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ABSTRACT Clinical and Laboratory Standards Institute (CLSI) conditions for testing
the susceptibilities of pathogenic Sporothrix species to antifungal agents are based
on a collaborative study that evaluated five clinically relevant isolates of Sporothrix
schenckii sensu lato and some antifungal agents. With the advent of molecular iden-
tification, there are two basic needs: to confirm the suitability of these testing condi-
tions for all agents and Sporothrix species and to establish species-specific epidemio-
logic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available
CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles,
terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto,
486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates.
Data were obtained in 17 independent laboratories (Australia, Europe, India, South
Africa, and South and North America) using conidial inoculum suspensions and 48
to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold
concentrations) allowed the proposal of the following ECVs for S. schenckii and S.
brasiliensis, respectively: amphotericin B, 4 and 4 �g/ml; itraconazole, 2 and 2 �g/ml;
posaconazole, 2 and 2 �g/ml; and voriconazole, 64 and 32 �g/ml. Ketoconazole and
terbinafine ECVs for S. brasiliensis were 2 and 0.12 �g/ml, respectively. Insufficient or
unsuitable data precluded the calculation of ketoconazole and terbinafine (or any
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other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S.
mexicana. These ECVs could aid the clinician in identifying potentially resistant iso-
lates (non-wild type) less likely to respond to therapy.

KEYWORDS ECVs, Sporothrix, antifungal resistance, molecular methods

Sporotrichosis is considered a relatively uncommon granulomatous infection of the
cutaneous and subcutaneous tissue, although dissemination to other deep-seated

organs has been reported (1, 2). The first case of sporotrichosis was documented in the
United States in the late 1800s by Benjamin Schenck (3, 4). This case was followed by
worldwide reports, as well as numerous outbreaks (e.g., in the South African mines in
the 1920s and 1930s, among children in relatively remote areas of Peru, some Brazilian
case clusters, and in the United States) (5–8). In addition, several feline outbreaks
caused by Sporothrix brasiliensis with transmissions from cat to human to cat have been
reported in Brazil (7, 8). Most other outbreaks or infections have been associated with
traumatic inoculation of vegetative materials and/or soil. Until recently, all cases were
attributed to Sporothrix schenckii, according to phenotypic identification (macro- and
microscopic studies, carbohydrate assimilation, and conversion to the yeast phase). The
advent of molecular methodologies and the use of internal transcribed spacer (ITS)
region sequence analysis of chitin synthase, �-tubulin, and calmodulin (CAL) genes
indicated that there were various cryptic species nested in the medically relevant clade.
The taxon was considered the Sporothrix schenckii species complex (8–12). Therefore,
sporotrichosis is caused by different pathogenic species, including the three clinically
relevant species evaluated in the present study: S. schenckii sensu stricto (referred to
from here on as S. schenckii), S. brasiliensis, and Sporothrix globosa. We also evaluated
one rare species in the environmental clade, Sporothrix mexicana (10, 11).

The recommended therapeutic agents for the treatment of human sporotrichosis
are itraconazole, amphotericin B and its lipid formulations (invasive/disseminated
disease), terbinafine, and fluconazole; a saturated solution of potassium iodide has
been an alternative choice for lymphocutaneous/cutaneous infections (2, 13–18). Ke-
toconazole is not used as much given its low efficacy and potentially severe side effects
(13, 16). Among the newer triazoles, in vivo and in vitro activity has been reported with
posaconazole in combination with amphotericin B, while voriconazole has not been
considered a therapeutic choice for these infections due to its high MICs (19, 20).

