UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE INGENIERÍA CIVIL

"Diseño y evaluación de un método de inspección no destructivo para ubicar y determinar características geométricas de zonas con agrietamientos en estructuras de concreto reforzado"

Presenta

Andrea Nathaly Escobedo Tamez Alumno

Como requisito para obtener el título de Ingeniero Civil

Director de tesis:

Dra. Fabiola Doracely Yépez Rincón

San Nicolás de los Garza, Nuevo León

Junio de 2019

Dedicatoria

A mis padres, todo es por y para ustedes.

Agradecimientos

A la Dra. Fabiola Yépez Rincón, gracias por todo su apoyo en este proceso, desde Colaboración de Proyectos de Investigación y en Tesis. Gracias por todos sus consejos, comentarios, recomendaciones y correcciones que hicieron que pudiera concluir de gran manera este proyecto. Gracias por los ánimos y por alentarme siempre a dar el extra en todo lo que hago.

Al Dr. Gerardo Fajardo San Miguel y al M.C. Diego Cavazos de Lira por todos sus comentarios y sugerencias enriquecedoras a lo largo de este año, que ayudaron a que este trabajo se definiera y tomara rumbo.

A mis compañeros del Departamento de Geomática Nelly, Roberto y Alex, por apoyarme cuando tenía dudas sobre algún software o dudas en general, por acompañarme a campo y por hacer más ameno el tiempo en la oficina.

A Alex y a Fernando, por el trabajo de campo con el LIDAR terrestre, uno de los insumos más importantes de este trabajo.

A mis amigos de la carrera, gracias por estos años llenos de estudio, desveladas, salidas, risas, y buenos momentos. Gracias también a todos los que se interesaron en mi tesis, preguntándome o haciéndome sugerencias.

A Chino, gracias por tu apoyo y amor incondicional, no solo este último año, sino durante toda la carrera. Gracias por siempre estar conmigo en todo momento, por escucharme cuando lo necesitaba y por siempre creer en mí.

A mi hermana Karla, porque siempre me escuchabas con lo relacionado con mi tesis, aunque no entendieras mucho del tema y por acompañarme en todo el proceso de la carrera.

Y en especial a mis padres José Luis y Josefina, por todo el esfuerzo que han hecho todos estos años y porque nunca nos ha faltado algo a mí y a mis hermanos. Gracias por apoyarme, animarme y aconsejarme en cada cosa que hago. Los quiero mucho.

Índice

1	I Introducción 1			
	1.1	Jus	tificación	3
	1.2	Obj	jetivo general	3
	1.2	2.1	Objetivos específicos	3
	1.3	Hip	ótesis	4
2	An	tece	dentes y marco teórico	5
	2.1	Ant	ecedentes	5
	2.2	Ma	rco teórico	9
	2.2	2.1	Sensores remotos	9
	2.2	2.2	LIDAR	13
	2.2	2.3	Vehículos Aéreos no Tripulados (VANT)	15
	2.2	2.4	Infraestructura	19
	2.2	2.5	Patologías del concreto	20
	2.2	2.6	Agrietamientos	21
	2.2	2.7	Inspecciones	22
3	Pla	antea	amiento experimental	25
	3.1	Áre	a de estudio	25
	3.2	Εqι	Jipo	26
	3.2	2.1	Escáner Terrestre	26
	3.2	2.2	Estación total topográfica	27
	3.2.3		Cámara de tipo réflex digital	28
	3.2	2.4	Cámara digital	29
	3.2	2.5	Vehículo aéreo no tripulado	29
	3.3 Pro		ocedimiento experimental	30
	3.3.1		Levantamiento en campo	32
	3.3	8.2	Postproceso	36
4	Re	sulta	ados	58
	4.1	Nul	bes de puntos	58
	4.1	.1	Escaneos GLS	58
		•		= 0

	4.2	Ortofotografía		61
	4.3	Ge	ometría	62
	4.4	Agı	rietamientos	63
	4.4	.1	Inspección visual	63
	4.4	.2	Nubes de puntos	65
5	Dis	cus	ión	67
	5.1	Tor	na de datos y post proceso de la información	67
	5.2	Nu	bes de puntos de escaneos	68
	5.3	Nubes de puntos de fotogrametría		69
5.4 Agrietamientos		rietamientos	70	
	5.5	Util	ización de los resultados en inspecciones de estructuras	71
	5.6	Trabajo futuro		71
	5.7	Re	comendaciones	72
6	Co	Conclusión		
7	Referencias74			
8	Anexos		80	
	Anexo 1		80	
Anexo 2				

Lista de figuras

Figura 1. Curva que forma el aumento capilar del agua en el muro exterior de un edificio, vista con a) una cámara térmica, b) una fotografía ordinaria y c) la superposición de a) sobre b) (Lerma, C. 2014)
Figura 2. Losa de concreto elaborada en laboratorio (izquierda), imagen tomada con cámara fotográfica e imagen térmica (derecha), donde se pueden observar los defectos simulados (Vaghefi, K.,2012)
Figura 3. Diferentes subsistemas de sensores remotos. a) satélite Landsat 7, b) imagen obtenida de un sensor multiespectral, c) cámara térmica, d) cámara fotográfica
Figura 4. Espectro electromagnético, longitud de onda en metros 11
Figura 5. Combinación de bandas de una imagen en formato rasterizado (descripción gráfica del conjunto de píxeles que componen una imagen) 14
Figura 6. Ejemplo de una nube de puntos obtenida con LIDAR terrestre 14
Figura 7. Funcionamiento del LIDAR aéreo15
Figura 8. Clasificación de VANTs dependiendo del tipo de aeronave (Barrientos, A, et.al., 2007)
Figura 9. Ejemplos de VANTs de: a) ala rotativa, b) ala fija 16
Figura 10. Bombardero aéreo de Perley (Vila Rovira, O. 2011) 17
Figura 11. Ubicación de la zona de estudio 25
Figura 12. Metodología seguida 31
Figura 13. Toma de datos en campo utilizando escáner
Figura 14. Toma de fotografías utilizando una cámara Nikon 33
Figura 15. Fotografías tomadas en campo de la columna F-C3 34
Figura 16. Montaje de la cámara GoPro y acercamiento
Figura 17. a) Vuelo programado para el levantamiento fotográfico, b) fotografías tomadas por el VANT
Figura 18. Segmento de la nube de puntos de la estructura del metro sin alinear.
Figura 19. Segmento de la nube de puntos de la estructura del metro en el cual ya se alineó, asignó el color real y se eliminó el ruido. ¡Error! Marcador no definido.

Figura 20. Sección de la estructura del metro (Columnas F-C 9 a F-C 14). 38

Figura 21. Ubicación de las columnas analizadas.	39
Figura 22. A) Columna F-C 11 visualizada con color real. B) Imagen tomada Google Street View de la misma columna	de 40
Figura 23. Columna F-C11 visualizada con diferentes escalas de color en base su intensidad. A) Blue>Green>Yellow>Red, B) Grey, C) HSV angle, D) Ne Scale	∍ a ∋w 41
Figura 24. Capitel de la columna F-C11 con la ubicación de sus agrietamient	os 42
Figura 25. Nubes de puntos de los agrietamientos localizados en el capitel de columna F-C11.	la 42
Figura 26. Histogramas de agrietamientos de la columna F-C11 obtenidos de la columna F-C11 obtenidos de la columna recentra de la c	en 43
Figura 27. Histogramas de agrietamientos de la columna F-C11 obtenidos CloudCompare	en 43
Figura 28. A) Nube de puntos de una columna escaneada con buena luz, B) Nul de puntos de una columna escaneada con menos cantidad de luz	be 44
Figura 29. Elementos de una columna	45
Figura 30. Mediciones tomadas en la columna F-C14	45
Figura 31. Proceso de clasificación de agrietamientos	46
Figura 32. Nube de puntos visualizada en Mars7 a) Color por elevación, b) Col por intensidad.	lor 47
Figura 33. Resultado del entrenamiento por morfología usando CANUPO	49
Figura 34. Nube de puntos de la columna F-C3, con la representación de posición de donde fueron tomadas las fotografías	la 51
Figura 35. Columna F-C3, a) Nube de puntos dispersa y b) nube de puntos dens	sa. 51
Figura 36. Nube de puntos densa de la columna F-C3, donde se pueden disting agrietamientos.	uir 52
Figura 37. Construcción del mallado a) detalle de la triangulación de los puntos b) modelo sólido de la triangulación	s y 53
Figura 38. Modelo 3D del capitel de la columna F-C3 con la textura aplicada.	53
Figura 39. Zonas vacías ocasionadas por el ángulo de la toma de fotografías.	54
Figura 40. Combinación de los diferentes clasificadores de imágenes	55
Figura 41. Fotografías tomadas con cámara Go Pro	56
Figura 42. Imágenes obtenidas de Street View de Google Earth.	57
,	viii

Figura 43. Nube de puntos limpias correspondientes a la sección comprendida entre las estaciones Niños Héroes y Universidad		
Figura 44. Modelos tridimensionales de las columnas F-C2 a F-C7 60		
Figura 45. Ortomosaico generado del área de estudio61		
Figura 46. Mediciones geométricas en (m) y algunos valores de intensidad (nm)		
Figura 47. Resultado del muestreo de agrietamientos sobre imagen sencilla donde A) es la imagen inicial sin ser tratada, B) Threshold, C) Fuzzy convolution y D) la combinación de todas las anteriores		
Figura 48. Resultado del muestreo de agrietamientos en un modelo 3D donde A) es la imagen inicial sin ser tratada, B) Threshold, C) Fuzzy convolution y D) la combinación de todas las anteriores65		
Figura 49. Capa 2 de la cara oriente del capitel de la columna F-C4 seccionada en muestras de 10 x 10 cm 66		

Lista de tablas

Tabla 1. Longitudes de onda del rango óptico del espectro electromagnéti (Viera, 2014).	co 12
Tabla 2. Aplicaciones civiles de los VANTs (Barrientos, A., et al. 2007)	18
Tabla 3. Configuración del escáner GLS-1500 en modo normal	26
Tabla 4. Características de la ETT Leica TS02	27
Tabla 5. Características técnicas de cámara digital Nikon D5600	28
Tabla 6. Características de la Cámara Go Pro Hero 6	29
Tabla 7. Características del drone DJI Inspire 2 y cámara Zenmuse X5	30
Tabla 8. Características de los filtros.	48
Tabla 9. Escaneos con sus cantidades de puntos	58
Tabla 10. No. de puntos, caras y vértices de las columnas analizadas	60
Tabla 11. No. de puntos, caras y vértices de la ortofotografía	61
Tabla 12. Alturas de los elementos de las columnas, unidades en metros	62
Tabla 13. Agrietamientos localizados por columna por inspección visual. A Trabe, B=Capitel, C= Columna, con la información de Google Earth y fotografí de Go Pro.	4= as 63

Nomenclatura

LIDAR	Detección de luz y Rango (Light Detection and Ranging o		
	Laser Imaging Detection and Ranging)		
MDE	Modelo Digital de Elevación		
MLC	Clasificación de máxima similitud (Maximum Likelihood		
	Classification)		
SIG	Sistema de información geográfica		
VANT/dron	T/dron Vehículo aéreo no tripulado		
RGB	Red, Green, Blue		

Resumen

Este trabajo evalúa la factibilidad del uso de las tecnologías de sensores remotos para generar información de una estructura del concreto reforzado que servirá para la evaluación de un método de inspección no destructivo de agrietamientos externos en este tipo de estructuras. Se generarán levantamientos en 3D utilizando la tecnología láser y series fotográficas, de corto alcance utilizando cámaras fotográficas y aéreas utilizando Vehículos Aéreos No Tripulados (VANT). Las características espectrales y geométricas de los datos permitieron realizar filtros semi-automatizados para la identificación, mapeo y contabilización de los agrietamientos. Con la base de datos que se genere se podrá dar seguimiento a los agrietamientos en la estructura, realizar comparaciones de la magnitud y ubicación de los agrietamientos, así como detectar la formación de nuevos.

El inventario de las patologías y una clasificación con base a su criticidad permitirán priorizar los esfuerzos de mantenimiento y tener mejores bases para la toma de decisiones.

Palabras Clave:

Agrietamientos, LIDAR, Sensores remotos, SIG, VANT.

1 Introducción

La detección remota o teledetección se define como la obtención e interpretación de información sobre objetos o superficies sin estar en contacto físico con ellos (Chuvieco 1990). Este término hace uso de métodos que por medio de la energía electromagnética en forma de luz calor y ondas de radio, pueden detectar y medir diferentes características de los objetos (Gebhard 2002 ms; Landgrebe 2005).

Aunque la utilización de los sensores remotos se ha enfocado más en las aplicaciones en el campo de los recursos naturales (Colwell 1968; Verbyla 1995), la tendencia actual es que se incremente su utilización en otras áreas de la ingeniería gracias a los avances tecnológicos, el desarrollo de la computación, los bajos costos de obtención de las imágenes y a las ventajas que presenta en cuanto a resolución (Rodríguez Chávez, Ó., et. al. 2005). En el campo de la ingeniería civil, los sensores remotos, como cámaras montadas en Vehículos Aéreos no Tripulados (VANTs o drones) y el escáner láser, se han utilizado en problemáticas relacionadas con estudios de infraestructura urbana (Jensen y Cowen 1999; Sundar, M. L., Prasath, C. A., Rosario, H. E., & Tamilselvan, K. 2019), infraestructura hidráulica (Pereira, B., Medeiros, P., Francke, T., Ramalho, G., Foerster, S., & De Araújo, J. C. 2019) e infraestructura de transporte, entre otros (Pan, Y., Dong, Y., Wang, D., Chen, A., & Ye, Z. 2019; Chen, S., Truong-Hong, L., O'Keeffe, E., Laefer, D. F., & Mangina, E. 2018).

La infraestructura urbana juega un rol importante en el funcionamiento de las ciudades, ya que garantiza transporte, vivienda o seguridad para la población (Yépez Rincón, 2013). Prevenir y mitigar el deterioro de esta infraestructura es la forma más efectiva de reducir las consecuencias negativas de cualquier catástrofe (Sánchez-Jacobo, 2014).

Para conocer el estado en el cual se encuentra la infraestructura se llevan a cabo distintas inspecciones, rutinarias, principales y especiales, estas se realizan dependiendo de las necesidades que se presenten. Las inspecciones rutinaria y principal se realizan de manera visual, mientras que la inspección especial se realiza cuando la estructura tiene la necesidad de una revisión más detallada, debido a que se tienen dudas sobre su estabilidad estructural, por lo que se requieren de mediciones

en campo y pruebas destructivas donde se utiliza equipo y herramientas especializadas (Sánchez-Jacobo, 2014).

Actualmente, las técnicas de inspección no invasivas se basan en la inspección visual, en la cual la principal dificultad es la accesibilidad a todas las zonas de deterioro de las estructuras. Por este motivo, se buscan otros métodos que puedan aportar datos a tales inspecciones, como lo es el uso de Vehículos Aéreos no Tripulados con cámaras y sensores integrados (p.e. cámaras multi e hiperespectrales, capaces de captar desde de cuatro hasta cientos de bandas espectrales distintas). La inspección con estos sistemas garantizaría agilidad y seguridad, además de ayuda en la interpretación y análisis para el diagnóstico de manifestaciones patológicas.

La utilización de sensores remotos como fuente de información permitirá que el proceso de inspección deje de ser solamente visual y únicamente bajo el criterio del ingeniero que la realice, es decir, podrá basarse en datos y dar un veredicto más objetivo.

Al hacer inspecciones en estructuras de grandes alturas o dimensiones, se puede dificultar la accesibilidad a todos los puntos de la estructura, por esto el ingeniero o los técnicos están en riesgo de tener algún accidente, a pesar de que cuenten con equipo de seguridad. La toma de información con drone y escáner se hará desde una superficie segura.

La base de datos que se genere permitirá tener información de las condiciones actuales de las estructuras de concreto y monitorearlas cada cierto periodo de tiempo para realizar comparaciones de la magnitud y ubicación de los agrietamientos, así como detectar la aparición de nuevas manifestaciones de deterioro. El inventario de las patologías y una clasificación con base a su criticidad permitirán priorizar los esfuerzos de mantenimiento y tener mejores bases para la toma de decisiones.

1.1 Justificación

Las metodologías basadas en la percepción remota tienen de un gran potencial de aplicación en áreas metropolitanas en donde la infraestructura y los servicios que esta aporta no pueden ser interrumpidos, pues esto representaría grandes pérdidas económicas, caos vehicular, etc.

En el Área Metropolitana de Monterrey en donde, actualmente su población asciende a más de 4.8 millones de habitantes (INEGI, 2015), la infraestructura de transporte representa uno de los mayores retos ya que la movilidad urbana se basa principalmente en el uso de vehículos particulares (Gobierno del Estado de NL, 2009), y es poca la infraestructura de transporte masivo comparándolo con otras metrópolis como lo es el caso de Cd. de México (Izquierdo, C., y María, J., 2008).

El metro, es uno de los principales medios de transporte público que moviliza a grandes cantidades de personas por esta razón es esencial que tenga un funcionamiento perfecto, tanto administrativamente, con la operación de los vagones, pagos y pasajes y, principalmente, el estado de sanidad de su infraestructura.

1.2 Objetivo general

El objetivo de este estudio es diseñar, desarrollar y evaluar un método de inspección no destructivo a través de un levantamiento en 3D de la estructura, para clasificarla con base en características como la de geometría, la ubicación geoespacial e intensidad en las zonas con agrietamientos.

1.2.1 Objetivos específicos

• Generar nubes de puntos georeferenciados (x, y, z) de una estructura de concreto reforzado, para conocer las condiciones actuales de esta.

• Contar con una clasificación de los agrietamientos, en base a las características de las nubes de puntos (intensidad, altura y geometría).

• Realizar una base de datos de los agrietamientos con la ubicación geoespacial, información de geometría y deterioros de las columnas del metro.

1.3 Hipótesis

Las tecnologías basadas en sensores remotos (escáner y drone) servirán para desarrollar un método semiautomático para la inspección no destructiva de agrietamientos en una estructura de concreto reforzado.

2 Antecedentes y marco teórico

2.1 Antecedentes

En diferentes partes del mundo se han desarrollado investigaciones acerca del uso de tecnologías basadas en sistemas de sensores para la inspección de estructuras, que permita evaluar y cuantificar los daños en ellas (Zhang et al. 2009; Delatte. et al. 2003). El uso de tecnologías para generar información geométrica de alta precisión es registrado por diversos autores alrededor del mundo. Algunos, como Lagüela, S., Solla, M., Puente, I., & Prego, F. J. (2018) y Pejić, M. (2013) utilizan la información geométrica y precisa del Ground Laser Scaner (GLS o escáner) para la inspección de infraestructura de transporte de secciones largas como túneles o metro y otros como Gopalakrishnan, K., Gholami, H., Vidyadharan, A., Choudhary, A., & Agrawal, A. (2018) trabajan la detección de deterioros a través de imágenes.

En España, Lerma, C., Mas, Á., Gil, E., Vercher, J., & Peñalver, M. J. (2014) mencionan la necesidad de utilizar técnicas no destructivas para examinar los edificios históricos y así evitar daños en la estructura. Proponen la utilización de imágenes termográficas para examinar los muros exteriores del Seminario-Escuela de Corpus Christi en Valencia, España, que están hechos con bloques de piedra caliza tradicionales de la región de Valencia, como piedra de Godella y Ribarroja (ampliamente utilizada durante siglos en Valencia) y piedra caliza Bateig Azul (en uso hoy en día). En este caso, la tecnología infrarroja se utilizó por el método de imágenes termográficas pasivas, en el cual el material o la estructura se calientan con la luz solar, por ser el más adecuado para edificios en calles estrechas. En el estudio Lerma, et al. (2014), tuvo como objetivo analizar las imágenes termográficas para comparar los resultados de estas con análisis de laboratorio de los materiales y así, corroborar los resultados de ambos análisis. Con las pruebas de laboratorio se obtuvieron las propiedades de los materiales, como la densidad, la porosidad, la composición química, etc., y con las imágenes infrarrojas se obtiene el comportamiento térmico de estos materiales. Los resultados que obtuvo indicaron que las imágenes termográficas pueden proporcionar información considerable sobre los materiales de construcción y su estado de conservación y se puede descubrir la respuesta térmica de los materiales

y su patología mediante la tecnología de imágenes termográficas o las pruebas de laboratorio (Figura 1). Al comparar la información que se obtiene tanto de laboratorio como de las imágenes se puede dar un mejor diagnóstico y observar las etapas previas al deterioro y, por lo tanto, anticipar e iniciar acciones de mantenimiento.

Figura 1. Curva que forma el aumento capilar del agua en el muro exterior de un edificio, vista con a) una cámara térmica, b) una fotografía ordinaria y c) la superposición de a) sobre b) (Lerma, C. 2014).

