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RESUMEN 

 

Susana Borbón Rojas     Fecha de graduación: Agosto, 2019 

Universidad Autónoma de Nuevo León 

Facultad de Ciencias Químicas 

Título de la tesis: DYE SENSITIZED SOLAR CELLS BASED ON ZnO              

NANOFLOWERS AND TiO2: EFFICIENCY ENHANCEMENT 

BY GOLD NANOSPHERES 

Número de páginas: 101 Candidato para el título de Maestro en Ciencias 

con Orientación en Química de los Materiales  

Área de estudio: Materiales Funcionales 

Propósito y método del estudio: Para obtener mejores celdas solares 

sensibilizadas con colorante (DSSC) es de interés el fusionar las propiedades 

del TiO2 y el ZnO para su uso como fotoánodo. En este trabajo se reporta el 

aumento en el voltaje de circuito abierto (VOC) de una DSSC con un electrodo 

compuesto por nanopartículas de TiO2 y nanoflores de ZnO sintetizadas por 

método hidrotermal. Además, para incrementar la densidad de corriente (JSC) 

fueron incorporadas nanopartículas de Au. Las DSSC fueron caracterizadas por 

la obtención de sus curvas corriente-potencial y espectroscopías de impedancia 

electroquímica y de fotovoltaje y fotocorriente moduladas en intensidad.  

Contribuciones y conclusiones: Se desarrolló una ruta hidrotermal para la síntesis 

de nanoflores de ZnO sin el uso de aditivos en tiempos de reacción cortos. Las 

mejores DSSC obtuvieron una eficiencia de conversión de energía de 2.79% 

con un VOC de 886 mV. 

Firma del Asesor:_____________________  
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ABSTRACT 

 

Susana Borbón Rojas      Graduation date: August, 2019 

Universidad Autónoma de Nuevo León 

Facultad de Ciencias Químicas 

Title of the study: DYE SENSITIZED SOLAR CELLS BASED ON ZnO              

NANOFLOWERS AND TiO2: EFFICIENCY ENHANCEMENT 

BY GOLD NANOSPHERES 

Number of pages: 101 Candidate to the degree of Master 

of Science in Materials Chemistry 

Area of study: Functional Materials 

Purpose and method of the study: To obtain improved dye-sensitized solar cells 

(DSSC) is of interest to fuse the properties of TiO2 and ZnO for its use as a 

photoanode. In this work is reported the enhancement of the open circuit voltage 

(VOC) of a DSSC with an electrode composed by TiO2 nanoparticles and 

hydrothermally synthesized ZnO nanoflowers. In addition, to further increase 

the short circuit current (JSC) we incorporated Au nanoparticles. The DSSC were 

characterized by the obtention of its current-voltage curves, electrochemical 

impedance and light intensity modulated photocurrent and photovoltage 

spectroscopies. 

Contributions and conclusions: It was developed a hydrothermal route for the 

synthesis of ZnO nanoflowers without the use of additives in short reaction 

times. The best DSSC achieved an efficiency of 2.79% with a VOC of 886 mV. 

Advisor’s signature:_____________________  
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CHAPTER 1 

INTRODUCTION 

     One of the major challenges’ mankind must cope within this century is the 

transition from the use of non-renewable resources, principally fossil fuels, to the 

use of renewable energy while supplying the current energy demand.   

     Renewable energies originate from sources that are constantly replenished by 

nature. Among these sources we can name wind energy, geothermal energy, 

hydroelectric power and solar radiation, being the former the most auspicious. 

Solar radiation is the most abundant of the mentioned, being that 174,000 TW are 

provided yearly to the Earth [1], and the fact that its use does not produce 

emissions. Furthermore, Mexico is geographically located between latitudes 14° N 

and 33° N, this means it is within one of the most favorable four sunbelts according 

to worldwide intensity, which gives solar radiation levels of 5.35 kW h/m2 [2].  

1.1 Photovoltaic Cells 

     To help us to convert the solar radiation into electric energy, researchers have 

developed photovoltaic cells. A photovoltaic cell, also known as solar cell, is an 
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electrical device based on the photovoltaic effect which transforms sunlight into 

electricity [3].  

     To date, three generation of solar cells have been developed. First generation 

solar cells, based on crystalline silicon, although being expensive to fabricate are 

still the most commercially available, this is due to its high efficiency, which have 

reached values over 26% [4]. The second generation consists of thin film solar 

cells based on amorphous and hybrid silicon, cadmium telluride (CdTe), gallium 

arsenide (GaAs) or copper indium-gallium selenide (CIGS), being its major 

drawback their toxicity as well as their complex fabrication process [5]. The third 

generation can be subclassified in solar cells based on organic macromolecules, 

inorganic nanoparticles and hybrids [1]. Among the subclassification of solar cells 

based on inorganic nanoparticles the most popular are dye-sensitized solar cells 

(DSSC), quantum dot-sensitized solar cells (QDSSC) and perovskite solar cells, 

each of these having its own advantages and disadvantages [3]. In Figure 1 it is 

presented a scheme showing where the DSSC are located among the solar cells’ 

generations. Among the advantages of DSSC are its simple structure, its 

inexpensive production, the fact that they are highly efficient even under diffuse 

light and they can be assembled on flexible substrates [1-6]. 
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Figure 1. Scheme of solar cells generations. 

 

1.2 Dye-sensitized Solar Cells (DSSC) 

     DSSC constitute a photoelectrochemical system, hence its principle, inspired 

by the phenomenon of photosynthesis, is different to the traditional silicon-based 

solar cell which has its basis on the photoelectrical effect.  A traditional DSSC (Fig. 

2) has the following components; a transparent conductive glass substrate, a 

photoanode composed by semiconductor nanoparticles, a monolayer of dye, an 

electrolyte and a counter electrode with a catalyst [7].  

1.2.1 Transparent conductive glass substrates 

     Transparent conductive oxide substrates used in DSSC, must have low 

electrical resistivity and high transparency in visible spectral region to allow the 

flow of electrons [8]. The most used in DSSC are indium doped tin oxide (ITO) and 

fluorine doped tin oxide (FTO), each of them with specific parameters. ITO has a 
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transmittance of 80% and sheet resistance of 18 Ω/cm2, while FTO has 75% and 

8.5 Ω/cm2 respectively. It is also noteworthy that throughout the sintering process 

the sheet resistance of FTO remains constant while ITO’s increases substantially 

[9]. 

1.2.2 Photoanode 

     The purpose of the photoanode is to support the dye molecules and receive the 

photogenerated electrons from the excited dye. An optimal photoanode or electron 

transport layer, besides considering its economic and environmental factors, 

should have high surface area to boost dye loading, be transparent to visible light 

to evade photon loss to the substrate, possess a conduction band minor to the 

lowest unoccupied molecular orbital (LUMO) of the sensitizer, have high electron 

mobility, be inert to the redox electrolyte and possess hydroxyl groups or defects 

to chemisorb dye molecules [10]. 

1.2.3 Sensitizers  

     The mechanism of DSSC is based on the sensitization of wide band gap 

semiconductor using the dye molecules [11]. Therefore, to absorb photons, it is 

necessary to use dyes (sensitizers) with broad absorption spectra. 

     Various inorganic and organic dyes have been employed as sensitizers in 

DSSC, including metal complex dyes produced from heavy transition metals, due 

to its efficient metal-to-ligand charge transfer spectra, long excited lifetime and high 

redox properties [12]. The most studied metal complex dyes are polypyridyl 
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ruthenium dyes, from which the most used in DSSC are cis-di(thiocyanato)- 

bis(4,40-dicarboxy-2,20-bipyridine)-Ru(II) known as N3, cis- 

bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)-ruthenium(II) bis-

tetrabutylammonium known as N719,  and tri-thiocyanato-4,40,400-tricarboxy-

2,20:60,200-terpyridine)-Ru(II) known as N749. DSSC having a ruthenium-based 

sensitizer have yielded a power conversion efficiency (PCE) value of 11.9% [13]. 

1.2.4 Electrolyte 

     The electrolyte is the compound that provides ionic conductivity between the 

electrodes in an electrochemical device, it functions as the medium for 

transportation of charge carriers in the form of ions. In a DSSC, the interaction 

between the electrolyte and the electrode will affect its photovoltaic parameters, 

consequently determining its efficiency. In addition, the electrolyte regenerates the 

dye during the DSSC operation. 

     To be used in a DSSC, an electrolyte must be able to transport the charge 

carriers between the photoanode and counter electrode, guarantee fast diffusion 

of charge carriers (high conductivity) and have long-term stability. Electrolytes 

used in DSSC can be classified in three categories; liquid, quasi-solid and solid 

conductors [1]. The most used liquid electrolyte is iodide/triiodide (I⁻/I3⁻), because 

of its kinetic properties, excellent infiltration, relative high stability, low-cost and 

easy preparation [6]. 
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1.2.5 Counter Electrode 

               The task of the counter electrode in a DSSC is to gather electrons from the 

external circuit and to catalyze the reduction of the electrolyte. It should have low 

resistance and high electrocatalytic activity for I⁻/I3⁻ redox reaction to decrease 

overvoltage and charge recombination [14]. 

     The most common counter electrode in DSSC is a Pt-coated FTO, because of 

its high electrical conductivity, catalytic activity towards I⁻/I3⁻ and high reflecting 

properties [15]. 

