass-to-charge ratio reflects the length and com-

position of the acyl chain [44]. Reference ranges of acylcarnitines have been established for

obese rats, adult canines, plants, and recently in horses [45–48]. Lipid metabolism pathways
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have been extensively studied as fats are sources for flight muscle energy in some mosquito

species.

For the aforementioned reasons, the understanding of mitochondrial functional processes

in insects could have potential implications for dispersal, reproduction, survival, aging, insecti-

cide resistance and pathogen transmission.

To date, the role of aminoacid and acylcarnitines in insecticide resistance remain unknown.

Changes in these metabolites may result from altered biochemical pathways due to alterations

or disease [49]. Changes in acylcarnitines and amino acid profiles are a powerful diagnostic

tool for metabolic alterations [50], and could be useful indicators of deviations in metabolic

states. Monitoring these changes could be an opportunity to advance understanding the mech-

anisms of insecticide resistance, finding new control strategies. The objective of the present

study was to measure the amino acid and acylcarnitine concentrations in larvae of Cx. quin-
quefasciatus after the exposure to three different insecticides, two organophosphates and one

pyrethroid.

Materials and Methods

Mosquito sampling

Culex quinquefasciatus strain from Nuevo Leon, northeastern Mexico was propagated in

plastic containers (30x40cm) with dechlorinated water along with a 50% aqueous solution of

powdered liver protein as a food source for the larval stage. They were maintained under

laboratory conditions at a temperature of 27 ± 2˚C, relative humidity of 75 ± 2% and a LD

12:12 h photoperiod [51], until adult emergence. Individuals of F1 generation were used for

all the assays.

Larvae bioassay

Culex quinquefasciatus larvae were exposed to standard bioassays using the diagnostic dose

(DD) of the technical grade insecticides: chlorpyrifos 99.5% (0.001 μg/mL), temephos 97.5%

(0.002 μg/mL) and permethrin 99.5% (0.01 μg/mL) (ChemService, West Chester, PA) [52, 53].

Three replicates of each insecticide were prepared in standard (weight/volume) alcohol solu-

tion. Control groups were placed in recipients containing water and 1 mL of alcohol. After 24 h

of insecticide exposure all larvae that were found alive were separated from dead ones. The

alive larvae were placed individually in 1.5 mL tubes at -80˚C for the metabolomics analysis. At

the same time and as the same way, unexposed larvae of Cx. quinquefasciatus were stored.

Preparation of samples and extraction of metabolites

Three replicates of 10 live larvae were homogenized in 500 μL of ddH2O (unexposed and

exposed) and placed in 1.5 mL Eppendorf tubes and centrifuged for 10 seconds. The lysate was

recovered with a sterile syringe in which was attached one 0.22 uM acrodisc. The filtrate was

placed in another tube. Finally, 30 μL from the filtered lysate was added using filter paper

(S&S903).

Metabolomics analysis

Each sample was analyzed for 12 amino acids and 31 acylcarnitines [a 3.2 mm circle was

obtained using a Wallac DBS Puncher (PerkinElmer, Waltham, MA, USA)] from the dry filter

paper. A NeoBase non-derivatized LC-MS/MS kit (Perkin Elmer) was used to obtain the

metabolites of interest, following the manufacturer’s instructions. A solution included in the

kit containing internal standards labeled with stable isotopes was used for quantifying the
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metabolites of interest. The samples were analyzed by LC-MS/MS (API 2000, ABSciex, Fra-

mingham, MA, USA) coupled to a micropump and an autosampler (Series 2000, Perkin

Elmer). Sample analysis was performed with multiple reaction monitoring using Analyst 1.6.2

Software (ABSciex) and the NeoBase database. The results were interpreted using Analyst 1.6.2

Software.

Statistical analysis

The statistical analysis was performed using R [54]. To normalize the raw measurements, we

set the sum of all values in a sample to 1. This was achieved by dividing each value by the sum

of all values per sample. These normalized values were then converted to logarithms to handle

extreme values. A t- test was used to determine statistically significant differences between

groups (p<0.05).

Results

Unexposed and exposed larvae to different insecticides

A total 43 metabolites (12 aminoacids and 31 acylcarnitines) were determined. From these, 3

metabolites from exposed compared to unexposed larvae to different insecticides (chlorpyri-

fos, temephos and permethrin) were significantly different. In addition, 34 of these metabolites

did not show differences whereas 6 were not detected (Fig 1).

