RECONSTRUCCIÓN DENDROCLIMÁTICA, ESTIMACIÓN DE CO$_2$ Y ESCENARIOS CLIMÁTICOS DEL ECOSISTEMA SUBALPINO DEL EJE NEOVOLCÁNICO TRANSMEXICANO

POR

M.C. ULISES MANZANILLA QUIÑONES

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS CON ORIENTACIÓN EN MANEJO DE RECURSOS NATURALES

AGOSTO, 2019
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
FACULTAD DE CIENCIAS FORESTALES
SUBDIRECCIÓN DE POSGRADO

TESIS

RECONSTRUCCIÓN DENDROCLIMÁTICA, ESTIMACIÓN DE CO₂ Y ESCENARIOS CLIMÁTICOS DEL ECOSISTEMA SUBALPINO DEL EJE NEOVOLCÁNICO TRANSMEXICANO

POR

M.C. ULISES MANZANILLA QUIÑONES

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS CON ORIENTACIÓN EN MANEJO DE RECURSOS NATURALES

LINARES, NUEVO LEÓN, MÉXICO AGOSTO, 2019
RECONSTRUCCIÓN DENDROCLIMÁTICA, ESTIMACIÓN DE CO₂ Y ESCENARIOS CLIMÁTICOS DEL ECOSISTEMA SUBALPINO DEL EJE NEOVOLCÁNICO TRANSMEXICANO

APROBACIÓN DE TESIS

Dr. Óscar Alberto Aguirre Calderón
Director

Dr. Javier Jiménez Pérez
Codirector

Dr. Eduardo Javier Treviño Garza
Asesor

Dr. José Israel Yarena Yamallel
Asesor

Dr. Jose Villanueva Díaz
Codirector externo

Linares N. L., México

Agosto de 2019
AGRADECIMIENTOS
A mí querida alma mater, Universidad Michoacana de San Nicolás de Hidalgo “Cuna de héroes, Crisol de pensadores” por haberme brindado la oportunidad de continuar con mis estudios.

A la Facultad de Ciencias Forestales de la Universidad Autónoma de Nuevo León.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el apoyo de beca de posgrado, con la cual fue posible financiar esta investigación.

A mi comité de tesis; Dr. Óscar Alberto Aguirre Calderón, Dr. Javier Jiménez Pérez, Dr. Eduardo Javier Treviño Garza, Dr. José Israel Yerena Yamallel y Dr. José Villanueva Díaz.

A mis asesores; Dra. Patricia Delgado Valerio (Licenciatura) y Dr. Juan Manuel Ortega Rodríguez (Maestría) por su amistad y confianza brindada.

A los integrantes del Laboratorio Nacional de Dendrocronología.

A las autoridades de las áreas naturales protegidas; Volcán Nevado de Colima, Nevado de Toluca y Pico de Orizaba por haber permitido la toma de datos.

A mis amigos y familia.

Todos los sueños y metas se pueden plasmar en un mapa.
Indice general

<table>
<thead>
<tr>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Introducción general</td>
<td>v</td>
</tr>
<tr>
<td>Justificación</td>
<td>vii</td>
</tr>
<tr>
<td>Hipótesis</td>
<td>viii</td>
</tr>
<tr>
<td>Objetivos</td>
<td>viii</td>
</tr>
</tbody>
</table>

Capítulo 1
Respuesta climática de anillos de crecimiento de *Pinus hartwegii* Lindley: una especie de alta montaña del centro de México .. 1

<table>
<thead>
<tr>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Introducción</td>
<td>4</td>
</tr>
<tr>
<td>Materiales y métodos</td>
<td>6</td>
</tr>
<tr>
<td>Resultados</td>
<td>10</td>
</tr>
<tr>
<td>Discusión</td>
<td>21</td>
</tr>
<tr>
<td>Bibliografía</td>
<td>27</td>
</tr>
</tbody>
</table>

Capítulo 2
Estimación de volumen, biomasa y carbono de *Pinus hartwegii* Lindley en tres sitios del Eje Neovolcánico Transmexicano.. 34

<table>
<thead>
<tr>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>34</td>
</tr>
<tr>
<td>Abstract</td>
<td>35</td>
</tr>
<tr>
<td>Introducción</td>
<td>36</td>
</tr>
<tr>
<td>Materiales y métodos</td>
<td>38</td>
</tr>
<tr>
<td>Resultados</td>
<td>40</td>
</tr>
<tr>
<td>Discusión</td>
<td>44</td>
</tr>
</tbody>
</table>
Indice de figuras

Capítulo 1
Respuesta climática de anillos de crecimiento de *Pinus hartwegii* Lindley:
una especie de alta montaña del centro de México

Figura 1. Localización geográfica de los sitios de estudio6
Figura 2. Estaciones meteorológicas cercanas al Volcán Nevado de Colima
(A), Nevado de Toluca (B) y Pico de Orizaba (C)9
Figura 3. Reconstrucción de precipitación estacional en el Volcán
Nevado de Colima (a), Nevado de Toluca (b) y Pico de Orizaba (c) 14-15
Figura 4. Reconstrucción de temperatura en el Volcán Nevado de
Colima (a), Nevado de Toluca (b) y Pico de Orizaba (c) 16-17
Figura 5. Análisis espectrales de coherencia ondeleta para El Niño
Oscilación del Sur (ENOS) en el Volcán Nevado de Colima (a),
Nevado de Toluca (b) y Pico de Orizaba (c) 18
Figura 6. Análisis espectral de coherencia ondeleta para la Oscilación
Decadal del Pacífico (PDO) en el Volcán Nevado de Colima 19
Figura 7. Intensidad promedio de los periodos de sequías (PSDI)
en el Volcán Nevado de Colima (a), Nevado de Toluca (b) y
Pico de Orizaba (c) 20

Capítulo 2
Estimación de volumen, biomasa, carbono y *CO₂* en *Pinus hartwegii* Lindley
en tres sitios del Eje Neovolcánico Transmexicano

Figura 1. Localización de los sitios de estudio ..38
Figura 2. Número de individuos para cada categoría diamétrica en
los sitios de estudio ...40
Figura 3. Distribución de las categorías de altura en los sitios de estudio41
Figura 4. Diámetro (máximo, promedio y mínimo) de los sitios de estudio ...41
Capítulo 3
Escenarios de cambio climático (CMIP-5) para tres áreas naturales protegidas en el Eje Neovolcánico Transmexicano

Figura 1. Ubicación geográfica de los sitios de estudio ..53
Figura 2. Escenarios climáticos conservadores (a) y extremos (b)
para precipitación y temperatura media del Pico de Orizaba..................57-58
Figura 3. Escenarios climáticos conservadores (a) y extremos (b)
para precipitación y temperatura media del Nevado de Toluca59-60
Figura 4. Escenarios climáticos conservadores (a) y extremos (b)
para precipitación y temperatura media del Volcán Nevado de Colima....61-62

Capítulo 4
Distribución actual y futura del bosque subalpino de Pinus hartwegii Lindley en el Eje Neovolcánico Transmexicano

Figura 1. Localización geográfica del área de estudio74
Figura 2. Distribución actual del bosque subalpino de P. hartwegii en el Eje Neovolcánico Transmexicano ..82
Figura 3. Variables importantes en los modelos actuales83
Figura 4. Variables importantes del modelo CRNMCM5 a futuro83
Figura 5. Variables importantes del modelo HADGEM2_ES a futuro84
Figura 6. Distribución actual y futura del escenario conservador
(CRNMCM5 RCP 4.5) para el bosque subalpino de
P. hartwegii en el Eje Neovolcánico Transmexicano86
Indice de tablas

Capítulo 1
Respuesta climática de anillos de crecimiento de *Pinus hartwegii* Lindley: una especie de alta montaña del centro de México

Tabla 1. Resultados COFECHA de los sitios de estudio10
Tabla 2. Periodos de calibración entre los registros de precipitación
de enero-mayo y la cronología residual de anillo total
de los sitios de estudio ..11
Tabla 3. Periodos de verificación y pruebas estadísticas de control
aplicadas a la precipitación de los sitios de estudio ..12
Tabla 4. Periodos de calibración entre los registros de temperatura y
la cronología residual de anillo total de los sitios de estudio..............................12
Tabla 5. Periodos de verificación y pruebas estadísticas de control para
la temperatura (observada vs reconstruida) de los sitios de estudio13

Capítulo 2
Estimación de volumen, biomasa, carbono y CO$_2$ en *Pinus hartwegii* Lindley
en tres sitios del Eje Neovolcánico Transmexicano

Tabla 1. Carbono y CO$_2$ almacenado en los árboles de los sitios de estudio....43

Capítulo 3
Escenarios de cambio climático (CMIP-5) para tres áreas naturales protegidas
en el Eje Neovolcánico Transmexicano

Tabla 1. Precipitación y temperatura media de las ANP56
Tabla 2. Precipitación y temperatura media de las tres ANP evaluadas
para 2045-2069 ..56
Capítulo 4
Distribución actual y futura del bosque subalpino de Pinus hartwegii Lindley en el Eje Neovolcánico Transmexicano

Tabla 1. Variables bioclimáticas para los periodos presente y futuro 75-76
Tabla 2. Criterios empleados en la generación de los modelos de distribución.. 78
Tabla 3. Desempeño estadístico Roc parcial y Z de los modelos de distribución actual... 81
Tabla 4. Resultados Roc parcial y Z de los modelos para 2041-2060 82
Tabla 5. Superficie actual y futura del bosque subalpino de P. hartwegii 85
Tabla 6. Superficies actuales y futuras por zonas para el bosque subalpino de P. hartwegii en el Eje Neovolcánico Transmexicano 85
Resumen

En el presente estudio se describe la investigación original efectuada para la especie *Pinus hartwegii* Lindley (pino de las alturas) en las áreas naturales protegidas Pico de Orizaba, Nevado de Toluca y Volcán Nevado de Colima dentro del Eje Neovolcánico Transmexicano. La culminación de dicha investigación fue dividida en cuatro capítulos, los cuales se mencionan y describen a continuación: capítulo uno respuesta climática de anillos de crecimiento de *Pinus hartwegii* Lindley en sitios bajo condiciones ambientales análogas. Se obtuvieron con ayuda de un taladro de Pressler 112 núcleos de crecimiento provientes de 56 árboles de *P. hartwegii*. Las muestras fueron prefechadas mediante técnicas dendrocronológicas tradicionales y medidas en un equipo Velmex. Se generaron índices de crecimiento, que fueron correlacionados con los valores mensuales de precipitación y temperatura de las estaciones meteorológicas cercanas a los sitios de estudio. Se generaron modelos lineales los cuales ayudaron a reconstruir la precipitación y temperatura de los sitios de estudio. Se realizaron análisis de coherencia de ondeleta con el objetivo de evaluar los periodos de influencia de El Niño Oscilacion del Sur (ENOS), Oscilación Multidecadal del Atlántico (OMA) y Oscilación Decadal del Pacífico (ODP) con la precipitación reconstruida de los sitios. Se aplicaron pruebas de tendencias de cambio climático a las variables climáticas de respuesta reconstruidas. Capítulo dos estimación de volumen, biomasa, carbono y CO₂ almacenado en los ejemplares de *P. hartwegii*. Se midió altura total con un clinómetro suunto y diámetro a 1.30 m con una cinta métrica. Posteriormente, aplicando la ecuación alométrica generada para la especie y región de estudio, se estimó el volumen fustal de los árboles. Utilizando el valor de densidad básica de la madera reportada para la especie se estimó la biomasa aérea en toneladas por árbol. Para calcular el carbono (C) y bióxido de carbono (CO₂) equivalente, se multiplicó el valor de la biomasa aérea por el contenido de carbono reportado para la especie y para el CO₂; se realizó la conversión C-CO₂. Capítulo tres estimación entre el clima actual y futuro en las tres áreas naturales protegidas (ANP) estudiadas. Se descargaron las capas climáticas mensuales
actuales y futuras generadas para México por la UNAM. Las 12 capas climáticas actuales y futuras se promediaron para calcular el valor climático anual de precipitación y temperatura media. Posteriormente, se recortaron dichas capas al tamaño de las ANP. Se estimó el clima actual y futuro para la superficie total de cada área natural protegida y se calcularon las diferencias entre el clima actual y futuro (2050) para cada ANP.

Capítulo cuatro distribución actual y escenarios de cambio climático a futuro (2050) para el nicho ecológico subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano. Se obtuvieron los registros de presencia para la especie en la plataforma Niche Toolbox de CONABIO y en campo. Se descargaron las 19 variables bioclimáticas de WorldClim ver. 2.0 para el periodo actual y futuro de los Modelos de Circulación Global CRNMCM5 y HADGEM2_ES con dos forzamientos radiactivos (RCP) de 4.5 (trayectorias de CO₂ constantes) y 8.5 (trayectorias de CO₂ altas), altitud (DEM; Modelo Digital de E elevación), pendiente (%), tipo de suelo y vegetación (serie V de INEGI). Todas las variables fueron homogenizadas a formato ASCII con una resolución espacial de 1 km². Se utilizaron los registros de presencia de la especie en formato csv y las variables ambientales en ASCII para generar los modelos actuales y futuros en MaxEnt.

Palabras clave: Almacén de carbono, anillos de crecimiento, aumento en temperatura, biomasa forestal, bosque subalpino, ENOS y escenarios de cambio climático
Abstract

This study describes the original research carried out for the species *Pinus hartwegii* Lindley (high altitude pine) in the natural protected areas of Pico de Orizaba, Nevado de Toluca and Volcán Nevado de Colima within the Transversal Neovolcanic Belt. The culmination of this research was divided into four chapters, which are mentioned and described below; chapter one climatic response of *Pinus hartwegii* Lindley growth rings at sites under similar environmental conditions. A Pressler drill was used to drill 112 growth nuclei from 56 *P. hartwegii* trees. The samples were predated using traditional dendrochronological techniques and measured in Velmex equipment. Growth indices were generated, which were correlated with the monthly precipitation and temperature values of the meteorological stations near the study sites. Linear models were generated which helped to reconstruct the precipitation and temperature of the study sites. Ondeleta coherence analyses were performed in order to evaluate the influence periods of El Niño Osicilacion del Sur (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) with the reconstructed precipitation of the sites. Climate change trend tests were applied to the reconstructed response climate variables.

Chapter two estimates of volume, biomass, carbon and CO$_2$ stored in *P. hartwegii* specimens. Total height was measured with a suunto clinometer and diameter at 1.30 m with a tape measure. Subsequently, applying the alometric equation generated for the species and region of study, the stem volume of the trees was estimated. Using the basic density value of the wood reported for the species, the aerial biomass was estimated in tons per tree. To calculate the carbon (C) and carbon dioxide (CO$_2$) stored, the value of the aerial biomass was multiplied by the carbon content reported for the species and for CO$_2$, the C-CO$_2$ conversion was performed.

Chapter three estimation between current and future climate in the three protected natural areas (ANP) studied. The current and future monthly climatic layers generated for Mexico by UNAM were downloaded. The 12 current and future climatic layers were averaged to calculate the annual climate value of precipitation
and mean temperature. These layers were then trimmed to the size of the ANP. The current and future climate was estimated for the total area of each protected natural area and the differences between the current and future climate (2050) were calculated for each ANP.

Chapter four current distribution and future climate change scenarios (2050) for the subalpine ecological niche of *P. hartwegii* in the Transversal Neovolcanic Belt. Presence records were obtained for the species on CONABIO's Niche Toolbox platform and in the field. The 19 bioclimatic variables of WorldClim ver. 2.0 were downloaded for the current and future period of the Global Circulation Models CRNMCM5 and HADGEM2_ES with two radioactive forcings (RCP) of 4.5 (constant CO$_2$ trajectories) and 8.5 (high CO$_2$ trajectories), altitude (DEM; Digital Elevation Model), slope (%), soil type and vegetation (INEGI V series). All variables were homogenized in ASCII format with a spatial resolution of 1 km2. The presence records of the species in csv format and the environmental variables in ASCII were used to generate the current and future models in MaxEnt. Keywords: Carbon storage, climate change scenarios, ENSO, forest biomass, subalpine forest, temperature increase and tree rings.
Introducción general

Los ecosistemas subalpinos y alpinos de México son ambientes poco explorados, raros y únicos, donde su compleja y accidentada topografía hace del estudio de estos ecosistemas todo un reto. La mayor parte (distribución) de estos ecosistemas se localizan hacia las partes altas y húmedas de las cadenas montañosas del Eje Neovolcánico Transmexicano, en pequeños parches, donde la especie arbórea dominante es *Pinus hartwegii* Lindley (Perry, 1991; Farjon *et al*., 1997).

Los efectos negativos del cambio climático probablemente reducirían el hábitat de los bosques de alta montaña donde coexiste la especie y la colonización hacia las partes altas estaría limitada por las condiciones ambientales y la capacidad de dispersión y movimiento de las especies alpinas (Ricker *et al*., 2007; Sáenz-Romero *et al*., 2013; Villanueva-Díaz *et al*., 2015).

Se estima que debido a los efectos del cambio climático, la temperatura del planeta aumentaría en promedio hasta 2 ºC para mediados del presente siglo (Garreaud, 2011).

De acuerdo con los escenarios de cambio climático para México en el siglo XXI, se predice un aumento en temperatura promedio anual de 0.5 a 2 ºC para 2030, de 2.3 ºC para 2060 y hasta 3.7 ºC para 2090 (Sáenz-Romero *et al*., 2010; CONANP, 2015).

En la actualidad, una de las estrategias para mitigar los efectos del cambio climático es el uso de los bosques y selvas como secuestradores de gases de efecto invernadero (GEI), en especial, el bióxido de carbono (CO₂) (Aguirre-Calderón y Jiménez-Pérez, 2011; IPCC, 2014). Por lo que la absorción de CO₂ atmosférico de los bosques y selvas es una de las estrategias más viables, comunes y económicas para mitigar el cambio climático (Torres y Guevara 2002, Gómez *et al*., 2011; IPCC, 2014; CONAFOR, 2015).

La importancia de los bosques y selvas radica en su capacidad de funcionar como grandes almacenes o reservorios naturales de carbono. Cada año se estima que dichos ecosistemas capturan más del 15% de las emisiones de bióxido de carbono (CO₂) en el mundo (CONAFOR, 2013, 2015).
Los bosques y selvas representan los principales reservorios de carbono y CO$_2$ del planeta (IPCC, 2014, Rueda et al., 2014; Carrillo-Anzures et al., 2016), por lo que su manejo, conservación y protección, son temas prioritarios en la actualidad. Hoy en día, la relación que existe entre la biodiversidad y el clima es motivo de preocupación para la comunidad científica de todo el mundo, debido a los efectos y consecuencias del cambio climático sobre la vegetación (FAO, 2009; IPCC, 2014). El aumento en temperatura y los cambios en precipitación afectan de diversas maneras a los especies, estos cambios modificarían la distribución y diversidad de especies a futuro (Burgmer et al., 2007; Sáenz-Romero et al., 2015); siendo una consecuencia directa del cambio climático la modificación y alteración de la dinámica y funcionamiento de los ecosistemas forestales (Norby et al., 2007; FAO, 2009; IPCC, 2014; Islas-Báez et al., 2015).