En Singapur, Dawood T., Zhu Z., & Zayed T. (2018) hablan de la utilización de un método basado en procesamiento de imágenes Red, Green and Blue (RGB) y de análisis de regresión para identificar y cuantificar la fragmentación un (desprendimiento) del concreto en las redes de metro de la ciudad de Montreal. Con este método se busca cubrir la necesidad de un nuevo método de inspección, con resultados consistentes, que no requiera mucho tiempo de trabajo y con el cual se pueda tener registro de desprendimientos en zonas de difícil acceso. Dawood et al. (2017) cuidaron que durante la obtención del material fotográfico aéreo se hiciera de forma ortogonal a la superficie utilizando un drone, respetando cierta superposición para que se tuviera una mejor cobertura del área. Después, estas fotos se dividieron en tres canales diferentes para así seleccionar el canal de color más adecuado para la mejora y detección de regiones con desprendimiento del concreto. También, a las fotografías se les da tratamiento con diferentes técnicas, métodos y filtros para suavizar la imagen y mejorar su resolución, teniendo como resultado ilustraciones que muestran las intensidades de píxeles en un gráfico 3D. Para el análisis de regresión se realizó la selección de las variables de entrada y de salida. Las variables de entrada son representadas por las intensidades de píxeles generadas del procesamiento de las imágenes, y la variable de salida incluye las profundidades de desprendimiento obtenidas de las mediciones en campo. Después de esto realizó un diagrama de dispersión para encontrar la relación de ambas variables y se prueba su efectividad usando criterios como R cuadrada, R cuadrada ajustada, suma de cuadrados debido al error y error cuadrático medio.

En Brasil, Rauber, É. R., Bordin, F., Anschau, M. M., Veronez, M. R., da Silveira Jr, L. G., & Framarim, C. (2018) mencionan la necesidad de métodos que complementen las inspecciones visuales que se le hacen a las Obras de Arte Especial para identificar manifestaciones patológicas. Rauber et al. (2018) realizaron un estudio bibliográfico sobre la adquisición de imágenes por medio de métodos que se basan en los sensores remotos, como lo son los sensores multiespectrales e hiperespectrales, que permiten la evaluación y cuantificación de daños en la estructura. Estos sensores remotos son montados en drones con el objetivo de que las inspecciones se realicen de una manera más frecuente, por su costo accesible y por no arriesgar la integridad del inspector.

Vaghefi, K. en Estados Unidos (2012), resalta la importancia del uso de las tecnologías basadas en la percepción remota para la evaluación y monitoreo del estado de los puentes y de cómo se pueden volver más eficientes los esfuerzos en las inspecciones realizadas a estos, así como de su reparación y rehabilitación. Una de las ventajas principales que le encuentran al uso de estas tecnologías es eliminar la necesidad de interrumpir el tráfico o el cierre de carriles en las vialidades para realizar las inspecciones, ya que no implican entrar en contacto directo de la estructura. En Estados Unidos, además, los procedimientos de inspección de puentes se basan en métodos de evaluación no destructiva para valorar la condición de estos mediante inspecciones visuales principalmente. Vaghefi (2012) evaluó 12 tecnologías diferentes basadas en teledetección: óptica tridimensional (3D) (incluida la fotogrametría), fotografía digital de alta resolución al estilo de StreetView, óptica interferometría, análisis espectral, correlación digital de imágenes (DIC), imágenes por satélite y aerotransportadas electro-ópticas (EO), LIDAR, imagen infrarroja (IR) térmica, radar (incluyendo retrodispersión y moteado), georradar (GPR), radar de apertura sintética interferométrica (InSAR) y acústica remota. Para cada tecnología se describieron las bases en las que funciona y se calificaron por su precisión, disponibilidad comercial, costo de medición, preparación previa a la recolección, complejidad de análisis e interpretación, facilidad de recolección de datos, distancia de espera, y la interrupción del tráfico. La evaluación se basó principalmente en la literatura existente y en la experiencia profesional de los autores. Los resultados muestran que las tecnologías ópticas 3D, la fotografía de estilo StreetView, el LIDAR, la interferometría óptica, IR térmica, el análisis espectral y radar son buenas para la detección de problemáticas en la superficie de los puentes (es decir, las que son observables para el ojo humano) con una alta resolución, además pueden proporcionar mediciones precisas del área de interés. Para inspeccionar las condiciones de la parte sub-superficial del puente, las tecnologías que demostraron mayor potencial fueron el radar (incluyendo GPR e InSAR) y las imágenes IR térmicas (Figura 2), aunque están limitadas por la resolución espacial y dificultades en la recolección de datos. Las imágenes electro-ópticas aerotransportadas y satelitales, la óptica 3D, InSAR, DIC y LIDAR son tecnologías con potencial para detectar desafíos métricos de manera global.

Figura 2. Losa de concreto elaborada en laboratorio (izquierda), imagen tomada con cámara fotográfica e imagen térmica (derecha), donde se pueden observar los defectos simulados (Vaghefi, K.,2012).

2.2 Marco teórico

2.2.1 Sensores remotos

La percepción remota es el proceso de recolectar información de un objeto, área o fenómeno sin tener contacto físico con este. Un sensor remoto es el aparato por el cual se obtiene esta información. Siguiendo estas dos definiciones, la visión, audición y olfato son considerados sensores remotos del ser humano.

Dependiendo del sensor remoto que se utilice, será la información obtenida, como lo pueden ser fotografías, dígitos, gráficos, etc. Algunos ejemplos de sistemas remotos son los sensores del satélite Landsat 7, los radiómetros y espectroradiómetros, el georadar (GPR), escáner láser (LIDAR), cámaras hiper o multiespectrales, cámaras térmicas o cualquier cámara fotográfica (Caria de Moraes, E., 2002; Vaghefi, K., 2012) (Figura 3).

Un factor muy importante de la información obtenida por medios remotos es su resolución, la cual depende de la cantidad y calidad de la información que registren (López-Granados, F., 2013). La resolución se define como la habilidad para discriminar información de detalle acerca del objeto que se está estudiando y del entorno geográfico en que se encuentra.

El concepto de resolución de un sensor remoto implica 4 manifestaciones: espacial, espectral, radiométrica y temporal.

La resolución espacial se refiere al campo de visión con la cual se pueden detectar los objetos, es decir, la menor área que se puede distinguir en un píxel y que representan una parte de la superficie en observación. Un píxel es la unidad más pequeña de información que conforma una imagen. La resolución espacial que se tenga dependerá de factores como la altura orbital y la velocidad de exploración de los sensores.

Figura 3. Diferentes subsistemas de sensores remotos. a) satélite Landsat 7, b) imagen obtenida de un sensor multiespectral, c) cámara térmica, d) cámara fotográfica.

La resolución espectral se refiere al número y anchura de las bandas espectrales que puede identificar o discriminar el sensor remoto, y por ende, el espaciamiento o rango de las longitudes de onda que el sensor es capaz de registrar en el espectro electromagnético. Una alta resolución espectral implica un mayor número de bandas que cubran un rango electromagnético más angosto. Cuanto mayor sea el número de medidas en un determinado intervalo de longitud de onda mejor será la resolución espectral de la recolección.

La resolución temporal es la periodicidad con la que un sensor remoto puede obtener información de una misma área. Esta característica está relacionada con órbita y el ángulo de observación y apertura que tiene cada sensor. Por ejemplo, el satélite Landsat 7 toma imágenes de la misma zona cada 16 días. La resolución radiométrica se refiere a la sensibilidad del sensor, es decir, la mayor o menor capacidad de detectar variaciones en la energía reflejada (radiación espectral) que emiten los elementos u objetos que se analizan. Esta suele indicarse por el número de niveles de gris que se obtiene; también, los píxeles de la imagen tienen un nivel digital, que se representa como un número entero, este valor puede ser traducido a escala de grises. Entre mayor sea la resolución radiométrica se podrán interpretar mejor las imágenes.

Los sensores remotos se pueden clasificar según la fuente de energía de donde se obtiene la información y pueden ser activos o pasivos. Los sensores remotos activos generan su propia energía, mientras que los pasivos dependen de la energía de una fuente externa. De estas dos categorías, los más utilizados son los sensores pasivos, los cuales miden la magnitud de la radiación electromagnética que se refleja e irradia desde la superficie de la tierra y de la atmósfera; con esto se obtiene información sobre la superficie que se analiza. El espectro visible, el infrarrojo y las microondas son algunos rangos que forman parte del espectro electromagnético (Figura 4). En la Tabla 1 se muestran los rangos del espectro electromagnético con la longitud de onda en la que se presentan.

Figura 4. Espectro electromagnético, longitud de onda en metros.

Tabla 1. Longitudes de onda del rango óptico del espectro electromagnético (Viera,2014).

Rango	Longitud de onda
Radiación UVC, UVB y UVA	200 nm - 400 nm
Espectro visible	360 nm - 780 nm
Infrarrojo cercano	0.780 µm - 1.1 µm
IR de onda corta	1.1 μm - 2.5 μm
IR de onda media	2.5 μm - 7 μm
IR de onda larga	7 μm - 15 μm

Otra clasificación para los sensores remotos es por su resolución espacial; esta puede ser alta o baja (Parra-Henao, G., 2010). Los sensores de alta resolución espacial se refieren a aquellos que captan información de la superficie de la tierra en áreas iguales o menores a 1 x 1 km y por el detalle que puede tener este tipo de información, mientras que los sensores de baja resolución comprenden los que dan información de superficies mayores al kilómetro cuadrado. Los sensores remotos han sido ampliamente utilizados para abordar temas de funciones ecosistémicas, como J.M. Paruelo, quien en 2008 utilizó sensores a bordo de satélites de observación terrestre para la caracterización de los ecosistemas en España; C.M. Di Bella, G. Posse, M.E. Beget, M.A. Fischer, N. Mari y S. Veron en Argentina (2008) analizaron los diferentes productos obtenidos de sensores remotos, como imágenes satelitales, para detectar y cuantificar áreas afectadas por incendios o inundaciones, evaluarlas en tiempo real y analizar las áreas localizadas para poder tomar medidas de prevención y caracterizar las condiciones en las que se encuentran. F. Rosete y G. Bocco (2003) en México, utilizan los Sistemas de Información Geográficos y la percepción remota para elaborar programas de manejo forestal comunitario, que involucran la elaboración, ejecución, evaluación y actualización de información, mapas, textos, entre otros.

2.2.2 LIDAR

El LIDAR (*Light Detection and Ranging*) es una técnica de teledetección óptica que utiliza la luz de láser para obtener una muestra densa de la superficie de la tierra produciendo mediciones exactas de x, y, z. (Esri, 2016). Algunas de las aplicaciones actuales del LIDAR son las representaciones cartográficas láser aéreas, el estudio de la geología y como alternativa a la topografía tradicional.

Los componentes de hardware principales de un sistema LIDAR incluyen un vehículo de recolección (avión, helicóptero, vehículo y tripié), sistema de escáner láser, GPS (Sistema de posicionamiento global) e INS (sistema de navegación por inercia). Un sistema INS mide la rotación, inclinación y encabezamiento del sistema LIDAR.

El LIDAR es un sensor óptico que emite rayos láser hacia una superficie mientras se mueve por una trayectoria específica. Al llegar el rayo láser a una superficie, este regresa al sensor LIDAR y es captado por receptores, los cuales registran el tiempo preciso desde que el láser dejó el sistema hasta cuando regresa. Con esta información se calcula la distancia entre el sensor y la superficie u objeto con el que tuvo contacto el láser.

Al combinar las distancias obtenidas con la información que proporciona el GPS e INS, se generan puntos tridimensionales georreferenciados con alta precisión de la superficie analizada.

Los puntos obtenidos por el LIDAR, además de contener información posicional (x, y, z), pueden tener otros atributos como lo son el número de devoluciones, ángulo y dirección de escaneo, tiempo del GPS, intensidad y RGB. Estos últimos dos atributos son los que se utilizarán para esta tesis.

La intensidad es una medida, recogida para cada punto, de la fuerza de retorno del pulso láser que genera el punto. Se basa en la reflectividad del objeto alcanzado por el pulso láser (Esri, 2016). La reflectividad es una función de la longitud de onda utilizada, que suele estar en el infrarrojo cercano. La reflectividad de los objetos dependerá del material del que esté compuesto y de la luz que incide sobre él en el momento de la toma de datos (Cardozo, O. D. y Da Silva, C. J., 2017).

Como se observa en la Figura 5, los puntos obtenidos con LIDAR se pueden atribuir a bandas RGB (rojas, verdes y azules) que vienen incluidas en las imágenes que captura el LIDAR al mismo tiempo que emite el rayo láser.

Figura 5. Combinación de bandas de una imagen en formato rasterizado (descripción gráfica del conjunto de píxeles que componen una imagen).

Los datos obtenidos de un LIDAR después de haber sido postprocesados se conocen como datos de la nube de puntos. Estas están conformadas por grandes cantidades de puntos georreferenciados, con atributos que dependerán del tipo de LIDAR con el que fueron obtenidos (Figura 6).

Figura 6. Ejemplo de una nube de puntos obtenida con LIDAR terrestre.

Tipos de LIDAR

Hay dos tipos básicos de LIDAR: aéreo y terrestre.

- El LIDAR aéreo se instala en un helicóptero o avión, la luz del rayo láser se emite hacia el suelo y vuelve al sensor en movimiento. Tiene como ventajas que se pueden realizar levantamientos de grandes áreas y en lugares de difícil acceso. El LIDAR aéreo puede ser topográfico o batimétrico.
- Con el LIDAR terrestre se obtienen nubes de puntos densas y exactas con las cuales se identifican los objetos de manera muy precisa. El LIDAR terrestre puede ser móvil o estático. El LIDAR móvil es aquel en el que el sensor se monta en un vehículo en movimiento (automóvil, tren, barco), mientras que en el estático el sensor es montado en un trípode en una ubicación precisa.

Figura 7. Funcionamiento del LIDAR aéreo.

2.2.3 Vehículos Aéreos no Tripulados (VANT)

Un sistema aéreo no tripulado se define como un conjunto de elementos que hacen posible el vuelo de un VANT, esto incluye el equipo, comunicaciones y personal necesarios para controlar una aeronave no tripulada.

Los VANT, también llamados UAV, de sus siglas en inglés Unmanned Aerial Vehicle, es una aeronave que no transporta a un operador humano a bordo y que puede volar siendo controlado de forma remota o de forma automática realizando planes de vuelo programados con anterioridad; esto hace que los VANTs se diferencien de los misiles (Vila Rovira, 2011).

La característica más importante de los VANTs es que cuentan con un autopiloto y sensores de navegación como el GPS e IMU (Unidad de medición inercial) que les permiten realizar los planes de vuelo con una gran precisión y tener los datos necesarios para corregir geométricamente las imágenes que se obtengan.

Existen diferentes maneras de establecer una clasificación para los VANTs la más común es por el tipo de aeronave, y se pueden distinguir las aeronaves de despliegue vertical y de despliegue no vertical (Figura 8).

Figura 8. Clasificación de VANTs dependiendo del tipo de aeronave (Barrientos, A, et.al., 2007).

a) b) Figura 9. Ejemplos de VANTs de: a) ala rotativa, b) ala fija.

Los VANTs se han utilizado a lo largo de la historia principalmente en el campo militar. Cuerno Rejado, C., Garcia Hernandez, L., Sanchez Carmona, A., Carrió Fernández, A., Sanchez Lopez, J. L. y Campoy Cervera, P. (2016) señalan a Nikola Tesla como el creador de la aviación no tripulada y del misil de crucero; en 1989 creó el vehículo naval "Teleautomaton" que fue capaz de moverse, detenerse, girar a la izquierda o derecho y enviar señales de radio. Por otro lado, Vila Rovira, O. (2011) menciona que el inventor Charles Perley patentó un bombardero no tripulado en 1863, el cual consistía en un globo aerostático de aire caliente que cargaba con explosivos y, soltaba las bombas encendidas al estar en ciertas condiciones y calculadas con el viento y la distancia.

Figura 10. Bombardero aéreo de Perley (Vila Rovira, O. 2011).

En los últimos años se han estado realizando investigaciones y avances de los VANTs en el campo civil, esto ha hecho que su uso tenga aplicaciones diferentes y en distintas áreas, como fotografía, agricultura, climatología, vigilancia, etc. (Tabla 2).

El aspecto más importante de los VANTs es el sensor de toma de datos que se le coloca, que puede ser uno solo o la combinación de varios, esto dependerá del objetivo final del estudio que se realice. Algunos ejemplos de estos sensores son cámaras fotográficas, sensores multiespectrales o hiperespectrales o sensores térmicos. La información captada de estos sensores puede ser corregida u ortorectificadas para realizar mediciones aéreas, crear ortofotografías, realizar cartografía en escalas grandes, etc.

Aplicación	Ejemplo
Inspección de infraestructuras	Líneas eléctricas, oleoductos y gaseoductos
Inspección de obra civil	Puentes, viaductos, presas
Vigilancia de fronteras	Inmigración ilegal, contrabando
Patrulla marítima	Inmigración ilegal, contrabando
Filmografía	Cine, reportaje fotográfico
Reconocimiento y toma de datos en desastres naturales	Huracanes, riadas, volcanes
Levantamiento de mapas	Topografía
Climatología	Toma de muestras y monitorización de partículas en aerosol, monitorización de contaminación atmosférica
Agricultura	Aplicación de fumigantes, análisis del estrés hídrico, agricultura de precisión
Intervención en desastres no naturales	Radioactivos, vertidos contaminantes (petróleo), incendios forestales
Enlace de comunicaciones	
Localización de recursos naturales	Pesca, minería
Transporte de paquetería	
Búsqueda y rescate	Naufragios, accidentes en montaña o zonas de difícil acceso

Tabla 2. Aplicaciones civiles de los VANTs (Barrientos, A., et al. 2007).

La adaptación de sensores a los VANTs es el resultado del gran avance en el desarrollo de estos, que permite la obtención de imágenes de muy alta resolución y de

la evolución de la microelectrónica y miniaturización, que hace que los sensores puedan ser montados en los VANTs, que sean más pequeños y sencillos de operar.

2.2.4 Infraestructura

Las estructuras son creadas para satisfacer las necesidades de los hombres, y para esto deben tener ciertos atributos, como lo son la funcionalidad, seguridad, durabilidad, satisfacción estética y factibilidad económica (Treviño, E., 1998).

La seguridad se compone de tres elementos: resistencia, rigidez y estabilidad. La resistencia se refiere a la capacidad de la estructura de soportar todo tipo de cargas y deformaciones a las que se encuentre sometida; rigidez significa que en la estructura no deberán existir comportamientos, como deformaciones y vibraciones, que hagan que los usuarios se sientan incómodos al utilizarla; y estabilidad se refiere a la capacidad de la estructura y todos sus elementos a mantenerse unidos y guardando su posición de origen con el paso de los años.

La durabilidad según el ACI (*American Concrete Institute*) es la habilidad para resistir la acción del intemperismo, ataque químico, abrasión o cualquier otro proceso de deterioro, y determina que el concreto durable debe mantener su forma original, calidad y características de servicio cuando es expuesto a este ambiente. El concreto es la mezcla de cemento, agua, aditivos, grava y arena (Gutiérrez de López, L. 2003, McCormac, J. C., & Russell, H. B. 2005). El concreto es un material muy frecuente en la construcción ya que tiene la capacidad de resistir grandes esfuerzos de compresión, sin embargo, no se desempeña bien ante otros tipos de esfuerzos, como la tensión (Kosmatka, S. H., Panarese, W. C., & Bringas, M. S. 1992). Para resistir tensiones, se emplea refuerzo de acero, generalmente en forma de barras, colocado en las zonas donde se prevé que se desarrollarán tensiones bajo las acciones de servicio. El acero es una aleación de hierro con pequeñas cantidades de otros elementos, es decir, hierro combinado con un 1% aproximadamente de carbono, y que hecho ascua y sumergido en agua fría adquiere por el temple gran dureza y elasticidad. Este material se caracteriza por su gran resistencia.

La combinación de concreto simple con refuerzo, convencionalmente acero, constituye lo que se llama concreto armado o reforzado. (Gutiérrez de López, L. 2003).

2.2.5 Patologías del concreto

La patología, en el área de la salud, se encarga de investigar el desarrollo de las enfermedades que afectan al ser humano, teniendo como finalidad describir cualquier lesión, clasificarla y explicar el porqué de su aparición.

El concepto de patología fue incorporado a la construcción, definiéndose como la ciencia que se dedica a estudiar los problemas o enfermedades que surgen en los edificios después de construidos (Zanni, E., 2008). Este concepto abarca todas las lesiones, visibles o no, que pueda tener la obra desde que está en la etapa de desarrollo. Estas lesiones pueden presentarse en cualquier parte de una estructura y originarse por una gran cantidad de causas, que es necesario identificarlas para poder resolverlas (Treviño Treviño, 1998).

Clasificando las patologías de las estructuras por su causa de origen estas pueden ser por defectos, daños o deterioros.

Las patologías ocasionadas por defectos surgen de un mal diseño, una incorrecta supervisión en la construcción o el uso de materiales de mala calidad (Zanni, E., 2008). En las estructuras, las patologías por daños ocurren durante y/o luego de estar expuestos a un agente externo, como lo pueden ser eventos naturales, como sismos, fuego, inundaciones o derrumbes; también ocurren por el uso inadecuado de esta, por ejemplo, cuando a la estructura se le aplica una carga superior a la cual fue diseñada. Las patologías que ocurren por deterioro son causadas por la exposición de la estructura al medio ambiente o a agentes químicos, lluvia, sol, el contacto con agua que contenga sustancias químicas, el aire, etc. (Astorga, A. y Rivero, P 2009).

Las patologías más comunes en los elementos de concreto son los agrietamientos, escamas, delaminación, descascaramiento, afloramientos, desgaste o abrasión, daños de colisión, pulido, y sobrecarga. (Guía para inspección de puentes, 2006).

2.2.6 Agrietamientos

Las grietas son roturas de distintas longitudes, espesores y profundidades, que aparecen en los elementos de concreto reforzado, y se manifiestan externamente con un desarrollo lineal. Los agrietamientos en concreto por lo general son finos para ser visualizados a simple vista. Las grietas se pueden calificar como finas, medianas o anchas. Las grietas finas, aunque usualmente no representan problema para la capacidad de la estructura, al ser detectadas deben ser reportadas. Las grietas medianas y anchas son significativas para la capacidad estructural y es necesario que también sean reportadas y además se tienen que monitorear para tener registro de sus dimensiones.