 

Figure 2. Structure of a DSSC composed of TiO2. When a dye molecule absorbs 
a photon (1), it is elevated to an excited state, thus releasing an electron. The 

electron is injected into the semiconductor (2) and travels to the back contact (3). 
The electron can travel backwards and regenerate the dye (4) or the electrolyte 

(5). 
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1.2.6 Working Principle 

     The phenomenon of photosynthesis alike the working principle of DSSC 

involves light-dependent and light-independent reactions. In photosynthesis, 

plants go through a chain of reactions to produce sugar molecules and oxygen 

from sunlight. Upon sunlight irradiates onto the leaves, which have chlorophyll 

pigments with an absorption peak between 680 nm and 700 nm, the pigments are 

excited to their high energy state releasing two electrons, thus becoming an 

oxidative specie. The now free electrons are injected into protein complexes and 

into an enzyme, which initiates light-independent reactions. To regenerate the 

oxidized chlorophyll, plants split water molecules to obtain free electrons, then the 

enzyme is also regenerated into its original state [16].  

     Alike photosynthesis generates sugar molecules, DSSC generate electric 

power from sunlight without suffering permanent chemical transformations. When 

sunlight hits onto the DSSC, the dye adsorbed onto the semiconductor absorbs a 

photon and it is excited (Eq. 1), thus releasing an electron, and the dye becomes 

an oxidative specie (Eq. 2). The now free electron is injected into the 

semiconductor, through which it travels to the conductive substrate and through 

the external load to the counter electrode. Once in the counter electrode, the 

electron reduces the redox mediator (Eq. 3), which regenerates the dye (Eq. 4) 

completing the circuit [17]. However, the injected electron could travel backwards, 

reaching the oxidized dye (Eq. 5) or the electrolyte and regenerating them (Eq. 6) 

process that is known as recombination.  
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𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑) + ℎ𝑣 →  𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑)
∗  (1) 

𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑)
∗ → 𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑)

+ +  𝑒(𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑)
−  

𝐼3
− + 2𝑒(𝑐𝑎𝑡ℎ𝑜𝑑𝑒)

− → 3𝐼(𝑐𝑎𝑡ℎ𝑜𝑑𝑒)
−  

(2) 

(3) 

𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑)
+ +  

3

2
𝐼− → 𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑) +

1

2
𝐼3

− 
(4) 

𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑)
+ +  𝑒(𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟)

− →  𝑆(𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑) (5) 

𝐼3
− + 2𝑒(𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟)

− → 3𝐼(𝑎𝑛𝑜𝑑𝑒)
−  (6) 

 

1.3 Semiconductors 

     Semiconductor materials have been the raw material that has allowed the 

development of electronic and optoelectronic devices [18-20]. Their band gap 

energy ranges between those of conductors and insulators and, are highly 

sensitive to the temperature and the content of impurities. As a matter of fact the 

best semiconductors are almost perfect crystalline structures [19]. There exist 

basically two types of semiconductors: 

• Intrinsic: Elements as silicon and germanium who possess conductivities 

that are inherent of the pure element or material. 

• Extrinsic: Semiconductors where the conductivity depends completely of 

the impurities. We can subclassify them in type n and type p. Type n are 

generated when the material is doped by an impurity with five valence 

electrons, like arsenic, antimony, phosphorus, which are called donors. 

Type p are doped by elements with three valence electrons, like aluminum, 

boron, gallium, which are called acceptors. 
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     The electrical current through a section of a material is defined as the charge 

going through that section per time unit. Thus, in order current exists, it must exist 

particles transporting the charge; those mobile particles are called charge carriers. 

In semiconductors exist two types of charge carriers: conduction electrons, with 

negative charge and holes, with positive charge [20]. 

     The most important energy bands in semiconductors correspond to the outer 

shell, completely full, and the unfilled shell. The first is represented by an energy 

band called valence band; the other is called conduction band [21]. The energies 

of the valence electrons are grouped in an interval called valence band, which 

superior limit is Ev. The energies that the free electrons can have are also grouped 

in an interval called conduction band, being Ec its inferior limit. Between both 

bands extends the band gap energy; any electron can have an energy within that 

margin. The amplitude of the band gap is called Eg and is one of the most important 

parameters of a semiconductor. That energy, defined as Eg = Ec - Ev, is the 

minimum energy that must be given to a valence electron to set it free from the 

covalent bond. The bigger is the value of Eg, the stronger is the covalent bond and 

less electrons can break it; thus, the material is less conducting [22]. 

1.3.1 Semiconductors in DSSC 

     In DSSC, the most used semiconductor is TiO2 in anatase phase because of 

its large band gap and high conduction band edge, although the mobility of 

electrons through the nanoparticles is low (0.1-4 cm2Vs‒1) [23]. Therefore, multiple 

oxides have been used as transport layer in DSSC, among these oxides are ZnO 
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[24], SnO2 [25] and Nb2O5 [26], being ZnO the one that has shown the best 

performance. 

1.3.2 Zinc Oxide (ZnO) 

     ZnO is a wide band gap semiconductor with unique properties; it exhibits an 

electron mobility close to 1000 cm2Vs‒1 for single-crystal nanowires and 200-300 

cm2Vs‒1 for bulk material, it has a band gap energy of 3.37 eV for bulk materials 

[10,27] that can be easily tuned, it has high exciton binding energy (60 meV), it has 

good photostability, as well as high carrier mobility and conductivity and high 

piezoelectric reaction . Also, its preferential growth can be easily controlled to 

obtain diverse morphologies [28,29]. Thus far, ZnO has been synthesized in the 

shape of nanowires [30], nanorods [31], nanoflakes, nanotubes, three-like 

branched structures [23,32] and nanoflowers [33] among others. It has been used 

in many applications such as light emitting diodes (LEDs) [34], gas sensors [35], 

optical biosensors [36], photocatalysis [37], piezoelectric generators [38] and 

photovoltaic cells [24].  

     ZnO nanostructures have been synthesized by various methods as 

electrodeposition [39], chemical vapor deposition [40], thermal evaporation [41], 

sol-gel [42], microwave assisted [43], and hydrothermal methods [44], being the 

last named the most used. Hydrothermal method is the simplest of the mentioned 

for the synthesis of ZnO, due to the straightforward use of equipment or reactors 

and its short reaction times, which results in less energy consumption compared 

to other methods. Also, it is eco-friendly because it does not need hazardous 
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solvents. On the other hand, also by hydrothermal method it is possible to obtain 

different morphologies by adjusting various reaction parameters, such as pH, 

temperature and reaction time [45].  Although the hydrothermal synthesis of ZnO 

offers several advantages, it also presents improvement opportunities.  For 

example, to synthesize ZnO nanoflowers the reaction time range between 45 min 

to 48 h, plus most synthetic routes require the use of hazardous additives to control 

the crystal growth [32,46,47], which do not agree with the principles of green 

chemistry [48].  

     Recently, new reactors have been developed and commercialized for 

solvothermal/hydrothermal synthesis, like the Monowave 50 from Anton Paar. This 

conductively heated sealed-vessel reactor allows reaction times up to 60 min, 

temperatures up to 250 °C and 20 bar, with a control of the temperature and 

pressure through the total reaction time. Besides, the equipment provides stirring 

velocities from 0 to 1200 rpm. The heating and cooling mechanism of this reactor 

allows the achievement of the desired temperature in matter of minutes. It presents 

several advantages over traditional hydrothermal/solvothermal methods; with the 

Monowave 50 the heating is achieved a lot faster, while with traditional equipment 

the thermal equilibrium between the surrounding media and the inside of the 

reactor can take hours. The equipment provides the desired temperature inside 

the vial and can support a pressure build-up up to 20 bar, both can be seen on the 

temperature and pressure profiles provided on real time and displayed on the 

screen. Deceivingly, when using traditional equipment, we cannot support the 

pressure build-up nor stirring, and we cannot know the exact temperature inside 
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the reactor. As an additional advantage, products synthesized by traditional 

method will need less reaction time if synthesized in the Monowave 50. As a matter 

of fact, studies have been realized and have proved that the performance of the 

Monowave 50 can be compared to that of a microwave reactor [49].  

     To date, multiple morphologies of ZnO nanostructures have been used as a 

photoanode in DSSC including nanotubes, nanowires, nanotips, nanoflowers and 

nanosheets to name a few [50]. Although they haven’t surpassed the performance 

of TiO2 devices [27], they are still considered a promising alternative. Specifically,           

ZnO nanoflowers have contributed to the obtention of better efficiencies by its large 

superficial area for more dye absorption, efficient scattering centers for more light 

collection and direct transport pathways [51]. 

1.4 Nanotechnology 

     The concept of nanotechnology was envisioned by Richard Feynman, who in 

1959 gave a lecture called There´s plenty of room at the bottom [52]. In this lecture 

he talked about the manipulation of matter at an atomic scale and its possible 

applications, but nanotechnology started to be developed until the decade of 

1980’s.   

     When we talk about technology that involves materials at the nanoscale, we 

refer to nanotechnology. Scientists define nanomaterials as materials which have 

at least one dimension below 100 nm. When a material is changed from bulk scale 

to nanoscale, its chemical, thermal, mechanical, optical, electrical and magnetic 

properties differ, due to quantum confinement effects [53]. Nowadays, it has 
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applications in medicine, electronics, fuels, batteries, chemical sensors and solar 

cells, among others [54].  

1.4.1 Plasmonics 

     Plasmonics is the field of study that fuses the size of nanoelectronics and the 

speed of dielectric photonics. Its prime objective is to apply the optical properties 

presented by metallic structures, thereupon allowing the guidance and 

manipulation of light at a nanometric scale. A plasmon is the excitation of a 

collective electron motion inside the metal particle, phenomena that befalls when 

an individual noble metal nanoparticle interacts with visible light. 