Paralelamente a estos estudios de manejo y conservación, los modelos de nicho ecológico generados bajo escenarios de cambio climático indican que el grupo taxonómico de las pináceas sería uno de los más afectados por el aumento en temperatura (Sáenz et al., 2012; Cruz-Cárdenas et al., 2016).

A través del estudio de los anillos anuales de crecimiento de los árboles, los científicos han obtenido datos importantes sobre el comportamiento del clima histórico (>100 años) de diversas regiones del mundo (Álvarez et al., 2015; Shi et al., 2015; Tejedor et al., 2017; Zhang et al., 2018). En este contexto, el estudio de los anillos de crecimiento de los árboles constituye un base para explicar la variabilidad del clima tanto a nivel local (microclima) como continental (macroclima) (Stahle et al., 2016; Villanueva-Díaz et al., 2016; Gutiérrez-García y Ricker, 2019) y ayuda en el entendimiento del clima histórico más allá de los registros meteorológicos posibilitando predecir posibles comportamientos a futuro.

De acuerdo con la información mencionada con anterioridad, la especie o modelo biológico de estudio resulta ser apropiada para analizar el comportamiento climático histórico y la evaluación a través del uso de los modelos de nicho ecológico del impacto del cambio climático en los bosques de alta montaña del Eje Neovolcánico Transmexicano.
Justificación

Pinus hartwegii Lindley, también llamado pino de alturas, se distribuye en las partes altas de México, Guatemala y Honduras, en altitudes de 2800 a 4300 msnm (Perry, 1991; Farjon *et al.*, 1997). En la actualidad, el cambio de uso de suelo, la tala clandestina y el cambio climático son amenazas muy serias para la conservación de la biodiversidad a escala mundial; donde este último representa un problema grave para los científicos. Durante años los investigadores han estudiado el comportamiento del clima a partir de registros de estaciones meteorológicas; sin embargo, gracias a la capacidad fisiológica de los árboles de producir anillos, la mayoría anuales, se puede estudiar el comportamiento del clima a escala milenaria. *Pinus hartwegii* Lindley es una especie que responde a la variabilidad climática anual a través de la formación de anillos de crecimiento, proceso que resulta apropiado para estudios de crecimiento-respuesta al clima en alta montaña. Con ayuda de los modelos de nicho ecológico es factible delimitar y estimar el nicho ecológico actual de la especie, conocer las variables ambientales que más influyen en su distribución y generar proyecciones bajo diversos escenarios de cambio climático, los cuales ayudarían a evaluar cómo los efectos del cambio climático afectarían a *P. hartwegii* a futuro en el Eje Neovolcánico Transmexicano.
Hipótesis

La respuesta climática de Pinus hartwegii Lindley es similar en tres sitios bajo condiciones ambientales análogas en el Eje Neovolcánico Transmexicano. Las condiciones ambientales (nicho ecológico) en las que crece la especie en el Eje Neovolcánico Transmexicano se verían severamente reducidas por los efectos del cambio climático a futuro (2050).

Para probar las hipótesis planteadas se formularon los siguientes objetivos;

Objetivos

I. Determinar sí la respuesta climática y atmoférica de Pinus hartwegii Lindley en tres sitios con condiciones ambientales similares en el Eje Neovolcánico Transmexicano.

II. Calcular volumen, biomasa aérea fustal, carbono y CO$_2$ equivalente en ejemplares de P. hartwegii

III. Estimar escenarios climáticos a futuro medio (2045-2069) para las áreas naturales protegidas Pico de Orizaba, Nevado de Toluca y Volcán Nevado de Colima.

IV. Modelar la distribución de actual y futura P. hartwegii en el Eje Neovolcánico Transmexicano.
Capítulo 1

Respuesta climática de anillos de crecimiento de *Pinus hartwegii* Lindley: una especie de alta montaña del centro de México

Resumen

Los ecosistemas alpinos en México presentan una distribución restringida e insular; se sabe que estos ecosistemas son sensibles a las variaciones del clima. El presente estudio tiene como hipótesis determinar si la respuesta climática de *Pinus hartwegii* Lindley es similar en tres sitios bajo condiciones ambientales análogas en el Eje Neovolcánico Transmexicano. Se obtuvieron 112 muestras provenientes de tres sitios de estudio. Las muestras fueron analizadas y fechadas mediante técnicas dendrocronológicas tradicionales y medidas en un equipo VELMEX®. La verificación del fechado y la generación de cronologías se efectuaron en los programas COFECHA y ARSTAN. Se descargaron los registros de las estaciones meteorológicas cercanas a los sitios. Los registros faltantes de precipitación fueron reconstruidos mediante análisis de regresión lineal simple y medias móviles n=5 para temperatura. Se realizaron análisis espectrales de coherencia de ondeleta entre los índices anuales de El Niño Oscilación del Sur (ENOS), Oscilación Multidecadal del Atlántico (OMA) y Oscilación Decadal del Pacífico (ODP) y la precipitación reconstruida de los sitios de estudio. Se aplicó la prueba de Mann-Kendall a los periodos climáticos reconstruidos de cada sitio con el objetivo de detectar tendencias. Los periodos reconstruidos fueron 1940-2016 (Volcán Nevado de Colima), 1928-2016 (Nevado de Toluca) y 1960-2016 (Pico de Orizaba) para precipitación enero-mayo y temperatura máxima (mayo), mínima (abril-mayo) y máxima (junio-octubre) de cada sitio. ENOS influyó en la precipitación y el crecimiento radial de los árboles, con periodicidades de frecuencia alta y corto ciclo de 1-6 años (p<0.05). No se encontraron tendencias significativas (p>0.05) de cambio climático. La variación en temperatura fue ±0.38 °C en la máxima de mayo del Volcán Nevado de Colima, ±1.1 °C en la mínima
de abril-mayo del Nevado de Toluca y ±0.63 °C en la máxima de junio-octubre del Pico de Orizaba. Las sequías y periodos húmedos coinciden con lo reportado para el área de estudio. Acorde a los hallazgos obtenidos rechazamos la hipótesis planteada. El Volcán Nevado de Colima fue sitio más sensible a la variabilidad climática y atmosférica.
Palabras clave: Bosque de alta montaña, dendroclimatología, fenómenos atmosféricos, reconstrucción climática y teleconexión atmosférica
Abstract
Alpine ecosystems in Mexico have a restricted and insular distribution; these ecosystems are known to be sensitive to climate variations. The present study hypothesizes whether the climatic response of Pinus hartwegii Lindley is similar at three sites under similar environmental conditions in the Transmexican Volcanic Belt. 112 samples were obtained from three study sites. The samples were analyzed and dated by traditional dendrochronological techniques and measured in a VELMEX® equipment. The verification of the date and the generation of chronologies were made in the programs COFECHA and ARSTAN. The records of the meteorological stations near the sites were downloaded. The missing precipitation records were reconstructed by simple linear regression analysis and moving averages n=5 for temperature. Ondeleta coherence spectral analyses were performed between the annual El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) indices and the reconstructed precipitation from the study sites. The Mann-Kendall test was applied to the reconstructed climatic periods of each site in order to detect trends. The reconstructed periods were 1940-2016 (Volcán Nevado de Colima), 1928-2016 (Nevado de Toluca) and 1960-2016 (Pico de Orizaba) for January-May precipitation and maximum temperature (May), minimum (April-May) and maximum (June-October) for each site. ENSO influenced the precipitation and radial growth of the trees, with high frequency periodicities and short cycle of 1-6 years (p<0.05). No significant (p>0.05) climate change trends were found. The temperature variation was ±0.38 °C at the May peak of the Nevado de Colima Volcano, ±1.1 °C at the April-May minimum of Nevado de Toluca and ±0.63 °C at the June-October maximum of Pico de Orizaba. Droughts and wet periods coincide with those reported for the study area. According to the findings, we reject the hypothesis. The Nevado de Colima Volcano was the most sensitive site to climatic and atmospheric variability.

Keywords: Atmospheric phenomena, atmospheric teleconnection, climatic reconstruction, dendroclimatology and high mountain forest
Introducción

En la actualidad, los efectos negativos del cambio climático probablemente reducirían el hábitat de los bosques de alta montaña y la colonización hacia partes más altas estaría limitada por las condiciones ambientales y la capacidad de dispersión de las especies alpinas (Ricker et al., 2007; Sáenz-Romero et al., 2013; Villanueva-Díaz et al., 2015).

A través del estudio de los anillos anuales de crecimiento de los árboles, los científicos han obtenido datos importantes sobre el comportamiento del clima histórico (>100 años) de diversas regiones del mundo (Álvarez et al., 2015; Shi et al., 2015; Tejedor et al., 2017; Zhang et al., 2018).

En este contexto, el estudio de los anillos de crecimiento de los árboles constituye una base para explicar la variabilidad del clima tanto a nivel local (microclima) como continental (macroclima) (Stahle et al., 2016; Villanueva-Díaz et al., 2016; Gutiérrez-García y Ricker, 2019), y ayuda en el entendimiento del clima histórico más allá de los registros meteorológicos del pasado.

En la actualidad, el cambio climático es un fenómeno global que es motivo de preocupación para toda la comunidad científica del mundo (IPCC, 2014; Trenberth et al., 2014; Tejedor et al., 2017). Aunado a la problemática mundial del cambio climático, los fenómenos atmosféricos de circulación global, modulan y alteran la variabilidad de la precipitación en muchas regiones geográficas del planeta (Biondi et al., 2001; Trenberth et al., 2014; Pompa-García y Némiga, 2015; NOAA, 2019), incluyendo a la República Mexicana (Pompa-García y Némiga, 2015; Villanueva-Díaz et al., 2016; Gutiérrez-García y Ricker, 2019).

Para el caso específico de los bosques de coníferas de México, diversos estudios señalan a la precipitación como el factor limitante en el crecimiento radial de los árboles (Villanueva-Díaz et al., 2011, 2015, 2016; Gutiérrez-García y Ricker, 2019). Se han generado cerca de 170 cronologías (Villanueva-Díaz et al., 2011), la mayoría provenientes de especies pertenecientes a los géneros Pinus, Pseudotsuga y Taxodium, distribuidos en las regiones norte y centro del país (Villanueva-Díaz et al., 2011, 2015; Cerano-Paredes et al., 2013; Pompa-García y Némiga, 2015.).
Muchas de estas reconstrucciones climáticas están basadas en la medición y estandarización del ancho de anillo total y se realizaron utilizando árboles que crecen por debajo de su límite altitudinal (Villanueva-Díaz et al., 2011; Cerano-Paredes et al., 2013; Pompa-García y Némiga, 2015; Tejedor et al., 2017). Sin embargo, pese el auge que han tenido este tipo de estudios, la búsqueda de árboles y regiones geográficas sensibles continua siendo una actividad ardua y en proceso (Christie et al., 2009; Correa-Díaz et al., 2019; Gutiérrez-García y Ricker, 2019).

Las líneas de árboles alpinos en México están representadas por Pinus hartwegii Lindley, una especie de pino que crece en las partes altas de las principales cadenas montañosas de México, Guatemala y Honduras, en un gradiente altitudinal de 2800 a 4300 msnm (Farjon et al., 1997). El taxón presenta potencial dendroclimático para reconstruir precipitación y temperatura, evaluar posibles cambios significativos en el clima y examinar la influencia de los fenómenos atmosféricos, por lo que, el estudio de los anillos de crecimiento de los árboles que crecen en su límite altitudinal ayudarían a comprender la variabilidad climática y la afectación de los fenómenos atmosféricos en los bosques de altura (Álvarez et al., 2015; Villanueva-Díaz et al., 2015, 2016; Tejedor et al., 2017). Este tipo de estudio ayudaría a contribuir en un mejor entendimiento del comportamiento e impacto histórico de fenómenos atmosféricos en los bosques de alta montaña del centro de México.

El presente estudio tiene como hipótesis determinar si la respuesta de los anillos de crecimiento de Pinus hartwegii Lindley al clima es similar en tres sitios bajo condiciones ambientales análogas en el Eje Neovolcánico Transmexicano. Para contestar esta hipótesis; se formularon los siguientes objetivos: (i) identificar los periodos de respuesta del crecimiento radial de P. hartwegii al clima en tres sitios con condiciones ambientales análogas en el Eje Neovolcánico Transmexicano, (ii) reconstruir las variables de respuesta, (iii) evaluar la influencia de El Niño Oscilación del Sur (ENOS), la Oscilación Multidecadal del Atlántico (OMA) y la Oscilación Decadal del Pacífico (ODP) en la precipitación y (iv) examinar posibles tendencias de cambio climático.
Con base en lo planteado, se podría predecir que debido a las condiciones ambientales análogas en las que crece *P. hartwegii*, la respuesta climática de la especie sería similar, también se podría esperar detectar alguna tendencia de cambio climático local.

Materiales y métodos

Sitios de muestreo

Los sitios de estudio se ubican dentro de las áreas naturales protegidas Pico de Orizaba, Nevado de Toluca y Nevado de Colima en el Eje Neovolcánico Transmexicano (Figura 1).

Figura 1. Localización geográfica de los sitios de estudio
Descripción de los sitios

Los árboles muestreados se localizan en altitudes promedio de 3407 (Volcán Nevado de Colima), 3856 (Nevado de Toluca) y 4019 (Pico de Orizaba) msnm. En un clima Cb'(w2) semifrío subhúmedo, con una temperatura media anual entre 4.5 y 11.3 °C y una precipitación anual de 1091 a 1739 mm (Manzanilla et al. 2018).

Toma de datos

En cada sitio de estudio se seleccionaron de 18 a 20 árboles sanos de *P. hartwegii*. Es importante mencionar que se evitó muestrear ejemplares dañados (plagas, deformes y quemados), así como aquellos cuyo crecimiento radial pudiera haber estado sujeto a la competencia por luz y nutrientes durante las primeras etapas del crecimiento.

A cada ejemplar se le extrajeron dos núcleos de crecimiento empleando un taladro de Pressler marca Haglöf de 50 cm de longitud y 12 mm de diámetro de broca. Las muestras fueron obtenidas a 1.30 m de altura y en dirección perpendicular a la pendiente, esto con el fin de evitar el efecto de la gravedad (excentricidad en la madera) en las muestras; posteriormente, las muestras fueron depositadas en popotes de plástico perforados para evitar su pudrición.

Análisis dendrocronológico

Las muestras fueron montadas en moldes de madera, lijadas, prefechadas y analizadas mediante técnicas dendrocronológicas tradicionales (Stokes y Smiley 1996). El proceso de medición de los anillos de crecimiento (ancho de anillo total) se efectuó en un equipo de medición VELMEX®, con una precisión de 0.001 mm (Robinson y Evans 1980) en el Laboratorio Nacional de Dendrocronología en Gómez Palacio, Durango, México.

La precisión del fechado de los anillos de crecimiento fue verificado en el programa COFECHA, el cual compara mediante análisis de correlación de Pearson la calidad del fechado, el cual, para que sea estadísticamente confiable debe ser mayor a 0.328 (p<0.01) (Holmes 1983).

Para la generación de las cronologías (índices de ancho de anillo total) se utilizó el programa ARSTAN (Cook y Holmes 1986), el cual estandarizó (a una media
de 1.0 y varianzas homogéneas) las series de crecimiento, lo cual sirvió para eliminar las tendencias biológicas del crecimiento y resaltó las variaciones interanuales de baja frecuencia del clima registradas en los anillos de crecimiento (Fritts 1976, Cook 1987). Al final, el programa generó tres cronologías (estándar, residual y arstan).

Parámetros dendrocronológicos

Los parámetros más empleados en los estudios dendroclimáticos son: intercorrelación entre series (correlación de Pearson entre muestras), sensibilidad media (cambio relativo en el grosor de anillos anterior-actual), desviación estándar, autocorrelación de primer orden (porcentaje de influencia del año anterior en el crecimiento actual) y proporción señal-ruido (valor relacionado a la señal de interés) (Villanueva-Díaz et al. 2016, Gutiérrez-García y Ricker 2019).

Reconstrucción climática

Para determinar la influencia del clima sobre el crecimiento radial de *P. hartwegii*, se descargó la información climática disponible de la plataforma CLICOM (Climatic Computing Project) (CLICOM 2017) para las estaciones meteorológicas con registros mayores a 30 años y cercanas (<40 km en distancia lineal) a los sitios de estudio. Debido a que los registros climáticos presentaron datos incompletos, fue necesario ajustar periodos de actividad climática común con la mayoría de los datos completos (>85%), y reconstruir los faltantes. Los datos mensuales faltantes de precipitación se reconstruyeron mediante un análisis de regresión lineal simple (Campos-Aranda 1998) entre estaciones meteorológicas. Los registros faltantes de temperatura se reconstruyeron mediante medias móviles de orden n=5 (Schulz 1976).

En la Figura 2 se muestra la ubicación geográfica de las estaciones meteorológicas cercanas a los sitios de estudio.
La relación entre el clima y el crecimiento radial se determinó mediante un análisis de correlación de Pearson entre los datos mensuales de precipitación y temperatura de las estaciones meteorológicas de cada sitio de estudio y el índice de ancho de anillo de la cronología residual en el programa R (Core Team 2019). Para la reconstrucción climática se realizó un análisis de regresión en el programa R (Core Team 2019) entre la cronología residual y el periodo de respuesta de precipitación y temperatura de cada sitio de estudio. Los datos de los periodos de respuesta climática de cada sitio fueron calibrados y verificados mediante pruebas estadísticas de control, lo que permitió obtener ecuaciones, con las cuales fue posible reconstruir la precipitación y temperatura de cada sitio.

Influencia de fenómenos atmosféricos

La influencia de El Niño Oscilación del Sur (ENOS), la Oscilación Multidecadal del Atlántico (OMA) y la Oscilación Decadal del Pacífico (ODP) en la variabilidad histórica de la precipitación de los sitios de estudio fue analizada mediante la relación de la precipitación reconstruida y los índices anuales de ENOS región 3,
OMA y ODP descargados de la plataforma del National Oceanic Administration Agency (NOAA 2019).

Se realizaron análisis espectrales de coherencia de ondeleta utilizando el paquete estadístico biwavelet (Gouhier et al. 2019) en el programa R (Core Team 2019) entre los periodos reconstruidos de precipitación de cada sitio y los índices anuales de ENOS, OMA y ODP, con el fin de identificar los periodos significativos (p<0.05) de influencia de dichos fenómenos en los sitios de estudio. Posteriormente, se utilizaron los datos de la plataforma Mexican Drought Atlas (Stahle et al., 2016) para generar mapas de sequías en los sitios de estudio. Por último, los años de secos y húmedos se compararon con las reconstrucciones climáticas generadas por otros autores para el Eje Neovolcánico Transmexicano.

Prueba de tendencias

Se aplicó la prueba no paramétrica de Mann-Kendall utilizando el paquete estadístico Kendall (Kendall 1975) en el programa R (Core Team 2019) a los datos reconstruidos de precipitación y temperatura con el objetivo de detectar posibles tendencias de cambio climático local en los sitios de estudio.

Resultados

Se fecharon 78 muestras (68%) para el Volcán Nevado de Colima, 26 (72%) Nevado de Toluca y 25 (69%) para el Pico de Orizaba.