Las grietas en el concreto se atribuyen a múltiples causas y pueden sólo afectar la apariencia de una edificación, pero también pueden ser indicadoras de fallas estructurales significativas. Las grietas pueden representar la totalidad del daño, pero también pueden señalar problemas de mayor magnitud. Su importancia depende del tipo de estructura, como así también de la naturaleza de la fisuración como se indica en Qu, Z., Ju, F. R., Guo, Y., Bai, L., & Chen, K. (2018).

Las causas de origen de un agrietamiento pueden ser múltiples. Entre ellas destacan: curado deficiente del concreto, retracción, variaciones térmicas, ataque químico, cargas externas, cargas excesivas, errores en la ejecución, errores en la concepción del diseño, asentamientos, entre otros (Gopalakrishnan, K., Gholami, H., Vidyadharan, A., Choudhary, A., & Agrawal, A. 2018; Dawood T., Zhu Z., Zayed T. 2018).

Al tener la presencia de agrietamientos en las estructuras se necesitan controlar por diferentes razones, como el aspecto, las fugas y la corrosión (Wight, J. K. y MacGregor, J. G., 2009). Las grietas además de ser antiestéticas, pueden causar preocupación de los propietarios o los usuarios de la estructura. En superficies limpias y fáciles de observar, las grietas que superan los 0.0254 cm (0.01 pulgadas) de ancho empiezan a generar preocupación en los usuarios; además, cuando las grietas se encuentran expuestas a agentes contaminantes, la suciedad puede acentuar el ancho aparente de las grietas y hacer que grietas pequeñas sean más notables.

También es importante controlar los agrietamientos en estructuras que retendrán o retienen líquidos, como presas, estructuras de conducción, tanques de almacenamiento etc., ya que, si llegaran a existir fugas, estás serán función del ancho de grieta, cuando esta se expanda a través de el/los elementos de concreto.

Las grietas sólo pueden repararse correctamente si se conocen las causas de origen y si los procedimientos de reparación seleccionados son adecuados para dichas causas; en caso contrario, las reparaciones durarán poco tiempo. Una correcta reparación, ataca no sólo la grieta como tal, sino también las causas del problema. Debido a la complejidad que caracteriza el tema de las grietas en estructuras, es recomendable siempre la consulta e intervención de personas con experiencia, que ayuden a solucionar estas patologías de la mejor manera posible.

2.2.7 Inspecciones

Una inspección es el conjunto de acciones de gabinete y campo, que va desde recopilación de información (historia de la estructura, expedientes técnicos del proyecto, planos post construcción, inspecciones previas, etc.), hasta la toma de datos en campo, con el fin de conocer el estado de la infraestructura en cualquier momento. (Guía para inspección de puentes, 2006). Existen diferentes tipos de inspecciones, las cuales se realizan dependiendo de las necesidades de la estructura o del tiempo que tenga en servicio; estas inspecciones pueden ir desde una simple inspección rutinaria para revisar las condiciones de la estructura, hasta una inspección especial, en donde se realizan mediciones y pruebas con equipo y herramientas especializadas (Sánchez-Jacobo, 2014).

La inspección rutinaria de mantenimiento menor y limpieza se realiza periódicamente para revisar que la estructura se encuentre en óptimas condiciones para su funcionamiento. Normalmente se realiza al mismo tiempo con la inspección principal. Estas inspecciones se realizan cada 1 a 5 años, dependiendo del grado de deterioro de la estructura

La inspección principal se realiza con la finalidad de mantener la seguridad del tráfico, evaluar la necesidad de reparaciones, monitorear los cambios en su condición y la ejecución de mantenimiento menor y limpieza.

Una inspección de evaluación debe ser llevada a cabo por una brigada de por lo menos tres técnicos (uno de ellos debe ser ingeniero). El personal contará con un equipo mínimo y la inspección será fundamentalmente visual. Una inspección visual debe completarse con una auscultación con métodos topográficos, magnéticos, eléctricos y químicos para determinar corrimientos, posiciones de armadura, profundidades de carbonatación y contenido de ion-cloro y acercarse a la determinación del grado de corrosión de las armaduras.

La Inspección especial consiste en una evaluación detallada de los daños en materiales y propiedades específicos de un puente los cuales tienen origen en el impacto ambiental, el uso, diseño, errores de construcción, sobrecarga, etc. La Inspección especial se realiza cuando un puente sugiere la necesidad de una revisión más detallada de algún elemento principal, el cual pueda provocar daños mayores en la estructura en general. Esta inspección se conforma de mediciones en campo y pruebas realizadas mediante la utilización de equipo y herramientas especializadas, llevándose a cabo de acuerdo con los resultados obtenidos dentro de la inspección principal.

Sánchez-Jacobo (2014) menciona que al realizar una inspección especial es necesario buscar y monitorear los diferentes mecanismos de daño en estructuras, que en el caso de agrietamientos estos son:

Grietas estructurales

- Grietas mayormente visibles en estructuras de concreto reforzado (inofensivas).
- Grietas ásperas en estructuras de concreto reforzado (sobrecarga o diseño escaso).
- Grietas poco visibles en estructuras de concreto preesforzado (problemas serios de sobrecarga, diseño).
- Grietas de cortante-flexión, que se presentan como una grieta cortante conectada a una grieta horizontal a lo largo de la cubierta del puente y una grieta

horizontal justamente sobre el refuerzo principal, formando una curva en forma de S.

 Grietas de torsión, grietas inclinadas en espiral (cruzan todas las caras del elemento).

Grietas no estructurales en el concreto

- Grietas de contracción. Grietas con orientación definida que depende de la geometría y de las restricciones provocadas por otras partes de la estructura. Pasan a través de toda la sección transversal del elemento, siendo inofensivas pero desfavorables por durabilidad.
- Grietas térmicas (hidratación). Provocadas por el aumento de temperatura en el fraguado del concreto.
- Grietas debidas a la contracción plástica. Grietas que siguen la superficie de los agregados sin atravesarlos. Son anchas y poco profundas formando un patrón definido en forma de mallas hexagonales o un patrón de grieta neto. No dañan la estructuralmente la estructura, pero si afectan su tiempo de vida útil.
- Grietas debido al asentamiento plástico. Estas grietas se encuentran sobre el refuerzo en la superficie o en las varillas en la sección transversal. Las grietas alcanzan las barras y quedan al descubierto contra efectos ambientales.

Otros mecanismos de daño que se busca en las estructuras: la desviación y movimientos de elementos estructurales en diferentes direcciones, fractura/aplastamiento, problemas estructurales en componentes de acero, corrosión, ataque de sulfatos, erosión/socavación.
3 Planteamiento experimental

3.1 Área de estudio

El área de interés de este trabajo corresponde a 37 columnas, comprendidas entre las estaciones Niños Héroes y Universidad de la línea 2 del metro, abarcando una longitud de 1,095 metros sobre la avenida Universidad, en el municipio de San Nicolás de los Garza.

Figura 11. Ubicación de la zona de estudio.

Esta sección se seleccionó haciendo una inspección visual con ayuda del programa Google Earth Pro, en el modo Street View; se identificó que las columnas de esta zona son las que presentan un daño superficial más notorio.

3.2 Equipo

3.2.1 Escáner Terrestre

Se usó un escáner láser terrestre GLS-1500 de marca Topcon, para obtener nubes de puntos densas. La configuración del GLS-1500 (en modo normal) utilizado en el campo se muestra en la Tabla 3. El rango máximo medible del escáner es de 500 m (para objetos objetivo con 90% de reflectancia), y puede alcanzar una precisión de 4 mm en un rango de 150 m y 6 "de ángulo (H&V). La velocidad de medición es de hasta 30,000 puntos por segundo. El láser es de tipo pulsado clase 1, con una longitud de onda de 1535 nanómetros, es seguro para los ojos e invisible. Tiene integrada una cámara digital con resolución de 2 megapíxeles y un campo de visión de horizontal de 16.5° y 22° vertical. El peso completo del equipo es de aproximadamente 50 kg, incluyendo el GLS, baterías, trípode, computadora de operación y objetivos 3D.

Parámetro	Característica			
Rango máximo				
Reflectividad de 90% 330 m				
Reflectividad de 18%	150 m			
Rango mínimo	1 m			
Precisión de un punto				
Distancia (de 1 a 150 m) 4mm				
Ángulo (horizontal y vertical)	6"			
Precisión de la superficie (de 1 a 150 m)	2 mm			
Precisión de detección del objetivo	3" a 50 m			
Rango de escaneo	30,000 puntos/segundo			
Resolución de escaneo				
Tamaño de punto < 6 mm de 1 a 40 m				
Máxima densidad de la muestra	1 mm a 20 m			

Tabla 3. Configuración del escáner GLS-1500 en modo normal.

Campo de visión máximo (por escaneo)				
Horizontal	360°			
Vertical	±35°			
Láse	ər			
Тіро	Pulsado (tiempo de vuelo)			
Longitud de onda	1535nm (invisible, seguro para los ojos)			
Clase	1			
Cámara digital				
Campo de visión horizontal	16.5°			
Campo de visión vertical	22°			
Número de píxeles	2 megapíxeles			

3.2.2 Estación total topográfica

Se usó una estación total topográfica (ETT) Leica FlexLine plus TS02 para la ubicación de puntos de control. La medición de ángulos (horizontal y vertical) tiene una precisión de 3", 5" o 7". Se usó un prisma con un rango de 3.5 m y rango de la diana reflectante de 250 a 500 m para la medición de distancias. Las características de la estación total se encuentran en la Tabla 4.

Tabla 4. Características de la ETT Leica TS02.

Parámetro	Característica			
Medición angular (Hz, V)				
Precisión	3" / 5" / 7"			
Método	Absoluto, continuo, diametral			
Resolución en pantalla	0.1" / 0.1 mgon / 0.01 mil			
Medición de distancias con prisma				
Rango prisma circular (Leica GPR1)	3.500 m			
Rango diana reflectante (60 mm x 60 mm)	250 m / >500 m			

Precisión	Preciso+: 1.5 mm+2.0 ppm Preciso rápido: 3.0 mm+ 2.0 ppm Tracking: 3.0 mm+2.0 ppm		
Tiempo típico de medición	2.0 s		
Objetivo			
Aumentos / Resolución	30 x / 3"		
Campo de visión	1° 30' (1.66 gon), 2.7 m a 100 m		
Rango de enfoque	1.7 m a infinito		
Retículo	Iluminación, 10 niveles de brillo		
Plomada Láser			
Тіро	Puntero láser, 5 niveles de brillo		
Precisión de centrado	1.5 mm a 1.5 m		

3.2.3 Cámara de tipo réflex digital.

Para la toma de fotografías de corto alcance a nivel de piso se utilizó una cámara de tipo réflex digital Nikon D5600. Las especificaciones técnicas se muestran en la Tabla 5.

Tabla 5. Características técnicas de cámara digital Nikon D5600.

Parámetro	Característica			
Sensor de imagen				
Píxeles efectivos (megapixles)	24.2 millones			
Tamaño del sensor	23.5 mm x 15.6 mm			
Formato del sensor de imagen	DX			
Tipo de sensor de imagen	CMOS			
Píxeles totales	24.7 millones			
Visor				
Cobertura de encuadre	95% H y V			
Punto de mira del visor	17mm (-1.0m ⁻¹)			

3.2.4 Cámara digital

Se utilizó una cámara Go Pro Hero 6 para la toma de fotografías de las columnas del metro. Las características de la cámara se encuentran en la Tabla 6. La cámara se puede configurar su modo de disparo para fotos, modo ráfaga, timelapse, modo nocturno y video. Tiene una resolución de 12 megapíxeles para fotografías y 4K para video. Tiene también un estabilizador para las fotografías y reducción de ruido incluido.

Parámetro	Característica	
Vídeo	4K a 60 fps y 1080p a 240 fps	
Pantalla	Trasera táctil de 2" y delantera monocromática.	
Estabilizador	Sí	
Fotografías	12 mp (RAW y HDR), ráfaga de 30 cuadros por segundo	
Reducción de ruido	Sí	
Modo de disparo	Fotos, modo ráfaga, Timelapse, modo nocturno y vídeo	

3.2.5 Vehículo aéreo no tripulado

Se utilizó un drone DJI Inspire 2, integrado con una cámara Zenmuse X5 para la toma de fotografías aéreas de la estructura (Tabla 7). El drone cuenta con 4 rotores, una distancia operativa máxima de 7000 metros alcanza una velocidad máxima de 26 m/s y tiene un peso de 3.44 kg con la batería incluida. Su tiempo máximo de vuelo es de 27 minutos y puede operar en un rango de temperatura de -20 a 40 °C. La cámara Zenmuse tiene una resolución de 20.8 MP y cuenta con estabilizador de imágenes.

Parámetro	Característica			
VANT				
Número de rotores 4 rotores				
Distancia operativa máxima	7000 m			
Velocidad máxima	26 m/s			
Banda de frecuencia	2.4 - 2.483 / 5.725 - 5.85 GHz			
La velocidad máxima de ascenso 6 m/s				
Velocidad máxima de descenso	4 m/s			
Tiempo máximo de vuelo	27 min			
Sistema sensor de obstáculos	Incluido			
Sensor de distancia	Incluido			
Sensores integrados	Infrarrojo (IR)			
Cámara fotográfica				
Megapíxeles	20,8 MP			
Pesos y dimensiones				
Peso (batería incluida) 3.44 kg				
Condiciones ambientales				
Intervalo de temperatura operativa -20 - 40 °C				

Tabla 7. Características del drone DJI Inspire 2 y cámara Zenmuse X5.

3.3 Procedimiento experimental

Este proyecto de investigación fue divido en tres etapas como lo muestra la Figura 12, las cuales fueron: 1) levantamientos de datos en campo (fotogramétrico y escaneo láser), 2) post proceso de la información que incluyo preparación, limpieza y alineados, y 3) inspección visual para documentar de manera general la condición superficial de la estructura.

A continuación, se describe de manera más detallada cada sección:

Figura 12. Metodología seguida.

3.3.1 Levantamiento en campo

3.3.1.1 GLS

Se realizaron levantamientos con el escáner de la línea 2 del metro en su parte elevada, en los meses de mayo a septiembre de 2018. Esta zona comprende de la estación Niños Héroes hasta 800 m. antes de la estación Anáhuac, a la altura del Instituto de Ingeniería Civil, teniendo un total de 67 columnas escaneadas en 2 kilómetros.

Para la toma de datos en campo se utilizó una estación total topográfica Leica, con la cual se geoposicionaron puntos de control a ambos lados de la estructura del metro. De estos puntos se obtuvieron las coordenadas x, y, z y se señalizaron en las banquetas, esto con el objetivo de posicionar el escáner en puntos conocidos y poder referenciar los escaneos.

Los escaneos se realizaron colocando el escáner sobre las banquetas de Av. Universidad, a una distancia de entre 15 y 20 m de la estructura del metro. El instrumento se mantuvo a una altura de aproximadamente 1.5 m a nivel de piso, y se programó una distancia de alcance de 100 m. Debido al complicado acceso de vistas por los ángulos se realizó un escaneo cada 50 m aproximadamente, con una que varió de 90 a 180 grados de barrido horizontal y 70 grados en vertical (la máxima del sensor) ajustando la resolución para todos los casos a 0.02 m.

Figura 13. Toma de datos en campo utilizando escáner.

3.3.1.2 Levantamiento fotogramétrico de corto alcance

Para la toma de fotografías en campo de la estructura del metro se utilizaron dos técnicas, la de corto alcance terrestre que utilizó una cámara Nikon D5600 y de corto alcance móvil que utilizó el sensor de una Go Pro Hero 6 montada en un vehículo en movimiento.

Tomas de corto alcance terrestre

Con la cámara Nikon se tomaron fotografías de los capiteles de las columnas F-C2 a F-C7 desde nivel de piso, a una distancia entre 15 y 20 metros de la estructura, sobre las banquetas de Av. Universidad (Figura 14). La toma de fotografías se realizó rodeando cada columna individualmente, para tener múltiples puntos de vista de ellas. Para cada capitel se tomaron entre 60 y 80 fotografías, procurando que entre ellas existiera un porcentaje alto de traslape (\approx 70%) garantizando la cobertura desde todos los ángulos del capitel (Figura 15).

Figura 14. Toma de fotografías utilizando una cámara Nikon.

Figura 15. Fotografías tomadas en campo de la columna F-C3.

Tomas de corto alcance móvil

Avenida Universidad ocupa seis carriles vehiculares, en esta zona todos circulan de sur a norte, tres de los carriles se encuentran del lado poniente de la estructura del metro y los otros tres del lado oriente. Fue necesario realizar cuatro series fotográficas, dos series para cada lado de la avenida, de tal forma que se cubrieran ambas caras del metro, colocando la cámara viendo al norte (frente de la camioneta) y hacia el sur (parte posterior del vehículo).

Para la toma de cada una las cuatro series fotográficas, la cámara Go Pro se montó en el techo de una camioneta tipo pickup utilizando un adaptador de ventosa (Figura 16) y se configuró el lapso temporal de toma a cada 0.5 s con el modo Timelapse.

Figura 16. Montaje de la cámara GoPro y acercamiento.

3.3.1.3 Levantamiento fotogramétrico aéreo con VANT

La sección superior de la estructura fue respaldada con fotografías aéreas obtenidas con el VANT que se elevó a 40 m de altura con velocidad de 13 km/h. El vuelo respetó el sobre posicionamiento de imagen en más de 75%. La programación de cada uno de los vuelos realizados en la sección superior fue realizada con un el programa DroneDeploy (Figura 17 a).

Figura 17. a) Vuelo programado para el levantamiento fotográfico, b) fotografías tomadas por el VANT.

3.3.2 Postproceso

3.3.2.1 Tratamiento de nube de puntos LIDAR

Los datos obtenidos de los levantamientos con escáner son archivos nativos de Topcon importados a Scanmaster como un proyecto con extensión .prj.

Para poder visualizar completamente cualquier columna, se necesitan alinear diferentes escaneos que cubran toda la superficie de esta.

Para realizar la alineación de los escaneos fue necesario importar un archivo .txt que contuviera la información de ubicación de los puntos de control donde se posicionó el escáner.

Se importaron los archivos .prj de escaneos consecutivos, se observa que al abrirse estos archivos, los puntos generados de los escaneos no tienen un orden y parten todos de un mismo origen.

Figura 18. Segmento de la nube de puntos de la estructura del metro sin alinear.

Para alinear y georreferenciar las nubes de puntos y se ingresó la información de las coordenadas de los puntos de control, las alturas del prisma y del escáner y se señaló para cada escaneo cuál fue el punto con el que se hizo referencia atrás.

Cuando se realizan los levantamientos, el escáner recolecta información de todo lo que está en el campo de visión que se le asigne, por lo cual los escaneos contienen información también de árboles, banquetas, cables, carros, etc. Todos los puntos provenientes de este "ruido" fueron eliminados con el objetivo de visualizar y manejar de mejor manera la estructura del metro. Las nubes de puntos se visualizan en colores de rango de intensidad, pero también se pueden observar con los colores reales de la estructura. Para esto se utilizaron fotos que toma automáticamente el escáner, agregando el color a cada uno de los escaneos.

Figura 19. Segmento de la nube de puntos de la estructura del metro en el cual ya se alineó, asignó el color real y se eliminó el ruido.

Después de esto se exportaron los puntos de los diferentes escaneos en una sola nube de puntos, en formato .las para manejarla ahora con el programa CloudCompare software versión 2.9.1.

3.3.2.1.1 Selección de columnas

La nube de puntos se cargó en el programa CloudCompare y esta se seccionó en columnas para facilitar su manejo.

Figura 20. Sección de la estructura del metro (Columnas F-C 9 a F-C 14).

Se analizaron 10 columnas, que fueron seleccionadas utilizando la herramienta Street View de Google Earth para visualizar cuales columnas tenían agrietamientos más evidentes. Estas columnas son la G-C3 y G-C4, localizadas al inicio de la parte elevada del metro, las columnas F-C1, F-C3, F-C4 y F-C5 ubicadas frente al estacionamiento del estadio universitario y las columnas FALSA, F-C10, F-C11, F-C13 y F-C14, ubicadas frente a la Zona Militar. La nomenclatura de cada columna es la que especifica el Sistema de Transporte Colectivo Metrorrey.

Figura 21. Ubicación de las columnas analizadas.

Para cada columna se ubicaron los agrietamientos superficiales más visibles, con la nube de puntos en coloración RGB (color real) y corroborando su ubicación con las observaciones realizadas desde el programa Google Earth.

Figura 22. A) Columna F-C 11 visualizada con color real. B) Imagen tomada de Google Street View de la misma columna.

3.3.2.1.2 Selección de muestras por intensidades

En algunos casos, para visualizar más fácilmente los agrietamientos en la nube de puntos, se le dieron diferentes coloraciones que dependen de la intensidad de los puntos. Las escalas de color mayormente utilizadas fueron Blue>Green>Yellow>Red, Grey, HSV angle y New Scale.

El Espacio HSV (por sus siglas en inglés Hue, Saturation, Value – Matriz, Saturación, Valor o Brillo) es una representación del color alternativa al RGB (el más utilizado por cámaras de video y fotográficas). Los componentes de este espacio son el matriz (clase de color), la saturación (las longitudes de onda presentes en la frecuencia del color, responsables de la cantidad de blanco que tiene un color) y el valor o brillo (apreciación subjetiva de claro y obscuro) (Gil, P., 2004).