     Ag and Au nanoparticles exhibit a unique spectral response, which is due to the 

phenomenon of surface plasmon resonance (SPR). SPR occurs when specific 

wavelengths of light can lead the conduction electrons in the metal to collectively 

oscillate, but because these electrons cannot propagate, localized surface 

plasmon resonance (LSPR) occurs [55]. 
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CHAPTER 2 

BACKGROUND 

     In 1991 O’Regan and M. Grätzel developed the first DSSC [56]. Using low to 

medium-purity materials through low-cost processes, they created a photovoltaic 

cell which exhibited a good energy-conversion efficiency. Their solar cell, which 

had a coating of 10 µm and was composed of nanoparticles of TiO2 impregnated 

by a charge-transfer dye, yielded a light-to-electric energy conversion of 7.1-7.9%, 

a current density (𝐽𝑆𝐶) of 1.15-1.3 mA cm‒2, open circuit voltage (𝑉𝑂𝐶) of 650-670 

mV and fill factor (FF) of 0.685-0.7. The high efficiency of the DSSC was attributed 

to the high surface area of the coating of TiO2 and the spectral characteristics of 

the dye. This breakthrough challenged conventional solid-state photovoltaic 

technologies by functioning at molecular and nanometric scale. Ever since, the 

primary structure of DSSC have remained the same, while the components’ 

materials have varied.  

     In 2014, A. Chandiran et al. [10] made a comparison of the photovoltaic 

performances and the electron transfer dynamics in DSSC, between anatase TiO2 

and wurtzite ZnO as photoanodes. They deposited different thickness of these 

semiconductors by atomic layer deposition (ALD) on a mesoporous insulating 
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template and used them as photoanodes. The best performing device they 

reported, with 4.4% of efficiency, had a 5 nm ZnO or TiO2 layer films, but other 

parameters varied. For ZnO DSSC the 𝐽𝑆𝐶 was 5.9 mA cm‒2, the 𝑉𝑂𝐶 was 896.4 

mV and the 𝐹𝐹 was 0.68, while for the TiO2 DSSC the obtained values were 7.0 

mA cm‒2, 930.2 mV and 0.68. Though their results showed that at an optimal 

thickness ZnO exhibits a performance like that of TiO2, the internal electron 

transfer properties differed. For the DSSC with a photoanode composed of ZnO 

the higher photogenerated electron transport rate enhanced the performance, 

while in the case of TiO2 the low recombination rate, the higher dye loading, and 

fast electron injection contributed to the efficiency. Their work confirmed that ZnO 

is beneficial for systems demanding faster electron transport. 

     Thus far, ZnO has been employed as a photoanode in diverse morphologies as 

Jiang et al. did in 2007 [57]. They developed a DSSC with a photoanode composed 

of wurtzite ZnO and made a study of the impact that the morphology of the 

semiconductor has on the overall solar cell efficiency. They grew ZnO nanoflowers 

and nanorods by a hydrothermal method directly onto the FTO coated glass 

substrate and used N719 dye and I⁻/I3⁻electrolyte in the DSSC. Their results 

showed that the DSSC with a photoanode composed of ZnO nanoflowers, with a 

tip diameter of 200 nm, had an efficiency of 1.9%, 𝐽𝑆𝐶 of 5.5 mA cm‒2, 𝑉𝑂𝐶 of 650 

mV and 𝐹𝐹 of 0.53, which was higher than the device composed of ZnO nanorods, 

which obtained 1.0% efficiency, 𝐽𝑆𝐶 of 4.5 mA cm‒2, 𝑉𝑂𝐶 of 630 mV and 𝐹𝐹 of 0.36. 

The higher efficiency was attributed to a better dye loading and light harvesting of 

the ZnO nanoflowers related to its larger superficial area. 
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     In 2014, B. Kilic et al. [58] developed a DSSC using ZnO nanoflowers, N719 

dye and I⁻/I3⁻ electrolyte, and as a reference they developed a solar cell with ZnO 

nanowires using the same dye and electrolyte. It is important to mention that the 

immersion time in the ethanolic dye solution was only of 30 min, this to prevent the 

dissolution of ZnO and the formation of Zn2+ agglomerates. The ZnO nanoflowers 

were grown on FTO substrate by hydrothermal method at a pH of 10, while ZnO 

nanowires were grown at a pH of 11. Their results showed an enhancement from 

2.22% efficiency (𝐽𝑆𝐶 of 0.336 mA cm‒2, 𝑉𝑂𝐶 of 748 mV and 𝐹𝐹 of 0.796) to 5.11% 

(𝐽𝑆𝐶 of 3.404 mA cm‒2, 𝑉𝑂𝐶 of 756 mV and 0.497 as FF) when replacing the 

nanowires by nanoflowers. They associated the efficiency increase to the larger 

surface area of the nanoflowers, which had an average diameter of 1-1.5 µm, 

because they provided more dye loading, thus enhancing electron injection and 

charge-transfer efficiency. Moreover, nanowires have gaps which results in lower 

internal surface area, leading to incomplete absorption of photons, while 

nanoflowers have branches that fill these gaps, bringing a direct pathway for 

electron transport. 

     Although the DSSC based on ZnO haven’t reached the efficiency of TiO2-based 

devices, they are still considered a promising alternative because of its easy 

crystallization and the facile synthesis of different morphologies. With the purpose 

of improving individual and combined properties, heterogeneous TiO2-ZnO 

materials have been used in photocatalytic reactions and photovoltaic processes. 

Due to the combination of the high activity of TiO2 and the high electron mobility of 

ZnO, TiO2-ZnO nanocomposites can provide improved performance. Moreover, 
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the alignment of the band gaps favors the separation of electrons and holes, hence 

suppressing the electron-hole recombination [59]. 

     In 2016, H. Cai et al. [60] synthesized ZnO-coated TiO2 nanotubes by ALD. The 

TiO2 nanotubes exhibited anatase phase while the ZnO were wurtzite phase. They 

varied the thickness of the ZnO coating to study if it had any influence in the 

electrochemical and photoelectrochemical results, and their results showed indeed 

a variation of the properties. The highest increase in photoelectrochemical activity 

that they obtained was 60%, and it was achieved when TiO2 nanotubes, with a wall 

thickness of 15 nm were coated by 2 nm of ZnO, this is 11% of ZnO. This 

improvement was attributed to the enhanced charge separation in the structure 

and the better crystallization of the ZnO and the TiO2 nanostructures due to its 

annealing. With a thicker coating of ZnO the improvement on the electrochemical 

and photoelectrochemical properties was not as high as with a thinner coating. 

     In 2018, Sajjad et al. [61] synthesized TiO2 and ZnO nanoparticles (with a 

diameter of 30 nm) by sol-gel method, and by chemical impregnation they 

combined both materials in different weight ratios (10, 15, 30 and 50%). The final 

heterostructures were used as photoanodes in DSSC, in conjunction with N719 

dye and I⁻/I3⁻ as electrolyte. Even though, all the proportions of ZnO/TiO2 showed 

an increased device efficiency when compared to bare TiO2, the most efficient 

DSSC had 15% of ZnO with an efficiency of 2.8% (𝐽𝑆𝐶 of 8.4 mA cm‒2, 𝑉𝑂𝐶 of 450 

mV and 𝐹𝐹 of 0.75). The better performance was attributed to the linkage of Ti-O-

Zn, which was probed by Fourier-transformed infrared spectroscopy (FT-IR). They 
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concluded that the ZnO performed as a passivation layer which reduced the 

electron recombination and enhanced the electron transport. 

     Khan et al. [62] , in 2018, assembled DSSC with stacked layers of ZnO/TiO2 

nanoparticles prepared by sol-gel method. They varied the layers in one, two and 

three spin-coating repetitions, which after being thermally treated were immersed 

in N719 dye. Its most efficient DSSC was the device with double layer of ZnO/TiO2, 

having a 𝑉𝑂𝐶 of 730 mV, 𝐽𝑆𝐶  of 2.89 mA cm‒2, 𝐹𝐹 of 0.64 and efficiency of 1.36%. 

Its better performance was attributed to the blocking layer behavior between the 

FTO and the electrolyte of the ZnO, which aided to reduce the electron 

recombination rate and facilitated its transport. However, the device with three 

layers showed worse performance (𝑉𝑂𝐶 of 750 mV, 𝐽𝑆𝐶 of 2.31 mA cm‒2, 𝐹𝐹 of 0.59 

and efficiency of 1.03%) due to its larger thickness which affected the movement 

of the electrons through the ZnO/TiO2 interfaces, thus resulting in more electron 

recombination.  

     In 2018, Bechelany et al. [63] synthesized by ALD ordered multilayers of urchin-

like ZnO nanowires, which were grown over polystyrene spheres of 1 and 5 µm. 

They varied the layers of ZnO from two to four layers. Finally, also by ALD they 

coated the structures with a 9-14 µm coating of TiO2, thus obtaining core-shell 

ZnO/TiO2 nanostructures. The final structures were used as a photoanode in a 

DSSC, using N719 dye as sensitizer and I⁻/I3⁻ as electrolyte. Even though, a larger 

content of ZnO increased the photon absorption, the photovoltaic performance of 

the device decreased. The decreased efficiency was attributed to the long distance 

traveled by the electrons, hence the device with one layer of ZnO (synthesized with 
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5 µm polystyrene spheres) was the most efficient with a 𝑉𝑂𝐶 of 670 mV, 𝐽𝑆𝐶 of 2.26, 

𝐹𝐹 of 0.45 and efficiency of 1.38%. Regarding the polystyrene spheres used for 

the synthesis of the urchin-like ZnO nanostructures, it was proved that with 5 µm 

spheres higher DSSC efficiency was achieved, due to a higher electrical 

connection between the urchin layers. 