Las series de crecimiento se extendieron de 1868-2016 (Volcán Nevado de Colima), 1857-2016 (Nevado de Toluca) y 1874-2016 (Pico de Orizaba). Se observó que las muestras analizadas presentan un porcentaje bajo de anillos falsos (<5%).

Los resultados del programa COFECHA para los sitios de estudio se describen en la Tabla 1.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Series fechadas</th>
<th>Extensión (años)</th>
<th>Intercorrelación entre series</th>
<th>Sensibilidad media</th>
<th>Media años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcán Nevado de Colima</td>
<td>27</td>
<td>1869-2016</td>
<td>0.585</td>
<td>0.551</td>
<td>73.3</td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>26</td>
<td>1858-2016</td>
<td>0.516</td>
<td>0.461</td>
<td>83.4</td>
</tr>
</tbody>
</table>
Los resultados ARSTAN para los sitios de estudio fueron; desviación estándar de 0.22-0.27, autocorrelación de primer orden de 0.11-0.33 y proporción señal-ruido de 4.33-14.72.

Reconstrucción climática

Se reconstruyeron los registros de precipitación de las estaciones meteorológicas cercanas Volcán Nevado de Colima ($r^2= 0.81$), Nevado de Toluca ($r^2= 0.74$) y Pico de Orizaba ($r^2= 0.75$) para el periodo 1960-2010. Debido a la heterogeneidad de los registros de temperatura, no fue posible ajustar un periodo común.

Los periodos de calibración para el Volcán Nevado de Colima fueron precipitación de enero-mayo de la estación El Nogal y la cronología residual de 1960-2006 ($r= 0.81$, $p<0.01$). Nevado de Toluca, precipitación enero-mayo de 1962-2009 de la estación Mexicalcingo y la cronología residual ($r= 0.75$, $p<0.01$). Pico de Orizaba, precipitación enero-mayo de 1974-2007 de la estación Santa Cruz Coyotepec y la cronología residual ($r= 0.53$, $p<0.01$).

En la Tabla 2 se observan los periodos de calibración, los estadísticos de regresión y las pruebas de t y f para los registros de precipitación de enero-mayo y la cronología residual de cada sitio de estudio.

Tabla 2. Periodos de calibración entre los registros de precipitación de enero-mayo y la cronología residual de los sitios de estudio.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Período</th>
<th>R^2_{Adj}</th>
<th>Coeficiente (mm)</th>
<th>Error estándar (mm)</th>
<th>Valor t</th>
<th>Valor f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcán Nevado de Colima</td>
<td>1960-2006</td>
<td>0.65</td>
<td>$B_0= -172.55$</td>
<td>$B_0= 30.48$</td>
<td>9.26**</td>
<td>88.66**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$B_1= 262.85$</td>
<td>$B_1= 28.38$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>1962-2009</td>
<td>0.56</td>
<td>$B_0= -28.29$</td>
<td>$B_0= 21.88$</td>
<td>7.79**</td>
<td>60.69**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$B_1= 166.86$</td>
<td>$B_1= 21.42$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pico de Orizaba</td>
<td>1974-2007</td>
<td>0.26</td>
<td>$B_0= -53.40$</td>
<td>$B_0= 65.56$</td>
<td>3.56**</td>
<td>12.69**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$B_1= 237.95$</td>
<td>$B_1= 66.80$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Significativo, $p<0.01$, (mm) milímetros, t calculada mayor a t de tablas1 y f calculada mayor a f de tablas2.

La Tabla 3 muestra los periodos de verificación y las pruebas estadísticas aplicadas a la precipitación (observada vs reconstruida) de los sitios de estudio.

Tabla 3. Periodos de verificación y pruebas estadísticas aplicadas a la precipitación de los sitios de estudio.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Período</th>
<th>Correlación de Pearson</th>
<th>Reducción del error</th>
<th>Wilcoxon (Similitud, %)</th>
<th>Prueba Signos²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcán Nevado de Colima</td>
<td>1960-2006</td>
<td>0.81**</td>
<td>0.06*</td>
<td>84*</td>
<td>10*</td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>1962-2009</td>
<td>0.75**</td>
<td>0.05*</td>
<td>99*</td>
<td>14*</td>
</tr>
<tr>
<td>Pico de Orizaba</td>
<td>1974-2007</td>
<td>0.53**</td>
<td>0.08*</td>
<td>65*</td>
<td>10*</td>
</tr>
</tbody>
</table>

**Significativo, p<0.01, *Significativo p<0.05, Wilcoxon estima el porcentaje de similitud entre los datos observados y reconstruidos¹ y prueba de signos calcula las similitudes y diferencias entre los datos analizados².

Para temperatura, los periodos de calibración fueron temperatura máxima promedio de mayo de la estación El Nogal y la cronología residual de 1975-2010 (r= -0.53, p<0.01) para el Volcán Nevado de Colima. Nevado de Toluca, temperatura mínima promedio de abril-mayo de la estación San Francisco Oxtotilpan y la cronología residual de 1970-2004 (r= 0.57, p<0.01). Pico de Orizaba, temperatura máxima promedio de junio-octubre de la estación Santa Cruz Coyotepec y la cronología residual de 1984-2009 (r= -0.54, p<0.01).

En la Tabla 4 se observan los periodos de calibración, los estadísticos de regresión y las pruebas de t y f para los registros de temperatura y la cronología residual de cada sitio de estudio.

Tabla 4. Periodos de calibración entre los registros de temperatura y la cronología residual de los sitios de estudio.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Período</th>
<th>R²Adj</th>
<th>Coeficiente (°C)</th>
<th>Error estándar (°C)</th>
<th>Valor t¹</th>
<th>Valor f²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcán Nevado de Colima</td>
<td>1981-2010</td>
<td>-0.31</td>
<td>B₀= 31.20</td>
<td>B₀= 0.98</td>
<td>-3.74**</td>
<td>14.02**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B₁= -3.47</td>
<td>B₁= 0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>1970-2004</td>
<td>0.31</td>
<td>B₀= 1.88</td>
<td>B₀= 0.81</td>
<td>4.01**</td>
<td>16.11**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B₁= 4.69</td>
<td>B₁= 0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B₁= -4.11</td>
<td>B₁= 1.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Significativo (p<0.01), (°C) grados centígrados, t calculada mayor a t de tablas¹ y f calculada mayo a f de tablas²

La Tabla 5 muestra los periodos de verificación y las pruebas estadísticas para la temperatura (observada vs reconstruida) de los sitios de estudio.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Periodo</th>
<th>Correlación de Pearson</th>
<th>Reducción del error</th>
<th>Wilcoxon (Similitud, %)¹</th>
<th>Prueba Signos²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcán Nevado de Colima</td>
<td>1981-2010</td>
<td>-0.58**</td>
<td>0.09</td>
<td>99*</td>
<td>8*</td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>1970-2004</td>
<td>0.57**</td>
<td>0.08*</td>
<td>77*</td>
<td>11*</td>
</tr>
<tr>
<td>Pico de Orizaba</td>
<td>1984-2009</td>
<td>-0.54**</td>
<td>0.10*</td>
<td>97*</td>
<td>8*</td>
</tr>
</tbody>
</table>

**Significativo, p<0.01, *Significativo p<0.05 Wilcoxon estima el porcentaje de similitud entre los datos observados y reconstruidos¹ y prueba de signos calcula las similitudes y diferencias entre los datos analizados²

Debido a que las pruebas estadísticas aplicadas a la calibración y verificación de precipitación y temperatura fueron significativas, se generaron ecuaciones con fines de reconstrucción a partir de los coeficientes B₀ y B₁ del análisis de regresión de ambas variables analizadas. Las ecuaciones generadas para cada sitio son las siguientes;

Volcán Nevado de Colima

Ecuación 1: Yppt= -172.55 + 262.85*Xi

Ecuación 2: Ytmax= 31.20 - 3.47*Xi

Nevado de Toluca

Ecuación 1: Yppt= -28.29 + 166.86*Xi

Ecuación 2: Ytmin= 1.88 + 4.69*Xi

Pico de Orizaba

Ecuación 1: Yppt= -53.4 + 237.95*Xi

Ecuación 2: Ytmax= 26.59 - 4.11*Xi
Donde:
Yppt= Precipitación acumulada de enero-mayo (mm)
Ytmax= Temperatura máxima promedio de mayo (°C)
Ytmin= Temperatura mínima promedio de abril-mayo (°C)
Ytmax =Temperatura máxima promedio de junio-octubre (°C)
Xi= Índice de anillo total de la cronología residual

Las cronologías generadas para cada sitio fueron ajustadas al valor de la Señal Expresada por la Población (EPS>0.85) (Briffa y Jones 1990), con el fin de generar una mayor certidumbre en los periodos de reconstrucción climática.

Se reconstruyó la precipitación acumulada enero-mayo del Volcán Nevado de Colima de 1940-2016 (profundidad de radios= 9 árboles), 1928-2016 para el Nevado de Toluca (profundidad de radios= 12 árboles) y 1960-2016 para el Pico de Orizaba (profundidad de radios= 20 árboles). Los resultados de la reconstrucción de la precipitación para el Volcán Nevado de Colima fueron una media histórica de 107.5 mm, desviación estándar de 38.8 mm. El Nevado de Toluca registró una media histórica de 142.8 mm, desviación estándar de 36.8 mm y el Pico de Orizaba una media histórica de 181 mm, desviación estándar de 36.5 mm.

En la Figura 3 se muestran los periodos confiables (p<0.01, EPS>0.85) de precipitación reconstruida para cada sitio de estudio.
Se reconstruyó la temperatura máxima promedio de mayo del Volcán Nevado de Colima de 1940-2016 (profundidad de radios= 9 árboles), mínima promedio de abril-mayo del Nevado de Toluca de 1928-2016 (profundidad de radios= 12 árboles) y máxima promedio de junio-octubre del Pico de Orizaba de 1960-2016 (profundidad de radios= 20 árboles). La reconstrucción de temperatura para el Volcán Nevado de Colima fue 27.5 °C (media histórica), desviación estándar de 0.56 °C en la temperatura máxima promedio de mayo. Para El Nevado de Toluca se estimó una media histórica de 6.7 °C, desviación estándar de 1.1 °C en la temperatura mínima promedio de abril-mayo. Para el Pico de Orizaba se registró...
una media histórica de 22.5 °C, desviación estándar de 0.63 °C en la temperatura máxima promedio de junio-octubre.

En la Figura 4 se presentan los periodos confiables (p<0.01, EPS>0.85) reconstruidos de temperatura para cada sitio de estudio.
La reconstrucción de temperatura para el Volcán Nevado de Colima fue 27.5 °C (media histórica), con una desviación estándar de 0.56 °C en la temperatura máxima promedio de mayo de 1940-2016. Para El Nevado de Toluca se estimó una media histórica de 6.7 °C, con una desviación estándar de 1.1 °C en la temperatura mínima promedio de abril-mayo de 1928-2016. Para el Pico de Orizaba se registró una media histórica de 22.5 °C, con una desviación estándar de 0.63 °C en la temperatura máxima promedio de junio-octubre de 1960-2016.

Influencia de fenómenos atmosféricos

Los resultados de los espectros de ondeleta para la precipitación reconstruida de enero-mayo como para El Niño Oscilación del Sur (ENOS) muestran periodos significativos (p<0.05) para 1950-1965, 1975-1979, 1998-2000, 1940-1943 y 1940-1990, con intervalos de 5.6, 3.8, 11.3 y 22.6 años, respectivamente. La coherencia de ondeleta muestra una periodicidad significativa (p<0.05) en fase (relación positiva) para el periodo 1950 a 1965, con frecuencias cada 5-6 años. Para el Nevado de Toluca, los resultados de los espectros de ondeleta para precipitación como para ENOS muestran periodos significativos (p<0.05) para 1930-1932, 1949-1955, 1965-1975, 1976-1992, 1946-1951, 1928-1939, 1935-1940 y 1990-2000, con intervalos de 1-2, 4-7.5, 10 y 16 años, respectivamente. No se detectaron periodos de coherencia de ondeleta significativos (p>0.05).

En la Figura 5 se observan los análisis espectrales de coherencia de ondeleta para El Niño Oscilación del Sur (ENOS) en el Volcán Nevado de Colima (a), Nevado de Toluca (b) y Pico de Orizaba (c).

Figura 5. Análisis espectrales de coherencia ondeleta para El Niño Oscilación del Sur (ENOS) en el Volcán Nevado de Colima (a), Nevado de Toluca (b) y Pico de Orizaba (c). Las áreas en
Los resultados de los análisis de coherencia de ondeleta para la Oscilación Multidecadal del Atlántico (OMA) no detectaron periodicidades significativas (p>0.05) entre la precipitación reconstructa de enero-mayo y los índices anuales de OMA, mientras que los resultados de la Oscilación Decadal (ODP) solo fueron significativos (p<0.05) en el Volcán Nevado de Colima, donde los periodos identificados fueron 1980-2000, 1943-1963 y 1975-1998, con intervalos de 1-4, 4-7 y 10-13 años, respectivamente. La coherencia de ondeleta muestra una periodicidad significativa (p<0.05) en fase positiva para 1943-1963, con una frecuencia de 5 a 7 años (Figura 6).

Figura 6. Análisis espectral de coherencia ondeleta para la Oscilación Decadal del Pacífico (PDO) en el Volcán Nevado de Colima

Periódos secos

Figura 7. Intensidad promedio de los periodos de sequías (PSDI) en el Volcán Nevado de Colima (a), Nevado de Toluca (b) y Pico de Orizaba (c)

Tendencias de cambio climático

Los resultados de la prueba de Mann-Kendall indican que no existen tendencias significativas (p>0.05) de cambio climático en la precipitación y temperatura reconstruidas en el Volcán Nevado de Colima, periodo 1940-2016 (subperiodos 1940-1977 y 1978-2016), Nevado de Toluca, periodo 1928-2016 (subperiodos 1928-1971 y 1972-2016) y Pico de Orizaba, periodo 1960-2016 (subperiodos 1960-1988 y 1989-2016). Solo se encontró variabilidad climática, con fluctuaciones de ±0.38 °C, ±1.1 °C y ±0.63 °C para cada sitio, respectivamente.
Discusión

La baja proporción de presencia de anillos falsos (<5%) en *P. hartwegii* de los sitios de estudio concuerda con lo reportado por Villanueva-Díaz et al. (2016) y Gutiérrez-García y Ricker (2019) para especies de alta montaña. Es probable que la respuesta fisiológica en el crecimiento radial se deba al efecto de la marcada estacionalidad anual de la precipitación y temperatura en los sitios de estudio, lo que ocasiona una baja frecuencia en la formación de anillos falsos. Los resultados de los valores de intercorrelación entre series para los sitios de estudio fueron de 0.585 (Volcán Nevado de Colima), 0.516 (Nevado de Toluca) y 0.412 (Pico de Orizaba), estos valores son mayores al valor significativo (p<0.05) de referencia de 0.328 establecido por Holmes (1983). Los valores obtenidos para especies alpinas de diversas partes del planeta suelen ser menor a 0.6 (Cerano-Paredes et al. 2013, Álvarez et al. 2015, Maxwell et al. 2015, Shi et al. 2015, Villanueva-Díaz et al. 2016). Por lo tanto, los valores estimados para *P. hartwegii* en los sitios de estudio se consideran confiables (p<0.01). Para sensibilidad los valores fueron 0.551 (Volcán Nevado de Colima), 0.461 (Nevado de Toluca) y 0.384 (Pico de Orizaba), respectivamente. Estos resultados son mayores a 0.29 y 0.41 reportados por Villanueva-Díaz et al. (2018) y Gutiérrez-García y Ricker (2019) para la especie en México, pero ligeramente inferiores a los valores de sensibilidad de 0.70 reportados para el norte del país (Constante-García et al. 2010). Los valores de sensibilidad de este estudio, permiten clasificar a *P. hartwegii* como una especie sensible a la variabilidad climática. Los valores en desviación estándar fueron de 0.22-0.27 (cercanos a 0 se consideran idóneos), autocorrelación de primer orden de 0.11-0.33 (valores para especies de alta montaña oscilan de 0.03-0.55 y cercanos a 0 indican que las condiciones del año anterior no influyen en el crecimiento actual); por último, para la proporción señal-ruido se obtuvieron valores de 4.33-14.72 (valores arriba de 0 se consideran adecuados) (Constante-García et al. 2010, Villanueva-Díaz et al. 2016, 2018, Gutiérrez-García y Ricker 2019). Por lo tanto, los parámetros
dendrocronológicos obtenidos para *P. hartwegii* se consideran buenos para realizar reconstrucciones climáticas.

Los resultados de la reconstrucción explican en 65%, 56% y 26% la precipitación estacional que ocurre durante enero-mayo en el Volcán Nevado de Colima, Nevado de Toluca y Pico de Orizaba, respectivamente. Esta respuesta de la especie a la precipitación de invierno-primavera es similar a la respuesta negativa significativa de noviembre-diciembre (primavera) reportada por Álvarez et al. (2015) en el crecimiento radial de los bosques alpinos de *Nothofagus pumilio* en Chile. Shi et al. (2015) y Tejedor et al. (2017) no encontraron relación significativa (*p*>0.05) entre la precipitación y el crecimiento radial de los bosques alpinos de *A. squamata* y *J. squamata* en el Tíbet, China y 11 especies de coníferas en España, respectivamente. Maxwell et al. (2015) encontraron una respuesta positiva del crecimiento radial con la precipitación de mayo-julio de los bosques de encinos que crecen en el límite de su distribución altitudinal al oeste de Estados Unidos.

La respuesta del crecimiento radial de *P. hartwegii* a la temperatura se explica en 31% de la variación máxima promedio ocurrida en mayo para el Volcán Nevado de Colima, 31% de la mínima promedio de abril-mayo en el Nevado de Toluca y 26% de la máxima promedio de junio-octubre en el Pico de Orizaba. Esta respuesta de *P. hartwegii* a la temperatura difiere entre sitios, observándose una respuesta negativa durante mayo en el crecimiento radial del Volcán Nevado de Colima, lo que indica que las altas temperaturas de mayo afectan el crecimiento de la especie, mientras que para el Nevado de Toluca, el aumento en la temperatura mínima de abril-mayo favorece el crecimiento radial y en el Pico de Orizaba, el incremento en la temperatura media de junio-octubre limita el crecimiento radial. Estos resultados difieren con lo hallado por Álvarez et al. (2015) para la temperatura media de verano-otoño, la cual favorece el crecimiento radial de los bosques alpinos de *Nothofagus pumilio* en Chile. Shi et a. (2015) reportan un relación positiva entre el crecimiento radial de los bosques alpinos de *A. squamata* y *J. squamata* con la temperatura mínima de verano en el Tibet, China. Zhang et al. (2018) encontraron una relación positiva de la temperatura de verano con el crecimiento radial de *Picea crassifolia* al noreste de China. Respuesta similar a lo hallado para el Nevado de Toluca. Maxwell et al. (2015) reportan una respuesta negativa en el crecimiento radial con la temperatura de verano para los bosques de encinos que crecen en el límite de su distribución altitudinal al oeste de Estados Unidos, resultado similar a lo hallado para el Pico de Orizaba.