Figura 23. Columna F-C11 visualizada con diferentes escalas de color en base a su intensidad. A) Blue>Green>Yellow>Red, B) Grey, C) HSV angle, D) New Scale.

De las nubes de puntos procesadas, se pudo observar que la mayor parte de los agrietamientos se encuentran en la zona del capitel de las columnas. De esta zona se tomaron las muestras para la obtención de las intensidades.

Figura 24. Capitel de la columna F-C11 con la ubicación de sus agrietamientos

La obtención de las muestras de los agrietamientos se hizo trazando un polígono alrededor de la zona dañada y recortando estas zonas de la nube de puntos. Se obtuvieron de 1 a 7 muestras de cada columna.

De las muestras tomadas de cada columna se obtuvieron reportes estadísticos de los valores de intensidad de los puntos de la nube (Anexo 1), así como histogramas donde se observa el comportamiento de estos valores de intensidad (Anexo 2).

Figura 25. Nubes de puntos de los agrietamientos localizados en el capitel de la columna F-C11.

Figura 26. Histogramas de agrietamientos de la columna F-C11 obtenidos en CloudCompare.

Los promedios de los valores de intensidad obtenidos para cada muestra de agrietamientos fueron graficados con la finalidad de observar en cuáles umbrales se concentra la mayoría de los datos. Estos umbrales son de 150 a 300 y de 400 a 650.

Figura 27. Histogramas de agrietamientos de la columna F-C11 obtenidos en CloudCompare.

Al analizar las nubes de puntos se observó que los valores de intensidad de entre 150 a 300 correspondían a los escaneos realizados en días soleados que presentaban buena luz, mientras que los valores de intensidad en el umbral de 400 a 650 corresponden a escaneos realizados cuando la estructura del metro se encontraba bajo la sombra.

Figura 28. A) Nube de puntos de una columna escaneada con buena luz, B) Nube de puntos de una columna escaneada con menos cantidad de luz.

3.3.2.1.3 Selección de muestras por elevación

También con el programa CloudCompare se obtuvieron datos de las alturas y geometría de los elementos de cada columna (trabe, capitel, columna).

Figura 29. Elementos de una columna.

Para esto se analizaron las columnas F-C1, F-C14 y G-C2, de las cuales se hicieron cuatro mediciones de cada elemento para las tres columnas.

Figura 30. Mediciones tomadas en la columna F-C14.

Figura 31. Proceso de clasificación de agrietamientos.

3.3.2.2 Filtro por elevación e intensidades

La nube de puntos se cargó, al igual que en el programa CloudCompare, en formato .las, y esta se seccionó en columnas individuales para facilitar su manejo.

En primera instancia, se puede ver la nube de puntos con coloración dependiendo de su elevación, aunque también se puede visualizar por intensidad, clasificación de los puntos, línea de vuelo y retorno. De los últimos 2 no se tiene información por la forma en la que fueron tomados los datos; esos atributos corresponden a nubes de puntos obtenidas con LIDAR aéreo.

Figura 32. Nube de puntos visualizada en Mars7 a) Color por elevación, b) Color por intensidad.

Las pruebas preliminares consistieron en una metodología de prueba y error basada en los datos de umbrales de intensidades establecidos a partir de las secciones recortadas de datos LIDAR.

Se consideraron dos algoritmos basado en 1) el valor de las elevaciones y 2) en el valor de las intensidades. En cuanto al valor de elevación, cada columna fue dividida en secciones y se realizó su traslación a planos los cuales contenían una representación de las grietas, a los rangos de altura establecidos para la estructura (capitel, columna y trabe). Los valores de intensidad se dividieron en umbrales que caracterizaban dos clases a las grietas y al concreto sano.

Se realizaron tres corridas, en cada corrida se reajustaron los valores de los umbrales reduciendo los rangos de intensidad, valores planimétricos, dimensiones y diferencias de elevación correspondientes a cada clase. Para cada proceso se realizó una prueba de precisión, identificando la mejora obtenida. Los filtros utilizados fueron elevación, intensidad, construcción, análisis de planos, altura por superficie y reclasificar (véase Tabla 8).

Filtro	Descripción
Intensidad	El filtro reclasifica la nube de puntos seleccionada según el rango de intensidad para cada clase específica.
Elevación	Este filtro reclasifica los puntos seleccionados en función de su valor de elevación absoluta (Z).
Análisis de planos	El filtro de análisis de planos está diseñado para encontrar y reclasificar grupos de nubes de puntos que forman superficies planas. Este filtro es capaz de especificar diferentes ángulos de superficies planas (como la trabe, o las caras del capitel). Esta herramienta no requiere una superficie de referencia para separar las características.
Reclasificar	El filtro de reclasificación implica reclasificar todos los puntos que están en una elevación específica por encima o por debajo de una superficie.

	Tabla 8.	Características	de	los	filtros.
--	----------	-----------------	----	-----	----------

3.3.2.3 Clasificación por morfología

Los capiteles fueron diseccionados en caras para poder realizar este análisis. Utilizando las caras planas como submuestras se aplicó el Classifier training based on multi-scale dimensionality (CANUPO) del programa CloudCompare, que puede clasificar las nubes de puntos basándose en la geometría de los datos, con base a la dimensionalidad de múltiples escalas.

Este método explota los conjuntos de datos de alta resolución que sirven como entrenadores de las clases, y ejecuta las características de resolución múltiple que cubren escalas que van desde unos pocos centímetros hasta cientos de metros. La "dimensionalidad" de los datos es caracterizada por la nube de puntos 3D dentro de las esferas centradas en los puntos medidos y varía de ser 1D (puntos establecidos a lo largo de una línea), 2D (puntos que forman un plano) al volumen 3D completo.

Al variar el diámetro de la esfera, hacemos un seguimiento de cómo se comporta la geometría de la nube local en escalas (que suelen oscilar entre 5 cm y 1 m).

Figura 33. Resultado del entrenamiento por morfología usando CANUPO.

3.3.2.4 Generación de modelos 3D

Cada columna y capitel fueron documentados con series fotográficas tomadas con la cámara Nikon (a nivel de piso) y con VANT (vuelos laterales). Se realizó un proceso de fotorreconstrucción para elaborar un modelo 3D utilizando el algoritmo de Structure For Motion (SFM). Este método opera localizando los valores similares de los píxeles de cada imagen, de tal forma que pueden conectarse entre sí. La conexión puede lograrse si existe un traslape entre las fotografías. Existen dos tipos de traslape, el longitudinal que es el que se genera entre imágenes sucesivas y el transversal el cual se encuentra entre las series de imágenes para cubrir un elemento, por ejemplo, las líneas de vuelo del drone. El traslape recomendado es de un 80% en el longitudinal y un 60% en el transversal. El traslape de las fotografías, la altura del vuelo, el modo del vuelo, entre otros aspectos son factores importantes para la generación del modelo.

Las imágenes son importadas, alineadas y procesadas para la obtención nubes de puntos, y después mediante técnicas de triangulación realizar ortomosaicos y modelos digitales 3D.

Tanto para las series tomadas con la cámara Nikon como las tomadas con el VANT siguieron el mismo proceso. Las fotografías fueron tomadas de la columna F-C2 a la F-C7. Para el seguimiento metodológico se utilizó la F-C3.

Las fotografías previamente seleccionadas fueron importadas por columna al programa, la selección se realizó para evitar imágenes no secuenciales o donde pudiera haber algún elemento que generara ruido.

Después se alinearon las fotografías, es decir, encontrar puntos de similitud entre ellas, unirlas y que el programa reconozca la posición en la que fueron tomadas, señalando el nivel de precisión que buscamos en la alineación. En este caso se seleccionó una alineación "Alta" para que el programa trabajara con el tamaño real de las fotografías.

Terminada la alineación de fotografías se creó una nube de puntos dispersa del capitel, en donde se elimina cualquier punto que no sea necesario para el modelo, proveniente de cables, carros, infraestructura cercana a la estructura, entre otros. Además, se puede visualizar la posición desde donde se tomaron las fotografías, como se observa en la Figura 34 cada cuadro azul representa una fotografía.

Figura 34. Nube de puntos de la columna F-C3, con la representación de la posición de donde fueron tomadas las fotografías.

A partir de la nube de puntos preliminar, se genera una nueva nube de puntos con mayor densidad. Dentro de los parámetros a especificar se encuentra la calidad de la nube de puntos, la cual se seleccionó "Alta". Al generarse esta nueva nube ya es posible apreciar detalles específicos de la estructura, como las diferentes coloraciones de la columna, juntas constructivas y agrietamientos.

Figura 35. Columna F-C3, a) Nube de puntos dispersa y b) nube de puntos densa.

Figura 36. Nube de puntos densa de la columna F-C3, donde se pueden distinguir agrietamientos.

Con la nube de puntos densa se genera una malla o "Mesh". Es una red de triángulos interpolados a partir de los puntos de la nube, que sirven para definir la geometría del objeto a reconstruir. Con la malla generada se puede también visualizar un modelo sólido, donde se aprecian las caras y vértices que se forman de la unión de los puntos.

a)

b)

Figura 37. Construcción del mallado a) detalle de la triangulación de los puntos y b) modelo sólido de la triangulación.

Después se construye el modelo con textura, con el objetivo de darle un aspecto y coloración más real (Figura 38). Al aplicarle la textura al modelo es más fácil apreciar los detalles. En la Figura 39 se observa que en el modelo existen espacios vacíos, esto se debe a que las fotografías fueron tomadas desde nivel de suelo y no se obtuvo el suficiente alcance para generar puntos de esa zona.

Figura 38. Modelo 3D del capitel de la columna F-C3 con la textura aplicada.

Figura 39. Zonas vacías ocasionadas por el ángulo de la toma de fotografías.

Después de realizar el mallado y el modelo con textura, se realiza un ortomosaico, que es un conjunto de imágenes georreferenciadas y corregidas, se rectifican sus errores geométricos para observarlo de manera perpendicular con gran precisión.

3.3.2.5 Clasificadores de imágenes

Clasificación no supervisada. La clasificación no supervisada requiere solo una mínima participación inicial y de la interpretación de las clases creadas. Se utilizó el algoritmo ISODATA, el cual es un algoritmo iterativo en el sentido de que repetidamente realiza una clasificación completa de una capa ráster y calcula las estadísticas. La auto-organización se refiere a la forma en que el cual ubica los clusters de manera automática.

Clasificación con Threshold. En la clasificación, representa el umbral para el proceso de identificar una distancia máxima entre un píxel y la media de la firma a la que se fue clasificado.

Clasificación de Fuzzy Convolution. Crea una sola capa de clasificación al calcular la distancia inversa ponderada total de todas las clases en una ventana de píxeles. Entonces, asigna el píxel central de la clase con la mayor distancia inversa total sumada sobre el conjunto completo de capas de clasificación difusa. Esto tiene el efecto de crear una clasificación basada en contexto para reducir los errores en la clasificación. Las clases con un valor de distancia muy pequeño permanecen sin cambios, mientras que las clases con valores de distancia más altos pueden cambiar a un vecino valor si hay un número suficiente de píxeles vecinos con valores de clase y pequeña valores de distancia correspondientes.

Figura 40. Combinación de los diferentes clasificadores de imágenes.

3.3.2.6 Fotogrametría aérea

Se siguió el mismo proceso de fotorreconstrucción realizado para las series a nivel de piso, únicamente agregando un paso más, que es el de la generación de la ortofotografía, la cual se descarga en formato TIFF.

3.3.2.7 Inspección visual

3.3.2.7.1 Fotografías tomadas con Go pro

Con base en las fotografías obtenidas de campo, se realizó un análisis de ellas para conocer la condición actual de la estructura del metro.

Figura 41. Fotografías tomadas con cámara Go Pro.

3.3.2.7.2 Google Earth

Utilizando el modo Street View de Google Earth, se realizó una inspección visual de las columnas de la línea 2 del metro. Las imágenes de este programa, para esta zona, fueron obtenidas en noviembre de 2017 y de septiembre a octubre de 2018. Con esta inspección se seleccionaron las columnas a analizarse en el postproceso de la información obtenida del levantamiento con escáner.

Figura 42. Imágenes obtenidas de Street View de Google Earth.

4 Resultados

4.1 Nubes de puntos

4.1.1 Escaneos GLS

Se realizó la limpieza de las nubes de puntos obtenidas de 61 escaneos, que cubren las 37 columnas correspondientes al segmento entre las estaciones Niños Héroes y Universidad. Los diferentes escaneos varían en su tamaño; van desde nubes con 1,400,000 puntos hasta 36,000,000 puntos, aproximadamente.

Escaneo/s	No. Puntos	Escaneo/s	No. Puntos
M38	9,006,374	R36 R37	4,440,908
M39	1,862,812	R38 R40 R41	29,665,936
M40 M41 M42 M43	36,311,404	R42 R43 R44	35,788,789
M44	1,632,788	R45 R46 R47	7,804,085
M45	2,529,754	R48 R49 R50	9,905,947
M46 M47	16,215,377	R51	5,733,647
M48	11,851,453	R52	6,006,132
M49	2,988,305	R53	6,401,578
M50 M51	9,919,050	R54	4,083,698
M52	10,782,832	R55 R56	27,509,900
M53 M55 M56	17,755,162	R57 R58	13,581,469
M54	14,681,849	R59 R60	11,268,326
M57	1,489,781	R61	6,508,053
M58 M59	8,172,689	R62 R63 R64 R65 R66	43,474,353
M60	11,591,245	R67 R68	22,874,250
M61	16,219,749	R69 R70	12,385,275
M62	6,378,748		
M64 M63	10,738,189		
M65	22,377,864		
M66 M67 M68	21,969,499		

Tabla 9. Escaneos con sus cantidades de puntos.

En la Figura 43 se observa la nube de puntos completa con las columnas de la zona de estudio y la nomenclatura dada por Metrorrey. La nube de puntos fue dividida para

su visualización y está compuesta de 481,907,270 puntos. Las seis columnas elegidas para muestreo son FC7, FC6, FC5, FC4. FC3 y FC2 como se muestra en la Figura 43.

Figura 43. Nube de puntos limpias correspondientes a la sección comprendida entre las estaciones Niños Héroes y Universidad.

4.1.2 Foto-reconstrucción (Cámara Nikon)

Se realizó la foto-reconstrucción de 6 capiteles de la estructura (F-C2 a F-C7). Las nubes de puntos dispersas generadas por las fotografías van desde tamaños de 21,000 hasta 40,000 puntos, mientras que las nubes de puntos densas alcanzan desde 5,000,000 hasta 21,000,000 de puntos. Para cada capitel también se obtuvo el número de caras y vértices formados por el proceso de mallado.

	No. De puntos		Mal	ado
Columna	Nube de puntos dispersa	Nube de puntos densa	Caras Vértice	
F-C2	21,850	19,938,777	1,329,246	667,961
F-C3	30,761	6,278,803	330,492	166,562
F-C4	27,304	5,489,290	260,324	131,414
F-C5	40,384	21,915,414	3,625,981	1,817,221
F-C6	27,103	5,486,219	262,857	132,827
F-C7	28,719	5,643,010	239,482	120,940

Tabla 10. No. de puntos, caras y vértices de las columnas analizadas.

Las reconstrucciones en 3D permitieron evaluar la estructura en cuanto a las dos caras. Encontrando que la cara poniente de la estructura presenta la mayor acumulación de hollín.

Figura 44. Modelos tridimensionales de los capiteles F-C2 a F-C7.
4.2 Ortofotografía

Para el proceso de la ortofotografía también se obtuvieron nubes de puntos (dispersa y densa), así como datos del mallado (caras y vértices), mostrados en la Tabla 11.

No. De p	ountos	Ма	llado
Nube de puntos dispersa	Nube de puntos densa	Caras	Vértices
559,535	579,123,106	38,608,203	19,366,264

Tabla 11. No. de puntos, caras y vértices de la ortofotografía.

Figura 45. Ortomosaico generado del área de estudio.

4.3 Geometría

De las diferentes mediciones hechas en las columnas F-C1, F-C14 y G-C2 utilizando el programa de comparación de puntos de acceso libre (CloudCompare), se encontró que la altura de la trabe y los capiteles se mantienen constantes en todo el tramo estudiado, mientras que para las columnas se encontraron 3 alturas diferentes. Estas alturas se encuentran en la Tabla 12.

		Columnas	
Sección	F-C1	F-C14	G-C2
Trabe		1.9	
Capitel		1.3	
Columna	7.25	8.8	6.2

Tabla 12. Alturas de los elementos de las columnas, unidades en metros.

Mediciones más específicas como las que se muestran en la Figura 46, también pudieron obtenerse para evaluar casos específicos.

Figura 46. Mediciones geométricas en (m) y algunos valores de intensidad (nm).

4.4 Agrietamientos

4.4.1 Inspección visual

Con base en la inspección visual realizada con el programa Google Earth, con las fotografías tomadas con la cámara Go Pro y las obtenidas de los vuelos con VANT, se localizaron los agrietamientos en cada uno de los elementos de las columnas. Cada grieta localizada fue documentada con clave en una base de datos donde se establecen las columnas de la tabla por rangos de altura.

No	Clava	Rang	os de a	altura	No	Clave	Rang	gos de	altura
NO	Clave	Α	В	С	NO	Clave	Α	В	С
1	G-C1 (ESTRIBO)	-	1	1	20	F-C11	1	1	1
2	G-C2	-	1	-	21	F-C10	1	1	1
3	G-C3	-	1	-	22	FALSA	1	1	1
4	G-C4	1	1	1	23	F-C9	1	1	1
5	E-NH-C6	-	1	-	24	F-C8	1	1	1
6	E-NH-C5	-	1	-	25	F-C7	1	1	1
7	E-NH-C4	-	1	1	26	F-C6	1	1	1
8	E-NH-C3	-	-	1	27	F-C5	1	1	1
9	E-NH-C2	-	1	1	28	F-C4	1	1	1
10	E-NH-C1	-	1	1	29	F-C3	1	1	1
11	F-C20	1	1	1	30	F-C2	1	1	1
12	F-C19	1	1	1	31	F-C1	1	1	1
13	F-C18	1	1	1	32	E-U-C6	1	1	1
14	F-C17	1	1	1	33	E-U-C6	1	1	1
15	F-C16	1	1	1	34	E-U-C6	1	1	1
16	F-C15	1	1	1	35	E-U-C6	1	1	1
17	F-C14	1	1	1	36	E-U-C6	1	1	1
18	F-C13	1	1	1	37	E-U-C6	1	1	1
19	F-C12	1	1	1					

Tabla 13. Agrietamientos localizados por columna por inspección visual. A= Trabe, B=Capitel, C= Columna, con la información de Google Earth y fotografías de Go Pro.

4.4.2 Clasificación de imágenes y modelo 3D

La clasificación realizada a las imágenes funcionó en un proceso de combinación con el método no supervisado + threshold + fuzzy convolution. Los resultados se muestran de manera secuencial en la siguiente imagen.

Figura 47. Resultado del muestreo de agrietamientos sobre imagen sencilla donde A) es la imagen inicial sin ser tratada, B) Threshold, C) Fuzzy convolution y D) la combinación de todas las anteriores.

La clasificación fue realizada tanto para las imágenes independientes (Figura 47), como para el modelo 3D, encontrando similitud en el resultado (Figura 48).

Figura 48. Resultado del muestreo de agrietamientos en un modelo 3D donde A) es la imagen inicial sin ser tratada, B) Threshold, y C) Fuzzy convolution.

4.4.3 Nubes de puntos

Tanto para el levantamiento con escáner (de manera directa) como con el proceso fotogramétrico (manera indirecta), cada columna fue documentada obteniendo nubes de puntos tridimensionales. Las nubes de puntos limpias de cada columna fueron diseccionadas para obtener las caras correspondientes al capitel. En la Figura 49 se

muestran el uso de las nubes de puntos con los rangos de intensidad, y pequeños cuadros que representan las muestras de puntos en un espacio de 10 x 10 cm. Estos grupos de puntos sirven para establecer las estadísticas de densidad del muestreo.

Obteniendo así para una muestra de 86 mil puntos, que representa la Capa 2 de la cara oriente del capitel de la columna F-C4 (Figura 49).

Figura 49. Capa 2 de la cara oriente del capitel de la columna F-C4 seccionada en muestras de 10 x 10 cm.

5 Discusión

5.1 Toma de datos y post proceso de la información

Rapidez en la toma de datos (LIDAR vs fotogrametría)

Para la toma de datos en campo utilizando el escáner terrestre se necesitaron varios meses para realizar el levantamiento de la totalidad de la zona estudiada. Los factores que contribuyeron a esto fueron la cantidad y duración de la batería de pilas que utiliza el escáner, esto hizo que la cantidad de escaneos realizados por día fuera limitado y la cantidad de la luz y el clima, cuando había días nublados no era conveniente realizar los levantamientos ya que podría afectar los resultados obtenidos.

La toma de fotografías con la cámara Nikon para 6 columnas fue realizada en un mismo día, tomando un aproximado de una hora para todas las tomas. El único inconveniente fue el tráfico presentado en Av. Universidad al momento de la toma de fotografías, lo que impidió el traslado fácil por ambos lados de la avenida y la imposibilidad de capturar la columna desde todos los ángulos.

Post proceso de la información

El proceso de obtener, importar, alinear y limpiar las nubes de puntos provenientes de los levantamientos con escáner terrestre duró varios meses debido a la gran cantidad de puntos que contenía cada escaneo. Esto hizo que se tuvieran problemas con la visualización de todos los puntos; existían zonas en las que pareciera que no había puntos registrados, sin embargo, al aplicarle zoom a estas zonas ya se visualizaban. Al no poder visualizar de manera correcta las nubes de puntos se optó por añadir dos tarjetas de video a la computadora en la que se trató la información, solucionando de manera parcial este problema, ya que aún quedaban zonas que no se visualizaban por completo. También se seccionaron las nubes de puntos por columnas para facilitar el manejo de la información.