We observed changes in the profile of three metabolites, two of which corresponded to acyl-

carnitines (C0 and C2) and one, to the amino acid arginine (ARG). The concentration of C0

did not show significant difference in larvae exposed to chlorpyrifos and temephos (+0.028

and -0.085 fold changes, respectively) but an increase in permethrin (+0.868-fold change) was

detected compared with unexposed larvae. C2 was increased in the presence of permethrin

(+0.833-fold change) and decreased in presence of temephos (-0.333 fold changes respec-

tively), meanwhile in chlorpyrifos was not detected. The concentration of ARG increased in

larvae exposed to permethrin (+0.571-fold change) and temephos (+0.457-fold change) but

not in those exposed to chlorpyrifos (Table 1 and Fig 2).

Discussion

Insecticide resistance is a worldwide concern and understanding the resistance mechanisms is

essential for vector control strategies. Today pyrethroid insecticides are the most used world-

wide and represent approximately 25% of the market for insecticides [55]. In a few years mos-

quitoes have developed a number of adaptations to insecticides. Many studies are focused in

the possible gen modification that occurs during insecticide exposure and only a few research-

ers looking for new pathway. Little is known of the biochemical processes that may be involved

during an exposure to insecticides. Here we reported the levels of amino acids and acylcarni-

tines in Cx. quinquefasciatus larvae during and without exposure to insecticide [56].

Over the past several years, dried blood spot (DBS) sampling technique has emerged as a

pertinent method in both qualitative and quantitative bioanalysis context. These can be ana-

lyzed by modern analytical, immunological, or genomic detection systems. Advantages such as

low volume requirement, transportation and storage without special treatment, better analytes

stability, enhanced clinical cooperation in clinical trials, and reduced unforeseeable exposure

of analysts to biohazards, make it the most appropriate blood sampling technique. In the pres-

ent study we used this technique with filtered lysates of alcohol solution of larvae for bioanaly-

sis, toxicokinetic (TK) and metabolomic, approach, obtaining reliable results [57].

Amino Acid and Acylcarnitines in Insecticide Exposure
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We compared the normal levels (unexposed larvae) of amino acids and acylcarnitine profile

in contrast to levels from mosquitoes exposed to three insecticides (temephos 0.002 μg/mL,

chlorpyrifos 0.001μg/mL and permethrin 0.01μg/mL). Our results show metabolic differences

correlated with insecticide exposure in Cx. quinquefasciatus larvae. An increase was detected

Fig 1. Heat map representing concentration of metabolites analyzed. Columns to the left show the p-

value showing statistical significance in red. Insecticides (chlorpyrifos, permethrin and temephos) and the

control group (larvae unexposed) are shown in first columns. Acronyms on the right are the metabolites. In the

heat map, blue, white, and red, indicates low, median and high concentration, respectively.

doi:10.1371/journal.pone.0169514.g001

Table 1. Differences in Cx. quinquefasciatus larvae exposed to different insecticides relative to unexposed.

Metabolite μg/mL Fold change

Unexposed Chlorpyrifos (0.001 μg/mL) Permethrin (0.002 μg/mL) Temephos (0.01 μg/mL)

ARG 37.370 +0.0258 +0.571 ** +0.457 **

C0 0.353 +0.0283 +0.868 ** -0.085

C2 0.040 0 +0.833 ** -0.333

** Statistical difference (p<0.05)

doi:10.1371/journal.pone.0169514.t001
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in the concentration of C0 in larvae exposed to chlopyrifos (+0.0283 folds), permethrin

(+0.0868 folds) and decrease with temephos (-0.085 folds). On the other hand, C2 in larvae

exposed to chlorpyrifos was not detected. In presence of permethrin C2 increased (+0.833

folds) and larvae exposed to temephos decreased (-0.333 folds). In the present study, the larvae

exposed to insecticide showed differences in the concentrations of acylcarnitines (C0 and C2)

and arginine level (ARG), this could be due to metabolic resistance because the overproduc-

tion of specific enzymes involving depletion in energy stores and the request of energy neces-

sary for biological function [58]. It is known that the deployment of insecticide resistance

mechanisms and particularly the overproduction of detoxifying enzymes require a substantial

investment of energetic resources. In Cx. pipiens, for example, certain resistant genotypes can

produce up to 50 times more esterases (EST) than their susceptible counterparts [58]. In other

insects, these overproduced EST can represent up to 3% of the total body proteins [59]. There

are some studies where the up-regulation of proteases led insects to degrade proteins for their

re-synthesis into detoxification enzymes as in M. domestica when it is exposed to fenitrothion,

cyfluthrin and resistant to other insecticides [60–62]). It has been suggested that the proteases

have important role in the degradation of proteins for biosynthesis of the up-regulated meta-

bolic proteins, particularly P450s and the other proteins/amino acid involved in the regulation

of insecticide resistance [63].