The Clinical and Laboratory Standards Institute (CLSI) has described testing condi-
tions for the “filamentous phase of the S. schenckii species complex” because the initial
CLSI collaborative evaluation predated molecular studies, which included only five
isolates that were documented as “S. schenckii” (21, 22). Therefore, the species of
Sporothrix are not mentioned in the CLSI M38-A2 document (21). In addition, interpre-
tive MIC/minimal effective concentration (MEC) categories, either formal breakpoints
(BPs) or epidemiological cutoff values (ECVs), have not been established for any of the
Sporothrix species. Method-dependent and species-specific ECVs should identify the
non-wild-type (non-WT) isolates with reduced susceptibility to the agent being evalu-
ated due to acquired mutational or other resistance mechanisms (23, 24). While ECVs
would not predict the clinical success of therapy, these endpoints could identify the
isolates less likely to respond to the specific agents. We collected available MICs/MECs
for nine antifungal agents from 17 laboratories for molecularly identified isolates of four
Sporothrix species. These MIC/MEC values represent the antifungal susceptibilities of
the two more prevalent species (S. schenckii and S. brasiliensis), as well those of S.
globosa and S. mexicana, to the different agents as determined by the CLSI M38-A2
method (21). Although the in vitro data were obtained in 17 laboratories, the isolates
originated from different geographical areas (Australia, Europe, India, South Africa, and
both South and North American countries).

The purposes of the present study were (i) to pool available MIC/MEC data deter-
mined by the broth microdilution M38-A2 method originating from 17 independent
laboratories for S. schenckii, S. brasiliensis, S. globosa, and S. mexicana; (ii) to define the
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WT susceptibility MIC/MEC distributions of amphotericin B, five triazoles, terbinafine,
flucytosine, and caspofungin; (iii) to assess the suitability of these distributions for ECV
calculation (including interlaboratory modal agreement); and (iv) to propose CLSI ECVs
for two of the species (S. schenckii and S. brasiliensis) when the agent-species combi-
nation comprised �100 MICs that originated in 3 to 9 laboratories. MICs of S. globosa
and S. mexicana that originated in 3 or 4 laboratories were also listed when the
distribution comprised at least 10 isolates from �3 centers; caspofungin, flucytosine,
and fluconazole data are summarized below.

RESULTS AND DISCUSSION

CLSI BPs, which reliably predict clinical response to therapy, are not available for any
filamentous (mold) species, including the Sporothrix species. While the establishment of
BPs requires, in addition to other parameters, the clinical correlation of both high and
low in vitro results with in vivo data, ECVs are based solely on in vitro data obtained in
multiple laboratories (24, 25). ECVs or BPs are needed in order to identify the potential
in vitro resistance to the agent under evaluation. Although the scarcity of clinical data
has precluded the establishment of CLSI BPs for mold testing, several ECVs (e.g., for
certain species of Aspergillus, Fusarium, and the Mucorales) are available (23, 24, 26, 27).
ECVs should distinguish the two populations (WT and non-WT) that are present in the
MIC/MEC distribution of a species and agent combination. ECVs for S. brasiliensis and
some agents were recently reported using data from a single laboratory (28). However,
the definition of ECVs using data from multiple laboratories allows the evaluation of
modal (more frequent values in each MIC/MEC distribution) compatibility among the
individual distributions included in the pool (a CLSI requirement) (24). To our knowl-
edge, ECVs have not been defined for any other Sporothrix species; therefore, we
collected available MIC/MEC data for S. schenckii, S. brasiliensis, S. globosa, and S.
mexicana from 17 laboratories worldwide in order to propose ECVs for several antifun-
gal agents.

Another requirement for the definition of ECVs is that the MIC/MEC data must be
accompanied by results for at least one of the quality control (QC) or reference strains
(23, 24). Examination of the results for QC or reference isolates in our study demon-
strated that discrepant MICs for the QC and reference strains (21), although uncommon,
were obtained in some laboratories as follows: (i) amphotericin B, itraconazole, and
posaconazole MICs lower than the expected limits for the QC Candida krusei ATCC 6258
strain from one laboratory; (ii) lower amphotericin B and posaconazole MICs for the QC
isolate Paecilomyces variotii ATCC MYA-3630 and the reference Aspergillus flavus ATCC
204304 strain, respectively, from another laboratory. As far as we know, MIC limits have
not been established for terbinafine and any fungal strain. However, the laboratories
that provided terbinafine MICs used as their internal controls some of the QC or
reference isolates. Terbinafine MICs ranged from 0.25 to 1 �g/ml and 0.25 to 0.5 �g/ml
for A. fumigatus ATCC MYA-3626 and Aspergillus flavus ATCC 204304, respectively.
Nevertheless, the MIC ranges for C. krusei ATCC 6258 (2 to 64 �g/ml) and to a certain
extent for Candida parapsilosis ATCC 22019 (0.01 to 0.5 �g/ml) were wider than the
approved ranges for QC or reference isolates (21). These results indicated that both
Candida QC strains could be unsuitable as either QC or reference isolates for terbin-
afine, but future collaborative studies should establish control guidelines for the agent.