     Above have been mentioned some of the most important reports on the 

incorporation of ZnO/TiO2 nanostructures in a DSSC, however in Table 1 are 

summarized more references. Herein are mentioned the morphology of the 

semiconductor nanoparticles, photovoltaic parameters of the device and the listed 

reference. It is important to mention that all the references listed below assemble 

the DSSC using N719 dye and I⁻/I3⁻ as electrolyte. 

Table 1. Photovoltaic parameters of DSSC composed of TiO2 and ZnO. 

Nanostructures 
𝑽𝑶𝑪 

(mV) 
𝑱𝑺𝑪 

(mA cm‒2) 
FF 

Efficiency 
% 

Ref. 

TiO2 nanotube/ TiO2/ ZnO  820 10.80 0.65 5.80 [64] 

ZnO nanowires/TiO2 core-shell 800 4.78 0.59 2.27 [65] 

Coaxial TiO2/ZnO nanotubes 650 7.28 0.60 2.80 [66] 

TiO2 nanotubes/ZnO 

nanoparticles 

720 6.77 0.65 3.17 [67] 

TiO2/ZnO core-shell 750 13.46 0.65 6.62 [68] 

TiO2/ZnO nanodonuts 780 16.70 0.69 9.00 [69] 

ZnO/TiO2 core-shell 760 6.30 0.60 3.10 [70] 
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     Recent researches have employed the LSPR from metallic nanoparticles with 

the objective of improving the performance of the DSSC by enhancing the light-

harvesting capacity of absorbers over a broader range of wavelengths. Among the 

metallic nanostructures that have been used are Au [55], Ag [71], and Al [72]. Here 

are summarized some of these works. 

     In 2012, S. Muduli et al. [73] compared two DSSC, one had a photoanode of 

TiO2-Au, while the other had TiO2. The DSSC characterization showed that the 

solar cell with TiO2-Au had an efficiency of 6.0%, 𝐽𝑆𝐶 of 13.2 mA cm‒2, 𝑉𝑂𝐶 of 700 

mV and 𝐹𝐹 of 0.56, being the efficiency and the 𝐽𝑆𝐶 higher than in the solar cell 

with TiO2 (5.0% efficiency, 12.6 mA cm‒2, 700 mV and 𝐹𝐹 of 0.61). They also 

characterized the DSSC by electrochemical impedance spectroscopy (EIS) to 

study the electron transport and charge recombination, obtaining a minor electron 

transfer resistance for the DSSC with Au NPs (11 Ω) compared to the reference 

DSSC (14.2 Ω). They concluded that the efficiency enhancement was due to a 

lower charge transfer resistance, as the results proved, including lower electron 

recombination between the TiO2/electrolyte interface in the solar cell with a Au 

nanoparticles-decorated photoanode. 

     N. Chander et al. [74] conducted a research to achieve the best performance 

of a DSSC based on a TiO2-Au photoanode in 2014. They varied the size and 

concentration of the Au nanoparticles to find the best combination. They 

synthesized Au nanoparticles that varied in size from 5 nm to 85 nm. Subsequently, 

they mixed TiO2 nanoparticles with different concentrations of Au nanoparticles 

(0.1 to 0.25 wt%). Their results showed that the best performing DSSC had 0.24 
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wt% of 36 nm Au nanoparticles, achieving photovoltaic parameters of 640 mV, 

16.7 mA cm‒2, 𝐹𝐹 of 0.68 and efficiency of 7.35%. They also proved that smaller 

(5 nm) and larger (85 nm) nanoparticles do not have a positive performance. 

     In 2014, S. Lim et al. [75] synthesized TiO2 nanoparticles decorated with Ag 

nanoparticles (2-4 nm) by simple chemical reduction method. The composites that 

they prepared were employed as photoanodes in a DSSC to determine if its 

presence lead to an enhancement. They prepared five photoanodes with different 

contents of Ag nanoparticles (0, 1, 2.5, 10, 20 wt%). The solar cell with 2.5 wt% 

Ag showed an efficiency of 4.86% (𝑉𝑂𝐶 of 770 mV, 𝐽𝑆𝐶 of 12.19 mA cm‒2 and 𝐹𝐹 of 

0.52), higher than one without it which achieved an efficiency of 2.57% (𝑉𝑂𝐶 of 710 

mV, 𝐽𝑆𝐶 of 6.71 mA cm‒2 and 𝐹𝐹 of 0.54). They confirmed that the incorporation of 

the Ag nanoparticles significantly influenced the optical properties in the region of 

400-500 nm due to the surface plasmon resonance effect. 

     In 2008, V. Dhas et al. [76] assembled a DSSC based on ZnO nanoflowers 

loaded with Au nanoparticles. They integrated the Au nanoparticles on ZnO 

nanoflowers by hydrothermal method. Structural and morphological 

characterization showed wurtzite phase and uniformly sized (3 μm) multiple 

branched structures, while Au nanoparticles whereupon 10 nm. They used N3 dye 

as sensitizer and I⁻/I3⁻ as electrolyte. The results from their photovoltaic 

characterization showed that the incorporation of Au nanoparticles enhanced the 

DSSC efficiency from 1.6% (𝑉𝑂𝐶 of 580 mV, 𝐽𝑆𝐶 of 8.75 mA cm‒2 and 𝐹𝐹 of 0.32) 

to 2.5% (𝑉𝑂𝐶 of 500 mV, 𝐽𝑆𝐶 of 15 mA cm‒2 and 𝐹𝐹 of 0.33). The incorporation of 

Au nanoparticles was seen to reduce the recombination centers present in the 
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oxygen vacancies of ZnO, also the LSPR of the metallic nanoparticles overlaps 

that of the dye, increasing the photon absorption. 

1.5 Background of Hydrothermal Synthesis of ZnO Nanoflowers 

     P. Fageria et al. [77] synthesized ZnO/Au and ZnO/Ag nanoparticles in 2014. 

Their objective was to modify the ZnO nanoflower surface with Au and Ag 

nanoparticles and prove if its incorporation enhanced the photocatalytic activity of 

the material. Their results showed that upon modification with noble metals the 

photocatalytic activity of ZnO significantly increases, this is due to the metallic sites 

acting as an electron trap on the semiconductor surface. To obtain the 

nanoparticles, first ZnO nanoflowers were obtained by a surfactant assisted 

method, followed by Ag and Au deposition using hydrazine hydrate as reducing 

agent. The nanoflowers were composed by petals with a diameter of 600 nm and 

width of 220 nm and presented wurtzite phase.  

     In 2012, Kochuveedu et al. [78] synthesized ZnO nanoflowers by a simple 

hydrothermal method using zinc acetate and NaOH as reagents and without using 

surfactants. They investigated the influence of the temperature on the morphology 

while the reaction time (45 min) was kept constant. The results showed that a 

morphological change occurred when the reaction temperature was changed 

among 140, 160 and 180 °C. As the reaction temperature increased, the flower 

diameter increased as well, while the petal length decreased. At 140 °C the 

nanoflowers had an average diameter of 8-9 µm. Their structural characterization 

showed that the ZnO nanoflowers had wurtzite phase. Also, they tuned the Eg of 
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the ZnO by a surface-plasmon-mediated approach by its decoration with Au 

nanoparticles. To decor the ZnO first the Au nanoparticles were synthesized by 

citrate reduction method, then the ZnO nanoflowers were dispersed and stirred in 

the Au nanoparticle solution for a given time. 

1.6 Hypothesis 

     The incorporation of Au nanospheres in combination with ZnO nanoflowers into 

the photoanode of a DSSC composed of TiO2, enhances its efficiency due to the 

plasmonic properties of the Au nanospheres in conjunction with the large 

superficial area of the ZnO nanoflowers. 

1.7 General Objective 

     To enhance the performance of a DSSC based on TiO₂ with ZnO nanoflowers, 

incorporating Au nanospheres. 

1.8 Specific objectives 

1. To synthesize flower-like ZnO nanostructures via hydrothermal method. 

2. To characterize ZnO nanostructures by X-ray diffraction (XRD), diffuse 

reflectance spectroscopy (DRS), field-emission scanning electron 

microscopy (FE-SEM) and four-point probe. 

3. To decorate the ZnO nanoflowers with Au nanospheres. 

4. To characterize the ZnO nanoflowers decorated with Au nanospheres by 

FE-SEM/energy dispersive spectroscopy (EDS) and inductively coupled 

plasma atomic emission spectroscopy (ICP-AES). 
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5. To synthesize a paste of commercial TiO₂ and ZnO nanoflowers decorated 

with Au nanospheres. 

6. To deposit the paste in the FTO by screen-printing to create a coating. 

7. To characterize the coating by mechanical profilometry, FE-SEM and XRD. 

8. To characterize the solar cell by: the obtention of its characteristic J-V curve 

obtaining the open-circuit voltage (𝑉𝑂𝐶), short-circuit photocurrent (𝐽𝑆𝐶), fill 

factor (FF) and efficiency. Furthermore, by electrochemical impedance 

(EIS) and intensity modulated photovoltage and photocurrent (IMVS/IMPS) 

spectroscopies. 

9. To evaluate the enhancement in the efficiency of a DSSC with Au 

nanospheres. 