Los datos obtenidos de este proceso fueron utilizados en los primeros dos métodos para la localización de los agrietamientos. Para la aplicación del filtro utilizando valores de intensidad y alturas fue necesario separar los elementos de las

columnas y procesarlas de manera individual debido a la capacidad de la computadora utilizada. Tardó aproximadamente 8 horas en aplicar el filtro en una sola cara de una columna, teniendo resultados poco favorables. El método de localización de agrietamientos según su morfología fue rápido en comparación al anteriormente descrito.

Para el proceso de generación de los modelos 3D y de la ortofotografía provenientes de las fotografías de corto alcance terrestre de la cámara Nikon se tomó aproximadamente 3 días para las 6 columnas fotografiadas y no existió problema alguno.

La clasificación de imágenes y modelos 3D, al realizarse de una manera no supervisada, no consume gran cantidad de tiempo, más que al principio para indicarle la cantidad de clases que se requieren.

5.2 Nubes de puntos de escaneos

Se encontraron dos diferentes umbrales de intensidad para los agrietamientos, 150 a 300 para los puntos correspondientes de los escaneos realizados en días en donde se tenía buena luz y de 400 a 650 para los escaneos que se realizaron en días nublados o que la posición del sol no era favorable y se producía sombra en la estructura. Esto se debe a la reflectividad de la estructura; Cardozo, O. y Da Silva, C. (2017) mencionan que los datos obtenidos dependerán de la luz que incide sobre el material analizado al momento de la toma de datos. Este hecho también afecta en la coloración real que se le da a las nubes de puntos por medio de las fotografías que captura el escáner, que pueden ser puntos blancos provenientes de fotografías con excesiva luz, o puntos negros de fotografías obscuras.

Para tener nubes de puntos con datos más homogéneos, lo ideal sería realizar los escaneos en días con buena luz, o en caso de ser necesario realizarlos en diferentes días, ser constante en la hora del día que se hace la toma de datos.

En las nubes de puntos de los escaneos, además de identificar los agrietamientos, se puede observar una respuesta para el concreto aparentemente

sano, suciedad en la estructura, entre otros, lo cual indica que se pudiera aplicar esta metodología para localizar otras diferentes patologías.

5.3 Nubes de puntos de fotogrametría

Se puede observar la diferencia entre el tamaño de las nubes de puntos generadas por la cámara Nikon y por el VANT, siendo las fotos tomadas con la cámara Nikon con las que se obtuvieron nubes de puntos más grandes, a pesar de que en estas tomas solo se buscó reconstruir el capitel de la columna. Esto se debe a que a pesar de que se tiene un similar número de fotografías para cada columna para los dos métodos de toma de fotografías, las fotos tomadas con VANT fueron tomadas sin acercamientos y para las fotos con la cámara Nikon se buscó que solo se enfocara el capitel de la columna, pudiendo capturar mayor detalle y evitando que las fotos no tuvieran elementos que causaran ruido, con esto se pueden encontrar mayor zonas de similitud entre las fotografías y así generar nubes con mayor número de puntos.

Como se mencionó en la metodología, la toma de fotografías con el VANT se realizó posicionando el drone sobre las banquetas de Av. Universidad; en esta zona existe cableado a una altura relativamente baja y por esta avenida suelen pasar vehículos tipo tráiler y camiones urbanos altos, esto dificultaba el manejo del drone a la estructura para obtener fotos cercanas.

Fotografía tomada con cámara Nikon vs. Fotografía tomada con VANT

En las fotografías tomadas con VANT se puede ver la columna completamente, por lo que en este proceso si se pudo reconstruir en su totalidad. Además de capturar la columna, también existe mucho ruido producido por los vehículos, la vialidad, los espacios aledaños a la estructura, cables, postes, señalizaciones, entre otros, algo que no sucede en las fotografías tomadas con la cámara Nikon.

Foto-reconstrucción hecha a base de fotografías con cámara Nikon vs VANT

En ambas foto-reconstrucciones los agrietamientos se pueden apreciar fácilmente, sin embargo, el detalle que alcanza la reconstrucción de las fotos de la cámara Nikon es mayor, esto hace que al momento de realizar mediciones en el modelo sean más precisas. El modelo generado utilizando las fotografías del VANT no tiene una geometría definida totalmente.

5.4 Agrietamientos

Para la localización de los agrietamientos se emplearon tres métodos:

- a) Utilizando un filtro que ubicara los agrietamientos según los umbrales de intensidad establecidos para ellos y según el rango de altura de cada uno de los elementos de la columna
- b) Según la morfología de los agrietamientos, y
- c) Realizando clasificaciones de las imágenes de corto alcance terrestre y de los modelos 3D resultantes del tratamiento de estas imágenes.

Para el primer método, los agrietamientos se apreciaban muy levemente, la diferencia de coloraciones era notable al centro del agrietamiento, donde su grosor era mayor (basándose en las fotografías utilizadas para la inspección visual), mientras que en los extremos del agrietamiento no.

Con el segundo método los agrietamientos fueron más notables que con el primer método. La precisión alcanzada por el escáner terrestre es tal que registra la diferencia en la forma del concreto con y sin agrietamientos.

Con el tercer método, los agrietamientos son más notables para ambas clasificaciones (de imágenes simples y modelo 3D). Una ventaja de este método es que al poder asignársele diferentes clases, se pueden apreciar otros problemas que se presentan en la columna como manchas causadas por la acumulación de hollín y manchas del escurrimiento de agua. Una desventaja que se presenta en este método es que la sombra generada por los mismos elementos de la estructura hace que la respuesta obtenida en ciertas zonas no corresponda a la clase que debería.

5.5 Utilización de los resultados en inspecciones de estructuras

Con la sinergia de estos tres métodos es posible tener diferente tipo de información acerca de los agrietamientos en estructuras de concreto, así como de los elementos que la componen. Con los modelos 3D y las nubes de puntos obtenidas fue posible asociar los agrietamientos con una respuesta espectral, realizar mediciones de los elementos de la estructura, así como de la longitud que presentan los agrietamientos; también es posible encontrar el ángulo en el cual se están generando los agrietamientos, su ancho y, hasta cierto punto, su profundidad. Estos datos son de especial interés para los ingenieros civiles especializados en peritajes y estructuras, ya que con estos se pueden respaldar para encontrar la causa que genera los agrietamientos y evaluar su criticidad para la toma de decisiones futuras, como realizar un estudio de cargas, obtener muestreos del concreto, etc.

Estos datos también pueden ser tomados en campo, pero para estructuras que involucren altura, grandes dimensiones o que libren grandes claros, es necesario el uso de equipo especializado como grúas y arneses para los técnicos que realicen las inspecciones, que además de ser más costoso, se tiene que invertir una mayor cantidad de tiempo y resulta más riesgoso para el personal, al contrario de tomar estos datos de una manera indirecta, como lo es la fotogrametría, la cual se puede realizar desde superficies seguras.

5.6 Trabajo futuro

Validación de la información

Para estar completamente seguros de que la información obtenida por las metodologías expuestas en este trabajo es verídica es necesario validarla, realizando mediciones de la manera que se toman convencionalmente, es decir, yendo a campo y utilizando algún instrumento de medición como un vernier o una cinta métrica. Con esto se podría calibrar el modelo en caso de presentarse diferencias en ambas mediciones.

Aplicación del método para ubicar diferentes patologías

Para la aplicación de este método a otras diferentes patologías que atacan al concreto es necesario encontrar las propiedades físicas que las distingan, para así asociarlas a una respuesta espectral dada por la fotogrametría o por la tecnología LIDAR, y así encontrarlas de manera semiautomática.

5.7 Recomendaciones

- Para la toma de datos con LIDAR, lo más óptimo es realizar los levantamientos siempre a la misma hora del día y procurando que las condiciones de la luz sean las mismas en todos los casos para tener datos más homogéneos.
- Realizar un correcto geoposicionamiento de los puntos de control utilizados en los escaneos para que los datos obtenidos no tengan errores en su precisión.
- Para la toma de datos para fotogrametría, cuidar las condiciones de luz al momento de obtener las fotografías y procurar evitar las sombras que se generan en las estructuras con el fin de no alterar los resultados en el post proceso.
- En la toma de fotografías, tratar de cubrir todos los ángulos del elemento que estemos fotografiando para que no existan espacios vacíos al momento de generar los modelos 3D.
- Tener un equipo especializado para procesar la información, que tenga la capacidad adecuada para visualizar grandes cantidades de puntos para que no afecte al momento de manejarlos.

6 Conclusión

En este proyecto se diseñó y evaluó un método de inspección no destructivo basado en sensores remotos para ubicar espacialmente zonas con agrietamientos en estructuras de concreto reforzado, y posteriormente documentar sus características geométricas.

Se exploraron dos formas de producir información 3D, de manera directa con el escáner láser y de manera indirecta con la fotogrametría. En ambos casos los datos son confiables para la inspección y ubicación de los agrietamientos, así como precisos para determinar los valores geométricos. Sin embargo, el conjunto de sensores ópticos con los que se respalda la fotogrametría permite una evaluación de la estructura completa complementando las distintas vistas superiores, lateral y en tierra.

Se generaron nubes de puntos de la estructura de concreto reforzado analizada utilizando ambos métodos. Con el láser escáner se obtuvo una nube de puntos de 481,907,270 puntos, mientras que con fotogrametría se obtuvieron nubes de puntos para cada columna de entre 5 y 21 millones de puntos.

Se realizó una base de datos de los agrietamientos con la ubicación geoespacial para cada una de las columnas del área de estudio.

Con este trabajo se comprueba que con las tecnologías de sensores remotos se puede desarrollar un método semiautomático para la inspección no destructiva de agrietamientos en una estructura de concreto reforzado.

7 Referencias

- Astorga, A. y Rivero, P (2009). Patología en las edificaciones. Venezuela: Centro de Investigación en Gestión Integral de Riesgos.
- Barrientos, A., Del Cerro, J., Gutiérrez, P., San Martín, R., Martínez, A., & Rossi, C. (2007). Vehículos aéreos no tripulados para uso civil. Tecnología y aplicaciones. Universidad politécnica de Madrid, Madrid.
- Batista, R., & Bustos, X. (2009). Sistema de información geográfica y teledetección. Determinación de vulnerabilidad urbana. Caso estado Vargas-Venezuela. Terra Nueva Etapa, 25(38), 167-190.
- Cabello, J., & Paruelo, J. M. (2008). La teledetección en estudios ecológicos. Revista ecosistemas, 17(3).
- Cardozo, O. D., & Da Silva, C. J. (2017). Aplicaciones urbanas de los sensores remotos. Geográfica digital, 10(20), 1-6.
- Chen, S., Truong-Hong, L., O'Keeffe, E., Laefer, D. F., & Mangina, E. (2018). Outlier detection of point clouds generating from low cost uavs for bridge inspection. In Proc. of The Sixth International Symposium on Life-Cycle Civil Engineering, IALCCE 2018.
- Chuvieco, E. (1990). Fundamentos de teledetección espacial (Vol. 453). Madrid: Ediciones Rialp.
- Colwell, R. N. (1968). Remote sensing of natural resources. Scientific American, 218(1), 54-71.
- Cuerno Rejado, C., Garcia Hernandez, L., Sanchez Carmona, A., Carrió Fernández, A., Sanchez Lopez, J. L., & Campoy Cervera, P. (2016). Evolución histórica de los vehículos aéreos no tripulados hasta la actualidad. Dyna, 91(3), 282-288.
- Dawood T., Zhu Z., Zayed T. (2018) Detection and Quantification of Spalling Distress in Subway Networks. In: Chau K., Chan I., Lu W., Webster C. (eds)

Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate. Springer, Singapore.

- Delatte, N., Chen, S. E., Maini, N., Parker, N., Agrawal, A., Mylonakis, G., & Miller, R. (2003). Application of nondestructive evaluation to subway tunnel systems. Transportation Research Record: Journal of the Transportation Research Board, (1845), 127-135.
- De Moraes, E. C. (2002). Capítulo 1 Fundamentos de Sensoriamento Remoto.
- Di Bella, C. M., Posse, G., Beget, M. E., Fischer, M. D. L. A., Mari, N., & Verón, S. (2008). La teledetección como herramienta para la prevención, seguimiento y evaluación de incendios e inundaciones. Revista Ecosistemas, 17(3).
- Environmental Systems Research Institute, 2016. http://desktop.arcgis.com/es/arcmap/10.3/manage-data/las-dataset/what-is-LIDAR -data-.htm_¿Qué son los datos LIDAR ?
- Gebhard, J. (2002) Introducción al procesamiento digital de imágenes. Cátedra de Aerofotointerpretación, FCN y M, UNLP. La Plata. MS
- Gil, P., Torres, F., & Ortiz Zamora, F. G. (2004). Detección de objetos por segmentación multinivel combinada de espacios de color.
- Gobierno del Estado de Nuevo León. 2009. Plan Sectorial de Transporte y Vialidad: Antreproyecto para consulta pública. 333p.
- González-Dugo, M. P., Lorite, I. J., Gavilán, P., Berengena, J., Santos, C., & Serrano, A. (2007). Estimación de la evapotranspiración en zonas regables combinando datos de teledetección y estaciones meteorológicas. Resumen de los trabajos desarrollados por el grupo de riegos del IFAPA.
- González, M. E. P., & Rodríguez, P. G. (2006). Aplicaciones de la teledetección en hidrología. Observatorio Medioambiental, (9), 171-187.
- Gopalakrishnan, K., Gholami, H., Vidyadharan, A., Choudhary, A., & Agrawal,
 A. (2018). Crack damage detection in unmanned aerial vehicle images of civil

infrastructure using pre-trained deep learning model. International Journal for Traffic and Transport Engineering, 8, 1.

- Gutiérrez de López, L. (2003). El concreto y otros materiales para la construcción.
- Izquierdo, C., & María, J. (2008). Estudios sobre movilidad cotidiana en México. Scripta Nova, 12(273).
- Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric engineering and remote sensing, 65, 611-622.
- Kosmatka, S. H., Panarese, W. C., & Bringas, M. S. (1992). Diseño y control de mezclas de concreto. Instituto Mexicano del Cemento y del Concreto.
- Lagüela, S., Solla, M., Puente, I., & Prego, F. J. (2018). Joint use of GPR, IRT and TLS techniques for the integral damage detection in paving. Construction and Building Materials, 174, 749-760.
- Landgrebe, D. A. (2005). Signal theory methods in multispectral remote sensing (Vol. 29). John Wiley & Sons.
- Lerma, C., Mas, Á., Gil, E., Vercher, J., & Peñalver, M. J. (2014). Pathology of building materials in historic buildings. Relationship between laboratory testing and infrared thermography. *Materiales de Construcción*, 64(313), 009.
- López-Granados, F. (2013). Uso de Vehículos Aéreos no tripulados (UAV) para la evaluación de la producción agraria. ambienta, (105), 40-52.
- McCormac, J. C., & Russell, H. B. (2005). Diseño de concreto reforzado. Alfaomega.
- Pan, Y., Dong, Y., Wang, D., Chen, A., & Ye, Z. (2019). Three-Dimensional Reconstruction of Structural Surface Model of Heritage Bridges Using UAV-Based Photogrammetric Point Clouds. Remote Sensing, 11(10), 1204.

- Parra-Henao, G. J. (2010). Sistemas de información geográfica y sensores remotos. Aplicaciones en enfermedades transmitidas por vectores. CES Medicina, 24(2).
- Paruelo, J. M. (2008). La caracterización funcional de ecosistemas mediante sensores remotos. Revista Ecosistemas, 17(3).
- Pejić, M. (2013). Design and optimisation of laser scanning for tunnels geometry inspection. Tunnelling and underground space technology, 37, 199-206.
- Peña, J. M., Torres-Sánchez, J., Serrano-Pérez, A., & López-Granados, F. (2014). Detección de malas hiervas en girasol en fase temprana mediante imágenes tomadas con un vehículo aéreo no tripulado (UAV). Revista de Teledetección, (42), 39-48.
- Pereira, B., Medeiros, P., Francke, T., Ramalho, G., Foerster, S., & De Araújo, J. C. (2019). Assessment of the geometry and volumes of small surface water reservoirs by remote sensing in a semi-arid region with high reservoir density. Hydrological Sciences Journal, 64(1), 66-79.
- Qu, Z., Ju, F. R., Guo, Y., Bai, L., & Chen, K. (2018). Concrete surface crack detection with the improved pre-extraction and the second percolation processing methods. *PloS one*, *13*(7), e0201109.
- Rauber, É. R., Bordin, F., Anschau, M. M., Veronez, M. R., da Silveira Jr, L. G., & Framarim, C. (2018). Bibliographical analysis on the potential of the acquisition of multi and hyperspectral images by UAVs to help the inspection in bridges. Brazilian Journal of Geomatics, 6(1), 44-61.
- Rodríguez Chávez, Ó. E., Bautista, A., & Alberto, H. (2005). Manual para el manejo y procesamiento de imágenes satelitales obtenidas del sensor remoto MODIS de la NASA, aplicado en estudios de ingeniería civil (Bachelor's thesis, Facultad de Ingeniería).

- Rosete, F., & Bocco, G. (2003). Los sistemas de información geográfica y la percepción remota. Herramientas integradas para los planes de manejo en comunidades forestales. Gaceta ecológica, (68), 43-54.
- Sánchez-Jacobo, F. 2014. Sistema de Gestión de Puentes Carreteros: Seguimiento a los programas de reconstrucción conservación rutinaria y periódica de los puentes. Escuela Superior de Ingeniería y Arquitectura, Instituto Politécnico Nacional. Zacatenco, Edo. De México. 154p.
- Sani S., J.C. (2015). Vehículos aéreos no tripulados-UAV para la elaboración de cartografía escalas grandes referidas al marco de referencia Sirgas-Ecuador (Bachelor's thesis, Universidad de las Fuerzas Armadas ESPE. Carrera de Ingeniería Geográfica y del Medio Ambiente).
- Sundar, M. L., Prasath, C. A., Rosario, H. E., & Tamilselvan, K. (2019). Urban Sprawl Mapping and Land Use Change Detection Analysis. International Journal on Advanced Science, Engineering and Information Technology, 9(1), 281-286.
- Treviño Treviño, E. L. (1998). Patología de las estructuras de concreto reforzado: reflexiones y recomendaciones (Doctoral dissertation, Universidad Autónoma de Nuevo León).
- Verbyla, D. L. (1995). Satellite remote sensing of natural resources (Vol. 4). CRC Press.
- Vergés, F. A. R., & Bocco, G. (2003). Los sistemas de información geográfica y la percepción remota. Herramientas integradas para los planes de manejo en comunidades forestales. Gaceta ecológica, (68), 43-54.
- Viera-González, P.M. (2014) Estudio del acoplamiento de un colector solar con fibras ópticas plásticas para la iluminación de interiors (Tesis de maestría). Universidad Autónoma de Nuevo León, México.
- Vila Rovira, O. (2011). Modelización de aeronaves no tripuladas con Simulink (Bachelor's thesis, Universitat Politècnica de Catalunya).

- Wight, J. K. y MacGregor, J. G. (2009). *Reinforced Concrete, Mechanics and Design.* (5a ed.) EEUU: Pearson.
- Yépez Rincón, F.D. (2013). Análisis Sinérgico de sensores remotos para la evaluación y monitoreo del territorio del AMM, su infraestructura urbana y uso de suelo. Tesis Doctorado en Ciencias de Ingeniería. Instituto Tecnológico y de Estudios Superiores de Monterrey. Monterrey, NL.
- Yuste Martin, N., Vargas-Velasco, N., & Moya-Hernández, J. (2013). Teledetección Ambiental de Alta Resolución mediante aplicación de Vehículos Aéreos no tripulados. Sociedad española deficiencias forestales, 1-22.
- Zanni, E. (2008) Patología de la construcción y restauro de obras de arquitectura (1a ed.) Argentina: Brujas.
- Zhang, C. P., Zhang, D. L., Luo, J. J., WANG, M. S., & WU, J. P. (2009). Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel. Rock and Soil Mechanics, 6, 063.