Although we received MIC/MEC data from 17 laboratories for the four Sporothrix
species evaluated in the present study, distributions for each species/agent combina-
tion were not collected from each center. In addition, the following unsuitable distri-
butions were excluded: (i) aberrant distributions (mode at the lowest or highest
concentration tested) or distributions where the mode was not obvious (e.g., distribu-
tions having two or more modes), (ii) distributions where MICs for the QC isolate(s) were
outside the recommended limits, and (iii) distributions for which the mode was more
than 1 concentration/dilution from the global mode (23, 24). In addition, we incorpo-
rated only data obtained by the same, unmodified M38-A2 testing parameters accord-
ing to responses to the survey sent to each laboratory (described below) as follows: (i)
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MIC distributions that were obtained using conidial suspensions as the inoculum, (ii)
MICs obtained after 48 to 72 h of incubation at 35°C, and (iii) MICs obtained by the
standard growth inhibition criteria for each agent. Those are essentially the M38-A2
testing guidelines for obtaining in vitro data for a variety of nondermatophyte mold
species and agents; the exception is terbinafine (evaluated in multicenter studies only
for dermatophytes by the CLSI reference method) (21). However, regarding the Sporo-
thrix species, the testing guidelines were based on the multicenter evaluation that
included five isolates of S. schenckii sensu lato and four (amphotericin B, fluconazole,
itraconazole, and ketoconazole) of the nine agents evaluated in the present study (21,
22). Since collaborative studies have not been conducted with molecularly identified
isolates and QC data are not available for terbinafine, the present collaborative study
provides important corroboration of the testing conditions that could yield the most
comparable values for six of the nine agents (the best interlaboratory modal agree-
ment). These parameters could serve as the basis for further related studies for
evaluating other agents and species, e.g., S. globosa and S. mexicana.

The MIC distributions of the four Sporothrix species and six of the nine agents
evaluated are depicted in Table 1. The modal MICs ranged between 0.5 and 2 �g/ml for
most of the species and agent combinations; the exceptions were the higher voricona-
zole (8 to 16 �g/ml) and the lower terbinafine (0.06 �g/ml) modes for S. brasiliensis and
S. globosa. Flucytosine, fluconazole, and caspofungin data were also collected for S.
schenckii, S. brasiliensis, and S. globosa from two to five laboratories. Although most of
the distributions were either abnormal or unsuitable for ECV definition, both flucona-
zole and flucytosine modes were consistently at the upper end of the distribution (�32
�g/ml) for S. brasiliensis and S. schenckii, while caspofungin modes were �1 �g/ml
(data not listed in Table 1). While abundant in vitro data are found in the literature in

TABLE 1 Pooled MIC distributions of four Sporothrix species from 2 to 9 laboratories determined by the CLSI M38-A2 broth microdilution
method

Agent Species
No. of
laboratories

Total no.
of isolates

No. of isolates with MIC (�g/ml) ofa:

<0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 >32

Amphotericin B S. schenckiib 9 263 2 5 9 29 100 78 33 3 1 3
S. brasiliensis 9 486 6 10 64 112 175 100 15 4
S. globosa 4 75 3 5 8 19 29 6 3 2
S. mexicana ID

Itraconazole S. schenckii 8 194 4 5 22 71 56 17 9 3 2 5
S. brasiliensis 8 306 2 2 12 19 60 146 38 6 5 16
S. globosa 4 53 5 10 17 10 9 1 1 3
S. mexicana 3 13 3 4 2 1

Ketoconazole S. schenckii 2 92 1 11 12 32 17 16 3
S. brasiliensis 5 338 6 13 45 64 126 71 13
S. globosa ID
S. mexicana ID

Posaconazole S. schenckii 8 301 1 10 15 67 114 55 13 14 8 4
S. brasiliensis 5 200 2 1 6 13 32 128 14 1 3
S. globosa 3 59 12 25 12 5 1 2 2
S. mexicana ID