Para México; Gutiérrez-García y Ricker (2019) reportan para *P. hartwegii* en el noreste del país una respuesta negativa en el crecimiento radial con la temperatura máxima promedio de enero-mayo, similar con lo hallado para El Volcán Nevado de Colima. Astudillo-Sánchez et al. (2019) encontraron una relación positiva entre el crecimiento radial de los árboles de *P. hartwegii* con la temperatura máxima promedio anual del Monte Tláloc en el Estado de México, lo cual difiere con lo obtenido en este estudio.
Correa-Díaz et al (2019) hallaron una relación positiva entre el crecimiento radial de *P. hartwegii* con la temperatura mínima de mayo en el Monte Tláloc, Estado de México, lo cual concuerda con lo obtenido para el Nevado de Toluca para la temperatura mínima de abril-mayo.

Se ha documentado que la temperatura es un factor determinante para el crecimiento de los árboles en los bosques alpinos y boreales, desencadenando la reactivación del cambium vascular, la diferenciación de las células del xilema y la fotosíntesis (Antonucci et al. 2017, Li et al. 2017).

Referente al fenómeno ENOS, la influencia de dicha anomalía se caracteriza por presentar fases cálidas (El Niño) y frías (La Niña), condiciones reportadas en el Eje Neovolcánico Transmexicano (Stahle et al. 2012, Villanueva et al. 2015).

Los resultados obtenidos en este estudio indican que las fases de ENOS sí afectaron la variabilidad interanual de la precipitación de los sitios de estudio, presentando teleconexiones de altas frecuencias con ciclos cortos de 1-2, 1-4 y 5-6 años, lo cual es similar a los hallado por Christie et al. (2009) y Álvarez et al. (2015) para especies alpinas en Chile, donde las frecuencias fueron altas y de ciclo corto de 2.1-6.3 y 3-7 años, respectivamente.

Para México, Cerano-Paredes et al. (2011) reportan períodos de frecuencia alta con ciclos cortos de 2-7 años en la parte alta de la Cuenca del Río Nazas, Durango. Estas frecuencias son similares a las obtenidas para los sitios de estudio.

Estos ciclos cortos de alta frecuencia (2-7 años) han sido asociados con el ENOS como un factor que influye en la precipitación y que ha sido registrado en reconstrucciones de precipitación del norte y centro de México (Cerano et al. 2011, Pompa-García y Némiga 2015, Villanueva-Díaz et al. 2015).

El análisis de la Oscilación Multidecadal del Atlántico (OMA) con la precipitación de enero-mayo de los sitios de estudio no presentó una teleconexión estadística significativa (p>0.05); lo que indica que el fenómeno no influyó de manera significativa en el crecimiento radial de los árboles del Volcán Nevado de Colima durante 1940-2016, Nevado de Toluca (1928-2016) y Pico de Orizaba (1960-2016). Se ha documentado que la corriente oceánica que afecta la temperatura
superficial del Océano Atlántico norte, ocasiona que el OMA tenga una mayor
una influencia en regiones como China, mientras que para México, la afectación
ocurre en ciclos de baja frecuencia de 60-70 años aproximadamente (Van
La Oscilación Decadal del Pacífico (ODP) es un patrón de variabilidad climática
registrada en el Pacífico que cambia a una escala interdecadal de períodos de
20 años a 30 años (Hare y Mantua, 2000, Biondi et al. 2001). Los resultados ODP
fueron significativos (p<0.05) solo con la precipitación enero-mayo del Volcán
Nevado para el periodo 1943-1963, mostrando una periodicidad de 5 a 7 años.
Los otros sitios no presentaron teleconexiones significativas (p>0.05).
Este periodo de influencia de ODP en el Volcán Nevado es similar al periodo
influencia del ODP, al combinarse con las fases de ENOS durante los años 50’s,
intensificó las anomalías de dicha década, ocasionando la sequía más severa
registrada para los últimos 400 años en México (Gershunov y Barnett 1998,
De acuerdo con lo discutido, se tiene bien claro que ENOS es el principal agente
modulador de la precipitación en México (Cerano-Paredes et al. 2011, Pompa-
García y Némiga 2015, Villanueva-Díaz et al. 2015, 2018) y el cual también
repercute en la precipitación de las altas montañas del Eje Neovolcánico
Transmexicano, donde coexiste *P. hartwegii*.
con lo reportado por Cerano-Paredes et al. (2013) y Villanueva-Díaz et al. (2011,
2015, 2018) para el Eje Neovolcánico Transmexicano. Simultáneamente, las
sequías de 1949, 1955, 1998 y 2001 coinciden con el patrón de sequias intensas
cíclicas de 50 años reportados por Villanueva-Díaz et al. (2011) y Stahle et al.
2001 y 2015, coinciden con lo reportado por Cerano-Paredes et al. (2013) y
Acorde a los resultados de las fases de ENOS con lo reportado por otros autores para el área de estudio, se percibe que los periodos húmedos fueron más frecuentes que los secos.

Los resultados de la prueba de Mann-Kendall indican que no existe tendencia significativa (p>0.05) de cambio climático en precipitación y temperatura reconstruidas de los sitios de estudio, solo se detectó variabilidad en temperatura, con fluctuaciones de ±0.38 °C (Volcán Nevado de Colima), ±1.1 °C (Nevado de Toluca) y ±0.63 °C (Pico de Orizaba). Fluctuaciones mayores de 1.5 °C a 3.1 °C han sido reportadas por Villanueva-Díaz et al. (2018) y Tejedor et al. (2017), para la temperatura máxima promedio enero-mayo de 1956-2001 en el Bosque la Primavera, México y la temperatura máxima de septiembre de 1900-1999 para 11 especies de coníferas en España.

Shi et al. (2015) hallaron una tendencia significativa de aumento de 0.86 °C en la temperatura mínima de verano para 1820-2009 en los bosques alpinos de A. squamata y J. squamata en el Tíbet, China.

Astudillo et al. (2019) hallaron una variación de ±0.48 °C en la temperatura máxima promedio anual en el Monte Tláloc. Los resultados obtenidos en este estudio permiten ampliar la oscilación de las temperaturas de abril-octubre (máxima) y mayo (mínima) para el bosque de alta montaña.

Manzanilla et al. (2018) prevén para 2050 un aumento en temperatura media anual entre 0.9 a 1 °C en el Volcán Nevado de Colima, 1.3 a 1.76 °C para el Nevado de Toluca y 1.32 a 1.67 °C en el Pico de Orizaba, con disminuciones en la precipitación anual de 27-38 mm, 61-99 mm y 18-52 mm, respectivamente para cada sitio. De acuerdo con las oscilaciones en temperatura hallada para cada sitio de estudio, las modificaciones en el clima futuro podrían afectar seriamente el crecimiento de P. hartwegii.

Pese a la heterogeneidad de respuesta de la especie a la temperatura, estos hallazgos son relevantes para estudios sobre adaptación y mitigación del cambio climático, específicamente para P. hartwegii, donde la temperatura sería un factor limitante en el crecimiento (Astudillo-Sánchez et al. 2019, Correa-Díaz et al. 2019).
De acuerdo con las evidencias encontradas en este estudio, rechazamos la hipótesis planteada, debido a que se hallaron argumentos para decir que la capacidad de respuesta climática y atmosférica de P. hartwegii difiere entre sitios; además, no se encontraron evidencias significativas (p>0.05) que señalen la presencia de cambio climático actual en los periodos reconstructidos de precipitación y temperatura en alta montaña.

Bibliografía

Capítulo 2

Estimación de volumen, biomasa y carbono de

Pinus hartwegii Lindley en tres sitios
del Eje Neovolcánico Transmexicano

Resumen

En la actualidad, los métodos indirectos para estimar características dasométricas de los árboles son cada vez más confiables y precisos. A través del uso de ecuaciones alométricas es posible estimar volumen, biomasa aérea, carbono y bióxido de carbono (CO$_2$) almacenado en árboles. Bajo este contexto, en el presente estudio se plantearon los siguientes objetivos; estimar volumen, biomasa aérea, carbono (C) y bióxido de carbono (CO$_2$) almacenado en *Pinus hartwegii* Lindl en tres sitios del Eje Neovolcánico Transmexicano. Se midieron diámetro normal (dn) y altura total (h) de 56 ejemplares de *P. hartwegii*. Aplicando la ecuación alométrica generada para la especie y la zona de estudio, se estimó el volumen total con corteza (vtacc) por árbol para cada sitio de estudio. La biomasa aérea fustal se calculó con ayuda del valor de la densidad básica de la madera de *P. hartwegii*. El C y CO$_2$ almacenado se estimaron mediante el porcentaje de carbono reportado para la especie en la zona de estudio y a través del factor de la conversión C-CO$_2$, fue posible estimar el CO$_2$ almacenado en los árboles. Los resultados obtenidos fueron; Volcán Nevado de Colima, 79 cm de diámetro y 23.85 m de altura, 3.71 t de carbono y 6.18 t de CO$_2$ promedio/árbol. Nevado de Toluca; 56 cm de diámetro, 16.86 m de altura, 0.65 t de carbono y 2.39 t de CO$_2$ promedio/árbol. Pico de Orizaba; 38 cm de diámetro, 7.14 m de altura, 0.15 t de carbono y 0.55 t de CO$_2$ promedio/árbol. El mayor depósito de carbono y CO$_2$ registrado en este estudio se localiza en el Volcán Nevado de Colima.

Palabras clave: Almacén de carbono, biomasa forestal, captura de CO$_2$, cambio climático y ecuaciones alométricas
Abstract

Today, indirect methods for estimating the dasometric characteristics of trees are increasingly reliable and accurate. Through the use of allometric equations it is possible to estimate volume, aerial biomass, carbon and carbon dioxide (CO₂) stored in trees. In this context, the following objectives were proposed in the present study: to estimate volume, aerial biomass, carbon (C) and carbon dioxide (CO₂) stored in *Pinus hartwegii* Lindl in three sites of the Transversal Neovolcanic Belt. Normal diameter (dn) and total height (h) of 56 specimens of *P. hartwegii* were measured. Applying the allometric equation generated for the species and the study area, the total volume with bark (vtacc) per tree was estimated for each study site. The aerial fustal biomass was calculated with the help of the value of the basic wood density of *P. hartwegii*. C and stored CO₂ were estimated by the percentage of carbon reported for the species in the study area and through the conversion factor C-CO₂, it was possible to estimate the CO₂ stored in the trees. The results obtained were: Volcano Nevado de Colima, 79 cm in diameter and 23.85 m high, 3.71 t of carbon and 6.18 t of average CO₂/tree. Nevado de Toluca; 56 cm in diameter, 16.86 m high, 0.65 t of carbon and 2.39 t of average CO₂/tree. Pico de Orizaba; 38 cm in diameter, 7.14 m high, 0.15 t of carbon and 0.55 t of average CO₂/tree. The largest reservoir of carbon and CO₂ recorded in this study is located in the Nevado de Colima Volcano.

Keywords: Allometrical equations, carbon storage, forest biomass, CO₂ capture and climate change
Introducción

El calentamiento global o aumento en la temperatura promedio mundial, es un fenómeno físico que se ha presentado en la última década, dicho fenómeno se relaciona con el incremento en las concentraciones de los gases de efecto invernadero, entre los cuales el principal de éstos es el Bióxido de carbono (CO₂) (IPCC, 2007; IPCC, 2014). Una forma de mitigar sus efectos es almacenarlo en la biomasa de las comunidades vegetales del mundo (Ávila et al., 2001).

La absorción de CO₂ atmosférico por medio de las plantas, específicamente, las arbóreas, es una de las estrategias más viables y comunes para mitigar el cambio climático, donde el potencial de captura de carbono por parte de las comunidades vegetales varía dependiendo la estructura y composición de cada ecosistema (Torres y Guevara 2002; Gómez et al., 2011; IPCC, 2014; CONAFOR, 2015). Entre los ecosistemas terrestres, los forestales representan los principales reservorios de carbono en el mundo (IPCC, 2014; Rueda et al., 2014; Carrillo-Anzures et al., 2016).

La importancia de los bosques y selvas radica en su capacidad de funcionar como grandes almacenes o reservorios naturales de carbono. Cada año se estima que los ecosistemas forestales del mundo capturan más del 15% de las emisiones de bióxido de carbono (CO₂), en México el potencial de absorción de CO₂ por parte del sector forestal se ha estimado en cerca de 58 millones de toneladas de bióxido de carbono para el 2020 y de 96 millones para el 2030 (CONAFOR, 2013; CONAFOR, 2015).

Actualmente se reconoce la importancia de los bosques como secuestradores de gases de efecto invernadero (GEI), en especial, el bióxido de carbono (CO₂) (Aguirre-Calderón y Jiménez-Pérez, 2011; IPCC, 2014). Los bosques mexicanos capturan y almacenan carbono a manera de biomasa durante su ciclo de vida, siendo el fuste, donde se almacena cerca del 84% de la biomasa aérea (Ordóñez et al., 2001; Avendaño et al., 2009).

Los estudios realizados para cuantificar la biomasa aérea en especies forestales son frecuentes en México, especialmente, los realizados para la familia Pinaceae (Carrillo-Anzures et al., 2016; Díaz-Franco et al., 2007; Figueroa et al., 2010;
Gómez et al., 2011; Marroquín et al, 2018; Pompa-García y Yerena-Yamallel, 2014; Soriano-Luna et al., 2015). Para estimar la biomasa forestal se emplean diversos métodos, los cuales se clasifican en directos o destructivos e indirectos o no destructivos. El primero consiste en seccionar la planta y determinar su biomasa pesando de forma directa cada uno de sus componentes, mientras que el segundo es un método no destructivo, con el cual se estima la biomasa mediante ecuaciones volumétricas o modelos alométricos generados a partir de variables como diámetro normal (1.30 m) altura total, área basal y densidad específica de la madera (Ketttrings et al., 2001; Rojas y Villers, 2008; Cutini et al., 2013).

La mayoría de estas investigaciones se han realizado a nivel individuo y están dirigidas a la generación de funciones matemáticas para la estimación de biomasa total, aérea y contenido de carbono (Aquino-Ramírez et al., 2015; Marroquín et al., 2018; Pompa-García y Yerena-Yamallel, 2014). Donde se ha estimado que aproximadamente el 50% de la biomasa está formada por carbono y por lo tanto, es posible realizar estimaciones sobre la cantidad de bióxido de carbono que ingresa a la atmósfera cada vez que se incendia un bosque (Becerril et al., 2014; FAO, 2007; Pompa-García y Yerena-Yamallel, 2014). En función de lo antes descrito, en diversos estudios se ha utilizado la biomasa de los árboles para estimar el carbono y CO2 almacenado (Díaz-Franco et al., 2007; Pompa-García y Yerena-Yamallel, 2014; Carrillo-Anzures et al., 2016), cabe resaltar que los trabajos relacionados con la estimación de biomasa, carbono y recientemente, bióxido de carbono (CO2), abundan en México.

Bajo este trasfondo, el presente estudio tiene como objetivos calcular volumen, biomasa aérea fustal, carbono y CO2 equivalente en ejemplares de Pinus hartwegii Lindley en tres sitios del Eje Neovolcánico Transmexicano.
Materiales y métodos

Área de estudio

Los sitios de estudio se localizan en las áreas naturales protegidas Volcán Nevado de Colima, Nevado de Toluca y Pico de Orizaba dentro de la provincia fisiográfica Eje Neovolcánico Transmexicano (Figura 1).

Figura 1. Localización de los sitios de estudio

Especie estudiada

Pinus hartwegii Lindley es un árbol monoico de hasta 30 m de altura y 100 cm de diámetro normal. Corteza gruesa, rugosa y escamosa, de color café oscuro a gris. Acículas de color verde grisáceo, en fascículos de 3, 4, 5 y 6. Conos solitarios o en verticilos de 2-3, de 8-12 cm de longitud y 5-8 cm de ancho, la especie se distribuye en un gradiente altitudinal de 2800 a 4300 msnm (Perry, 1991 y Farjon *et al.*, 1997). En México se localiza en los estados de Nuevo León, Tamaulipas, Jalisco, Colima, Michoacán, Estado de México, Morelos, Hidalgo, Ciudad de México, Tlaxcala, Puebla, Veracruz, Oaxaca y Chiapas (Perry, 1991; Farjon *et al.*, 1997).

Toma de datos

Utilizando un muestreo selectivo, se tomaron los datos de 56 ejemplares sanos de *P. hartwegii*, distribuidos en las áreas naturales protegidas Volcán Nevado de Colima, Nevado de Toluca y Pico de Orizaba en el Eje Neovolcánico.
Transmexicano. A cada individuo se le midió el diámetro normal (dn) con una forcipula y la altura total (h) mediante un clinómetro Suunto.

Estimación del volumen fustal
Para calcular el volumen fustal de los árboles de *P. hartwegii*, se utilizó la siguiente ecuación alométrica: Ecuación 1: \(v_{tacc} = a_0 \cdot d^{a_1} \cdot h^{a_2} + b_0 \cdot d^2 \), generada por el Instituto Tecnológico el Salto para la especie y la zona de estudio (ITES, 2016).

Donde:
- \(a_0 = 0.0000433 \)
- \(a_1 = 2.1522387 \)
- \(a_2 = 0.789171 \)
- \(b_1 = 0.000051 \)
- REMC: 0.2902
- \(R^2 = 0.95 \)

Estimación de biomasa aérea fustal, carbono y CO\(_2\)
Para estimar la biomasa aérea fustal se utilizó la siguiente ecuación (Kershaw *et al.* 2017):

Ecuación 2: \(b = v \cdot d \)

Donde:
- \(b = \) Biomasa aérea fustal
- \(v = \) Volumen (m\(^3\))
- \(d = \) Densidad básica de la madera (*P. hartwegii*, 0.49g/cm\(^3\), Rojas y Villers, 2005)

Para estimar el carbono almacenado se utilizó la ecuación propuesta por Pacheco-Aquino *et al.*, (2014):

Ecuación 3: \(c = v \cdot d \cdot c \)

Donde:
- \(c = \) Carbono almacenado en la madera de pino
- \(v = \) Volumen (m\(^3\))
- \(d = \) Densidad básica de la madera (*P. hartwegii*, 0.49g/cm\(^3\), Rojas y Villers, 2005)
- \(c = \) Contenido de carbono (*P. hartwegii*, 0.48%, Carrillo-Anzures *et al.*, 2016).
Para estimar el contenido de bióxido de carbono CO$_2$ almacenado en cada individuo se multiplicó el valor de carbono por 3.67 (factor de conversión carbono a CO$_2$) (Rügnitz et al., 2009). Al final los valores obtenidos de volumen, biomasa, carbono y CO$_2$ se compararon con los datos espacializados del Inventario Nacional Forestal y de Suelos (INFyS) 2004-2009 de CONAFOR (2016) para cada árbol.

Resultados

Dasometría

La Figura 2 muestra el número de individuos registrados por categoría diamétrica para los sitios de estudio. Donde el mayor número de individuos registrado en los sitios de estudio fue de cinco ejemplares para el Volcán Nevado de Colima (categoría 70 cm), cuatro para el Nevado de Toluca (categoría 60 cm) y siete para el Pico de Orizaba (categoría 40 cm).