10. To determine the proportion of ZnO nanoflowers/TiO2 with and without Au 

nanospheres exhibiting the best performance.  
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CHAPTER 3 

METHODOLOGY 

 
3.1 Hydrothermal synthesis of ZnO nanoflowers 

     For the synthesis of ZnO nanoflowers two different approaches were 

conducted: 

     For the first method, a 0.3 mol/L zinc acetate dihydrate (Zn(CH3COO)2·2H2O, 

J.T. Baker, 99.8%) solution and a 3 mol/L NaOH (DEQ, 99%) solution were 

prepared. Next, 25 mL of the zinc acetate solution were mixed with 7.7 mL of the 

NaOH solution to obtain a pH of 13.2, the mixing was done under stirring at 300 

rpm. 5 mL of this mixture were transferred to a vial, a magnetic stirrer was added, 

and the vial was sealed with a cap to be treated in a conductively heated sealed-

vessel reactor model Monowave 50 (Anton Paar) at a temperature of 90 °C for 30 

min. The obtained powder was centrifuged and washed with ethanol three times, 

and once with water before being dried at 100 °C for 2 h.  

     For the second method, two aqueous solutions were prepared: a 0.012 mol/L 

zinc acetate dihydrate (Zn(CH3COO)2·2H2O, J.T. Baker, 99.8%) solution, which 

was stirred for 5 min under 360 rpm, and a 6.9 mol/L NaOH (DEQ, 99%) solution.           
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Next, 5 mL of the zinc acetate solution and 0.2 mL of the NaOH solution were 

mixed in a vial. A magnetic stirrer was added to the vial and it was sealed with a 

cap to be treated in a conductively heated sealed-vessel reactor model Monowave 

50 (Anton Paar) at a temperature of 140 °C and 2 bar for 5, 10, 15, and 30 min. 

The obtained powder was centrifuged and washed with ethanol three times, and 

once with water before being dried at 100 °C for 2 h. 

3.2 ZnO characterization 

     XRD was performed using a Bruker D2 Phaser powder diffractometer at room 

temperature with Cu Kα radiation (1.5405 Å) within Bragg angle 2θ from 5° to 90° 

to determine the crystalline structure of the ZnO nanoflowers. Also, the crystallite 

size was obtained applying the Scherrer equation (Eq. 7) [79] using the data from 

the patterns.  

where 𝜏 is the mean size of the crystal domains, 𝐾 is a dimensionless shape factor 

(0.94), 𝜆 is the wavelength of the X-ray irradiation, 𝛽 is the line broadening at half 

the maximum intensity and 𝜃 is the Bragg angle. 

     Also, FE-SEM micrographs were obtained using a FEI Nova NanoSEM 200 

microscope operated at 12 kV using a Helix detector to examine the morphology 

of the ZnO nanoflowers. In addition, the data obtained from a diffuse reflectance 

UV-Vis spectrophotometer in DRS mode (Nicolet Evolution 300 PC) were used to 

calculate the band gap energy of ZnO nanoflowers through the Kulbelka-Munk 

equation (Eq. 8) [80]:  

𝜏 =  
𝐾 𝜆

𝛽 cos 𝜃
 

 (7) 
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𝐹(𝑅) =
(1 − 𝑅∞)2

2𝑅∞
 

(8) 

where 𝑅 is the absolute reflectance. 

     After XRD, FE-SEM and DRS, the ZnO powders were introduced into a paste 

to deposit a coating over a glass substrate and perform a four-point probe test to 

obtain the sheet resistance of the material. The procedure for the paste synthesis 

was the next: 0.0200 g of ethylcellulose (Aldrich, viscosity 100 cP, 48% ethoxyl) 

were dissolved in 0.4060 g of terpineol (Aldrich 99.5%, mixture of isomers, 

anhydrous), under vigorous stirring and a temperature of 90 °C. Then, 0.0500 g of 

ZnO were dispersed in 1 mL of ethanol. Both mixtures were combined and stirred. 

The resulting mixture was heated in a 90 °C heating bath and stirred under 60 rpm 

until constant volume. The pastes were coated glass substrates which were 

previously cleaned in successive ultrasonic baths of acetone, isopropanol and 

deionized water for 10 min each, and they were let dry in air. When the substrates 

were dry, the pastes were deposited by doctor blade method using a tape mask to 

obtain an area of 1 cm2. Thereafter, the glass substrates were thermally treated at 

450 °C for 40 min to eliminate the organic compounds of the paste. The four-point 

probe was conducted on the coatings with a Hewlett Packard multimeter 3478A to 

obtain the sheet resistance.  

3.3 Decoration of ZnO nanoflowers with Au nanoparticles 

     For the decoration of ZnO nanoflowers three methods were tested; 

impregnation, in situ synthesis in Monowave 50 and in situ synthesis in hot plate. 
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3.3.1 Impregnation method 

     For the impregnation method, first the Au nanoparticles were synthesized by 

citrate reduction method: a 5 mL of a 0.25 mmol/L HAuCl4 (Aldrich, hydrogen 

tetrachloroaurate trihydrate ≥99%) solution was heated until boiling temperature 

under stirring. When boiling 250 µL of a 1 w/v% sodium citrate (Aldrich, 

Na3C6H5O7·2H2O ≥99%, FG) solution were added. The mixture was left boiling 

under stirring for 20 min and let cool before being diluted to 5 mL. Next, 0.0083 g 

of ZnO nanoflowers were dispersed in the Au nanoparticles solution using an 

ultrasonic bath, a stirring bar was added, and the dispersion was stirred in 

darkness for 4 h. The dispersion was centrifuged, and the obtained powders were 

washed once with distilled water and dried at 100 °C for 90 min. 

3.3.2 Synthesis in situ in Monowave 50 

     The synthesis of Au nanoparticles in presence of ZnO nanoflowers was first 

essayed in the Monowave 50 as follows: 5 mL of a 0.25 mmol/L HAuCl4 (Aldrich, 

hydrogen tetrachloroaurate trihydrate ≥99%) solution and 0.0083 g of ZnO 

nanoflowers were introduced into the vessel and dispersed using an ultrasonic 

bath. Next, 250 µL of 1 w/v% sodium citrate (Aldrich, Na3C6H5O7·2H2O ≥99%, FG) 

solution and a stirring bar were added, the vessel was sealed and introduced into 

the reactor. The conditions of the conductively heated sealed-vessel reactor were 

100 °C for 20 min with a stirring of 600 rpm. The obtained dispersion was 

centrifuged, and the powders were washed once with distilled water and dried at 

100 °C for 90 min.  
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3.3.3 Synthesis in situ in hot plate 

     For the in situ synthesis in a hot plate, different weights of ZnO nanoflowers 

were decorated to maintain the total amount of Au nanoparticles similar in all the 

DSSC. For the DSSC containing 5% of ZnO, 0.0051 g of ZnO were dispersed in 5 

mL of a 0.25 mmol/L HAuCl4 (Aldrich, hydrogen tetrachloroaurate trihydrate ≥99%) 

solution and heated to boil under stirring. When the boiling temperature was 

reached, 250 µL of 1 w/v% sodium citrate (Aldrich, Na3C6H5O7·2H2O ≥99%, FG) 

solution were added, and the mixture was left at boiling temperature and stirring 

for 20 min. The dispersion was centrifuged and washed with distilled water once 

before being dried at 100 °C for 2 h. For the others DSSC the same procedure was 

followed but the content of ZnO varied, thus the quantity of HAuCl4 and sodium 

citrate also changed. For the DSSC containing 10% of ZnO 0.0051 g were 

decorated in 2.5 mL of HAuCl4 0.25 mmol/L and 125 µL of 1 w/v% sodium citrate 

solution were added, and for the one containing 15% of ZnO 0.0061 g, 2 mL of 

HAuCl4 and 100 µL of sodium citrate were needed. 

3.4 Characterization of ZnO/Au nanoflowers 

     The morphology of the ZnO nanoflowers decorated with Au nanoparticles was 

obtained by FE-SEM in a FEI Nova NanoSEM 200 microscope, operated at an 

accelerating voltage of 15 kV using a Helix detector. The elemental composition 

was obtained by EDS using an INCA X-Sight detector coupled to the microscope. 

The Au nanoparticles concentration was measured by ICP-AES in a Thermo 

Electron-ICAP 6500 spectrometer. The samples for ICP-AES were prepared 
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dissolving 21 mg of sample in 12 mL of aqua regia (HCl/HNO3, 3:1), using open 

vessels in a hot plate (70-85 °C) for the acid digestion. 

3.5 Synthesis of TiO2 and ZnO or ZnO/Au nanoflowers paste 

     To prepare the paste first 0.15 g of ethylcellulose (Aldrich, viscosity 100 cP, 

48% ethoxyl) were mixed with 10 mL of ethanol and the mixture was treated in an 

ultrasonic bath for 1 h to dissolve the solid. The powder mixture (0.5 g) was also 

mixed with 10 mL of ethanol and it was dispersed in an ultrasonic bath also for 1 

h. Next, 4.1 g of terpineol (Aldrich 99.5%, mixture of isomers, anhydrous) were 

added to the dispersion of the powders in ethanol and again it was treated for 1 h 

in an ultrasonic bath. Both mixtures, the dissolution of ethylcellulose in ethanol and 

the dispersion of the powders with terpineol and ethanol, were combined and again 

treated in an ultrasonic bath for 1 h, before being reduced in a rotary evaporator 

(Buchi R-210) with a heating bath (Buchi B-491) at 45 °C and a vacuum pump 

(Buchi V-700) at 175 mPa. 15 mL of ethanol were removed from the paste. In Table 

2 are specified the name of the sample and its proportion of ZnO nanoflowers, TiO2 

nanoparticles and Au nanoparticles. 
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Table 2. Specification of proportion of ZnO nanoflowers, TiO2 nanoparticles and 
Au nanoparticles for each sample. 