Voriconazole S. schenckii 6 252 3 1 6 17 42 108 75
S. brasiliensis 7 200 1 9 17 32 79 56 6
S. globosa 3 41 2 5 10 14 9 1
S. mexicana 3 11 2 1 2 4 2

Terbinafine S. schenckii 2 118 2 18 23 26 43 6
S. brasiliensis 3 368 131 151 75 7 2 2
S. globosa 3 35 5 16 6 3 4 1
S. mexicana ID

aThe highest number in each row (showing the most frequently obtained MIC or mode) is indicated in boldface.
bS. schenckii refers to S. schenckii sensu stricto. ID, insufficient data with comparable mode.
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addition to those summarized in Table 1, (i) these studies predated the advent of
molecular identification, (ii) the studies reported MIC/MEC data mostly for S. schenckii
and S. brasiliensis, and (iii) MICs were obtained for either the yeast or filamentous phase
or by modified versions of the CLSI reference method (e.g., supplemented RPMI broth
[2% dextrose], 30°C incubation, or longer incubation times) (29–32). Although some
MIC ranges in Table 1 were wider than those in prior studies, owing perhaps to the
larger number of isolates (e.g., �200 versus �100) and different testing conditions, the
trend of antifungal susceptibility of those species to the various agents is similar. When
MICs that were obtained using both the yeast and conidial phases of S. schenckii were
compared, the yeast phase yielded lower amphotericin B and itraconazole MICs, while
terbinafine MICs were similar or the same (30). There was a need to ascertain which
testing conditions yielded the most reproducible results. Our collaborative study
provides such information, at least for the two more prevalent species and clinically
relevant therapeutic agents. In addition, our results suggest that the incubation time for
S. globosa needs to be longer and that further evaluation is needed for S. mexicana,
among other species.

Table 2 summarizes MIC ranges and modes and, more importantly, our proposed
ECVs for the species and agents with sufficient data to fulfill the current criteria (�100
MICs of each agent and species obtained in �3 independent laboratories) for estab-
lishing method- and species-dependent ECVs by the iterative statistical method (23, 24).
The CLSI has selected the 97.5% over the 95% ECVs; both values were calculated and
documented. As expected, the highest ECVs were for voriconazole versus S. schenckii
and S. brasiliensis (64 and 32 �g/ml, respectively), and the lowest value was for
terbinafine and S. brasiliensis (0.12 �g/ml). Sufficient and suitable terbinafine MIC data
were not available to calculate the terbinafine ECV for S. schenckii according to the
current criteria; this species-agent combination needs to be further evaluated. We are
also proposing ECVs of 4 �g/ml for amphotericin B and ECVs of 2 �g/ml for three
triazoles and both S. schenckii and S. brasiliensis. The high ECVs for these two species
(e.g., amphotericin B and voriconazole ECVs above expected and achievable serum
levels) indicate their resistant nature, as was the case for certain species among the
Mucorales and Fusarium spp. (26, 27). Although the ECV is not a predictor of clinical
response to therapy, the high values suggest that isolates of these species could be
unresponsive to therapy with these agents. On the other hand, categorization of an
isolate as WT does not necessarily signify that it is susceptible to or treatable by the
agent under evaluation.

Unfortunately, among the molds, genetic information concerning the mechanisms

TABLE 2 CLSI-ECVs for S. schenckii sensu stricto and S. brasiliensis based on MICs from 3 to
9 laboratories determined by the CLSI broth microdilution method

Species Antifungal agent
No. of isolates
tested

MIC (�g/ml) ECVb

Range Modea >95% >97.5%

S. schenckii Amphotericin B 263 0.03 to 32 1 4 4
Itraconazole 194 0.06 to �32 0.5 2 2
Ketoconazole NDc

Posaconazole 301 0.06 to 16 1 2 4
Voriconazole 252 0.5 to �32 16 64 64
Terbinafine ND

S. brasiliensis Amphotericin B 486 0.03 to 8 1 4 4
Itraconazole 306 0.01 to 32 1 2 2
Ketoconazole 338 0.01 to 2 0.5 2 2
Posaconazole 200 0.01 to 4 1 2 2
Voriconazole 200 0.5 to 32 8 32 32
Terbinafine 368 �0.01 to 1 0.06 0.12 0.25

aMode, most frequent MIC.
bCalculated CLSI ECVs comprising �95% and �97.5% of the statistically modeled population; the values are
based on MICs determined by the CLSI M38-A2 broth dilution method (21).