8 Anexos

				C	ipa 1						
	М	uestra 1-1			М	uestra 1-2					
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
1	2	151.000	177.575	1	5	195.000	227.139	1	11	186.000	206.769
2	4	177.575	204.150	2	11	227.139	259.278	2	10	206.769	227.538
3	21	204.150	230.725	3	22	259.278	291.417	3	30	227.538	248.308
4	42	230.725	257.300	4	53	291.417	323.556	4	34	248.308	269.077
5	59	257.300	283.875	5	66	323.556	355.694	5	44	269.077	289.846
6	93	283.875	310.450	6	88	355.694	387.833	6	93	289.846	310.615
7	128	310.450	337.025	7	131	387.833	419.972	7	110	310.615	331.385
8	128	337.025	363.600	8	112	419.972	452.111	8	179	331.385	352.154
9	113	363.600	390.175	9	117	452.111	484.250	9	150	352.154	372.923
10	143	390.175	416.750	10	133	484.250	516.389	10	206	372.923	393.692
11	148	416.750	443.325	11	71	516.389	548.528	11	171	393.692	414.462
12	142	443.325	469.900	12	117	548.528	580.667	12	165	414.462	435.231
13	91	469.900	496.475	13	93	580.667	612.806	13	271	435.231	456.000
14	121	496.475	523.050	14	77	612.806	644.944	14	137	456.000	476.769
15	73	523.050	549.625	15	32	644.944	677.083	15	204	476.769	497.538
16	64	549.625	576.200	16	38	677.083	709.222	16	126	497.538	518.308
17	45	576.200	602.775	17	20	709.222	741.361	17	100	518.308	539.077
18	31	602.775	629.350	18	18	741.361	773.500	18	137	539.077	559.846
19	16	629.350	655.925	19	13	773.500	805.639	19	83	559.846	580.615
20	17	655.925	682.500	20	4	805.639	837.778	20	83	580.615	601.385
21	15	682.500	709.075	21	0	837.778	869.917	21	49	601.385	622.154
22	19	709.075	735.650	22	1	869.917	902.056	22	62	622.154	642.923
23	11	735.650	762.225	23	0	902.056	934.194	23	37	642.923	663.692
24	1	762.225	788.800	24	0	934.194	966.333	24	34	663.692	684.462
25	8	788.800	815.375	25	0	966.333	998.472	25	28	684.462	705.231
26	4	815.375	841.950	26	7	998.472	1030.611	26	15	705.231	726.000
27	0	841.950	868.525	27	6	1030.611	1062.750	27	11	726.000	746.769
28	1	868.525	895.100	28	5	1062.750	1094.889	28	22	746.769	767.538
29	0	895.100	921.675	29	1	1094.889	1127.028	29	10	767.538	788.308
30	0	921.675	948.250	30	0	1127.028	1159.167	30	8	788.308	809.077
31	0	948.250	974.825	31	2	1159.167	1191.306	31	4	809.077	829.846
32	0	974.825	1001.400	32	1	1191.306	1223.444	32	1	829.846	850.615
33	1	1001.400	1027.975	33	0	1223.444	1255.583	33	1	850.615	871.385
34	1	1027.975	1054.550	34	2	1255.583	1287.722	34	0	871.385	892.154
35	1	1054.550	1081.125	35	1	1287.722	1319.861	35	0	892.154	912.923
36	1	1081.125	1107.700	36	1	1319.861	1352.000	36	0	912.923	933.692
37	0	1107.700	1134.275					37	0	933.692	954.462
38	1	1134.275	1160.850					38	1	954.462	975.231
39	1	1160.850	1187.425					39	0	975.231	996.000
40	2	1187.425	1214.000					40	3	996.000	1016.769
								41	1	1016.769	1037.538
								42	1	1037.538	1058.308
								43	1	1058.308	1079.077
								44	0	1079.077	1099.846

45 46

47

48

49

50

51

52

1

0

0

2

Anexo 1. Tablas con valores de intensidad para la construcción de histogramas.

0 1099.846 1120.615

0 1120.615 1141.385

1 1141.385 1162.154 2 1162.154 1182.923

1203.692 1224.462

1224.462 1245.231 1245.231 1266.000

1182.923

1203.692

				С	olumna	a G-C2 Ca	pa 2				
	Mu	estra 2-1			Mu	estra 2-2			Mu	estra 2-3	
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
1	42	117.000	226.417	1	17	134.000	204.286	1	16	151.000	189.444
2	48	226.417	335.833	2	18	204.286	274.571	2	12	189.444	227.889
3	29	335.833	445.250	3	8	274.571	344.857	3	21	227.889	266.333
4	3	445.250	554.667	4	3	344.857	415.143	4	6	266.333	304.778
5	3	554.667	664.083	5	1	415.143	485.429	5	4	304.778	343.222
6	4	664.083	773.500	6	1	485.429	555.714	6	3	343.222	381.667
7	0	773.500	882.917	7	1	555.714	626.000	7	7	381.667	420.111
8	0	882.917	992.333					8	1	420.111	458.556
9	0	992.333	1101.75					9	1	458.556	497.000
10	0	1101.750	1211.167								
11	1	1211 167	1320 583]							

1 1320.583 1430.000

				С	olumn	a G-C4 Ca	pa 1				
	Mu	estra 1-1			Μι	estra 1-2			Mu	estra 1-3	
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
1	2	202.000	236.892	1	4	262.000	303.688	1	1	228.000	261.472
2	2	236.892	271.784	2	11	303.688	345.375	2	5	261.472	294.944
3	8	271.784	306.676	3	39	345.375	387.063	3	11	294.944	328.417
4	11	306.676	341.568	4	80	387.063	428.750	4	21	328.417	361.889
5	19	341.568	376.459	5	94	428.750	470.438	5	39	361.889	395.361
6	45	376.459	411.351	6	114	470.438	512.125	6	77	395.361	428.833
7	65	411.351	446.243	7	102	512.125	553.813	7	63	428.833	462.306
8	89	446.243	481.135	8	118	553.813	595.500	8	134	462.306	495.778
9	119	481.135	516.027	9	104	595.500	637.188	9	117	495.778	529.250
10	114	516.027	550.919	10	77	637.188	678.875	10	105	529.250	562.722
11	136	550.919	585.811	11	67	678.875	720.563	11	130	562.722	596.194
12	126	585.811	620.703	12	55	720.563	762.250	12	101	596.194	629.667
13	108	620.703	655.595	13	38	762.250	803.938	13	114	629.667	663.139
14	96	655.595	690.486	14	16	803.938	845.625	14	84	663.139	696.611
15	85	690.486	725.378	15	1	845.625	887.313	15	76	696.611	730.083
16	63	725.378	760.270	16	0	887.313	929.000	16	64	730.083	763.556
17	66	760.270	795.162	17	4	929.000	970.688	17	34	763.556	797.028
18	46	795.162	830.054	18	17	970.688	1012.375	18	21	797.028	830.500
19	8	830.054	864.946	19	14	1012.375	1054.063	19	5	830.500	863.972
20	0	864.946	899.838	20	5	1054.063	1095.750	20	0	863.972	897.444
21	0	899.838	934.730	21	7	1095.750	1137.438	21	0	897.444	930.917
22	6	934.730	969.622	22	5	1137.438	1179.125	22	0	930.917	964.389
23	31	969.622	1004.514	23	3	1179.125	1220.813	23	15	964.389	997.861
24	15	1004.514	1039.405	24	2	1220.813	1262.500	24	8	997.861	1031.333
25	15	1039.405	1074.297	25	0	1262.500	1304.188	25	19	1031.333	1064.806
26	12	1074.297	1109.189	26	0	1304.188	1345.875	26	6	1064.806	1098.278
27	12	1109.189	1144.081	27	0	1345.875	1387.563	27	4	1098.278	1131.750
28	6	1144.081	1178.973	28	1	1387.563	1429.250	28	4	1131.750	1165.222
29	4	1178.973	1213.865	29	0	1429.250	1470.938	29	1	1165.222	1198.694
30	0	1213.865	1248.757	30	0	1470.938	1512.625	30	2	1198.694	1232.167
31	2	1248.757	1283.649	31	0	1512.625	1554.313	31	0	1232.167	1265.639
32	1	1283.649	1318.541	32	1	1554.313	1596.000	32	2	1265.639	1299.111
33	2	1318.541	1353.432					33	1	1299.111	1332.583
34	0	1353.432	1388.324					34	0	1332.583	1366.056
35	0	1388.324	1423.216					35	0	1366.056	1399.528
36	0	1423.216	1458.108					36	1	1399.528	1433.000
37	1	1458.108	1493.000					-			

С	olumna	a G-C4 Ca	pa 1			C	olumna G	-C4 Ca	pa 2		
	Mu	estra 1-4			Mu	estra 2-1			Mu	estra 2-2	
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
1	5	202.000	229.632	1	6	228	269.455	1	13	228	303.7
2	7	229.632	257.263	2	11	269.455	310.909	2	31	303.7	379.4
3	13	257.263	284.895	3	14	310.909	352.364	3	27	379.4	455.1
4	27	284.895	312.526	4	26	352.364	393.818	4	9	455.1	530.8
5	50	312.526	340.158	5	20	393.818	435.273	5	13	530.8	606.5
6	92	340.158	367.789	6	9	435.273	476.727	6	4	606.5	682.2
7	56	367.789	395.421	7	5	476.727	518.182	7	2	682.2	757.9
8	90	395.421	423.053	8	3	518.182	559.636	8	0	757.9	833.6
9	127	423.053	450.684	9	6	559.636	601.091	9	0	833.6	909.3
10	127	450.684	478.316	10	0	601.091	642.545	10	1	909.3	985
11	113	478.316	505.947	11	2	642.545	684				
12	112	505.947	533.579					•			
13	97	533.579	561.211								
14	91	561.211	588.842								
15	76	588.842	616.474								
16	64	616.474	644.105								
17	48	644.105	671.737								
18	35	671.737	699.368								
19	41	699.368	727.000								
20	31	727.000	754.632								
21	19	754.632	782.263								
22	8	782.263	809.895								
23	12	809.895	837.526								
24	1	837.526	865.158								
25	0	865.158	892.789								
26	0	892.789	920.421								
27	0	920.421	948.053								
28	1	948.053	975.684								
29	9	975.684	1003.316								
30	10	1003.316	1030.947								
31	1	1030.947	1058.579								
32	4	1058.579	1086.211								
33	1	1086.211	1113.842								
34	2	1113.842	1141.474								
35	1	1141.474	1169.105								
36	2	1169.105	1196.737								
37	0	1196.737	1224.368								
38	2	1224.368	1252.000								

				(Column	a G-C4 Ca	pa 2				
	Mu	estra 2-3			Mu	estra 2-4			Mu	estra 2-5	
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
1	2	176	214.471	1	12	193.000	232.000	1	7	193.000	241.750
2	11	214.471	252.941	2	11	232.000	271.000	2	27	241.750	290.500
3	18	252.941	291.412	3	38	271.000	310.000	3	23	290.500	339.250
4	16	291.412	329.882	4	29	310.000	349.000	4	28	339.250	388.000
5	59	329.882	368.353	5	24	349.000	388.000	5	26	388.000	436.750
6	33	368.353	406.824	6	41	388.000	427.000	6	11	436.750	485.500
7	37	406.824	445.294	7	18	427.000	466.000	7	10	485.500	534.250
8	39	445.294	483.765	8	21	466.000	505.000	8	5	534.250	583.000
9	25	483.765	522.235	9	8	505.000	544.000	9	1	583.000	631.750
10	11	522.235	560.706	10	10	544.000	583.000	10	2	631.750	680.500
11	10	560.706	599.176	11	4	583.000	622.000	11	1	680.500	729.250
12	7	599.176	637.647	12	3	622.000	661.000	12	2	729.250	778.000
13	5	637.647	676.118	13	1	661.000	700.000				
14	2	676.118	714.588	14	1	700.000	739.000				
15	2	714.588	753.059	15	1	739.000	778.000				
16	2	753.059	791.529					-			
17	2	791.529	830.000								