![Figura 2. Número de individuos para cada categoría diamétrica en los sitios de estudio](image)

En la Figura 3 se puede observar la distribución de las categorías de la altura total de los ejemplares analizados en los tres sitios de estudio.
Se registraron 13 ejemplares distribuidos en la categoría de cinco metros de altura total para el Pico de Orizaba, 11 árboles para la categoría de 20 m en el Volcán Nevado de Colima y cinco individuos para la categoría de 15 m en el Nevado de Toluca.

Los árboles medidos presentan valores en diámetro promedio de 38 (Pico de Orizaba) a 79 cm (Volcán Nevado de Colima) (Figura 4) y una altura promedio de 7.14 (Pico de Orizaba) a 23.85 m (Volcán Nevado de Colima) (Figura 5). Lo que se traduce en árboles con diámetros arriba de 38 cm y una altura máxima de 23.85 m.
Figura 5. Altura (máxima, promedio y mínima) de los sitios de estudio

Cálculo de volumen, biomasa, carbono y CO$_2$
La estimación del volumen fustal promedio por árbol en los sitios de estudio presenta valores de 0.62 (Pico de Orizaba) a 7.04 m3 (Volcán Nevado de Colima) (Figura 6).

Figura 6. Estimación del volumen fustal (máximo, promedio y mínimo) en los sitios de estudio

Por otra parte, la biomasa aérea fustal promedio por árbol en los sitios de estudio presenta valores de 0.31 (Pico de Orizaba) a 3.49 t (Volcán Nevado de Colima) (Figura 7).
El contenido de carbono fustal promedio almacenado por árbol en los sitios de estudio oscila de 0.15 (Pico de Orizaba) a 1.68 t (Volcán Nevado de Colima), mientras que el bióxido de carbono (CO\textsubscript{2}) almacenado es de 0.55 (Pico de Orizaba) a 6.18 t (Volcán Nevado de Colima).

La Tabla 1 presenta los valores máximo, promedio y mínimo estimados por árbol para carbono y bióxido de carbono (CO\textsubscript{2}) almacenado en el fuste de los sitios de estudio.

Donde el mayor almacén de carbono y CO\textsubscript{2} se localiza en el Parque Nacional Volcán Nevado de Colima.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Variable</th>
<th>Máximo t</th>
<th>Promedio t</th>
<th>Mínimo t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcán Nevado de Colima</td>
<td>Carbono</td>
<td>3.71</td>
<td>1.68</td>
<td>0.80</td>
</tr>
<tr>
<td>Colima</td>
<td>CO\textsubscript{2}</td>
<td>13.60</td>
<td>6.18</td>
<td>2.95</td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>Carbono</td>
<td>1.19</td>
<td>0.65</td>
<td>0.09</td>
</tr>
<tr>
<td>Toluca</td>
<td>CO\textsubscript{2}</td>
<td>4.38</td>
<td>2.39</td>
<td>0.33</td>
</tr>
<tr>
<td>Pico de Orizaba</td>
<td>Carbono</td>
<td>0.43</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Orizaba</td>
<td>CO\textsubscript{2}</td>
<td>1.58</td>
<td>0.55</td>
<td>0.20</td>
</tr>
</tbody>
</table>

t= toneladas por árbol
Discusión

Los bosques de coníferas y latifoliadas abarcan cerca de una tercera parte del territorio mexicano y se concentran principalmente en la Sierra Madre Occidental y el Eje Neovolcánico Transmexicano (CONAFOR, 2013; INEGI, 2016), éstos ecosistemas funcionan como almacenes o sumideros de carbono, proceso fundamental en la mitigación de los efectos del cambio climático (CONAFOR, 2013; Espinosa, 2017).

De acuerdo con los datos del Inventario Nacional Forestal y de Suelos (INFyS) de CONAFOR (2016), el volumen promedio registrado por árbol para el Volcán Nevado de Colima es de 7.04 m3, valor ligeramente inferior a los 8.39 m3 promedio estimados por el INFyS (2016). Para el Nevado de Toluca, el valor promedio por árbol fue de 2.72 m3, valor mayor a los 1.53 m3 estimado por el INFyS (2016). Por último, para el Pico de Orizaba, los datos del INFyS (2016) estiman 0.74 m3 de volumen promedio por árbol, resultado que es ligeramente mayor a los 0.62 m3 de este estudio, para el mismo sitio.

Para la biomasa aérea fustal promedio, los valores obtenidos en este trabajo son mayores a lo estimado por el Inventario Nacional Forestal y de Suelos (2016) para el Volcán Nevado de Colima (INFyS; 0.65 t<3.49 t) y Nevado de Toluca (INFyS; 0.76 t<1.35 t), pero ligeramente menor a lo estimado en el Pico de Orizaba (INFyS; 0.36 t>0.31 t).

El carbono promedio almacenado por árbol es de 0.15, 0.65 y 1.68 t para los sitios Pico de Orizaba, Nevado de Toluca y Volcán Nevado de Colima, respectivamente. Con excepción de los valores obtenidos para el Pico de Orizaba, los valores de los sitios Nevado de Toluca y Volcán Nevado de Colima son mayores a lo estimado con los datos del INFyS (2016).

Por último, el dióxido de carbono (CO$_2$) promedio almacenado en los árboles de los sitios de estudio fue mayor en el Volcán Nevado de Colima (6.18 t>1.15 t; INFyS, 2016) y Nevado de Toluca (2.39 t>1.35 t; INFyS, 2016), pero ligeramente menor a lo estimado en el Pico de Orizaba (0.55 t<0.65 t; INFyS, 2016).

Dada la preocupación actual que representa el problema del cambio climático, las acciones de mitigación y adaptación deben ser urgentes en las comunidades
forestales para asegurar la protección de los almacenes de carbono forestal y promover la captura de CO$_2$ (CONAFOR, 2013, IPCC, 2014), desafortunadamente, éstos depósitos no están a excepto a eventos como incendios forestales, los cuales de acuerdo con las proyecciones climáticas futuras realizadas para los bosques del centro de México, estos serían más frecuentes e intensos (CONAFOR, 2013, Ibarra y Huerta, 2016; Manzanilla et al., 2018), ante dicha amenaza, los bosques de alta montaña de P. hartwegii del centro del país serían cada vez más vulnerables a dichos eventos.

Bibliografía

Espinosa, B.L. 2017. Los árboles y la producción de oxígeno. (Consultado el 25 de junio de 2018).

Capítulo 3

Escenarios de cambio climático (CMIP-5) para tres áreas naturales protegidas en el Eje Neovolcánico Transmexicano

Resumen
Debido al cambio climático, los patrones de precipitación y temperatura ocasionarían cambios importantes en los ecosistemas del mundo. Los Modelos de Circulación Global (MCG) se utilizan para simular el clima a futuro y con ello se generan escenarios climáticos. El objetivo del presente trabajo consistió en estimar escenarios climáticos para 2045-2069 para las áreas naturales protegidas (ANP) Pico de Orizaba, Nevado de Toluca y Volcán Nevado de Colima. Se emplearon las capas climáticas mensuales a 1 km2 para el presente y futuro de los MCG CRNMCM5 y GDFL_CM3 con un forzamiento radiactivo (RCP) 4.5 (emisiones de CO$_2$ constantes) y 8.5 (emisiones de CO$_2$ en aumento). Se recortaron las capas al tamaño de las ANP, y se ajustó la escala de 1 km2 a 30 m. Se generaron diversos escenarios de cambio climático. Los resultados para el periodo 2045-2069 indican una disminución en la precipitación pluvial entre 18 y 52 mm para el Pico de Orizaba, de 61 a 99 mm para el Nevado de Toluca y de 27 a 38 mm para el Volcán Nevado de Colima; un aumento en la temperatura media anual de 1.32 °C a 1.67 °C en el Pico de Orizaba, de 1.30 °C a 1.76 °C en el Nevado de Toluca y de 0.91 °C a 1 °C en el Nevado de Colima. Los cambios en ambas variables pueden propiciar incendios forestales más frecuentes, mayor incidencia de plagas forestales y menor recarga de los mantos acuíferos.
Palabras clave: Análisis climático, aumento en temperatura, ecosistemas forestales, escenarios a futuro, MCG, SIG.
Abstract

Due to climate change, precipitation and temperature patterns would cause major changes in the world's ecosystems. Global Circulation Models (GCM) are used to simulate future climate and generate climate scenarios. The objective of this study was to estimate climate scenarios for 2045-2069 for the protected natural areas (ANP) Pico de Orizaba, Nevado de Toluca and Volcán Nevado de Colima. Monthly climatic layers at 1 km2 were used for present and future MCG CRNMCM5 and GDFL_CM3 with radioactive forcing (RCP) 4.5 (constant CO2 emissions) and 8.5 (increasing CO2 emissions). The layers were cut to the size of the ANPs, and the scale was adjusted from 1 km2 to 30 m. Various climate change scenarios were generated. The results for the period 2045-2069 indicate a decrease in rainfall between 18 and 52 mm for the Pico de Orizaba, from 61 to 99 mm for the Nevado de Toluca and from 27 to 38 mm for the Volcán Nevado de Colima; an increase in average annual temperature of 1.32 °C to 1.67 °C for the Pico de Orizaba, from 1.30 °C to 1.76 °C for the Nevado de Toluca and from 0.91 °C to 1 °C for the Nevado de Colima. Changes in both variables may lead to more frequent forest fires, higher incidence of forest pests and lower recharge of aquifers.

Keywords: Climate analysis, forest ecosystems, future scenarios, GIS, MCG and temperature increase
Introducción

El concepto de cambio climático describe las modificaciones en el clima atribuidos de manera directa o indirecta a la actividad humana que altera la composición de la atmósfera. El Panel Intergubernamental de Cambio Climático (IPCC, por sus siglas en inglés) declaró en 2013 (IPCC, 2013a) que el calentamiento global observado en la mitad del siglo pasado fue producto de las acciones antrópicas, lo que sumado a la variabilidad climática durante el periodo 1901 a 2012 evidenciaron un aumento significativo de 1 °C en la temperatura media de todo el planeta (IPCC, 2014). Por otro lado, la precipitación ha presentado comportamientos erráticos (Conafor, 2013; Conanp, 2015a). Un hecho irrefutable, es que el clima en el mundo ha cambiado y seguirá modificándose de manera radical en el futuro (Magallanes, 2016).

En los estudios de cambio climático, el recurso empleado son los Modelos de Circulación Global (MCG). Estos son una representación numérica tridimensional de la dinámica atmosférica y de la circulación global alrededor de la Tierra (Jáuregui, 2003); en ellos, se simulan procesos físicos de la atmósfera, océanos y la superficie terrestre, y constituyen una herramienta para pronosticar la respuesta del clima a futuro ante los aumentos de los gases efecto invernadero en la atmósfera (IPCC, 2013b). Al emplearse en los estudios de cambio climático, se convierten en escenarios de dicho fenómeno, los cuales son proyectados a diferentes horizontes de tiempo (futuro cercano 2015-2039, futuro medio 2045-2069 y futuro lejano 2075-2099) (Fernández et al., 2015).

El aumento constante en la temperatura, la variación en precipitación y la frecuencia de eventos climáticos extremos están produciendo enormes impactos en los bosques y en el sector forestal del mundo (Moore y Allard, 2009; Sosa, 2015). En la actualidad una de las consecuencias de dichas modificaciones son los desfasamientos en la fenología de la flora, el desplazamiento de las especies, una mayor frecuencia de incendios forestales y de incidencia de plagas forestales en los bosques de coníferas, así como el aumento de la mortalidad de los árboles (Kurz et al., 2008; Anderegg et al., 2013).

Durante el presente siglo, los impactos del cambio climático supondrían un alto riesgo de afectación en la estructura y función de los ecosistemas terrestres y
acuáticos del mundo, a escala regional (IPCC, 2014). Se estima que debido al cambio climático la temperatura del planeta aumentaría hasta 2 °C hacia mediados del siglo XXI (Garreaud, 2011). Bajo estos escenarios, muchas de las especies serían incapaces de sobrevivir en los nuevos climas, sus hábitats se fragmentarían y el funcionamiento de los ecosistemas se transformaría (Jiménez et al., 2010; IPCC, 2014).

En México, los escenarios de cambio climático indican que las pináceas serían de los grupos más afectados por el aumento de la temperatura (Sáenz et al., 2012; Cruz- Cárdenas et al., 2016); una de las especies más susceptibles es Abies religiosa (Kunth) Schltdl. et Cham., que podría reducir hasta 87.6 % su área de distribución para 2060 (Sáenz et al., 2012).

Todos esos cambios alterarían de diversas formas y con mucha probabilidad, la dinámica y el funcionamiento de los ecosistemas forestales en México (Moore y Allard, 2009; IPCC, 2014; Islas et al., 2015; Ibarra y Huerta, 2016).

Según la FAO (2003) por efecto del cambio climático, para 2050 alrededor de 25 % de la biodiversidad afrontaría un mayor riesgo de extinción, en especial, aquellos taxones arbóreos de coníferas que habitan los bosques templados del centro de México (Sáenz et al., 2012; Cruz-Cárdenas et al., 2016).

Las áreas naturales protegidas (ANP) son regiones terrestres y marinas con ecosistemas representativos del lugar que no han sido alterados significativamente por el hombre; están sujetas a regímenes especiales de protección, conservación y restauración; además, las actividades que pueden llevarse a cabo en ellas se establecen de acuerdo con la Ley General de Equilibrio Ecológico y Protección al Ambiente (Conanp, 2018).

Desafortunadamente, las ANP no están exentas de las modificaciones en el clima; de acuerdo con Villers y Trejo (1998), para 2025 los regímenes de precipitación y temperatura cambiarán en 57 % del territorio nacional. Los autores probaron dos modelos; CCC (Centro Climático Canadiense) y GDFL (Laboratorio Geofísico de Dinámica de Fluidos) con los que determinaron que solo nueve de 33 ANP terrestres federales evaluadas en el país, no serían impactadas por los efectos del cambio climático. Otras contribuciones (Sáenz et al., 2012; Islas et al., 2015;
Cruz- Cárdenas et al., 2016) confirman el planteamiento de la FAO(2003). En el Eje Neovolcánico Transmexicano existen áreas naturales protegidas de gran riqueza biológica que proporcionan recursos maderables y no maderables, brindan incalculables servicios ambientales y proveen de agua a los pobladores que habitan cerca de ellas. A pesar de sus bondades, no cuentan con estudios de escenarios de cambio climático dentro de sus programas de manejo y conservación, por lo que el objetivo principal de este estudio fue estimar tales escenarios a futuro medio (2045-2069) para las áreas naturales protegidas Pico de Orizaba, Nevado de Toluca y Volcán Nevado de Colima. De manera específica, se estimó el clima actual y futuro y se generaron escenarios climáticos.

Materiales y métodos

Área de estudio

Los tres sitios analizados son áreas naturales protegidas federales y se ubican dentro del Eje Neovolcánico Transmexicano (Figura 1).

![Figura 1. Ubicación geográfica de los sitios de estudio](image)

Sitios de estudio

Parque Nacional Pico de Orizaba

Se localiza entre los 18°56´30” y 19°09´30” latitud norte y 97°12´30” y 97°22´30” oeste, en los estados de Puebla y Veracruz y abarca un área de 19 750 ha (Conanp, 2015b).
Los climas prevalecientes corresponden a C(w₁) templado, subhúmedo con una temperatura media anual alrededor de los 12 °C; Cb'(w₂) semifrío, subhúmedo con una temperatura media anual de 5 y 12 °C; E(T)CHw frío, con una temperatura media anual entre -2 y 5 °C. EFHw muy frío, temperatura media anual menor a -2 °C (García, 1998).

Los tipos de vegetación en el lugar corresponden a bosque de pino, bosque de oyamel, pastizales inducidos, pradera alta de montaña, agricultura de temporal y vegetación secundaria arbustiva y arbórea de bosque de pino (INEGI, 2013).

Área de Protección de Flora y Fauna Nevado de Toluca

Sus coordenadas geográficas son 18°51´31” y 19°19´03” norte y 99°38´54” y 100°09´30” oeste, se localiza en el Estado de México y cubre una superficie de 53 590.7 ha (Conanp, 2016).

Los climas prevalecientes son: Cb'(w₂) semifrío, subhúmedo con una temperatura media anual entre 5 y 12 °C; E(T)CHw frío, con una temperatura media anual entre -2 y 5 °C; C(w₁) templado, subhúmedo con una temperatura media anual entre los 12 °C; y C(w₂) templado, subhúmedo con una temperatura media anual de 12 a 18°C (García, 1998).

Los tipos de vegetación están representados por formas arbóreas secundarias de bosque de pino y oyamel, arbustivas de los bosques de encino, oyamel y pino, pastizales inducidos, pradera alta de montaña, bosques de oyamel, encino, pino, pino-encino, encino-pino y agricultura de temporal (INEGI, 2013 Parque Nacional

Volcán Nevado de Colima

Sus coordenadas geográficas son 19°27´15” y 19°35´09” latitud norte y 103°34´38” y 103°39´04” longitud oeste, se ubica en los estados de Jalisco y Colima y tiene un área de 6 555 ha (Conanp, 2006).

Los climas corresponden a los tipos Cb'(w₂) semifrío, subhúmedo con una temperatura media anual entre 5 y 12 °C; E(T)CHw frío, con una temperatura media anual entre -2 y 5 °C; y C(w₂) templado, subhúmedo con una temperatura media anual entre 12 y 18 °C (García, 1998).
De acuerdo a INEGI (2013), la vegetación en el área está conformada, principalmente, por pradera alta de montaña, por bosques de oyamel, de pino, pino-encino y en menor proporción, por bosque mesófilo de montaña.

Obtención de capas climáticas actuales

Se obtuvieron las capas climáticas mensuales actuales para precipitación y temperatura media en http://atlasclimatico.unam.mx/atlas/kml/ (CCA, 2016), las cuales representan el comportamiento climático histórico promedio de 1902-2011 y tienen una resolución espacial de 1 km² para toda la república mexicana. Se recortaron las capas al tamaño de las áreas naturales protegidas (ANP).

Modelos de circulación global (MCG)

Se descargaron las capas climáticas mensuales de los MCG CRNMCM5 (Centro Nacional de Investigaciones Meteorológicas de Francia) y GDFL_CM3 (Laboratorio Geofísico de Dinámica de Fluidos de la NOAA, E.U.A.), los cuales fueron generados a partir de Modelos Regionales del Proyecto de Intercomparación de Modelos Acoplados Fase 5 (CMIP5, 2013) del Panel Intergubernamental de Cambio Climático (IPCC) proyectados para el horizonte 2045-2069, con dos forzamiento radiactivos (RCP) de 4.5 (emisiones de CO₂ constantes) y 8.5 (emisiones de CO₂ altas) para precipitación y temperatura media a una escala espacial de 1 km² para la república mexicana (Femández et al., 2015) en http://atlasclimatico.unam.mx/AECC_descargas/. Las capas climáticas se recortaron al tamaño de las ANP. Reducción de escala

Se reajustó la resolución espacial de 1 km² a una escala espacial de 30 m (1 segundo arco) por medio de una interpolación bilineal.