cND, not determined, due to an insufficient number of isolates or laboratories for ECV calculation.
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of resistance is available mostly for A. fumigatus and the triazoles. To our knowledge,
that is not the case for the clinically relevant Sporothrix species. In addition, limited data
have been documented regarding the possible correlation between MICs for the
Sporothrix infective isolate and the outcome of therapy with a specific agent, including
amphotericin B, itraconazole, and terbinafine (17, 33). In one of the two studies, five
patients who responded to oral itraconazole (pulse, 400 mg/day for 1 week with a
3-week break) for lymphangitic and fixed cutaneous sporotrichosis, the itraconazole
MICs for 4 of the 5 infecting S. schenckii isolates were either 0.25 or 0.5 �g/ml (17).
Those itraconazole MICs were below our proposed ECV of 2 �g/ml for the species, and
the strains could be considered WT strains (Table 2). In the other report, seven patients
with various and persistent S. brasiliensis infections (including disseminated disease)
were treated for �13 weeks as follows: itraconazole, 100 mg (3 patients); terbinafine,
200 mg (3 patients); and amphotericin B followed by 800 mg of posaconazole (1
HIV-infected patient) (33). MICs for the serial infective isolates and the clinical response
to therapy were as follows: itraconazole, 1 or 2 �g/ml (patients were cured/infection
free); terbinafine, between 0.03 and 0.12 �g/ml (1 of 3 patients was cured); posacona-
zole, 1 �g/ml, and amphotericin B, between 2 and 4 �g/ml (the patient died). Our
proposed ECVs for S. brasiliensis and the four agents were 2, 0.12, 2, and 4 �g/ml,
respectively, and thus, the infecting isolates also could be considered WT (Table 2).
However, other factors related to the patient immune response or the use of adjuvant
treatments (cryosurgery/curettage) could interfere with meaningful in vitro versus in
vivo correlations. On the other hand, the combination of posaconazole and amphoter-
icin B was effective in murine models of disseminated disease caused by S. schenckii or
S. brasiliensis (34). The infective isolates for the murine model were WT according to our
proposed ECVs. Furthermore, the role of the ECV is not to predict a therapeutic
outcome but to identify the non-WT strains that could be less likely to respond to
therapy.

In conclusion, the main roles of the ECV are to distinguish between WT and non-WT
isolates and to aid the clinician in identifying the non-WT isolates that are potentially
refractory to therapy with the agent evaluated. This is important when BPs are not
available for the species/agent being evaluated, which is the case for the Sporothrix
species. Based on CLSI MICs from multiple laboratories, we propose the following
species-specific CLSI ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin
B, 4 and 4 �g/ml; itraconazole, 2 and 2 �g/ml; posaconazole, 2 and 2 �g/ml; and
voriconazole, 64 and 32 �g/ml. Our proposed ketoconazole and terbinafine ECVs for S.
brasiliensis are 2 and 0.12 �g/ml, respectively. Insufficient data precluded the calcula-
tion of ketoconazole and terbinafine ECVs for S. schenckii, as well as ECVs for S. globosa
and S. mexicana versus any antifungal agent. More importantly, we have corroborated
that the susceptibility testing conditions described in the CLSI M38-A2 document could
yield the most reliable or reproducible results for the two most prevalent species, which
was based on our examination of modes from multiple laboratories.

MATERIALS AND METHODS
Isolates. The isolates evaluated were recovered from clinical specimens (mostly lymphocutaneous,