Name of the 
sample 

Proportion of ZnO 
nanoflowers  

(wt%) 

Proportion of TiO2 
nanoparticles  

(wt%) 

Amount of Au 
nanoparticles  

(ppm) 

T 0 100 0 

5Z-95T 5 95 0 

5Z-95T-601A 5 95 601 

5Z-95T-550A 5 95 550 

5Z-95T-418A 5 95 418 

10Z-90T 10 90 0 

10Z-90T-1099A 10 90 1099 

15Z-85T 15 85 0 

15Z-85T-1255A 15 85 1255 

 

3.6 Counter electrode preparation 

     The counter electrode of each DSSC was a platinum coated FTO (8 Ω/sq). First, 

two holes were drilled in the substrate with a rotary tool (Dremmel), this is to inject 

the electrolyte during the DSSC assembly. Next, a drop of precursor of platinum, 

Platisol T (Solaronix), was applied to an area of 0.5 cm2. The procedure was 

repeated 3 times, letting dry between each deposition. To activate the platinum 

coating, the FTO was thermally treated at 450 °C for 30 min. 
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3.7 Paste deposition 

     FTO substrates (15 Ω/sq) were washed in ultrasonic baths of distilled water and 

ethanol for 10 min each, and in isopropanol for 20 min and let dry in air. The pastes 

were deposited by screen printing method using an ATMA AT-25PA printer and a 

screen of mesh 90 (mesh opening 62 μm). Several layers were deposited to obtain 

a final thickness of 11 μm (measured with a profilometer KLA Tencor D-120 with a 

speed of 0.40 mm/s, range of 100 μm and a force of 0.03 mg). Between each layer 

of paste the substrate was heated at 120 °C for 10 min in a hot plate, and when 

cooled another layer was deposited. When the desired thickness was reached, the 

substrates were thermally treated to eliminate the organic compounds in the paste 

as depicted in Table 3. 

Table 3. Steps of thermal treatment of the electrodes. 

Initial 
temperature 

(°C) 

Final 
temperature 

(°C) 

Time the 
temperature was 

reached         
(min) 

Time the 
temperature 

was hold 
(min) 

25 325 105 10 

325 375 20 10 

375 450 20 10 

450 530 30 60 

530 80 120 Overnight 
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3.8 Electrolyte preparation 

     The electrolyte  consisted of 0.1 mol/L LiI (Aldrich, 99.9%), 0.1 mol/L GuSCN 

(Aldrich, ≥97%), 0.05 mol/L I2 (Aldrich, ≥99.8), 0.5 mol/L 4-tert-butylpyridine (TBP, 

Aldrich 96%) and 0.6 mol/L 1,2-dimethyl-3-propylimidazolium iodide (DMPII, 

Solaronix) which were added to a mixture 15:85 v/v% of valeronitrile (Aldrich, 

99.5%) and acetonitrile (Aldrich, 99.8%) respectively. The solution was sonicated 

in an ultrasonic bath for 15 min.  

3.9  DSSC assembly 

     After the thermal treatment, the substrates (at 80 °C) were immersed in a 0.3 

mmol/L ethanolic solution of N719 dye (Aldrich, 95%) for 24 h. After the time had 

passed, the substrates were rinsed with ethanol to eliminate any excess dye 

molecules. A sandwich configuration was made using the photoelectrode and 

counter electrode, putting a frame of Surlyn (60 µm, Dupont) and they were 

clamped together. The DSSC was introduced in an oven at 215 °C for 100 s to 

seal the electrode and counter electrode. When cooled, the electrolyte was 

injected through the holes in the counter electrode, and then they were sealed 

using Surlyn and a glass slide. The conductive side of the substrates was painted 

with a conductive Ag paint (SPI Supplies). 

3.10 Electrode characterization 

     To obtain the crystalline structure of the semiconductor oxide in the electrodes, 

they were characterized by XRD using a Siemens D-5000 diffractometer at room 
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temperature with Cu Kα radiation (1.5405 Å) within Bragg angle 2θ from 20° to 80°. 

To determine the coupling of the materials in the electrode its FE-SEM images 

were obtained with a Jeol JSM 7600F microscope operated at 5 kV using a 

secondary electron detector (SEI) and at 15 kV using a low-angle backscattered 

detector (LABE). The larger accelerating voltage was used to identify the Au 

nanoparticles.  

3.11 DSSC characterization 

     The photovoltaic characterizations were done under a set-up consisting of a 

450 W ozone-free Xe-lamp (Newport corporation) with a water filter, calibrated to 

an irradiance of 100 mW cm‒2 on the surface of the solar cell using an Air Mass 

1.5 Global (AM 1.5 G) optical filter (Newport Corporation). The intensity was 

calibrated using a certified 4 cm2 monocrystalline silicon reference cell with 

incorporated KG-5 filter. The J-V curves were obtained using a Gamry 

potentiostat/galvanostat/ZRA 3000. From the data of the J-V curves were obtained 

the 𝑉𝑂𝐶 and 𝐽𝑆𝐶 , and were calculated the 𝐹𝐹 and efficiency through the Eq. 9 and 

10 [81]: 

𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝐽𝑆𝐶𝑉𝑂𝐶
 

(9) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐽𝑆𝐶𝑉𝑂𝐶𝐹𝐹

𝐴 𝑃𝑠𝑢𝑛
× 100 

(10) 
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     Where 𝑃𝑚𝑎𝑥 is defined as the product of Jmax and Vmax is the maximum power, A 

is the active area of the solar cell and 𝑃𝑠𝑢𝑛 is the light intensity per unit area (100 

mW cm‒2 in standard conditions). 

     To obtain information about the internal processes of the solar cell EIS, IMVS 

and IMPS measurements were performed in an Autolab PGSTAT302N/FRA2 set-

up. The EIS measurements were obtained in dark with an applied DC bias voltage 

set at the 𝑉𝑂𝐶 of the DSSC and an AC amplitude of 10 mV and the frequency 

ranged from 10-1 to 105 Hz. The resulting EIS spectra (Nyquist plots) were analyzed 

using Z-View software to simulate an equivalent electrical circuit, obtaining the 

recombination resistance (𝑅𝐶𝑇) and chemical capacitance (𝐶𝜇), and the electron 

lifetime (𝑇1/2) which were calculated through the Eq. 11 [82]. IMVS measurements 

were obtained at modulation frequencies ranging from 1 mHz to 10 kHz, using a 

red LED (625 nm) to illuminate the DSSC, which also served as the bias 

illumination and the small sinusoidally modulated probe beam. IMPS spectra were 

also obtained under the illumination of a red LED. The Eq. 12 [83] was used to 

calculate the 𝑇1/2 using the data from the IMVS spectra, and Eq. 13 [84] allow the 

calculation of the chemical diffusion coefficient:    

𝑇1/2 = 𝑅𝐶𝑇𝐶𝜇 (11) 

𝑤𝑚𝑎𝑥 = 𝑇1/2
−1  (12) 

𝐷𝑛 =
𝐿2𝑤𝑚𝑎𝑥

2.35
 

 (13) 
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     Being 𝑤𝑚𝑎𝑥 the top of the obtained arc in IMVS and IMPS and L the thickness 

of the semiconductor coating. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 First synthesis method of ZnO nanoflowers 

4.1.1 FE-SEM 

     Since a specific morphology was desired, the first characterization for the 

samples was FE-SEM followed by XRD and DRS. 

     The first synthesis method essayed for the obtention of flower-like morphology, 

method 1, was based on the report by Shin et al. [85]. Since they used a three-

necked refluxing pot, it had heating and stirring as the conductively heated sealed-

vessel reactor (Monowave 50), that was the reason this method was chosen for its 

reproduction. Their method was reproduced, using the same time and temperature 

they reported, 30 min and 90 °C, the only variation was the equipment used. The 

Fig. 3 shows the FE-SEM micrographs of the nanoflowers obtained by the method 

1. The nanoflowers are composed of thin layers forming a rose-dessert like 

morphology with a diameter of 800 nm. This first experiment probed that already 

established synthetic routes, even though they use simultaneous heating and 

stirring, are not reproducible in the conductively heated sealed vessel-reactor due 

to the mechanism of the reactor. 
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Figure 3. a) 100,000X and b) 60,000X FE-SEM micrographs of ZnO rose-desert 
nanoflowers. 

 

     Even though the morphology was not the desired XRD, DRS and four-point 

probe were performed to know the structural, optical and electrical properties of 

the material.  

4.1.2 XRD 

     Fig. 4 shows the XRD pattern obtained, as observed all the diffraction peaks 

agree with the JCPDS card 00-036-1451 corresponding to wurtzite structure 

(hexagonal), without displacements and showing high crystallinity. No others 

diffraction peaks are visible, therefore there are not impurities detectable by XRD 

in the sample. Also, its crystallite size was obtained using the Scherrer equation 

(Eq. 7), giving a result of 26.9 nm.  
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Figure 4. XRD pattern of ZnO rose-desert nanoflowers and JCPDS 00-036-1451 
correspondent to wurtzite phase. 

 

4.1.3 DRS and four-point probe  

     In the Fig. 5a we can observe the DRS of the sample, which data serve to obtain 

the band gap energy of the sample through the Kubelka-Munk function (Fig. 5b) 

(Eq. 8) obtaining a value of 3.21 eV, which agrees with the values reported for ZnO 

nanostructures [86].  
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Figure 5. a) DRS spectra of ZnO rose-desert nanoflowers and b) Tauc plot of 
ZnO rose-desert nanoflowers. 