Clima actual y futuro

Los climas actual y futuro se obtuvieron a partir de la suma de las 12 capas mensuales de precipitación y el promedio de las 12 capas de temperatura media para los periodos presente y futuro, respectivamente.

Escenarios de cambio climático

Los escenarios de cambio climático se estimaron a partir de la diferencia entre las capas climáticas actuales y futuras de los modelos CRNMCM5 y GDFL_CM3 con dos forzamientos radiactivos RCP 4.5 y 8.5 proyectados a 2045-2069. Los escenarios con forzamiento radiactivo RCP 4.5 se clasifican como escenarios “conservadores”, y los
escenarios con forzamiento radiactivo RCP 8.5 como “extremos” (Fernández et al., 2015).

Todos los procesos descritos anteriormente se llevaron a cabo con ayuda del módulo algebra de mapas del programa Arcmap 10.3® (ESRI, 2014).

Resultados

Clima actual

Los resultados del promedio histórico de 1902-2011 del clima actual se presentan en la Tabla 1, donde se describen los valores para precipitación anual y temperatura media anual.

<table>
<thead>
<tr>
<th>ANP</th>
<th>Precipitación anual mínima-máxima (mm)</th>
<th>Temperatura media anual mínima-máxima (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pico de Orizaba</td>
<td>1 059 a 2 418</td>
<td>-1.86 a 10.91</td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>882 a 1 300</td>
<td>4.14 a 12.23</td>
</tr>
<tr>
<td>Volcán Nevado de Colima</td>
<td>938 a 1 418</td>
<td>6.37 a 16.23</td>
</tr>
</tbody>
</table>

Clima futuro 2045-2069

En la Tabla 2 se describen los registros obtenidos para precipitación y temperatura media anual de las proyecciones RCP 4.5 y 8.5 a 2045-2069 para las tres ANP.

<table>
<thead>
<tr>
<th>ANP</th>
<th>Variable analizada</th>
<th>Modelo CRNMC5 RCP 4.5 RCP 8.5</th>
<th>Modelo GDFL_CM3 RCP 4.5 RCP 8.5</th>
<th>Modelo CRNMC5 RCP 4.5 RCP 8.5</th>
<th>Modelo GDFL_CM3 RCP 8.5 RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pico de Orizaba</td>
<td>PPT (mm)</td>
<td>990 a 2 328 -0.20 a 12.44</td>
<td>1 044 a 2 382 0.90 a 13.58</td>
<td>1 020 a 2 358 0.29 a 12.95</td>
<td>1 000 a 2 338 1.60 a 14.31</td>
</tr>
<tr>
<td></td>
<td>TMED (°C)</td>
<td>5.63 a 13.65</td>
<td>6.94 a 14.97</td>
<td>6.21 a 14.23</td>
<td>7.71 a 15.75</td>
</tr>
<tr>
<td>Nevado de Toluca</td>
<td>PPT (mm)</td>
<td>813 a 1 241 5.63 a 13.65</td>
<td>812 a 1 240 6.94 a 14.97</td>
<td>810 a 1 238 6.21 a 14.23</td>
<td>788 a 1 212 7.71 a 15.75</td>
</tr>
<tr>
<td></td>
<td>TMED (°C)</td>
<td>7.36 a 17.15</td>
<td>8.56 a 18.37</td>
<td>7.89 a 17.65</td>
<td>9.26 a 19.04</td>
</tr>
<tr>
<td>Volcán Nevado de Colima</td>
<td>PPT (mm)</td>
<td>981 a 1 429 7.36 a 17.15</td>
<td>935 a 1 413 8.56 a 18.37</td>
<td>962 a 1 411 7.89 a 17.65</td>
<td>923 a 1 381 9.26 a 19.04</td>
</tr>
<tr>
<td></td>
<td>TMED (°C)</td>
<td>7.36 a 17.15</td>
<td>8.56 a 18.37</td>
<td>7.89 a 17.65</td>
<td>9.26 a 19.04</td>
</tr>
</tbody>
</table>

PPT= Precipitación acumulada anual; TMED= Temperatura media anual.
Escenarios de cambio climático
Proyecciones RCP 4.5 y 8.5 a 2045-2069

Pico de Orizaba
Los escenarios conservadores indican una disminución anual de 18 a 52 mm (2.2 %) de la precipitación (GDFL_CM3 RCP 4.5) en 85.8 % del ANP, y un aumento en temperatura media anual entre 1.55 a 1.67 °C (15.3 %) en 79 % del área para el 2045-2069 (MCG CRNMCM5 RCP 4.5).
Los escenarios extremos predicen una disminución en precipitación anual de 47 a 76 mm (3.1 %) en 91.8 % del ANP (CRNMCM5 RCP 8.5), y un incremento entre 2.07 a 2.18 °C (20 %) en temperatura media anual en 66.8 % del ANP para 2045-2069 (CRNMCM5 RCP 8.5).
La Figura 2 muestra los escenarios climáticos conservadores (a) y extremos (b) para precipitación y temperatura media para el Pico de Orizaba.
Los escenarios climáticos indican una disminución anual entre 61 a 98 mm (7.5 \%) en precipitación (MCG CRNMCM5 RCP 4.5) en 63.9 \% del ANP y un aumento de 1.30 a 1.45 °C (11.9 \%) en temperatura media anual en 83.6 \% del área para el 2045-2069 (MCG CRNMCM5 RCP 4.5).

Los escenarios extremos predicen una disminución en precipitación anual entre 64 y 102 mm (7.9 \%) en 56.4 del ANP (CRNMCM5 RCP 8.5), y un incremento en temperatura media anual de 1.87 a 2.03 °C (16.6 \%) en 78.9 \% del área para 2045-2069 (MCG CRNMCM5 RCP 8.5).

La Figura 3 exhibe los escenarios climáticos conservadores (a) y extremos (b) para precipitación y temperatura media para el Nevado de Toluca.
Figura 3. Escenarios climáticos conservadores (a) y extremos (b) para precipitación y temperatura media del Nevado de Toluca

Volcán Nevado de Colima

Los escenarios climáticos evidencian una disminución anual entre 6 y 15 mm (1.1 %) en precipitación (GDFL_CM3 RCP 4.5) en 89 % del ANP, y un aumento de 0.95 a 0.98 °C (6 %) en temperatura media anual en 70 % del área para el 2045-2069 (MCG CRNMCM5 RCP 4.5).

Los escenarios extremos predicen una disminución en precipitación anual entre 27 y 38 mm (2.7 %) en 60 % del ANP (GDFL_CM3 RCP 8.5), y un incremento en temperatura media anual de 1.49 a 1.53 °C (9.4 %) en 63 % del área para 2045-2069 (MCG CRNMCM5 RCP 8.5).

En la Figura 4 se observan los escenarios climáticos conservadores (a) y extremos (b) para precipitación y temperatura media para el Volcán Nevado de Colima.
Discusión

Entre las principales consecuencias del cambio climático se pueden citar el aumento en la temperatura y un comportamiento errático en la precipitación como aumento, disminución o desplazamiento de la lluvia a otras regiones geográficas (Conafor, 2013; Conanp, 2015a).

Las proyecciones para precipitación a futuro del Programa Especial de Cambio Climático de la Semarnat (PECC, 2014) sugieren una disminución promedio en el país de alrededor de 10 % para 2030. Sáenz et al. (2010) pronostican una reducción promedio de 9 % en la precipitación de 2060; Sosa (2015) prevé una disminución promedio de hasta 20 %, a partir de 2020 para México.

Los resultados de los escenarios para precipitación acumulada anual pronostican una disminución de 3.1% para el Pico de Orizaba, 7.9 % para el Nevado de Toluca y 2.7 % para el Volcán Nevado de Colima para 2045-2069, estos resultados están dentro de los intervalos de disminución calculados por Sáenz et al. (2010) para ese horizonte de tiempo.

El IPCC (2014) establece que un aumento de 1 a 2 °C en la temperatura media anual representaría un daño moderado a la biodiversidad y economía de todo el mundo, mientras que si fuera >3.5 °C resultaría perjudicial para la mayoría de los ecosistemas terrestres y marinos, lo que produciría extinciones de 40 hasta 70 % de las especies del mundo (IPCC, 2007); un incremento drástico en la temperatura y una disminución notoria en la precipitación para 2050 provocaría una reducción importante de los bosques de coníferas en el territorio nacional (Sáenz et al., 2012; PECC 2014).

Para México, Sáenz et al. (2010) y Conanp (2015a) estiman un aumento en la temperatura media anual de 0.5 a 2 °C para 2030, de 2.3 °C para 2060 y hasta de 3.7 °C para 2090. En este trabajo, el área natural protegida que sería más afectada por el aumento de la temperatura media anual es el Nevado de Toluca, donde aumentaría entre 1.30 y 1.45 °C en 83.6 % del ANP (escenario conservador) y hasta 1.87 a 2.03 °C en 16.6 % del ANP (escenario extremo) para 2045-2069, valores ligeramente inferiores a los de Sáenz et al. (2010).
Villers y Trejo (1998) y Sáenz et al. (2012) prevén que los bosques secos aumentarían su distribución (7.4 %), mientras que los bosques templados y fríos reducirían sus áreas de distribución entre 65 % y 87.6 %, respectivamente; además, sitios como la Reserva de la Mariposa Monarca presentaría condiciones más cálidas para 2060 (2.3 °C) (Sáenz et al., 2010), condiciones climáticas similares a las que ocurrirían en el Pico de Orizaba, el Nevado de Toluca y el Volcán Nevado de Colima.

Manzanilla y Aguirre (2017) estimaron, para escenarios conservadores, un aumento en la temperatura media anual entre 0.41 y 0.83 °C (100 %) y una disminución en la precipitación anual de 71 a 35 mm (88 %) para la Reserva de la Biosfera Selva El Ocote, Chiapas para 2030. En el presente trabajo, los escenarios conservadores para 2045-2069 señalan al Volcán Nevado de Colima como el sitio menos afectado por el cambio climático; la precipitación anual disminuiría entre 6 y 15 mm (1.1 %) y la temperatura media anual aumentaría entre 0.95 y 0.98 °C (6 %), por lo que las áreas ubicadas en las montañas (Nevado de Toluca) tendrían un mayor aumento en la temperatura media anual, en comparación con zonas tropicales como la Reserva antes citada.

Por último, el aumento en la temperatura media anual afectaría 49 % de la superficie (bosque de pino) del Pico de Orizaba, 24% de la superficie (bosque de Abies religiosa) del Nevado de Toluca y 42.2% de la superficie (Pradera Alta de Montaña) del Volcán Nevado de Colima. El ecosistema más vulnerable a estos cambios en el clima sería el bosque de A. religiosa del Nevado de Toluca, cuyos escenarios climáticos a futuro no son alentadores para la especie en México (Sáenz et al., 2012).

Ante tales anomalías, los ecosistemas en las tres ANP analizadas tendrían dos opciones: ajustarse a las nuevas condiciones climáticas, lo cual involucraría resistir estrés hídrico, ataques de plagas e incendios forestales; o migrar de forma altitudinal como lo indican Sáenz et al. (2010), cuando, por cada 0.5 °C de aumento, las especies tendrían que desplazarse 100 m. Los bosques de A. religiosa existentes en el Nevado de Toluca tendrían que desplazarse en ese sentido de 150 m (1.3 °C) hasta 250 m (2.34 °C) para subsistir durante el periodo 2045-2069.
Bibliografía

Capítulo 4

Distribución actual y futura del bosque subalpino de *Pinus hartwegii* lindley en el Eje Neovolcánico Transmexicano

Resumen

De acuerdo con las proyecciones del clima a futuro, muchas especies verían reducidas sus áreas de distribución, principalmente, aquellas que habitan en zonas templadas y frías. El objetivo principal del presente fue modelar la distribución actual y bajo escenarios de cambio climático del bosque subalpino de *Pinus hartwegii* Lindley para 2041-2060 en el Eje Neovolcánico Transmexicano. Se obtuvieron los registros de *P. hartwegii* de la plataforma GBIF y campo. Se descargaron las 19 variables bioclimáticas WorldClim para el presente y futuro de los Modelos de Circulación Global CRNMC5 y HADGEM2_ES con dos forzamientos radiactivos (RCP) de 4.5 (trayectorias de CO₂ constantes) y 8.5 (trayectorias de CO₂ altas). Se eliminó la autocorrelación espacial de las variables. Se cargaron las variables y los registros de presencia al programa MaxEnt, donde se utilizaron el 75 % de los datos para entrenar los modelos y 25 % para validarlos. Se transfirieron los parámetros del mejor modelo para generar los modelos a futuro. Los modelos presentaron un excelente ajuste estadístico (pruebas de entrenamiento y validación >0.9) para ambos periodos. Las variables determinantes de ambos periodos analizados fueron temperatura promedio anual (BIO1) y altitud (DEM). Los escenarios de cambio climático predicen un aumento en temperatura promedio anual entre 0.7 y 2.1 °C y reducciones entre 11.7 y 26.9 % en el nicho subalpino de *P. hartwegii*. Siendo el Nevado de Toluca y el Pico de Orizaba los sitios más susceptibles al cambio climático. Por otra parte, el Parque Izta-Popo presentaría un aumento de nicho del 37.4 %.

Palabras clave: áreas de distribución, aumento en temperatura promedio anual, bosques de alta montaña, escenarios de cambio climático y nicho ecológico
Abstract

According to future climate projections, many species would see their distribution areas reduced, mainly those that live in temperate and cold zones. The main objective of the present was to model the current distribution and under climate change scenarios of the *Pinus hartwegii* Lindley subalpine forest for 2041-2060 in the Transversal Neovolcanic Belt. Records of *P. hartwegii* were obtained from the GBIF platform and field. The 19 bioclimatic variables WorldClim were downloaded for present and future Global Circulation Models CRNMCM5 and HADGEM2_ES with two radioactive forcings (RCP) of 4.5 (constant CO2 trajectories) and 8.5 (high CO2 trajectories). The spatial autocorrelation of the variables was eliminated. The variables and presence records were loaded into the MaxEnt program, where 75 % of the data were used to train the models and 25 % to validate them. The parameters of the best model were transferred to generate future models. The models presented an excellent statistical fit (training tests and validation >0.9) for both periods. The determining variables of both periods analyzed were mean annual temperature (BIO1) and altitude (DEM). Climate change scenarios predict an increase in average annual temperature between 0.7 and 2.1 °C and reductions between 11.7 and 26.9 % in the subalpine niche of *P. hartwegii*. Nevado de Toluca and Pico de Orizaba are the most susceptible sites to climate change. On the other hand, Izta-Popo Park would present a 37.4% niche increase.

Keywords: Average annual temperature increase, climate change scenarios, distribution areas, ecological niche and high mountain forests
Introducción

El cambio climático es un fenómeno global que se ha ido documentado a partir de la segunda mitad del siglo XX, desde entonces, diversas instituciones como el Panel Intergubernamental de Expertos Sobre Cambio Climático (IPCC, 2014) han invertido muchos recursos en el entendimiento del fenómeno y sus consecuencias en la distribución de las especies de flora y fauna (Martínez-Meyer, 2005). Hoy en día, la relación que existe entre la biodiversidad y el clima se ha vuelto motivo de preocupación para la comunidad científica de todo el mundo, debido a los efectos y consecuencias del cambio climático sobre la vegetación (FAO, 2009; IPCC, 2014). El aumento en temperatura y los cambios en precipitación afectan de diversas maneras a los especies, estos cambios modificarían la distribución y diversidad de especies a futuro (Burgmer et al., 2007; Sáenz-Romero et al., 2015).

Una de las principales consecuencias directas del cambio climático es la modificación y alteración de la dinámica y funcionamiento de los ecosistemas, en especial, los ecosistemas forestales (Norby et al., 2007; FAO, 2009; IPCC, 2014 e Islas-Báez et al., 2015).

La evidencia científica prueba de que las especies siempre han estado expuestas a lo largo de su historia de vida evolutiva a los cambios en el clima, pero en la actualidad, el ritmo de esos cambios supera por mucho a las fluctuaciones del pasado (Thuiller et al., 2011). Ante tales modificaciones en el clima, las especies contemporáneas tendrían tres posibles alternativas: tolerar las alteraciones climáticas, desaparecer o cambiar sus áreas de distribución actual (Sáenz-Romero et al., 2010, 2015; Cruz-Cárdenas et al., 2016).

Estudios realizados en latitudes y altitudes altas señalan a los ecosistemas de bosques de clima boreal y templado como los más sensibles al cambio climático (IPCC, 2007, 2014).

De acuerdo con los escenarios de cambio climático para México en el siglo XXI, estos predicen un aumento en temperatura promedio anual de 0.5 a 2 °C para 2030, de 2.3 °C para 2060 y hasta 3.7 °C para 2090 (Sáenz-Romero et al., 2010; CONANP, 2015).
Ante tales escenarios, los bosques secos en México tenderían a expandir sus áreas de distribución (7.4 %), sitios como la Reserva de la Biosfera Selva el Ocote en Chiapas se volverían más cálidos y secos (0.83 ºC de aumento en temperatura promedio anual) (Manzanilla y Aguirre, 2017), mientras que la cobertura de los bosques templados verían reducidas entre 60 a 70 % su superficie potencial apta, además, el aumento en temperatura haría más frecuente la presencia de incendios (Villers y Trejo, 1998 e Ibarra-Montoya y Huerta-Martínez, 2016).

Los modelos de distribución de especies (MDE) son herramientas utilizadas para predecir la distribución (actual y potencial) de las especies (Sandoval y Real, 2005; Peterson, 2011; García et al., 2018). Por otro lado, los modelos de circulación global se usan para simular el comportamiento del clima a futuro (Delgado y Suárez, 2009; Fernández-Eguiarte et al., 2015), por lo que son una alternativa para evaluar el posible impacto del cambio climático en la distribución de especies (Jeschke y Strayer, 2008; Peterson et al., 2011; García et al., 2018).

A continuación se enlistan algunos de los trabajos efectuados sobre modelamiento espacial bajo escenarios de cambio climático para especies de la familia Pinaceae en México:

Sáenz-Romero et al., (2012) mencionan que la distribución potencial de Abies religiosa (Kunth) Schtldl y Cham en la Reserva de la Biosfera Mariposa Monarca podría desaparecer a finales de este siglo.

Monterroso-Rivas et al., (2012) prevén una reducción significativa en las condiciones climáticas aptas en la distribución de seis especies de bosque mesófilo de montaña en el estado de Hidalgo para 2050. Gutiérrez y Trejo (2014) predicen una reducción considerable en las condiciones climáticas idóneas en la distribución de cinco especies arbóreas (Pinus ayacahuite, Pinus hartwegii, Abies hickelii, Quercus laurina y Quercus ocoteifolia) del bosque templado en México, los autores prevén que debido a los cambios en el clima se pudieran presentar algunas extinciones locales para 2050.

Estrada-Contreras et al., (2015) señalan que debido al cambio climático, los bosques de coníferas y el bosque mesófilo de montaña del estado de Veracruz reducirían su distribución potencial apta en 16 % y 49 %, respectivamente para

Pinus hartwegii Lindley, también llamado el pino de las alturas, se distribuye en México, Guatemala y Honduras (Perry, 1991; Farjon et al., 1997). El taxón crece y forma bosques puros a partir de 3000 hasta 3700 msnm y se le encuentra en forma semiarbustiva a partir de 4000 hasta los 4300 msnm (Farjon et al., 1997).