In this study two organophosphates insecticides were used (temephos and chlorpyrifos).

Organophosphate insecticides target the active site of the enzyme acetyl cholinesterase (AChE)

resulting in excess of acetylcholine synapses and nervous system hyperactivity [64]. This modi-

fication generates changes in some behavioral fitness related traits. Also in Drosophila some

studies showed that nervous system hyperactivation results in depletion in fat deposits by

increasing the metabolic rate and decrease in peptidoglycan synthesis [65].

In mammals, carnitine is a low molecular-weight compound that has an obligate role in the

mitochondrial oxidation of long-chain fatty acids. It has also been found to have neuroprotec-

tive effects enhancing energy in the mitochondria, antioxidant activity, stabilize membranes,

modulate gene expression and improve cholinergic neurotransmission. Lipids are needed for

the synthesis of amino acids as they are an important source of acetyl groups. Lipids are the

most affected molecules as a great excess investment in proteins. They are important source of

acetyl groups necessary to synthesize constituent amino acids enzymes during the insecticide

Fig 2. Mean and observed measurements of identified metabolites. Arg, C0, and C2 from left to right. Each dot corresponds to a

sample. Crossed circle represent the mean for each treatment group. The vertical axis shows the measurements. The horizontal axis

represents samples and treatment groups.

doi:10.1371/journal.pone.0169514.g002
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resistance [66]. Acylcarnitine (C2) is an acetylated form of carnitine; in mammals, it is synthe-

sized naturally in the body and is responsible for the entry of fatty acids into mitochondria and

participates in the cycle of producing carnitine Acetyl-CoA, an essential component of mito-

chondrial respiration with subsequent energy generation. An increase of C2 is a result of an

increase of β-oxidation as a consequence of fitness cost [67]. Changes in individual acylcarni-

tines may imply changes in specific metabolic pathways like physiological and genetic mecha-

nisms as mitochondrial biogenesis, the antioxidant power, and stabilization of membranes

among others [68]. Acylcarnitine profiles should lead to better understanding the mechanism

of insecticide resistance. A semi-essential amino acid that plays a significant role in the meta-

bolic processes of ornithine and urea cycles used for the elimination of amino compounds is

arginine [69]. Lately, considerable numbers of ARG utilization pathways have been discovered

that highlight the importance of ARG as well as an energy source [70,71]. Our results show

that the larvae exposed to all insecticides increased levels of this amino acid. These findings

suggest an overload of these cycles due to metabolic detoxification [72].

We observed high variance in the measured metabolites (Figs 1 and 2). For instance, ARG

was increased in exposure to Permethrin and Temephos except in one out of six larvae, and

one control larvae showed slightly lower levels of C2. As most of the larvae die during the

insecticide exposure, the observed variation may correspond to diverse mechanisms of resis-

tance that could be reflected in the pattern of amino acid content. The significant findings

(Fig 2), in average, changed more consistently across these possible mechanisms and therefore

may represent a convergent property of resistance. In this context, further experiments should

focus on a higher number of larvae to classify the diverse patterns of resistance which would

help to study specific resistance mechanisms.

Conclusions

The metabolic levels from Cx. quinquefasciatus larvae exposed to three different insecticides

were established. We suggest that sequencing the promoters of metabolic genes involved in

insecticide resistance should be the next step. This is the first report of amino acids and acyl-

carnitines from a non-mammalian organism. The establishment of these values becomes an

essential reference in the new age of causative energetic cost in the insecticide resistance.

These results could help to a better understanding of the mechanisms of insecticide resistance

and can be used to define the metabolic status of field populations. This information will help

for future studies in where these parameters will be involved in indirect toxic exposures and its

influence on insecticide resistance in mosquitoes.
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