 

     Finally, the sheet resistance of an electrode composed of this nanoflowers was 

obtained through a four-point probe, obtaining a result of 45 MΩ/sq.  

4.2 Second synthesis method of ZnO nanoflowers 

     For the method 2, a higher temperature was chosen, 140 °C, but the initial time 

remained the same (30 min). The reaction temperature was chosen based on the 

formation mechanism, explained below, previously reported by various authors  

[37,78,87–90], which suggest the need of a high temperature to obtain nanoflowers 

composed of rods.  
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4.2.1 FE-SEM 

     The Fig. 6 shows FE-SEM micrographs in low and high magnifications. As 

probed by the Fig. 6a the nanoflowers are grown in high quantity and in a 

homogeneous form, due to the stirring mechanism of the conductively heated 

sealed vessel reactor. As seen in Fig. 6b (high-magnification) the nanoflowers are 

composed of eight uniform petals, six petals in the same plane and two orthogonal 

to it, all growing from a nucleus. The petals have the shape of rods with pyramidal 

tips, each petal having a width of 370 ± 50 nm and a length of 770 ± 80 nm, and 

the total flower ensemble has a length of 1780 ± 150 nm.   

 

Figure 6. a) 15,000X and b) 100,000X FE-SEM micrographs of ZnO nanoflowers 
synthesized for 30 min at 140 °C. Adapted from [91] Copyright Elsevier 2019. 

 

     Next, to shorten the reaction times and to find out the minimum time needed to 

obtain ZnO nanoflowers, three more synthesis were carried out at the same 

temperature (140 °C) with reaction times of 5, 10 and 15 min.  
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     In the Fig. 7, 8 and 9, we can observe the FE-SEM micrographs corresponding 

to these experiments. As observed from the high-magnification micrographs (Fig. 

7b, 8b and 9b) all the nanoflowers are composed by eight petals, six in the same 

plane and two orthogonal to it, so the morphology does not change along the 

reaction time. In the Table 4 are summarized the dimensions of the nanoflowers, 

which were obtained with the software ImageJ. As observed in the Table 4, the 

petals composing the nanoflowers grow along the reaction time, going from a 

length of 714 ± 81 nm and a width of 288 ± 27 nm at 5 min to 772 ± 85 nm and 370 

± 50 nm in length and width respectively at 30 min, which agrees with the formation 

mechanism explained below. In the Fig. 8b we can observe a nanoflower that has 

grown from a twin nucleus, therefore two rods with pyramidal tips have grown from 

the center instead of one. As seen in Fig. 7a, 8a and 9a (low magnification 

micrographs), in all cases the nanoflowers are grown in high quantity as well as 

the ones synthesized for 30 min. 

 

Figure 7. a) 10,000X and b) 160,000X FE-SEM micrographs of ZnO nanoflowers 
synthesized for 5 min. Adapted from [91] Copyright Elsevier 2019. 
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Figure 8. a) 10,000X and b) 120,000X FE-SEM micrographs of ZnO nanoflowers 
synthesized for 10 min. Adapted from [91] Copyright Elsevier 2019. 

 

Figure 9. a) 10,000X and b) 120,000X FE-SEM micrographs of ZnO nanoflowers 
synthesized for 15 min. Adapted from [91] Copyright Elsevier 2019. 

 

4.2.2 Formation mechanism 

     The formation mechanism of the ZnO nanoflowers starts with the Zn2+ and OH⁻ 

ions, provided by the Zn(OAc)2 and the NaOH, respectively. The next step is the 

formation of Zn(OH)2 (Eq. 13), which needs a strong alkaline medium to form, that 
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is why the molarity of NaOH must be high to supply enough OH⁻ ions. When the 

supersaturation exceeds the critical value a hexagonal nucleus composed by 

Zn(OH)2 is formed. With the aid of the high temperature, active sites form in each 

corner of the hexagonal nucleus, attracting Zn(OH)4
2⁻ ions, which eventually 

agglomerate and form the petals (Eq. 14). Thus, the Zn(OH)2 ion and the 

Zn(OH)4
2¯ ions became the nucleus and the building block respectively. Finally, 

upon decomposition of the Zn(OH)4
2¯  ion, ZnO forms (Eq. 15) [37,78,87–90]. As 

seen by the FE-SEM micrographs, within 5 min of reaction time the nucleation and 

petal growth has already happened, but the crystal growth continues along the 

reaction time, as depicted by the scheme of Fig. 10. 

Zn2+ + 2OH¯ → Zn(OH)2 (13) 

Zn(OH)2 + 2OH¯ → Zn(OH)4
2¯ (14) 

Zn(OH)4
2¯ → ZnO + H2O + 2OH¯ (15) 

 

 

Figure 10. Formation scheme of ZnO nanoflowers. 
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4.2.3 XRD 

     The XRD patterns of all the samples synthesized at 140 °C are shown in Fig. 

11. As observed, the diffraction peaks of all the samples agree with the JCPDS 

card 00-036-1451 corresponding to wurtzite (hexagonal) structure. All the patterns 

exhibit its principal diffraction peaks at 31.7°, 34.4° and 36.2°, corresponding to the 

(100), (002) and (101) crystallographic planes, respectively. In any pattern we 

observe diffraction peaks non-corresponding to the wurtzite structure, therefore 

there are not impurities detectable by XRD analysis. Also, there are not 

displacements of the peaks, indicating there are not distortions in the crystalline 

structure [92]. Nonetheless, the pattern of the sample synthesized for 5 min 

exhibits wider peaks than the others, this is due to its minor size, as confirmed by 

FE-SEM analysis. Also, the crystallite size of all the samples was obtained through 

the Scherrer equation (Eq. 7), obtaining a crystallite size of 14.7 nm for the sample 

synthesized for 5 min, 22.2 nm for the 10 min sample, 24.1 for the 15 min sample, 

and 24.0 for the 30 min sample. These results indicate that after 15 min of reaction 

time the crystallite growth stops, and they corroborate the minor crystallite size 

predicted for the 5 min sample by the wider peaks in XRD.  
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Figure 11. XRD patterns of ZnO nanoflowers synthesized at different times and 
JCPDS 00-036-1451 correspondent to wurtzite phase. Reproduced from [91] 

Copyright Elsevier 2019. 

4.2.4 DRS 

     The DRS spectra of all the samples synthesized at 140 °C was obtained (Fig. 

12), and its data was used to obtain the optical band gap energy. In the Fig. 13 are 

observed the Tauc plots (ahν)2 vs hν calculated through the Kubelka-Munk function 

(Eq. 8). The graphs shown in Fig. 13 have been normalized for better visualization, 

and the factors used are indicated in the inset.  
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Figure 12. DRS spectra of ZnO nanoflowers synthesized at different times. 
Adapted from [91] Copyright Elsevier 2019. 

 

Figure 13. Tauc plots of ZnO nanoflowers synthesized at different times 
multiplied by a specific factor (shown in the inset) to normalize. Adapted from [91] 

Copyright Elsevier 2019. 
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     The optical band gaps of the ZnO nanoflowers varies between 3.10 to 3.28 eV, 

which is different from the value reported for bulk ZnO (3.37 eV) [93], nonetheless, 

the reported optical band gaps for ZnO nanostructures most of the times are minor 

to the value reported for bulk structures [94]. The variation in the band gap energy 

of ZnO nanostructures has been attributed to crystallographic defects, such as 

oxygen vacancies, zinc interstitial sites and dislocations, also to doping and even 

quantum confinement effects [95]. In our case, the variation in the band gap energy 

cannot be attributed to quantum confinement effects, since the material 

dimensions are bigger than the radius of Wannier-Mott exciton for the ZnO (2.34 

nm) [95], nor to doping elements, so the narrowing could be attributed to oxygen 

vacancies. 

4.2.5 Four-point probe  

     Since only one ZnO nanoflower had to be chosen for the DSSC assembly, it 

was decided to perform an electrical characterization to decide which one to use. 

The selected method was four-point probe to obtain the sheet resistance of an 

electrode composed of each sample. The one with the minor sheet resistance 

would be the selected. The results are shown in Table 4, and they show a decrease 

in the sheet resistance along the reaction time, going from 38.5 to 0.00344 MΩ/sq 

from 5 to 30 min respectively. As it is known, the n-type conductivity of ZnO is due 

to its practically unavoidable point defects. Even the smallest quantity of defects, 

such as oxygen vacancies or interstitial sites of zinc, alter the carrier-hole 

equilibrium, thus affecting the conductivity. The decrease in the sheet resistance 
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could be attributed to a better crystallinity as the reaction time goes on, a smaller 

quantity of point defects altogether with a bigger crystallite size, which agrees with 

the XRD results.  

     Therefore, the ZnO nanoflower synthesized for 30 min was chosen for further 

experiments, although its reaction time is not the shortest, it presents the desired 

properties for its application in a DSSC. 

Table 4. Dimensions, band gap energy and sheet resistance of ZnO nanoflowers 
synthesized at different times. 

Reaction 
time 
(min) 

Crystallite 
size    
(nm) 

Petal 
width 
(nm) 

Petal 
length 
(nm) 

Flower 
length  
(nm) 

Band 
gap 

energy 
(eV) 

Sheet 
resistance 
(MΩ/sq) 

5 14.7 288 ± 27 714 ± 81 1523 ± 151 3.21 38.5 
10 22.2 345 ± 45 740 ± 90 1674 ± 180 3.27 18.5 
15 24.1 327 ± 48 772 ± 57 1653 ± 154 3.10 0.0102 
30 24.0 370 ± 50 772 ± 85 1785 ± 150 3.28 0.00344 

 

4.3 ZnO nanoflowers decoration with Au nanoparticles 

     Three methods of decoration of the ZnO nanoflowers with Au nanoparticles 

were tested; decoration by impregnation and synthesis in situ of the Au 

nanoparticles in ZnO nanoflowers using the Monowave 50 and in hot plate. 