Dentro de ese gradiente altitudinal en el Eje Neovolcánico Transmexicano se localizan montañas representativas de ecosistemas subalpinos y alpinos o también llamados páramos de altura en México (Miranda y Hernández, 1963), los cuales son ecosistemas con poca distribución en nuestro país por las condiciones tan específicas en las que se encuentran. Dentro de ese tipo de ecosistema, *P. hartwegii* resulta ser una especie apropiada para la evaluación del posible impacto del climático a futuro en los bosques de alta montaña o bosques subalpinos puros de la especie en el Eje Neovolcánico Transmexicano, los cuales han sido poco explorados y estudiados.

Por lo que el objetivo principal del presente estudio fue modelar la distribución de actual y futura *Pinus hartwegii* Lindley en el Eje Neovolcánico Transmexicano. Se plantearon los siguientes objetivos; 1) modelar la distribución actual y futura (2041-2060) del bosque subalpino de *P. hartwegii*, 2) determinar las variables ambientales importantes en los períodos actual y futuro, 3) estimar la superficie que se vería reducida por el cambio climático y 4) identificar las áreas susceptibles al cambio climático.
Materiales y métodos

Área de estudio

El Eje Neovolcánico Transmexicano se localiza entre las coordenadas geográficas 17° 30’ y los 20° 25’ latitud norte y los 96° 20’ y 105° 20’ longitud oeste y tiene una longitud de 930 km (Demant y Vincent, 1978) (Figura 1).

![Figura 1. Localización geográfica del área de estudio](image)

Datos de presencia

Se descargaron 247 registros (coordenadas GPS) disponibles de *P. hartwegii* para México de la aplicación Niche ToolBox (Osorio-Olvera *et al.*, 2018) de la CONABIO y se obtuvieron 96 registros GPS de la especie en campo.

Utilizando la aplicación de Niche Toolbox, se suprimieron las coordenadas duplicadas y con una distancia de separación menor a un kilómetro entre registros, dejando así, una sola coordenada por cada celda de 1 km², este paso ayudó a evitar la sobreestimación de los modelos por los efectos de la autocorrelación espacial (Peterson y Nakazawa, 2008; Monterrubio-Rico *et al.*, 2016). Se dejaron solo los registros ubicados en el Eje Neovolcánico Transmexicano y se eliminaron aquellos ubicados en áreas urbanas y abajo de los 3000 msnm, que es la altitud reportada por Farjon *et al.* (1997) donde la especie forma bosques puros. Al final, se obtuvo una base de datos con un total de 65 registros para *P. hartwegii*, de los cuales 60 fueron extraídos de la
plataforma GBIF a través de la aplicación Niche Toolbox y cinco registros de campo.

Obtención de información bioclimática

Se descargaron las 19 variables bioclimáticas de Worldclim ver. 2.0 para el periodo presente (1970-2000) (Fick y Hijmans, 2017) y futuro de los Modelos de Circulación Global (MCG) CRNMCM5 (Centro Nacional de Investigaciones Meteorológicas de Francia) y HADGEM2_ES (Centro Meteorológico Hadley del Reino Unido), los cuales fueron generados a partir de Modelos Regionales del Proyecto de Intercomparación de Modelos Acoplados Fase 5 (CMIP5) con dos forzamientos radiactivos (RCP) de 4.5 (trayectorias de CO$_2$ constantes) y 8.5 (trayectorias de CO$_2$ altas) para 2041-2060, tienen una resolución espacial de 1 km2 y un formato GeoTiff (Tiff) (Worldclim, 2018).

La Tabla 1 muestra las variables bioclimáticas actuales y futuras.

<table>
<thead>
<tr>
<th>Variables bioclimáticas (Unidades entre paréntesis)</th>
<th>Clave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura promedio anual (°C)</td>
<td>BIO1</td>
</tr>
<tr>
<td>Oscilación diurna de la temperatura (°C)</td>
<td>BIO2</td>
</tr>
<tr>
<td>Isotermalidad (BIO2/BIO7)(*100)</td>
<td>BIO3</td>
</tr>
<tr>
<td>Estacionalidad de la temperatura (Coeficiente de variación %)</td>
<td>BIO4</td>
</tr>
<tr>
<td>Temperatura máxima promedio del periodo más cálido (°C)</td>
<td>BIO5</td>
</tr>
<tr>
<td>Temperatura mínima promedio del periodo más frío (°C)</td>
<td>BIO6</td>
</tr>
<tr>
<td>Oscilación anual de la temperatura (°C)</td>
<td>BIO7</td>
</tr>
<tr>
<td>Temperatura promedio del trimestre más lluvioso (°C)</td>
<td>BIO8</td>
</tr>
<tr>
<td>Temperatura promedio del trimestre más seco (°C)</td>
<td>BIO9</td>
</tr>
<tr>
<td>Temperatura promedio del trimestre más cálido (°C)</td>
<td>BIO10</td>
</tr>
<tr>
<td>Temperatura promedio del trimestre más frío (°C)</td>
<td>BIO11</td>
</tr>
<tr>
<td>Precipitación acumulada anual (mm)</td>
<td>BIO12</td>
</tr>
<tr>
<td>Precipitación del periodo más lluvioso (mm)</td>
<td>BIO13</td>
</tr>
<tr>
<td>Precipitación del periodo más seco (mm)</td>
<td>BIO14</td>
</tr>
<tr>
<td>Estacionalidad de la precipitación (Coeficiente de variación %)</td>
<td>BIO15</td>
</tr>
<tr>
<td>Precipitación del trimestre más lluvioso (mm)</td>
<td>BIO16</td>
</tr>
</tbody>
</table>
Selección de variables

Debido a que las 19 variables bioclimáticas descargadas están correlacionadas entre sí, se procedió a eliminar la autocorrelación espacial mediante un análisis de multicolinearidad (Peterson y Nakazawa, 2008; Monterrubio-Rico et al., 2016). Dicho análisis sirvió para descartaron aquellas variables con un coeficiente de correlación de \(\geq 0.85 \), lo cual ayudó a maximizar la contribución de las variables en los modelos de distribución (Peterson y Nakazawa, 2008; Ortego et al., 2014; Martínez-Méndez et al., 2016; Monterrubio-Rico et al., 2016). Se incluyeron también las variables pendiente (PEN; 1 km de resolución), suelo (SUE; escala 1; 250000), vegetación (VEG; serie V de INEGI, escala 1; 250000) y altitud (DEM; modelo digital de elevación, resolución de 90 m) las cuales fueron descargadas en formato vectorial y raster de las plataformas de CONABIO e INEGI (CONABIO, 2016; CONABIO, 1995; INEGI, 2013; INEGI, 2018) y transformadas a archivos ASCII para integrarlas en la generación de los modelos de distribución.

Delimitación del área M

El área M de una especie, es el espacio geográfico donde la especie estudiada se ha reportado su presencia de acuerdo con el conocimiento biológico y su capacidad de dispersión que se tiene de ella (Soberón y Peterson, 2005; Martínez-Méndez et al., 2016). El uso de barreras biogeográficas en modelación espacial evita generar áreas de distribución sobreestimadas (Martínez-Meyer, 2005). Para delimitar el área M, se emplearon las subprovincias fisiográficas en donde se ubicaban los registros de presencia de la especie, las cuales fueron Lagos y Volcanes de Anáhuac, Neovolcánica Tarasca y Volcanes de Colima (INEGI, 2001). El área M sirvió para recortar las variables ambientales a un mismo tamaño.

Modelos de distribución de especies
MaxEnt es un algoritmo que funciona mediante el principio de máxima entropía, el programa calcula la probabilidad de áreas idóneas para una especie a partir de coordenadas puntuales de presencia, no requiere datos de ausencia y genera buenas predicciones, aun cuando las muestras son pequeñas (Phillips et al., 2006 y Pearson et al., 2007).

El programa asume que el ambiente en los puntos de observación (coordenadas puntuales de la especie) representa la amplia gama ambiental del organismo, de tal modo, que las variables ambientales se emplean como un sistema de calibración para proponer un modelo probabilístico de presencia (Phillips et al., 2006). De acuerdo con esta relación (sitios identificados y su ambiente), el algoritmo explora e identifica sitios (celdas) a partir de los puntos de presencia de la especie hacia otras áreas donde se desconoce su presencia o ausencia (Lindenmayer et al., 1996).

Para generar los modelos de distribución de *P. hartwegii* se utilizaron los registros de presencia de la especie y las variables ambientales seleccionadas del análisis de multicolinearidad (BIO1, BIO2, BIO3, BIO4, BIO12, BIO15, BIO16, BIO18, PEN, SUE, VEG y DEM) en formato ASCII. Estas variables se cargaron al programa MaxEnt Ver. 3.3.3 donde se utilizaron el 75 % de los registros de presencia seleccionados al azar para generar los modelos y el 25 % restante para validarlos (Phillips et al., 2006). Se desactivaron las casillas Extrapolate y Do clamping con el fin de evitar sobreajustar los modelos (Elith et al., 2011), la salida de los modelos fue del tipo logística. Donde dicha salida está representada por un índice con valores de 0 a 1. Los valores cercanos a 0 señalan condiciones ambientales no idóneas, mientras que valores cercanos a 1 sugieren condiciones ambientales adecuadas para el crecimiento y desarrollo de la especie (Phillips et al., 2006 y Coitiño et al., 2013).

Se generaron y probaron 10 modelos de distribución con el fin de determinar por medio de las pruebas estadísticas del área bajo la curva (ABC), Roc Parcial y Z, cuál modelo explica mejor la distribución actual de la especie, dichos modelos se construyeron a partir de diversos criterios como la aplicación de replicados interno por Bootraps y Validación Cruzada, diferentes reglas de umbral y de 1000
a 500 réplicas, siendo 500 el valor por omisión en el programa (Phillips et al., 2006).

En la Tabla 2 se muestran los parámetros utilizados para generar los modelos de distribución actual.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Replicado</th>
<th>Regla de aplicación de umbral</th>
<th>Réplicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Bootraps</td>
<td>Sensibilidad y especificidad de entrenamiento iguales</td>
<td>1000</td>
</tr>
<tr>
<td>M2</td>
<td>Bootraps</td>
<td>Máxima sensibilidad de entrenamiento más especificidad</td>
<td>1000</td>
</tr>
<tr>
<td>M3</td>
<td>Bootraps</td>
<td>Prueba de sensibilidad y especificidad iguales</td>
<td>1000</td>
</tr>
<tr>
<td>M4</td>
<td>Bootraps</td>
<td>Prueba de máxima sensibilidad más especificidad</td>
<td>1000</td>
</tr>
<tr>
<td>M5</td>
<td>Bootraps</td>
<td>Sin aplicación de regla de umbral</td>
<td>500</td>
</tr>
<tr>
<td>M6</td>
<td>Validación Cruzada</td>
<td>Sensibilidad y especificidad de entrenamiento iguales</td>
<td>1000</td>
</tr>
<tr>
<td>M7</td>
<td>Validación Cruzada</td>
<td>Máxima sensibilidad de entrenamiento más especificidad</td>
<td>1000</td>
</tr>
<tr>
<td>M8</td>
<td>Validación Cruzada</td>
<td>Prueba de sensibilidad y especificidad iguales</td>
<td>1000</td>
</tr>
<tr>
<td>M9</td>
<td>Validación Cruzada</td>
<td>Prueba de máxima sensibilidad más especificidad</td>
<td>1000</td>
</tr>
<tr>
<td>M10</td>
<td>Validación Cruzada</td>
<td>Sin aplicación de regla de umbral</td>
<td>500</td>
</tr>
</tbody>
</table>

Validación de los modelos de distribución

Los modelos se evaluaron por medio de los valores del Área bajo la curva (ABC) del análisis de las características operativas del receptor (ROC). Los valores de esta prueba oscilan de 0 a 1, donde valores entre 0.7 a 0.9 se consideran el desempeño de los modelos como buenos y valores mayores a 0.9 los califican como excelentes (Peterson et al., 2011; Coitiño et al., 2013), sin embargo, esta validación ha sido cuestionada por no considerar datos de ausencias verdaderas (Peterson et al., 2008).

Se utilizó el programa Tool for Partial-ROC versión 1.0 (Narayani, 2008). Donde se usó una proporción de puntos para Bootraps del 50 %, con un número de
muestras con reemplazo de 1000 réplicas y un umbral de omisión de 95 %. Se promedió el valor de radio de las 1000 réplicas de los modelos. Los valores de esta prueba oscilan de 1 a 2, donde un valor con promedio de radio de 1 representa un modelo igual al azar (Peterson et al., 2008; Martínez-Méndez et al., 2016; Garza-López et al., 2016). Se realizó la prueba de Z, la cual es una prueba de hipótesis basada en el estadístico Z que sigue la distribución normal estándar, dicho prueba brinda a los modelos de una confiabilidad estadística (Monterrubio-Rico et al., 2016), donde para que un modelo sea estadísticamente confiable, el valor de Z calculado de las proporciones (ABC) de Roc parcial debe ser mayor al valor de Z de tablas (Z>2.3= 99 % de confiabilidad).

El modelo de distribución con el mejor ajuste para *P. hartwegii* se eligió con base en el valor más alto del análisis Roc parcial, menor error estándar y valor significativo de Z. Donde los valores de idoneidad del modelo con el mejor ajuste estadístico se reclasificaron a un modelo de calidad de hábitat de tres categorías con intervalos iguales; baja, moderada y alta. Se utilizó el valor de la categoría de calidad de hábitat alta (>0.60), donde con ayuda del módulo reclass del programa Arcmap 10.3® (ESRI, 2014) se transformó el modelo continuo a binario (apto-no apto), dicha transformación ayudó a calcular y delimitar la distribución actual del bosque subalpino puro de *P. hartwegii* en el Eje Neovolcánico Transmexicano.

Modelación bajo escenarios de cambio climático

Para generar los modelos de distribución bajo escenarios de cambio climático se transfirieron los parámetros del modelo de distribución actual con el mejor ajuste estadístico (Morrone y Escalante, 2016) al programa MaxEnt Ver. 3.3.3. Se cargaron las variables ambientales en formato ASCII y los registros de la especie en formato CSV. Se utilizaron el 75 % de los registros de la especie para generar los modelos y el 25 % restante para validarlos (Phillips et al., 2006), se desactivaron las opciones Extrapolate y Do clamping con el fin de evitar sobreajustar los modelos de distribución (Elith et al., 2011).
Los modelos fueron evaluados por medio de los valores ABC del análisis ROC (Phillips et al., 2006) y las pruebas de Roc parcial (Narayani, 2008) y de Z (Monterrubio-Rico et al., 2016). Se reclasificaron los valores de idoneidad en tres categorías; baja, moderada y alta y se utilizó el valor de la categoría de calidad de hábitat alta (>0.60) como umbral para convertir los modelos continuos a binarios (apto-no apto).

Variables determinantes en la distribución actual y futura

Por medio de la prueba de Jackknife se determinó la contribución de las variables en la generación de los modelos de distribución (Phillips et al., 2006). Dicha prueba permitió identificar los requerimientos ambientales adecuados para que *P. hartwegii* crezca, se desarrolle y subsista en la actualidad y a futuro en el Eje Neovolcánico Transmexicano.

Escenarios de cambio climático

De acuerdo con el forzamiento radiactivo empleado, los escenarios de cambio climático simulan la posible afectación de un conjunto de variables ambientales en la distribución de una especie. Dichas proyecciones se clasifican en conservadoras (RCP 4.5; trayectorias de CO\(_2\) constantes), donde se predice un aumento en la temperatura promedio anual global de 0.9 a 2 °C para el 2050 y las trayectorias extremas (RCP 8.5; trayectorias de CO\(_2\) altas) donde se prevé que la temperatura promedio anual del planeta aumente de 1.4 a 2.6 °C para el 2050 (IPCC, 2013; Fernández-Eguiarte et al., 2015). Los escenarios de cambio climático conservadores hacen referencia a una pérdida menor de superficie con las condiciones aptas para que la especie crezca y sobreviva, mientras que los escenarios extremos predicen pérdidas mayores en la distribución potencial de una especie.

Utilizando la información vectorial disponible de las áreas naturales protegidas federales (ANP) de la CONANP (2017) y sobreponiendo los archivos de las salidas binarias de los modelos actual-futuro con mejor desempeño estadístico en el programa Arcmap 10.3® (ESRI, 2014) fue posible identificar las áreas susceptibles y estimar la distribución reducida por efectos del cambio climático en la poligonal de las ANP del área de estudio.
Resultados

Los 10 modelos de distribución actual presentaron valores de 0.986 para los datos de entrenamiento y 0.969 para los de validación en el ABC de la prueba de ROC, lo que indica que el desempeño de los modelos fue excelente. Los valores de las pruebas de Roc parcial y Z obtuvieron un ajuste estadístico excelente (Tabla 3).

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Roc parcial promedio radios</th>
<th>Desviación estándar</th>
<th>Prueba de Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>1.895</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M2</td>
<td>1.894</td>
<td>0.013</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M3</td>
<td>1.894</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M4</td>
<td>1.894</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M5</td>
<td>1.895</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M6</td>
<td>1.895</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M7</td>
<td>1.895</td>
<td>0.013</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M8</td>
<td>1.895</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M9</td>
<td>1.895</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
<tr>
<td>M10</td>
<td>1.894</td>
<td>0.014</td>
<td>p<0.01</td>
</tr>
</tbody>
</table>

De los 10 modelos probados, el modelo con el mejor ajuste estadístico fue el modelo 7, el cual fue generado mediante un replicado interno tipo Validación Cruzada, regla de aplicación de umbral de máxima sensibilidad de entrenamiento más especificidad y 1000 réplicas.

De acuerdo con la reclasificación de los valores de idoneidad de la calidad de hábitat alta del modelo 7, la superficie actual de bosque subalpino puro de *P. hartwegii* es de 34717 ha (Figura 2).
Modelación bajo escenarios de cambio climático

Los valores del ABC de la prueba de ROC fueron de 0.983 a 0.984 para el entrenamiento y de 0.960 a 0.970 para la validación, lo cual indica que el desempeño de los modelos fue excelente. Los resultados de las pruebas de Roc parcial y Z presentaron un desempeño estadístico excelente (Tabla 4).

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Roc parcial promedio radios</th>
<th>Desviación estándar</th>
<th>Prueba de Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRNMC5</td>
<td>1.895</td>
<td>0.019</td>
<td>p<0.01</td>
</tr>
<tr>
<td>RCP 4.5</td>
<td>1.546</td>
<td>0.246</td>
<td>p<0.01</td>
</tr>
<tr>
<td>HADGEM2_ES</td>
<td>1.906</td>
<td>0.016</td>
<td>p<0.01</td>
</tr>
<tr>
<td>RCP 8.5</td>
<td>1.401</td>
<td>0.247</td>
<td>p<0.01</td>
</tr>
</tbody>
</table>

Los resultados de las pruebas de Roc parcial, error estándar y Z indican un mejor ajuste en las proyecciones RCP para el modelo de circulación global CRNMC5 en comparación con las proyecciones del modelo HADGEM2_ES.