Image: Net set set set set set set set set set s						Column	a G-C4 Ca	pa 3				
Chass Chass <th< th=""><th></th><th>Mu</th><th>estra 3-1</th><th></th><th></th><th>Mu</th><th>estra 3-2</th><th></th><th></th><th>Mu</th><th>estra 3-3</th><th></th></th<>		Mu	estra 3-1			Mu	estra 3-2			Mu	estra 3-3	
1 2 169,00 196,864 1 7 17,000 144,833 2 0 76,531 114,063 2 6 196,864 224,727 25,591 3 8 144,833 172,667 200,500 4 0 151,954 189,125 4 22 252,591 280,455 3 12 265,65 6 33 280,455 308,318 5 12 256,167 284,000 311,833 6 42 301,719 39 25 31,909 419,773 9 80 336,612 364,045 7 35 284,000 311,833 8 42 301,719 75,871 9 155 319,009 419,773 9 80 366,675 367,500 367,500 376,781 9 139,55 367,500 376,781 9 144,833 421,600 75,500 11<96 367,500 376,781 9 147,475,500 53,3450 554,530 53,	Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
2 0 76.531 114.063 151.594 3 6 126.727 252.591 3 8 172.667 200.500 4 0 151.594 189.125 4 22 252.591 280.455 4 3 200.500 228.333 5 0 189.125 226.656 5 33 280.455 308.318 5 12 228.333 256.167 284.000 7 19 264.188 0.01719 7 88 361.82 364.045 7 35 284.000 391.909 8 44 311.833 339.667 367.500 10 107 376.781 441.313 10 178 447.636 10 76 367.500 395.333 423.167 451.000 11 103 414.313 451.844 489.375 12 147 475.500 503.364 531.227 13 88 451.000 478.833 14 103 564.488 14 120 531.227 13 88 551.31 102 566.667 54	1	2	39.000	76.531	1	2	169.000	196.864	1	7	117.000	144.833
3 0 114.063 151.594 199.125 4 22 252.591 280.455 4 3 202.000 228.333 5 0 189.125 226.656 5 33 280.455 308.318 5 12 228.333 256.167 6 8 226.656 264.188 6 59 308.318 36.182 6 21 256.167 284.000 311.833 8 42 301.719 339.250 8 90 36.4045 391.909 84 411.313 339.667 367.500 10 107 376.781 414.313 10 178 447.656 475.500 11 65 353.334 23.167 11 103 341.333 41.433 10 178 503.364 512 97 423.167 451.000 13 101 483.375 526.906 13 178 503.364 512 97 423.167 450.00 6667 534.500 6667 534.500 66.67 534.500 506.667 534.500 50.161 <td>2</td> <td>0</td> <td>76.531</td> <td>114.063</td> <td>2</td> <td>6</td> <td>196.864</td> <td>224.727</td> <td>2</td> <td>3</td> <td>144.833</td> <td>172.667</td>	2	0	76.531	114.063	2	6	196.864	224.727	2	3	144.833	172.667
4 0 15.94 189.125 24 22 252.591 280.455 38 3 228.333 256.167 6 8 226.656 6 59 308.318 336.182 6 12 228.167 228.333 256.167 7 19 264.188 301.719 7 88 336.182 364.045 7 35 284.000 311.833 8 42 301.719 339.267 155 319.09 419.773 49 80 339.667 367.500 10 107 376.781 414.313 10 178 419.773 447.636 10 76 367.500 395.333 11 103 444.313 451.844 110 135 447.636 11 96 395.533 423.167 451.000 13 101 489.375 12 147 475.500 503.444 124 478.83 50.667 14 104 89.350 <	3	0	114.063	151.594	3	6	224.727	252.591	3	8	172.667	200.500
5 0 189.125 226.656 5 33 280.455 308.318 5 12 228.333 256.167 6 8 226.656 264.188 6 59 308.318 366.102 364.045 7 35 284.000 311.833 8 42 301.719 339.250 8 90 364.045 391.909 8 44 311.833 339.667 9 69 339.250 376.781 9 155 391.909 419.773 9 80 39.667 367.500 10 107 376.781 11 135 447.636 475.500 11 96 395.633 423.167 12 117 451.844 489.375 12 147 475.500 503.364 12 97 423.167 13 101 489.375 12 147 475.500 513.1227 138 451.000 478.333 506.667 14 103 526.906 564.438 14 120 531.227 559.051 15 102 506.667 543.500 15 91 564.438 601.969 639.500 16 92 586.955 148.18 16 <td>4</td> <td>0</td> <td>151.594</td> <td>189.125</td> <td>4</td> <td>22</td> <td>252.591</td> <td>280.455</td> <td>4</td> <td>3</td> <td>200.500</td> <td>228.333</td>	4	0	151.594	189.125	4	22	252.591	280.455	4	3	200.500	228.333
6 8 226,655 264.188 6 59 308.318 336.182 6 6 21 256.167 284.000 311.833 8 42 301.719 339.250 8 9 35 391.009 8 44 311.833 339.667 367.500 367.500 367.500 367.500 367.500 367.500 367.500 367.503 347.3167 451.000 376.781 414.313 10 178 447.656 475.500 11 9 457.500 11 9 457.500 11 9 457.500 13 18 503.364 512.27 13 88 451.000 478.833 506.667 15 91 564.438 14 120 531.227 13 88 451.000 478.833 506.667 15 91 564.438 14 120 586.955 15 102 566.333 500.167 583.500 16 32.50.07 768.438 14 120 586.955 15 102 566.333 500.167 138.400 670.545 18 <t< td=""><td>5</td><td>0</td><td>189.125</td><td>226.656</td><td>5</td><td>33</td><td>280.455</td><td>308.318</td><td>5</td><td>12</td><td>228.333</td><td>256.167</td></t<>	5	0	189.125	226.656	5	33	280.455	308.318	5	12	228.333	256.167
7 19 26.188 301.719 7 88 336.182 364.045 7 35 284.000 311.833 8 42 301.719 339.250 8 9 364.045 391.909 8 44 311.833 339.667 9 60 332.250 376.781 9 155 391.909 419.773 9 80 339.667 10 107 376.781 414.313 10 178 419.773 447.636 10 76 367.500 395.333 11 103 413.313 451.844 412 121 447.636 475.500 11 96 395.333 423.167 13 101 489.375 52.6906 13 178 503.364 531.227 13 88 451.000 478.833 14 103 52.6906 564.438 14 120 551.991 14 124 478.833 506.667 15 91 564.438 601.969 15 107 559.091 14 124 478.833 506.667 16 44 677.031 71.4563 18 103 642.682 670.545 18 64 590.167	6	8	226.656	264.188	6	59	308.318	336.182	6	21	256.167	284.000
8 42 301.719 339.250 8 90 364.045 391.909 8 8 44 311.833 339.667 9 69 339.250 376.781 44.313 10 178 419.773 447.636 10 76 367.500 395.333 11 103 414.313 451.844 11 135 447.636 475.500 11 96 395.333 423.167 12 117 451.844 489.375 12 147 475.500 531.227 13 88 451.000 478.833 14 103 526.906 564.438 14 120 531.227 559.091 14 124 478.833 506.667 15 91 564.438 601.969 15 107 559.091 14 124 478.833 506.67 16 44 677.031 714.563 18 103 642.682 670.545 18 64 591.67 618.000	7	19	264.188	301.719	7	88	336.182	364.045	7	35	284.000	311.833
9 69 339.250 376.781 9 155 331.909 419.773 9 80 339.667 367.500 10 107 376.781 414.313 11 113 414.313 451.844 419.773 447.636 10 76 367.500 395.333 11 103 414.313 451.844 489.375 12 147 475.500 503.364 12 97 423.167 451.000 13 101 489.375 526.906 13 178 503.364 531.227 13 88 451.000 478.833 14 103 564.438 601.969 15 107 559.091 14 144 478.833 506.667 534.500 15 91 564.438 601.969 15 107 559.091 58 670.545 18 64 591.677 14 677.031 17 106 614.818 642.682 17 65 533.33 673.667 <td>8</td> <td>42</td> <td>301.719</td> <td>339.250</td> <td>8</td> <td>90</td> <td>364.045</td> <td>391.909</td> <td>8</td> <td>44</td> <td>311.833</td> <td>339.667</td>	8	42	301.719	339.250	8	90	364.045	391.909	8	44	311.833	339.667
10 10 176,781 414,313 10 178 447,636 10 76 367,500 395,333 11 103 414,313 451,844 11 135 447,636 475,500 11 96 395,333 423,167 12 117 451,844 489,375 526,906 13 178 503,364 531,227 13 88 451,000 478,833 506,667 15 91 564,438 601,969 15 107 559,091 14 124 478,833 506,667 16 46 601,969 639,500 16 92 586,955 15 102 506,667 534,500 562,333 17 56 639,500 677,031 17 106 614,818 64,2682 17 65 562,333 590,167 18 41 677,031 74,4563 782,049 19 63 618,000 645,833 673,667 701,500 22 14 627,167 701,500 22 104,813 646,888 90,219 939,750	9	69	339.250	376.781	9	155	391.909	419.773	9	80	339.667	367.500
11 103 414.313 451.844 11 135 447.636 475.500 11 96 395.333 423.167 12 117 451.844 489.375 12 147 475.500 503.364 12 13 88 451.000 478.833 14 103 526.906 64.438 14 120 531.227 559.091 14 124 478.833 506.667 15 91 564.438 601.969 639.500 15 107 559.091 586.955 15 102 506.67 534.500 562.333 16 64 601.969 639.500 17 13 84 64 590.167 618.000 18 41 677.031 714.563 18 103 642.682 670.545 18 64 590.167 618.000 19 21 714.563 752.094 19 58 670.545 698.409 19 63 618.000 645.833 673.667 21 15 789.625 827.156 21 26	10	107	376.781	414.313	10	178	419.773	447.636	10	76	367.500	395.333
11 11/1 451.844 489.375 12 14/1 475.500 503.364 512 13 88 451.000 473.833 13 101 489.375 526.906 54.438 14 120 531.227 559.091 14 124 478.833 506.667 15 91 564.438 601.969 15 107 559.091 586.955 14.818 16 85 534.500 562.333 16 46 601.969 639.500 16 92 586.955 614.818 16 85 534.500 562.333 590.167 618.000 648.833 17 56 639.500 677.031 17 106 614.818 642.682 17 65 52.333 590.167 618.000 648.833 19 174.563 752.094 19 58 670.545 698.409 19 63 618.000 645.833 673.657 701.500 21 15 789.625 827.156 21 26 726.273 754.136 722.07 76 73.667<	11	103	414.313	451.844	11	135	447.636	475.500	11	96	395.333	423.167
11 101 489.375 52.906 13 178 503.364 53.227 539.091 14 124 478.833 506.667 15 91 556.438 601.969 639.500 16 92 586.955 15 102 506.667 534.500 16 46 601.969 639.500 16 92 586.955 614.818 16 85 534.500 562.333 17 56 639.500 677.031 17 106 614.818 642.682 17 65 562.333 590.167 18 41 677.031 714.563 752.094 19 58 670.545 18 64 501.07 618.000 19 21 745.63 752.094 191 58 670.545 698.409 12 27 673.667 701.500 21 15 789.625 827.156 21 26 754.136 72.00 893.855 26 8 812.00	12	11/	451.844	489.375	12	147	475.500	503.364	12	97	423.167	451.000
14 103 526.306 564.438 110 531.27 539.091 14 124 478.833 506.667 15 91 564.438 601.969 15 107 559.091 586.955 115 102 506.667 534.500 16 46 601.969 637.000 16 92 586.955 614.818 16 85 534.500 562.333 17 56 639.500 677.031 17 106 614.818 642.682 17 65 562.333 501.67 18 41 677.031 714.563 18 103 642.682 670.545 18 64 590.167 618.000 19 21 714.563 752.094 789.625 20 42 698.409 726.273 20 41 645.833 673.667 701.500 21 15 789.625 827.156 21 26 754.136 782.000 22 25 70.500 72.333 757.167 785.000 23 25 9 785.000 812.833 84	13	101	489.375	526.906	13	1/8	503.364	531.227	13	88	451.000	4/8.833
15 94 364.438 601.969 15 107 539.041 385.955 102 506.667 534.300 16 46 601.969 639.500 16 92 586.955 614.818 16 85 534.500 562.333 17 56 639.500 677.031 117 106 614.818 642.682 17 65 552.333 590.167 18 41 677.031 714.563 18 103 642.682 670.545 188 64 590.167 618.000 19 21 714.563 752.094 19 58 670.545 598.409 19 63 618.000 645.833 20 15 752.094 789.625 827.156 21 27 673.667 701.500 21 14 827.156 827.156 21 28 725.33 757.167 785.000 22 25 79.333 757.167 22 0 939.750 977.281 25 12 837.727 24 8 71.83.83	14	103	526.906	564.438	14	120	531.227	559.091	14	124	4/8.833	506.667
10 10 10 10 10 10 10 100	15	91	564.438	601.969	15	107	559.091	580.955	15	102	506.667	534.500
17 36 633.30 677.031 17 106 644.816 642.662 17 63 362.33 390.167 18 41 677.031 714.563 18 103 642.682 670.545 18 64 590.167 618.000 648.683 19 21 714.563 752.094 19 63 618.000 646.833 670.545 684.089 19 63 618.000 645.833 20 15 752.094 789.625 827.156 21 26 726.273 754.136 21 27 673.667 701.500 22 14 827.156 864.688 902.219 23 12 782.000 809.864 23 25 729.333 757.167 24 0 902.219 939.750 24 12 809.864 837.727 24 8 757.67 785.000 25 5 939.750 977.281 25 12 837.455 921.318 27 6 840.667 865.500 28 10 1652.344	10	40	620 500	677.021	10	106	500.955 614.010	642 692	17	65 65	554.500	502.555
18 141 077.031 714.303 18 105 062.082 070.343 18 04 350.167 083.000 0643.083 19 21 714.563 752.094 198 63 618.000 645.833 673.667 21 15 752.094 789.625 20 42 698.409 726.273 20 41 645.833 673.667 21 15 789.625 827.156 21 26 754.136 726.273 754.136 21 27 673.667 701.500 22 14 827.156 864.688 902.219 23 12 782.000 809.864 23 25 729.333 757.167 24 0 902.219 939.750 24 12 809.864 837.727 24 8 757.167 785.000 25 5 939.750 977.281 25 12 837.727 865.591 25 6 8 812.833 840.667 26 1 1052.344 108.875 28 1 981.835	17	30	677 021	714 562	10	100	642 692	670 545	10	64	502.555	619,000
15 21 714.303 732.034 13 03 073.433 033.430 033.430 033.430 033.430 033.433 033.437 024 12 809.864 233 25 729.333 757.167 785.000 812.833 26 2 977.281 1014.813 26 1 865.591 893.455 26 8 812.833 840.667 27 5 1014.813 1052.344 27 0 893.455 921.318 27 6 840.667 868.500 28 1 1052.344 1089.875 28 1 921.318 949.182 28 1 868.500 933.33 <t< td=""><td>10</td><td>41 21</td><td>71/ 562</td><td>752.004</td><td>10</td><td>105</td><td>670 545</td><td>609 400</td><td>10</td><td>62</td><td>619 000</td><td>645 922</td></t<>	10	41 21	71/ 562	752.004	10	105	670 545	609 400	10	62	619 000	645 922
20 13 732.034 735.025 220 44 043.335 07.36.07 21 15 789.625 827.156 21 26 726.273 754.136 21 27 673.667 701.500 22 14 827.156 864.688 22 26 754.136 782.000 22 25 701.500 729.333 757.167 24 0 902.219 939.750 24 12 809.864 837.727 24 8 757.167 785.000 25 5 939.750 977.281 25 12 837.727 865.591 25 9 785.000 812.833 26 2 977.281 1014.813 26 1 865.591 893.455 26 8 812.833 840.667 27 5 1014.813 1052.344 27 0 893.455 921.318 27 6 840.667 868.500 28 1 1052.344 1089.875 28 1 970.45 29 0 896.333 924.167	20	15	752.00/	790 625	20	20 //2	608 100	726 272	20	05 //1	645 822	672 667
21 13 783.02 827.136 21 20 726.273 734.136 21 27 675.007 721.300 22 14 827.156 864.688 22 26 754.136 782.000 22 25 701.500 729.333 23 0 864.688 902.219 23 12 782.000 809.864 23 25 729.333 757.167 785.000 24 0 902.219 939.750 24 12 809.864 837.727 24 8 757.167 785.000 25 5 939.750 977.281 25 12 837.727 865.591 25 8 812.833 840.667 26 2 977.281 1014.813 26 1 855.591 25 8 812.833 840.667 868.500 28 1 1052.344 1089.875 28 1 921.318 949.182 28 1 868.500 896.333 924.167 952.000 93 30 0 924.167 952.000 979.833 <	20	15	790.625	227 156	20	42	726 272	75/ 126	20	41	672 667	701 500
22 14 827.130 304.083 22 20 794.130 782.000 800.864 23 25 729.333 757.167 24 0 902.19 939.750 24 12 809.864 837.727 24 8 757.167 785.000 812.833 25 5 939.750 977.281 25 12 837.727 865.591 25 9 785.000 812.833 26 2 977.281 1014.813 26 1 865.591 893.455 26 8 812.833 840.667 27 5 1014.813 1052.344 27 0 893.455 921.318 27 6 840.667 868.500 28 1 1052.344 1089.875 28 1 921.318 949.182 28 1 866.500 896.333 924.167 30 0 1127.406 1164.938 30 8 977.045 109 30 0 924.167 952.000 31 0 1164.938 1202.469 31 8 <td>21</td> <td>1/</td> <td>207 156</td> <td>864 688</td> <td>21</td> <td>20</td> <td>75/ 126</td> <td>782.000</td> <td>21</td> <td>27</td> <td>701 500</td> <td>701.300</td>	21	1/	207 156	864 688	21	20	75/ 126	782.000	21	27	701 500	701.300
23 36 504,000 302,219 939,750 24 12 809,864 837,727 24 8 757,167 785,000 25 5 939,750 977,281 25 12 837,727 865,591 25 9 785,000 812,833 26 2 977,281 1014,813 26 1 865,591 893,455 26 8 812,833 840,667 27 5 1014,813 1052,344 27 0 893,455 921,318 27 6 840,667 868,500 28 1 1052,344 1089,875 28 1 921,318 949,182 97,7045 29 0 896,333 924,167 30 0 1127,406 129 7 949,182 977,045 29 0 896,333 924,167 31 0 1164,938 1202,469 31 8 1004,909 30 0 924,167 952,000 31 0 1127,406 33 3 1007,667 1035,500 1063,333 10	22	14	864 688	902 219	22	12	782 000	809 864	22	25	729 333	757 167
24 30 303.730 324 112 803.604 637.727 124 125 12 133 125 125 125 125 125 125 138 125 125 131 112 123.33 120.667 1368.500 133 124 126 124 105 133 124 126 131 14 1952.000 132.33 124.167 152.000 197.933 101 1952.000 197.933 107.667 1035.500 1032.773 1060.636 132 2 979.833 1007.667 10	23	0	902 219	939 750	23	12	809 864	837 727	23	23	757 167	785.000
26 2 977.281 1014.813 26 1 865.591 893.455 26 8 812.833 840.667 27 5 1014.813 1052.344 27 0 893.455 921.318 27 6 840.667 868.500 28 1 1052.344 1089.875 28 1 921.318 949.182 28 1 868.500 896.333 924.167 30 0 1127.406 1164.938 30 8 977.045 1004.909 30 0 924.167 952.000 31 0 1164.938 1202.469 31 8 1004.909 30 0 924.167 952.000 32 4 1202.469 124 8 1004.909 30 0 924.167 952.000 33 3 1060.636 1088.500 33 3 1007.667 1035.500 34 2 1088.500 1116.364 144.227 35 0	25	5	939 750	977 281	25	12	837 727	865 591	25	9	785.000	812 833
20 21 0114813 1052.0344 27 0 893.455 921.318 27 6 840.667 868.500 28 1 1052.344 1089.875 28 1 921.318 949.182 28 1 868.500 896.333 29 2 1089.875 1127.406 29 7 949.182 977.045 29 0 896.333 924.167 30 0 1127.406 1164.938 30 8 977.045 1004.909 30 0 924.167 952.000 31 0 1164.938 1202.469 31 8 1004.909 1032.773 31 1 952.000 979.833 32 4 1202.469 1240.000 32 9 1032.773 1060.636 32 2 979.833 1007.667 33 3 1060.636 1088.500 1116.364 34 0 1035.500 1063.333 1091.167 34 2 1088.500 1116.364 1144.227 35 0 1063.333 1091.167 1	26	2	977 281	1014 813	26	1	865 591	893 455	26	8	812 833	840 667
28 1 1052.344 1089.875 28 1 921.318 949.182 28 1 868.500 896.333 29 2 1089.875 1127.406 29 7 949.182 977.045 29 0 896.333 924.167 30 0 1127.406 1164.938 30 8 977.045 1004.909 30 0 924.167 952.000 31 0 1164.938 1202.469 31 8 1004.909 1032.773 31 1 952.000 979.833 32 4 1202.469 1240.000 32 9 1032.773 1060.636 32 2 979.833 1007.667 33 3 1060.636 1088.500 33 3 1007.667 1035.500 34 2 1088.500 1116.364 1144.227 35 0 1063.333 1091.167 35 0 1127.818 1255.682 1283.545 131.409 1339.27	27	5	1014.813	1052.344	27	0	893.455	921.318	27	6	840.667	868.500
29 2 1089.875 1127.406 29 7 949.182 977.045 29 0 896.333 924.167 30 0 1127.406 1164.938 30 8 977.045 1004.909 30 0 924.167 952.000 31 0 1164.938 1202.469 31 8 1004.909 1032.773 31 1 952.000 979.833 32 4 1202.469 1240.000 32 9 1032.773 1060.636 32 2 979.833 1007.667 33 3 1060.636 1088.500 33 3 1007.667 1035.500 1063.333 34 2 1088.500 1116.364 1144.227 35 0 1063.333 1091.167 35 0 1116.364 1144.227 1172.091 36 1 1091.167 1119.000 37 1 1172.091 1199.955 1227.818 39 0 1227.818 1255.682 40 0 1255.682 1283.545 1311.409 1339.273 </td <td>28</td> <td>1</td> <td>1052.344</td> <td>1089.875</td> <td>28</td> <td>1</td> <td>921.318</td> <td>949.182</td> <td>28</td> <td>1</td> <td>868.500</td> <td>896.333</td>	28	1	1052.344	1089.875	28	1	921.318	949.182	28	1	868.500	896.333
30 0 1127.406 1164.938 30 8 977.045 1004.909 30 0 924.167 952.000 31 0 1164.938 1202.469 31 8 1004.909 1032.773 31 1 952.000 979.833 32 4 1202.469 1240.000 32 9 1032.773 1060.636 32 2 979.833 1007.667 33 3 1060.636 1088.500 33 3 1007.667 1035.500 34 2 1088.500 1116.364 34 0 1035.500 1063.333 35 0 1116.364 1144.227 35 0 1063.333 1091.167 36 3 1144.227 1172.091 36 1 1091.167 1119.000 37 1 1172.091 1199.955 1227.818 1255.682 1283.545 1311.409 1339.273 1367.136 141 0 1283.545 1311.409 143	29	2	1089.875	1127.406	29	7	949.182	977.045	29	0	896.333	924.167
31 0 1164.938 1202.469 31 8 1004.909 1032.773 31 1 952.000 979.833 32 4 1202.469 1240.000 32 9 1032.773 1060.636 32 2 979.833 1007.667 33 4 1202.469 1240.000 32 9 1032.773 1060.636 32 2 979.833 1007.667 34 2 1088.500 1116.364 1088.500 33 3 1007.667 1035.500 34 2 1088.500 1116.364 144.227 35 0 1063.333 1091.167 35 0 1116.364 1144.227 1172.091 36 1 1091.167 119.000 37 1 1172.091 1199.955 1227.818 39 0 1227.818 1255.682 40 0 1283.545 1311.409 1339.273 1367.136 43 0 1339.273 1367.136 44 1 1367.136 1395.000 144 1 1367.136 1395.000	30	0	1127.406	1164.938	30	8	977.045	1004.909	30	0	924.167	952.000
32 4 1202.469 1240.000 32 9 1032.773 1060.636 32 2 979.833 1007.667 33 3 1060.636 1088.500 33 3 1007.667 1035.500 34 2 1088.500 1116.364 34 0 1035.500 1063.333 35 0 1116.364 1144.227 35 0 1063.333 1091.167 36 3 1144.227 1172.091 36 1 1091.167 1119.000 37 1 1172.091 1199.955 1227.818 129.955 1227.818 129.955 1283.545 40 0 1255.682 1283.545 1311.409 1339.273 1367.136 42 0 1311.409 1339.273 1367.136 1395.000 1395.000	31	0	1164.938	1202.469	31	8	1004.909	1032.773	31	1	952.000	979.833
33 3 1060.636 1088.500 33 3 1007.667 1035.500 34 2 1088.500 1116.364 34 0 1035.500 1063.333 35 0 1116.364 1144.227 35 0 1063.333 1091.167 36 3 1144.227 1172.091 36 1 1091.167 1119.000 37 1 1172.091 1199.955 38 0 1199.955 1227.818 39 0 1227.818 1255.682 1283.545 1311.409 1329.273 41 0 1283.545 1311.409 1339.273 1367.136 43 0 1339.273 1367.136 1395.000	32	4	1202.469	1240.000	32	9	1032.773	1060.636	32	2	979.833	1007.667
3421088.5001116.3643401035.5001063.3333501116.3641144.2273501063.3331091.1673631144.2271172.0913611091.1671119.0003711172.0911199.9551227.8183801199.9551227.8183901227.8181255.6821283.5451311.4094201311.4091339.2734301339.2731367.1361395.0001395.0001395.0001395.000					33	3	1060.636	1088.500	33	3	1007.667	1035.500
3501116.3641144.2273501063.3331091.1673631144.2271172.0913611091.1671119.0003711172.0911199.9551227.8183801199.9551227.8183901227.8181255.6821283.5454101283.5451311.4094201311.4091339.2731367.1364411367.1361395.000					34	2	1088.500	1116.364	34	0	1035.500	1063.333
36 3 1144.227 1172.091 36 1 1091.167 1119.000 37 1 1172.091 1199.955 38 0 1199.955 1227.818 39 0 1227.818 1255.682 40 0 1255.682 40 0 1255.682 1283.545 1311.409 41 0 1283.545 1311.409 42 0 1311.409 1339.273 43 0 1339.273 1367.136 44 1 1367.136 1395.000					35	0	1116.364	1144.227	35	0	1063.333	1091.167
37 1 1172.091 1199.955 38 0 1199.955 1227.818 39 0 1227.818 1255.682 40 0 1255.682 1283.545 41 0 1283.545 1311.409 42 0 1311.409 1339.273 43 0 1339.273 1367.136 44 1 1367.136 1395.000					36	3	1144.227	1172.091	36	1	1091.167	1119.000
3801199.9551227.8183901227.8181255.6824001255.6821283.5454101283.5451311.4094201311.4091339.2734301339.2731367.1364411367.1361395.000					37	1	1172.091	1199.955				
3901227.8181255.6824001255.6821283.5454101283.5451311.4094201311.4091339.2734301339.2731367.1364411367.1361395.000					38	0	1199.955	1227.818				
4001255.6821283.5454101283.5451311.4094201311.4091339.2734301339.2731367.1364411367.1361395.000					39	0	1227.818	1255.682				
4101283.5451311.4094201311.4091339.2734301339.2731367.1364411367.1361395.000					40	0	1255.682	1283.545				
4201311.4091339.2734301339.2731367.1364411367.1361395.000					41	0	1283.545	1311.409				
4301339.2731367.1364411367.1361395.000					42	0	1311.409	1339.273				
44 1 1367.136 1395.000					43	0	1339.273	1367.136				
					44	1	1367.136	1395.000				

				Co	olumna	G-C4 Capa	a 4				
	Μ	luestra 4-1			M	uestra 4-2			Μι	uestra 4-3	
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
1	189	39.000	60.184	1	270	39.000	60.800	1	88	39.000	64.129
2	211	60.184	81.367	2	282	60.800	82.600	2	115	64.129	89.258
3	214	81.367	102.551	3	125	82.600	104.400	3	65	89.258	114.387
4	63	102.551	123.735	4	95	104.400	126.200	4	35	114.387	139.516
5	59	123.735	144.918	5	28	126.200	148.000	5	8	139.516	164.645
6	15	144.918	166.102	6	19	148.000	169.800	6	12	164.645	189.774
7	8	166.102	187.286	7	28	169.800	191.600	7	6	189.774	214.903
8	20	187.286	208.469	8	22	191.600	213.400	8	21	214.903	240.032
9	11	208.469	229.653	9	45	213.400	235.200	9	24	240.032	265.161
10	22	229.653	250.837	10	55	235.200	257.000	10	39	265.161	290.290
11	36	250.837	272.020	11	92	257.000	278.800	11	37	290.290	315.419
12	75	272.020	293.204	12	66	278.800	300.600	12	53	315.419	340.548
13	59	293.204	314.388	13	147	300.600	322.400	13	63	340.548	365.677
14	118	314.388	335.571	14	147	322.400	344.200	14	72	365.677	390.806
15	84	335.571	356.755	15	106	344.200	366.000	15	57	390.806	415.935
16	99	356.755	377.939	16	134	366.000	387.800	16	47	415.935	441.065
17	155	377.939	399.122	17	113	387.800	409.600	17	43	441.065	466.194
18	75	399.122	420.306	18	142	409.600	431.400	18	26	466.194	491.323
19	137	420.306	441.490	19	92	431.400	453.200	19	26	491.323	516.452
20	84	441.490	462.673	20	102	453.200	475.000	20	12	516.452	541.581
21	115	462.673	483.857	21	52	475.000	496.800	21	23	541.581	566.710
22	71	483.857	505.041	22	75	496.800	518.600	22	9	566.710	591.839
23	87	505.041	526.224	23	45	518.600	540.400	23	9	591.839	616.968
24	54	526.224	547.408	24	45	540.400	562.200	24	10	616.968	642.097
25	71	547.408	568.592	25	24	562.200	584.000	25	4	642.097	667.226
26	30	568.592	589.776	26	27	584.000	605.800	26	4	667.226	692.355
27	36	589.776	610.959	27	24	605.800	627.600	27	4	692.355	717.484
28	47	610.959	632.143	28	8	627.600	649.400	28	6	717.484	742.613
29	24	632.143	653.327	29	15	649.400	671.200	29	0	742.613	767.742
30	25	653.327	674.510	30	14	671.200	693.000	30	0	767.742	792.871
31	16	674.510	695.694	31	6	693.000	714.800	31	4	792.871	818.000
32	9	695.694	716.878	32	8	714.800	736.600				
33	11	716.878	738.061	33	3	736.600	758.400				
34	6	738.061	759.245	34	2	758.400	780.200				
35	5	759.245	780.429	35	1	780.200	802.000				
36	6	780.429	801.612	36	0	802.000	823.800				
37	1	801.612	822.796	37	0	823.800	845.600				
38	0	822.796	843.980	38	0	845.600	867.400				
39	0	843.980	865.163	39	0	867.400	889.200				
40	0	865.163	886.347	40	0	889.200	911.000				
41	0	886.347	907.531	41	0	911.000	932.800				
42	0	907.531	928.714	42	0	932.800	954.600				
43	3	928.714	949.898	43	1	954.600	976.400				
44	4	949.898	971.082	44	2	976.400	998.200				
45	1	971.082	992.265	45	1	998.200	1020.000				
46	2	992.265	1013.449	46	0	1020.000	1041.800				
47	0	1013.449	1034.633	47	0	1041.800	1063.600				
48	1	1034.633	1055.816	48	2	1063.600	1085.400				
49	1	1055.816	1077.000	49	0	1085.400	1107.200				
				50	1	1107.200	1129.000				