cutaneous [including disseminated disease], or subcutaneous lesions [�90%] and to a lesser extent
pulmonary lesions or other disseminated infections). In addition, we received S. brasiliensis isolates
(cutaneous lesions) of feline origin from 4 of the 17 laboratories. MIC/MEC data for each agent were
determined in each of the following centers: VCU Medical Center, Richmond, VA, USA; Universidade
Federal Rural do Rio de Janeiro, Seropédica, Brazil; Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de
Infectologia Evandro Chagas, Laboratório de Micologia and Laboratório de Pesquisa Clínica em Derma-
tozoonoses em Animais Domésticos, Rio de Janeiro, RJ, Brazil; Specialized Medical Mycology Center,
Federal University of Ceará, Fortaleza-CE, Brazil; Department of Medical Microbiology, Postgraduate
Institute of Medical Education and Research, Chandigarh, India; Department of Medical Mycology,
Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; Canisius Wilhelmina Hospital, Centre of
Expertise in Mycology, Nijmegen, The Netherlands; Departamento Micologia, Instituto Nacional de
Enfermedades Infecciosas Dr. C. G. Malbrán, Buenos Aires, Argentina; Universidad Autonóma de Nuevo
León, Monterrey, Nuevo León, México; National Institute for Communicable Diseases and University of
the Witwatersrand, Johannesburg, South Africa; Mycology Unit Medical School, Universitat Rovira i Virgili,
Reus, Spain; Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom; National
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Mycology Reference Centre, SA Pathology, Adelaide, Australia;. Universidade Federal de São Paulo, São
Paulo, Brazil; Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
Instituto Adolfo Lutz, São Paulo, Araçatuba, and Rio Claro Laboratories, Brazil.

Although data were received from 17 independent laboratories (coded as 1 to 17), some MIC
distributions were excluded from the study for reasons discussed previously. The isolates were identified
using phenotypic and genetic approaches (e.g., temperature and nutritional tests, yeast conversion, and
species-specific PCR and PCR-restriction fragment length polymorphism [RFLP] calmodulin and �-tubulin
sequencing) (10–12, 35). The MIC data used for ECV definition were from 301 S. schenckii and 486 S.
brasiliensis isolates. Among the 486 isolates of S. brasiliensis, 261 were isolated from cats. In addition,
MIC/MEC data were collected for 75 S. globosa and 13 S. mexicana isolates, respectively. At least one of
the QC isolates (C. parapsilosis ATCC 22019, C. krusei ATCC 6258, or P. variotii ATCC MYA-3630) was
evaluated by the participant laboratories during testing; some laboratories also evaluated the reference
isolate A. flavus ATCC 204304 or A. fumigatus ATCC MYA-3626. MICs were pooled or used for the
calculation of ECVs only when MICs for the QC or reference isolates were consistently within the
established MIC limits as approved by the CLSI (21).

In vitro susceptibility testing. MIC data for each isolate in the set that was included for analysis or
depicted in Tables 1 and 2 were obtained at each center according to the CLSI M38-A2 broth
microdilution method (21) (standard RPMI 1640 broth [0.2% dextrose], final conidial suspensions that
ranged from 0.4 � 104 to 5 � 104 CFU/ml, and incubation at 35°C for 48 to 72 h [S. schenckii, S. brasiliensis,
and S. mexicana] or �72 h [S. globosa]). MICs were the lowest drug concentrations that produced either
complete growth inhibition (100%: amphotericin B, itraconazole, posaconazole, and voriconazole), partial
growth inhibition (terbinafine [80%]; fluconazole, ketoconazole, and flucytosine [50%]), or morphological
changes (caspofungin MECs).

Data analysis. Data were analyzed by iterative statistical analysis as previously described in various
ECV reports (24–27). MIC/MEC distributions of each species received from each center were listed in
electronic spreadsheets. Individual distributions were not included in the final analysis (i) when the
distribution had a modal MIC at the lowest or highest concentration tested or that was bimodal or (ii)
when unusual modal variation (modes that were more than 1 dilution/concentration from the global
mode) was present (24). Data for each species and agent were included for the final calculation of ECVs
only when the total pooled distribution had �100 isolates and originated from at least three laboratories
(Tables 1 and 2).

Surveys. To ascertain that the collected in vitro susceptibility data in our study were developed
following the same testing conditions described in the CLSI M38-A2 document (21), a survey was sent
to the 17 participant laboratories requesting the following information: (i) the source(s) of the agents
used, (ii) the formulation of the RPMI medium as described in the CLSI document, (iii) the cells (conidia
versus yeasts) and counts used to prepare the inoculum suspensions, and (iv) the growth inhibition
criteria to determine MICs/MECs for each agent (including incubation temperature and length and
percent growth inhibition). The laboratories were also requested to provide MIC/MEC data for at least
one of the QC or reference isolates (21).
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