Variables determinantes en la distribución actual y futura

Las variables ambientales importantes actuales fueron temperatura promedio anual (BIO1), precipitación del trimestre más caliente (BIO18), precipitación total...
Las variables ambientales más importantes para 2041-2060 de acuerdo con el modelo CRNMCM5 para las proyecciones RCP 4.5 y 8.5 fueron temperatura promedio anual (BIO1), suelo (SUE), precipitación del trimestre más lluvioso (BIO16), pendiente (PEN) y vegetación (VEG) con una contribución de 94.2 % y 92.6 %, respectivamente (Figura 4).

Por otra parte, las variables importantes para 2041-2060 de las proyecciones RCP 4.5 y 8.5 del modelo HADGEM2_ES fueron altitud (DEM), temperatura promedio anual (BIO1), suelo (SUE), vegetación (VEG) y precipitación...
acumulada anual (BIO12) con una contribución de 88.1 y 88.5 %, respectivamente (Fig. 5).

![Diagrama de barras mostrando porcentaje de variables ambientales](image)

Variables ambientales
(ABC>0.9; p<0.01)

Los resultados de los modelos de distribución señalan a la temperatura promedio anual y la altitud como las variables determinantes en la distribución actual y futura del bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano.

Escenarios de cambio climático

Los resultados de la proyección RCP 4.5 prevén un aumento en temperatura promedio anual entre 0.7 °C (CRNMCM5) hasta 1.5 °C (HADGEM2_ES), dichos aumentos en temperatura promedio anual podría provocar reducciones de 11.7 % (CRNMCM5) hasta 18.3 % (HADGEM2_ES) en la distribución actual del bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano para 2041-2060.

Los resultados de la proyección RCP 8.5 predicen un aumento en temperatura promedio anual entre 1.1 °C (CRNMCM5) hasta 2.1 °C (HADGEM2_ES), ante tales aumentos en temperatura promedio anual, la distribución actual del bosque subalpino de *P. hartwegii* se vería reducido en 18.3 % (CRNMCM5) hasta 26.9 % (HADGEM2_ES) para 2041-2060.
En la Tabla 5 se describe la superficie actual y la estimada para el bosque subalpino de *P. hartwegii* de los dos Modelos de Circulación Global probados para 2041-2060.

Tabla 5. Superficie actual y futura del bosque subalpino de *P. hartwegii*

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Superficie (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>34717</td>
</tr>
<tr>
<td>CRNMC5 RCP 4.5</td>
<td>30662</td>
</tr>
<tr>
<td>HADGEM2_ES RCP 4.5</td>
<td>26701</td>
</tr>
<tr>
<td>CRNMC5 RCP 8.5</td>
<td>28348</td>
</tr>
<tr>
<td>HADGEM2_ES RCP 8.5</td>
<td>25392</td>
</tr>
</tbody>
</table>

Debido a la gran escala del área de estudio, esta se dividió en cuatro zonas, las cuales abarcan la distribución subalpina actual y futura de *P. hartwegii* en el Eje Neovolcánico Transmexicano. La clasificación del área de estudio por zonas permitió identificar las áreas naturales protegidas más susceptibles a los efectos del cambio climático.

La Tabla 6 muestra las superficies actuales y futuras estimadas por zonas para el bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano.

Tabla 6. Superficies actuales y futuras por zonas para el bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano

<table>
<thead>
<tr>
<th>Modelo de distribución</th>
<th>Superficie ha Zona 1</th>
<th>Superficie ha Zona 2</th>
<th>Superficie ha Zona 3</th>
<th>Superficie ha Zona 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>4984.2</td>
<td>4045.2</td>
<td>6338</td>
<td>19349.6</td>
</tr>
<tr>
<td>CRNMC5 RCP 4.5</td>
<td>3230.5</td>
<td>5232.6</td>
<td>5037.9</td>
<td>17161</td>
</tr>
<tr>
<td>HADGEM2_ES RCP 4.5</td>
<td>3940</td>
<td>5600</td>
<td>5478</td>
<td>13330</td>
</tr>
<tr>
<td>CRNMC5 RCP 8.5</td>
<td>4687</td>
<td>4128.8</td>
<td>4153.2</td>
<td>13732</td>
</tr>
<tr>
<td>HADGEM2_ES RCP 8.5</td>
<td>4256</td>
<td>4093</td>
<td>3885</td>
<td>13158</td>
</tr>
</tbody>
</table>

En la Tabla se puede observar que los modelos bajo escenarios de cambio climático predicen que las zonas 3 y 4 serían las más afectadas por los efectos del cambio climático a futuro.

La Figura 6 muestra la distribución de las condiciones ambientales idóneas actual y futura de los escenarios de cambio climático conservador (CRNMC5 RCP 4.5) para el bosque subalpino de *P. hartwegii* dentro de la poligonal de las áreas naturales protegidas del Eje Neovolcánico Transmexicano. Donde la zona 1 abarca las áreas naturales protegidas Volcán Nevado de Colima, la zona 2 el Pico de Tancítaro, la zona 3 comprende el Nevado de Toluca e Izta-Popo y la zona 4 está conformada por La Malinche, El Cofre de Perote y El Pico de Orizaba.
Figura 6. Distribución actual y futura del escenario conservador (CRNMCM5 RCP 4.5) para el bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano
Zona 1 (Volcán Nevado de Colima), zona 2 (Pico de Tancítaro), zona 3 (Nevado de Toluca e Izta-Popo) y zona 4 (La Malinche, Cofre de Perote y Pico de Orizaba).

De acuerdo con los resultados del escenario climático conservador (MCG CRNMCM5 RCP 4.5) para 2041-2060; los sitios más susceptibles al cambio climático serían el Nevado de Toluca, con pérdidas entre 53.1 % (2853.5 ha), el Pico de Orizaba con una reducción de 33.5 % (3292.1 ha) y La Malinche con una disminución de 19.6 % (54.3 ha) en la distribución actual de *P. hartwegii*. Sitios como el Volcán Nevado de Colima (+1.9 %, 61 ha), el Cofre de Perote (+3.5 %, 160.8 ha) presentarían un aumento en la superficie idónea, mientras que el Pico de Tancítaro presentaría una ligera reducción (0.7 %, 27.2 ha). Estos resultados indican que estos sitios no serían tan afectados por el cambio climático, sin embargo, dichas modificaciones sí cambiarían sus distribuciones para 2041-2060. Por otra parte, el Izta-Popo presentaría un aumento de 37.4 % (361.5 ha) para 2041-2060.
Discusión

Los diversos estudios realizados sobre modelamiento de distribución de especies de la familia Pinaceae bajo escenarios de cambio climático para México concuerdan en la teoría de una reducción importante en la distribución a futuro de esas especies (Sáenz-Romero et al., 2012, 2015; Estrada-Contreras et al., 2015; Cruz-Cárdenas et al., 2016). El presente estudio es el primero en delimitar, determinar las variables ambientales importantes, estimar y evaluar los efectos del cambio climático en la distribución actual y futura en el bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano.

Los resultados de las pruebas de ROC, Roc Parcial y Z de los modelos de distribución presentaron un desempeño excelente (Peterson et al., 2008; Peterson et al., 2011; Monterrubio-Rico et al., 2016), la combinación de los parámetros en modelación permitió determinar el modelo (modelo 7 [validación cruzada, regla de aplicación de umbral de Máxima sensibilidad de entrenamiento más especificidad y 1000 réplicas]) con el mejor ajuste estadístico y con el cual fue posible estimar y delimitar las distribuciones actual y futura bajo escenarios de cambio climático (2041-2060) para el bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano.

Trabajos como Martínez-Méndez et al. (2016) y Garza-López et al. (2016) mencionan que el funcionamiento de los modelos de distribución mejora cuando se aplican diferentes criterios de modelación, en este trabajo, los modelos generados presentaron un funcionamiento similar en las pruebas de ROC y Roc parcial, solamente fue posible diferenciar el modelo con el mejor desempeño a través del error estándar.

Variables determinantes para *P. hartwegii*, las variables relevantes para ambos periodos analizados fueron temperatura promedio anual (BIO1), altitud (DEM), precipitación del trimestre más calientes (BIO18), precipitación total anual (BIO12), tipo de suelo (SUE) y vegetación (VEG).

Donde una oscilación de la temperatura promedio anual de 6.8 a 13.1 °C es importante en el crecimiento y desarrollo de la especie, estos resultados son ligeramente más fríos a los obtenidos por Gutiérrez y Trejo (2014), quienes
mencionan que la temperatura promedio anual para el crecimiento de *P. hartwegii* es de 9.9 a 13 °C, y a más fríos a los obtenidos por Martínez-Méndez *et al.* (2016) para *Abies religiosa* (Kunth) Schldl & Cham (12 a 16.4 °C), especie que coexiste con *P. hartwegii* en las partes altas del Eje Neovolcánico Transmexicano.

Martínez-Méndez *et al.* (2016) mencionan que la altitud (DEM) es un factor importante en la distribución de cinco especies de abetos mexicanos (*Abies religiosa, Abies concolor, Abies guatemalensis, Abies hickelii* y *Abies durangensis* var. coahuilensis), al igual que para estas especies, la altitud es un factor importante para la distribución de *P. hartwegii* en el Eje Neovolcánico Transmexicano.

Para la precipitación del trimestre más caliente (BIO18) los mismos autores del párrafo anterior, encontraron que esta variable es relevante en la distribución de cinco especies de abetos mexicanos (*Abies concolor, Abies guatemalensis, Abies durangensis* var. durangensis, *Abies durangensis* var. coahuilensis y *Abies vejarii*). Sáenz-Romero *et al.* (2012) mencionan que la precipitación de los meses de verano es importante en la distribución actual de *Abies religiosa* en el Eje Neovolcánico Transmexicano. Por lo que la variable (BIO18) es determinante en la distribución actual de especies de la familia Pinaceae que se localizan en las partes altas de México. De acuerdo con nuestros resultados, los valores adecuados de la precipitación durante los meses de verano para el crecimiento de *P. hartwegii* son de 316 a 575 mm.

La precipitación total anual (BIO12) idónea para el desarrollo de *P. hartwegii* es de 1304 mm, de acuerdo con los resultados de los modelos a futuro prevé una disminución entre 2.8 a 3.8 % en la precipitación promedio anual para 2041-2060. Estos resultados difieren a los estimados por Sosa-Rodríguez (2015) y Sáenz-Romero *et al.* (2010), quienes mencionan que la precipitación promedio anual en México disminuiría hasta un 20 % para 2020 y 9 % para 2060, respectivamente. Manzanilla-Quinones y Aguirre-Calderón (2017) estimaron una disminución de 2.6 a 5.3 % en la precipitación promedio anual de la Reserva de la Biosfera Selva el Ocote, Chiapas para 2030. Resultados similares a los obtenidos en el presente estudio.
Para el tipo de suelo (SUE), trabajos como el Cruz-Cárdenas et al. (2016) mencionan que el pH del suelo es importante en la distribución de seis especies de Pináceas en el estado de Michoacán, pero no sustancial para *P. hartwegii*, aunque para este trabajo, el suelo fue ligeramente importante. Estudios como el de Galicia et al. (2016) sugieren que las Pináceas del centro de México prefieren suelos del tipo Andosol, los cuales son ligeramente ácidos. En nuestro trabajo, las zonas 2 (Pico de Tancítaro) 3 (Nevado de Toluca) y 4 (Cofre de Perote y Pico de Orizaba) presentaron suelos del tipo Andosol.

En cuanto a la vegetación (VEG), de acuerdo con INEGI (2013) y a lo obtenido en este trabajo, el bosque subalpino de *P. hartwegii* del Eje Neovolcánico Transmexicano coincide con los tipos de vegetación pradera alta de montaña, bosque de pino y bosque de oyamel. Trabajos como el de Estrada-Contreras et al. (2015) e Islas-Báez et al. (2015) mencionan que los tipos de vegetación son importantes en la distribución potencial actual y futura de una especie.

Bajo el contexto de protección legal de especies de la familia Pinaceae en México. Estudios como el de Aguirre y Duivenvoorden (2010) mencionan que el 70 % de las 56 taxa del género *Pinus* modeladas en México tienen solo el 10 % de su distribución natural resguardada dentro de la poligonal de alguna área natural protegida federal.

Por otra parte, Martínez-Méndez et al. (2016) hallaron que nueve de los 10 taxa del género *Abies* reportados en México, presentan su área de distribución fuera la poligonal de las áreas naturales protegidas. En nuestro trabajo, el bosque subalpino actual de *P. hartwegii* se encuentra protegido en un 86.5 % por las áreas naturales protegidas que se encuentran en el Eje Neovolcánico Transmexicano. Sin embargo, dichas áreas no están exceptas a los efectos del cambio climático. Los modelos a futuro prevén que la temperatura promedio anual en el bosque de *P. hartwegii* aumente entre 0.7 a 2.1 °C, por lo que de acuerdo con el IPCC (2014); aumentos de 1 a 2 °C representarían un daño moderado a la biodiversidad y arriba de 3.5 °C sería perjudicial para muchas especies.
Garza-López et al. (2016) utilizando proyecciones RCP de 6.0 (promedio de 18 Modelos de Circulación Global) estimaron una reducción del 60 % en el hábitat climático de la caoba (*Swietenia macrophylla*) en la Península de Yucatán para 2030. En este trabajo, se prevén reducciones entre 11.7 % (escenario RCP 4.5 MCG CRNMC5) y 26.9 % (escenario RCP 8.5 MCG HADGEM2_ES) en la distribución actual de *P. hartwegii*. Siendo el Nevado de Toluca y el Pico de Orizaba los sitios más susceptibles al cambio climático de acuerdo con los modelos proyectados a futuro.

Villers y Trejo (1998) y Sáenz-Romero et al., 2012 mencionan que los bosques secos aumentarían su distribución (7.4 %), mientras que los bosques templados y fríos reducirían sus nichos ecológicos entre 65 % y 87.6 %, respectivamente, además, sitios como la Reserva Mariposa Monarca presentaría condiciones más cálidas (2.3 °C) para 2060 (Sáenz-Romero et al., 2010), condiciones climáticas similares a las que se llegarían a presentar en el este trabajo (0.7 a 2.1 °C) para 2041-2060 para la misma región geográfica estudiada. Sáenz-Romero et al., 2010 mencionan para que una especie arbórea pueda subsistir a los cambios en el clima deberá migrar altitudinalmente 100 m por cada 0.5 °C de aumento. Los resultados del presente trabajo sugieren un aumento en temperatura promedio anual entre 0.7 a 2.1 °C para 2041-2060, antes tales cambios, *P. hartwegii* estaría obligado a desplazarse entre 100 hasta 500 m arriba, por lo que los bosques puros de la especie tendrían que reubicarse entre los 3100 a 3500 msnm y no en los 3000 msnm que reporta actualmente Farjon et al. (1997).

Sáenz-Romero et al., (2012) indican que el aumento en temperatura media del mes más cálido reduciría en 87.6 % la cubierta forestal de *Abies religiosa* para 2060 en el Eje Neovolcánico Transmexicano, por otra parte, el aumento en temperatura promedio anual para 2050 reduciría hasta 26.9 % de la superficie de *P. hartwegii* para esa misma región geográfica.

Estrada-Contreras et al., (2015) reporta un aumento de nicho de 3.7 % para Veracruz para 2050, resultado similar a lo obtenido en este estudio para el Cofre de Perote (+3.5 %) para 2041-2060. Cruz-Cárdenas et al., (2016) prevén una reducción entre 38.3 % en la superficie de *P. hartwegii* en Michoacán para el
horizonte 2015-2039, resultado que es menor a lo obtenido en el presente estudio para el Nevado de Toluca (53.1 %). Islas-Báez et al., (2015) mencionan que la variable más importante en la distribución para *Abies religiosa* para 2030 y 2050 en la Reserva de la Biosfera Mariposa Monarca es la precipitación anual, en este trabajo,

De acuerdo con lo analizado en los trabajos anteriores y el presente estudio, los escenarios de cambio climático predicen panoramas no muy alentadores para el bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano. Ante la posible pérdida en la superficie boscosa subalpina, uno de las consecuencias inmediatas en dicho ecosistema sería la reducción y función de los servicios ecosistémicos como la captura de carbono, recarga de acuíferos y regulación del clima local, lo cual afectaría directamente a las poblaciones rurales aledañas a los ecosistemas de alta montaña del centro de México.

Bibliografía

Estrada-Contreras, I., Equihua, M., Castillo-Campos, G., & Rojas-Soto, O. (2015). Climate change and effects on vegetation in Veracruz, Mexico: An

Ramírez-Marcial., y B. Cruz-Salazar, (Eds), *Vulnerabilidad social y biológica ante el cambio climático en la Reserva de la Biosfera Selva el Ocote* (pp. 25-66). San Cristóbal de las Casas, Chiapas, México.

Sáenz-Romero, C., Rehfeldt, G. E., Crookston, N. L., Pierre, D., St-Amant, R., Beaulieu, J., & Richardson, B. (2010). Contemporary and projected Spline...

Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species distribution areas. *Biodiversity Information*, 2, 1-10. doi: https://doi.org/10.17161/bi.v2i0.4.

Conclusiones

Se generaron seis cronologías regionales; dos para cada sitio de estudio, en las cuales se reconstruyeron la precipitación y temperatura local.

La respuesta climática de *P. hartwegii* difiere entre sitios, aún con condiciones ambientales similares, siendo esta diferencia más marcada en el Volcán Nevado de Colima.

El Niño Oscilación del Sur (ENOS) fue el fenómeno que más influyó en la precipitación y el crecimiento de los sitios de estudio.

Las sequías intensas de los años 50’s y finales de los 90’s quedaron registradas en los sitios de estudio. Sin embargo, se presentaron más periodos húmedos que secos en la alta montaña.

No se detectaron tendencias de cambio climático local en los periodos de precipitación y temperatura reconstruidos, solo variabilidad climática entre ±0.38 °C (Volcán Nevado de Colima), ±1.1 °C (Nevado de Toluca) y ±0.63 °C (Pico de Orizaba).

Los árboles analizados representan un importante almacén natural de carbono (C) y capturan bióxido de carbono CO₂; siendo el mayor depósito de carbono el localizado en el Volcán Nevado de Colima.

Las variables determinantes en la distribución actual y futura del bosque subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano son temperatura promedio anual (BIO1) y altitud (DEM). Estas dos variables fueron constantes y de las más importantes para ambos periodos analizados.

Los escenarios de cambio climático para la especie no son muy alentadores, en ellos se predice una reducción del 11.7 al 26.9% en el nicho subalpino de *P. hartwegii* en el Eje Neovolcánico Transmexicano para 2041-2060.

De las tres áreas naturales protegidas analizadas, los modelos climáticos señalan al Nevado de Toluca como el sitio que sería más afectado por el aumento en temperatura media anual para 2050; debido a los efectos del cambio climático vería reducido su nicho ecológico en un 53.1 % (-2853.5 ha) a 2050.
Cabe mencionar que la reducción en las condiciones ambientales aptas para la especie no significa que vaya a desaparecer por completo de esos sitios; es probable que permanezca, pero con muchos factores limitantes.