	Colum	na G-C4 Ca	ipa 4		Columna Falsa							
	Μ	uestra 4-4			Mu	estra 1-1			Mu	estra 1-2		
Class	Malua	Class		Class	Valu	Class	Class	Class	Valu	Class	Class	
Class	value	start	Class end	Class	е	start	end	Class	e	start	end	
1	109	39.000	73.000	1	1	35.000	42.455	1	35	44.000	49.536	
2	107	73.000	107.000	2	23	42.455	49.909	2	116	49.536	55.071	
3	41	107.000	141.000	3	94	49.909	57.364	3	0	55.071	60.607	
4	11	141.000	175.000	4	85	57.364	64.818	4	124	60.607	66.143	
5	13	175.000	209.000	5	79	64.818	72.273	5	101	66.143	71.679	
6	21	209.000	243.000	6	57	72.273	79.727	6	0	71.679	77.214	
7	27	243.000	277.000	7	34	79.727	87.182	7	99	77.214	82.750	
8	55	277.000	311.000	8	0	87.182	94.636	8	71	82.750	88.286	
9	58	311.000	345.000	9	25	94.636	102.091	9	0	88.286	93.821	
10	61	345.000	379.000	10	17	102.091	109.545	10	47	93.821	99.357	
11	45	379.000	413.000	11	16	109.545	117.000	11	35	99.357	104.893	
12	50	413.000	447.000	12	12	117.000	124.455	12	0	104.893	110.429	
13	50	447.000	481.000	13	4	124.455	131.909	13	36	110.429	115.964	
14	38	481.000	515.000	14	7	131.909	139.364	14	27	115.964	121.500	
15	39	515.000	549.000	15	0	139.364	146.818	15	0	121.500	127.036	
16	23	549.000	583.000	16	1	146.818	154.273	16	9	127.036	132.571	
17	15	583.000	617.000	17	2	154.273	161.727	17	15	132.571	138.107	
18	12	617.000	651.000	18	0	161.727	169.182	18	0	138.107	143.643	
19	4	651.000	685.000	19	1	169.182	176.636	19	5	143.643	149.179	
20	4	685.000	719.000	20	0	176.636	184.091	20	0	149.179	154.714	
21	1	719.000	753.000	21	0	184.091	191.545	21	3	154.714	160.250	
22	2	753.000	787.000	22	1	191.545	199.000	22	2	160.250	165.786	
23	2	787.000	821.000					23	0	165.786	171.321	
24	0	821.000	855.000					24	3	171.321	176.857	
25	0	855.000	889.000					25	4	176.857	182.393	
26	0	889.000	923.000					26	0	182.393	187.929	
27	2	923.000	957.000					27	0	187.929	193.464	
28	0	957.000	991.000					28	3	193.464	199.000	
29	1	991.000	1025.000									

			Colum	na Falsa	a			Columna F-C10			
	Mu	estra 1-3			Mu	estra 1-4			Mu	estra 1-1	
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end
1	72	44.000	63.765	1	73	47.000	74.933	1	11	113.000	131.813
2	52	63.765	83.529	2	15	74.933	102.867	2	20	131.813	150.625
3	21	83.529	103.294	3	3	102.867	130.800	3	32	150.625	169.438
4	7	103.294	123.059	4	17	130.800	158.733	4	35	169.438	188.250
5	7	123.059	142.824	5	35	158.733	186.667	5	85	188.250	207.063
6	6	142.824	162.588	6	21	186.667	214.600	6	20	207.063	225.875
7	9	162.588	182.353	7	21	214.600	242.533	7	10	225.875	244.688
8	33	182.353	202.118	8	11	242.533	270.467	8	13	244.688	263.500
9	14	202.118	221.882	9	9	270.467	298.400	9	6	263.500	282.313
10	11	221.882	241.647	10	6	298.400	326.333	10	13	282.313	301.125
11	14	241.647	261.412	11	2	326.333	354.267	11	6	301.125	319.938
12	12	261.412	281.176	12	0	354.267	382.200	12	0	319.938	338.750
13	3	281.176	300.941	13	1	382.200	410.133	13	2	338.750	357.563
14	11	300.941	320.706	14	0	410.133	438.067	14	1	357.563	376.375
15	1	320.706	340.471	15	2	438.067	466.000	15	1	376.375	395.188
16	0	340.471	360.235					16	1	395.188	414.000
17	3	360.235	380.000								

	Columna F-C10				Columna F-C 11									
	Mu	estra 1-2			Mu	estra 1-1		Muestra 1-2						
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end			
1	4	78.000	89.944	1	6	52.000	71.667	1	21	78.000	98.438			
2	0	89.944	101.889	2	19	71.667	91.333	2	17	98.438	118.875			
3	24	101.889	113.833	3	28	91.333	111.000	3	36	118.875	139.313			
4	24	113.833	125.778	4	60	111.000	130.667	4	31	139.313	159.750			
5	30	125.778	137.722	5	68	130.667	150.333	5	32	159.750	180.188			
6	66	137.722	149.667	6	59	150.333	170.000	6	46	180.188	200.625			
7	25	149.667	161.611	7	59	170.000	189.667	7	24	200.625	221.063			
8	62	161.611	173.556	8	50	189.667	209.333	8	11	221.063	241.500			
9	11	173.556	185.500	9	28	209.333	229.000	9	9	241.500	261.938			
10	18	185.500	197.444	10	12	229.000	248.667	10	1	261.938	282.375			
11	41	197.444	209.389	11	15	248.667	268.333	11	9	282.375	302.813			
12	0	209.389	221.333	12	8	268.333	288.000	12	5	302.813	323.250			
13	6	221.333	233.278	13	5	288.000	307.667	13	2	323.250	343.688			
14	3	233.278	245.222	14	5	307.667	327.333	14	3	343.688	364.125			
15	4	245.222	257.167	15	6	327.333	347.000	15	2	364.125	384.563			
16	0	257.167	269.111	16	1	347.000	366.667	16	3	384.563	405.000			
17	0	269.111	281.056	17	0	366.667	386.333							
18	2	281.056	293.000	18	4	386.333	406.000							
				19	0	406.000	425.667							
				20	0	425.667	445.333							
				21	1	445.333	465.000							

			Columna F-C13								
	Mu	estra 1-3			Mu	estra 1-4			Mu	estra 1-1	
Class	Value	Class	Class	Class	Value	Class	Class	Class	Value	Class	Class
Class	value	start	end	Class	value	start	end	Class	value	start	end
1	20	78.000	119.455	1	4	61.000	74.400	1	3	87.000	120.313
2	22	119.455	160.909	2	12	74.400	87.800	2	9	120.313	153.625
3	40	160.909	202.364	3	15	87.800	101.200	3	15	153.625	186.938
4	18	202.364	243.818	4	49	101.200	114.600	4	24	186.938	220.250
5	8	243.818	285.273	5	33	114.600	128.000	5	44	220.250	253.563
6	2	285.273	326.727	6	52	128.000	141.400	6	37	253.563	286.875
7	0	326.727	368.182	7	26	141.400	154.800	7	28	286.875	320.188
8	3	368.182	409.636	8	74	154.800	168.200	8	34	320.188	353.500
9	0	409.636	451.091	9	107	168.200	181.600	9	9	353.500	386.813
10	1	451.091	492.545	10	35	181.600	195.000	10	9	386.813	420.125
11	1	492.545	534.000	11	42	195.000	208.400	11	5	420.125	453.438
				12	13	208.400	221.800	12	3	453.438	486.750
				13	41	221.800	235.200	13	3	486.750	520.063
				14	13	235.200	248.600	14	3	520.063	553.375
				15	31	248.600	262.000	15	0	553.375	586.688
				16	5	262.000	275.400	16	2	586.688	620.000
				17	16	275.400	288.800				
				18	7	288.800	302.200				
				19	5	302.200	315.600				
				20	6	315.600	329.000				
				21	3	329.000	342.400				
				22	2	342.400	355.800				
				23	2	355.800	369.200				
				24	2	369.200	382.600				
				25	2	382.600	396.000				

	Columna F-C13											
	Mu	estra 1-2			Mu	estra 1-3			Mu	estra 1-4		
		Class	Class			Class	Class			Class	Class	
Class	value	start	end	Class	value	start	end	Class	value	start	end	
1	13	38.000	108.778	1	158	38.000	68.120	1	7	87.000	109.828	
2	14	108.778	179.556	2	208	68.120	98.240	2	28	109.828	132.655	
3	13	179.556	250.333	3	93	98.240	128.360	3	30	132.655	155.483	
4	29	250.333	321.111	4	83	128.360	158.480	4	74	155.483	178.310	
5	45	321.111	391.889	5	25	158.480	188.600	5	129	178.310	201.138	
6	33	391.889	462.667	6	8	188.600	218.720	6	48	201.138	223.966	
7	49	462.667	533.444	7	2	218.720	248.840	7	123	223.966	246.793	
8	44	533.444	604.222	8	0	248.840	278.960	8	86	246.793	269.621	
9	39	604.222	675.000	9	1	278.960	309.080	9	57	269.621	292.448	
10	19	675.000	745.778	10	0	309.080	339.200	10	64	292.448	315.276	
11	12	745.778	816.556	11	0	339.200	369.320	11	49	315.276	338.103	
12	5	816.556	887.333	12	0	369.320	399.440	12	24	338.103	360.931	
13	4	887.333	958.111	13	0	399.440	429.560	13	36	360.931	383.759	
14	0	958.111	1028.889	14	0	429.560	459.680	14	25	383.759	406.586	
15	0	1028.889	1099.667	15	0	459.680	489.800	15	11	406.586	429.414	
16	0	1099.667	1170.444	16	0	489.800	519.920	16	15	429.414	452.241	
17	0	1170.444	1241.222	17	0	519.920	550.040	17	9	452.241	475.069	
18	1	1241.222	1312.000	18	0	550.040	580.160	18	6	475.069	497.897	
				19	0	580.160	610.280	19	3	497.897	520.724	
				20	1	610.280	640.400	20	3	520.724	543.552	
				21	0	640.400	670.520	21	1	543.552	566.379	
				22	0	670.520	700.640	22	4	566.379	589.207	
				23	0	700.640	730.760	23	1	589.207	612.034	
				24	0	730.760	760.880	24	1	612.034	634.862	
				25	1	760.880	791.000	25	0	634.862	657.690	
								26	0	657.690	680.517	
								27	0	680.517	703.345	
								28	0	703.345	726.172	
								29	1	726.172	749.000	

	Columna F-C 14 Capa 1													
	Mu	estra 1-1			Mu	estra 1-2		Muestra 1-3						
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end			
1	18	107.000	148.000	1	2	89.000	118.000	1	4	107.000	132.625			
2	17	148.000	189.000	2	5	118.000	147.000	2	11	132.625	158.250			
3	24	189.000	230.000	3	23	147.000	176.000	3	15	158.250	183.875			
4	10	230.000	271.000	4	21	176.000	205.000	4	61	183.875	209.500			
5	4	271.000	312.000	5	25	205.000	234.000	5	35	209.500	235.125			
6	7	312.000	353.000	6	33	234.000	263.000	6	28	235.125	260.750			
7	1	353.000	394.000	7	19	263.000	292.000	7	33	260.750	286.375			
8	2	394.000	435.000	8	22	292.000	321.000	8	12	286.375	312.000			
9	0	435.000	476.000	9	3	321.000	350.000	9	19	312.000	337.625			
10	1	476.000	517.000	10	8	350.000	379.000	10	5	337.625	363.250			
				11	1	379.000	408.000	11	3	363.250	388.875			
				12	0	408.000	437.000	12	2	388.875	414.500			
				13	1	437.000	466.000	13	1	414.500	440.125			
								14	2	440.125	465.750			
								15	0	465.750	491.375			
								16	1	491.375	517.000			

	Columna F-C 14 Capa 1													
	Mu	estra 1-4			Mu	estra 1-5		Muestra 1-6						
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end			
1	13	124.000	150.188	1	7	107.000	127.762	1	9	124.000	147.278			
2	9	150.188	176.375	2	12	127.762	148.524	2	34	147.278	170.556			
3	35	176.375	202.563	3	54	148.524	169.286	3	56	170.556	193.833			
4	51	202.563	228.750	4	37	169.286	190.048	4	33	193.833	217.111			
5	32	228.750	254.938	5	100	190.048	210.810	5	50	217.111	240.389			
6	29	254.938	281.125	6	42	210.810	231.571	6	46	240.389	263.667			
7	30	281.125	307.313	7	66	231.571	252.333	7	40	263.667	286.944			
8	20	307.313	333.500	8	31	252.333	273.095	8	15	286.944	310.222			
9	12	333.500	359.688	9	25	273.095	293.857	9	22	310.222	333.500			
10	10	359.688	385.875	10	22	293.857	314.619	10	6	333.500	356.778			
11	5	385.875	412.063	11	10	314.619	335.381	11	2	356.778	380.056			
12	0	412.063	438.250	12	7	335.381	356.143	12	2	380.056	403.333			
13	1	438.250	464.438	13	1	356.143	376.905	13	5	403.333	426.611			
14	0	464.438	490.625	14	0	376.905	397.667	14	0	426.611	449.889			
15	2	490.625	516.813	15	0	397.667	418.429	15	1	449.889	473.167			
16	1	516.813	543.000	16	0	418.429	439.190	16	1	473.167	496.444			
				17	0	439.190	459.952	17	1	496.444	519.722			
				18	1	459.952	480.714	18	1	519.722	543.000			
				19	0	480.714	501.476							
				20	0	501.476	522.238							
				21	1	522.238	543.000							

	Columna F-C 14 Capa 2														
	Mu	estra 2-1			Mu	estra 2-2			Muestra 2-3						
Class	Value	Class	Class	Class	Value	Class	Class	Class	Value	Class	Class				
Class	value	start	end	Class	value	start	end	Class	value	start	end				
1	5	121.000	186.692	1	6	95.000	178.250	1	5	95.000	147.294				
2	10	186.692	252.385	2	4	178.250	261.500	2	6	147.294	199.588				
3	10	252.385	318.077	3	11	261.500	344.750	3	2	199.588	251.882				
4	17	318.077	383.769	4	28	344.750	428.000	4	5	251.882	304.176				
5	24	383.769	449.462	5	22	428.000	511.250	5	8	304.176	356.471				
6	23	449.462	515.154	6	28	511.250	594.500	6	31	356.471	408.765				
7	20	515.154	580.846	7	19	594.500	677.750	7	39	408.765	461.059				
8	16	580.846	646.538	8	8	677.750	761.000	8	32	461.059	513.353				
9	14	646.538	712.231	9	2	761.000	844.250	9	36	513.353	565.647				
10	3	712.231	777.923	10	3	844.250	927.500	10	30	565.647	617.941				
11	6	777.923	843.615	11	0	927.500	1010.750	11	20	617.941	670.235				
12	2	843.615	909.308	12	1	1010.750	1094.000	12	22	670.235	722.529				
13	2	909.308	975.000					13	11	722.529	774.824				
							I	14	7	774.824	827.118				
							I	15	3	827.118	879.412				

 879.412

931.706 984.000

931.706

	Columna F-C 14 Capa 2													
	Mu	estra 2-4			Mu	estra 2-5		Muestra 2-6						
Class	Value	Class	Class	Class	Value	Class	Class	Class	Value	Class	Class			
		start	end	0.000		start	end			start	end			
1	5	130.000	191.765	1	1	199.000	253.500	1	3	78.000	131.474			
2	9	191.765	253.529	2	2	253.500	308.000	2	6	131.474	184.947			
3	5	253.529	315.294	3	6	308.000	362.500	3	4	184.947	238.421			
4	10	315.294	377.059	4	13	362.500	417.000	4	5	238.421	291.895			
5	12	377.059	438.824	5	21	417.000	471.500	5	30	291.895	345.368			
6	23	438.824	500.588	6	34	471.500	526.000	6	36	345.368	398.842			
7	31	500.588	562.353	7	41	526.000	580.500	7	43	398.842	452.316			
8	28	562.353	624.118	8	30	580.500	635.000	8	41	452.316	505.789			
9	37	624.118	685.882	9	52	635.000	689.500	9	35	505.789	559.263			
10	45	685.882	747.647	10	24	689.500	744.000	10	41	559.263	612.737			
11	33	747.647	809.412	11	31	744.000	798.500	11	20	612.737	666.211			
12	16	809.412	871.176	12	12	798.500	853.000	12	26	666.211	719.684			
13	16	871.176	932.941	13	18	853.000	907.500	13	11	719.684	773.158			
14	6	932.941	994.706	14	6	907.500	962.000	14	5	773.158	826.632			
15	5	994.706	1056.471	15	8	962.000	1016.500	15	8	826.632	880.105			
16	2	1056.471	1118.235	16	0	1016.500	1071.000	16	4	880.105	933.579			
17	2	1118.235	1180.000	17	3	1071.000	1125.500	17	2	933.579	987.053			
				18	2	1125.500	1180.000	18	2	987.053	1040.526			
								19	3	1040.526	1094.000			

C	Columna F-C 14 Capa 2				Columna F-C14 Capa 3									
	Mu	estra 2-7			Mu	estra 3-1			Mu	estra 3-2				
Class	Value	Class start	Class end	Class	Value	Class start	Class end	Class	Value	Class start	Class end			
1	3	70.000	128.421	1	12	52.000	75.389	1	16	52.000	91.783			
2	0	128.421	186.842	2	30	75.389	98.778	2	112	91.783	131.565			
3	4	186.842	245.263	3	51	98.778	122.167	3	112	131.565	171.348			
4	12	245.263	303.684	4	34	122.167	145.556	4	160	171.348	211.130			
5	21	303.684	362.105	5	51	145.556	168.944	5	61	211.130	250.913			
6	22	362.105	420.526	6	44	168.944	192.333	6	22	250.913	290.696			
7	52	420.526	478.947	7	13	192.333	215.722	7	13	290.696	330.478			
8	63	478.947	537.368	8	26	215.722	239.111	8	6	330.478	370.261			
9	45	537.368	595.789	9	14	239.111	262.500	9	3	370.261	410.043			
10	32	595.789	654.211	10	5	262.500	285.889	10	0	410.043	449.826			
11	32	654.211	712.632	11	3	285.889	309.278	11	1	449.826	489.609			
12	21	712.632	771.053	12	4	309.278	332.667	12	1	489.609	529.391			
13	10	771.053	829.474	13	1	332.667	356.056	13	1	529.391	569.174			
14	14	829.474	887.895	14	1	356.056	379.444	14	1	569.174	608.957			
15	7	887.895	946.316	15	1	379.444	402.833	15	1	608.957	648.739			
16	4	946.316	1004.737	16	1	402.833	426.222	16	2	648.739	688.522			
17	2	1004.737	1063.158	17	1	426.222	449.611	17	0	688.522	728.304			
18	1	1063.158	1121.579	18	1	449.611	473.000	18	0	728.304	768.087			
19	2	1121.579	1180.000					19	0	768.087	807.870			
•			•	•				20	0	807.870	847.652			
								21	0	847.652	887.435			
								22	0	887.435	927.217			

927.217 967.000
Columna F-C14 Capa 3											
Muestra 3-3				Muestra 3-4				Muestra 3-5			
Class	Value	Class	Class end	Class	Value	Class	Class	Class	Value	Class	Class
		start				start	end			start	end
1	11	44.000	73.242	1	26	52.000	72.344	1	24	44.000	70.250
2	44	73.242	102.485	2	76	72.344	92.688	2	96	70.250	96.500
3	159	102.485	131.727	3	168	92.688	113.031	3	121	96.500	122.750
4	179	131.727	160.970	4	145	113.031	133.375	4	142	122.750	149.000
5	320	160.970	190.212	5	166	133.375	153.719	5	118	149.000	175.250
6	132	190.212	219.455	6	198	153.719	174.063	6	104	175.250	201.500
7	97	219.455	248.697	7	101	174.063	194.406	7	60	201.500	227.750
8	53	248.697	277.939	8	45	194.406	214.750	8	32	227.750	254.000
9	23	277.939	307.182	9	32	214.750	235.094	9	12	254.000	280.250
10	22	307.182	336.424	10	9	235.094	255.438	10	9	280.250	306.500
11	7	336.424	365.667	11	6	255.438	275.781	11	11	306.500	332.750
12	5	365.667	394.909	12	10	275.781	296.125	12	3	332.750	359.000
13	4	394.909	424.152	13	2	296.125	316.469	13	6	359.000	385.250
14	1	424.152	453.394	14	1	316.469	336.813	14	1	385.250	411.500
15	0	453.394	482.636	15	2	336.813	357.156	15	1	411.500	437.750
16	0	482.636	511.879	16	0	357.156	377.500	16	1	437.750	464.000
17	2	511.879	541.121	17	0	377.500	397.844	17	1	464.000	490.250
18	0	541.121	570.364	18	3	397.844	418.188	18	0	490.250	516.500
19	1	570.364	599.606	19	1	418.188	438.531	19	0	516.500	542.750
20	0	599.606	628.848	20	1	438.531	458.875	20	0	542.750	569.000
21	1	628.848	658.091	21	1	458.875	479.219	21	0	569.000	595.250
22	1	658.091	687.333	22	1	479.219	499.563	22	2	595.250	621.500
23	1	687.333	716.576	23	0	499.563	519.906	23	0	621.500	647.750
24	0	716.576	745.818	24	2	519.906	540.250	24	0	647.750	674.000
25	1	745.818	775.061	25	1	540.250	560.594	25	0	674.000	700.250
26	1	775.061	804.303	26	1	560.594	580.938	26	0	700.250	726.500
27	0	804.303	833.545	27	3	580.938	601.281	27	2	726.500	752.750
28	0	833.545	862.788	28	0	601.281	621.625	28	1	752.750	779.000
29	1	862.788	892.030	29	1	621.625	641.969			1	
30	0	892.030	921.273	30	1	641.969	662.313	1			
31	0	921.273	950.515	31	0	662.313	682.656	1			
32	0	950.515	979.758	32	2	682.656	703.000	1			
33	1	979.758	1009.000					•			

Anexo 2. Muestras de agrietamientos e histogramas obtenidos para realización del filtro.