     The first method tested was the impregnation one. For this method the Au 

nanoparticles were synthesized by citrate reduction method, and its UV-Vis 

spectrum is shown in Fig. 14. The UV-Vis spectrum is characteristic of Au 

nanoparticles with a diameter of 40 nm, and the wide band is due to the nanometric 

size of the particles [96]. To decorate the ZnO nanoflowers an specific quantity of 
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ZnO was mixed with a certain quantity of the Au nanoparticles, and the dispersion 

was stirred for 4 h, as further explained in the methodology chapter.  

 

Figure 14. UV-Vis spectrum of Au nanoparticles synthesized by citrate reduction 
method. 

 

     The Fig. 15 shows a photograph of the obtained powder and the remaining 

solution of Au nanoparticles after the stirring time. As seen in Fig. 15 the powders 

do not have a strong color, this in an indication that the impregnation method is not 

highly effective, also the Au nanoparticles solution presents almost the same color 

it had before the stirring.  
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Figure 15. Photographs of the ZnO nanoflowers after the stirring in Au 
nanoparticles solution (left) and Au nanoparticles solution (right). 

 

     Therefore, the second and third method were tested. These methods were 

tested in the conductively heated sealed-vessel reactor (Monowave 50) and in 

conventional synthesis in hot plate. For the experiment carry out in the reactor the 

Au nanoparticles adsorption on the ZnO nanoflowers was lower than the 

conventional synthesis. In the Fig. 16 it is shown the color difference between both 

experiments, the ZnO nanopowders are precipitated and the liquid is the 

supernatant. Based on the color difference of the Au nanoparticles solution, it is 

inferred that with the conventional synthesis the Au nanoparticles are grown onto 

the surface of the material.  
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Figure 16. Photographs of the dispersion of ZnO nanoflowers and Au 
nanoparticles synthesized in the Monowave 50 (left) and in hot plate (right). 

 

     As seen in the bottom of the right tube in Fig. 16, the obtained ZnO powders 

have purple color after the decoration, color given by the wavelength absorption of 

the LSPR of Au nanoparticles, while the supernatant is colorless. This means that 

most of the Au nanoparticles are grown in the surface of the ZnO nanoflowers. 

Even though the color of Au nanoparticles in dispersion goes from red to wine, 

when absorbed onto the ZnO, the powders do not present the same characteristic 

color, this phenomenon is due to the dielectric constant of the surrounding media 

[97]. 
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     Since the desired parameter to vary in the DSSC was the percentage of ZnO 

nanoflowers, not the percentage of Au nanoparticles, and only the ZnO would be 

decorated with Au nanoparticles, it was decided to vary the quantity of ZnO that 

was introduced into each in situ synthesis of Au nanoparticles. Therefore, the 

overall quantity of Au nanoparticles would remain similar in the DSSC. Thus, the 

ZnO nanoflowers meant for the DSSC containing 5% of ZnO/Au, would have more 

adsorbed Au than the ones meant to the DSSC with 15% of ZnO/Au. These 

resulting samples were characterized by ICP-AES and EDS. 

4.3.1 ICP-AES 

     To determine the amount of Au nanoparticles grown into the ZnO nanoflowers 

an ICP-AES analysis was performed. The results showed that as the quantity of 

ZnO present in the chemical reduction process (synthesis of the Au nanoparticles) 

increased, the concentration of Au was minor, as expected. Therefore, the results 

were 12,016 (sample 12A); 10,991 (sample 10A) and 8,366 (sample 8A) mg/Kg 

(ppm) for the three samples prepared. Since the ZnO/Au nanoparticles were added 

in 5, 10 and 15% respectively in the DSSC, the final concentration of Au in the 

DSSC was 601, 1099 and 1255 mg/Kg (ppm), respectively. 

4.3.2 FE-SEM/EDS 

     In the Fig. 17, 18 and 19 are shown high-magnification FE-SEM micrographs 

for the samples 12A, 10A and 8A, respectively. As expected, the Au nanoparticles 

are grown into the surface of the ZnO dispersedly without agglomerations. The 

average diameters of the Au nanoparticles were obtained using ImageJ software, 
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and the results showed that the particles decreased in size from 26.15 ± 4.74 nm 

for the sample 12A, to 17.28 ± 2.83 nm for the 10A sample and 14.12 ± 2.45 nm 

for the 8A sample. Besides being smaller, the Au nanoparticles also are present in 

minor concentration as observed in the FE-SEM micrographs. The size diminution 

is attributed to the larger concentration of ZnO nanoflowers in the synthesis 

dispersion, thus the proportion of HAuCl4 is diminished causing smaller and fewer 

particles. Due to the LSPR wavelength of the Au nanoparticles, the ZnO/Au 

nanoflowers shift their color from white to violet also, and as the quantity of Au 

increases also does the color intensity. 

 

Figure 17. 200,000X FE-SEM micrograph of sample 12A. 
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Figure 18. 200,000X FE-SEM micrograph of sample 10A. 

 

Figure 19. 200,000X FE-SEM micrograph of sample 8A. 
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     In the Fig. 20a, 21a and 22a are shown the high magnification FE-SEM images 

of the selected area of samples 12A, 10A and 8A for EDS analysis. As seen, all 

the samples have well distributed Au nanoparticles adsorbed, as confirmed by Au 

mappings (Fig. 20b, 21b and 22b). As expected, as the quantity of ZnO increases, 

the quantity of Au nanoparticles decreases, as confirmed by ICP-AES.  

 

Figure 20. a) Selected area for the EDS analysis and b) Au mapping of sample 
12A. 

 

Figure 21 a) Selected area for the EDS analysis and b) Au mapping of sample 
10A. 
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Figure 22. a) Selected area for EDS analysis and b) Au mapping of sample 8A 

 

As observed in the EDS spectra (Fig.23, 24 and 25), the present elements are Zn, 

O an Au. All the spectra shown the characteristic X-rays energy peaks produced 

by the elements; Au has the ionization energies of 2.120 eV and 9.712 eV for Lα 

and Mα respectively, Zn has 8.630 eV and 1.012 eV for Kα and Lα respectively, 

while O has 0.525 eV for Kα. The atomic percentage results obtained were 0.38, 

0.46 and 0.15 for samples 12A, 10A and 8A respectively. But, since the EDS 

analysis is performed on a specific area of the sample, the atomic percentage 

results are not reliable. 
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Figure 23. EDS spectrum of sample 12A. 

 

 

Figure 24. EDS spectrum of sample 10A. 

 

. 
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Figure 25. EDS spectra of sample 8A. 

 

4.4 Electrode characterization 

4.4.1 Coating thickness 

     It has been proved that 10-12 µm is the thickness of the semiconductor coating 

that offers the best DSSC efficiency results [81], thus the thickness of the screen-

printed coatings was measured with a mechanical profilometer to obtain a 

thickness within this range. The results of each sample are presented in Table 5.               

It can be observed that all the samples are 11 µm thick, nonetheless the screen-

printing method does not provide the desired thickness in one layer, so several 

layers were needed for each sample. The number of layers needed to reach the 

desired thickness vary for each sample (as shown in Table 5), due to the viscosity 

of each paste and the pressure applied by the screen-printer. The sample T 

corresponds to the DSSC with 100% TiO₂, 5Z-95T to the DSSC with 5% ZnO, 10Z-
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90T to 10% ZnO and 15Z-85T to 15% ZnO, while the sample 5Z-95T-601A 

corresponds to the device with 5% of sample 12Au, and so on. 

Table 5. Mechanical profilometry results of the electrodes. 

Sample 
 

Number of layers 
deposited 

Thickness before thermal 
treatment (µm) 

T 7 11.22 ± 0.23 
5Z-95T 7 11.59 ± 0.15 

10Z-90T 9 11.20 ± 0.22 
15Z-85T 10 11.17 ± 0.18 

5Z-95T-601A 8 11.04 ± 0.05 
10Z-90T-1099A 10 11.55 ± 0.18 
15Z-85T-1255A 10 11.42 ± 0.12 

 

4.4.2 FE-SEM 

     To investigate the coupling of the materials in the electrode FE-SEM 

micrographs were obtained. Since the size of the ZnO nanoflowers and the TiO2 

nanoparticles varies from 1.3 µm to 25 nm respectively, we expected to observe 

ZnO nanoflowers surrounded by nanospheres of TiO2. We have selected to 

analyze the electrodes 15Z-85T and 15Z-85T-1255A, whose micrographs are 

shown in Fig. 26. As observed, the coupling of the materials is as expected, thus 

providing a direct path for the electrons to travel; and, since the proportion of ZnO 

is small there are parts of the electrode where the ZnO is not in contact with the 

TiO2. Due to the size difference between the structures, the morphology of the ZnO 

is not affected, therefore maintaining its large superficial area for dye adsorption. 

In Fig. 27 is shown a high magnification image of the sample T. It is observed that 

the nanoparticles of TiO2 are smaller than 25 nm as indicated by the supplier 

(Sigma Aldrich), however they agglomerate forming larger particles thus 
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decreasing the available superficial area for dye adsorption. It can also be seen 

that the deposit is porous due to the thermal treatment where all the organic 

compounds of the paste are eliminated, this agrees with the reported in literature 

for these coatings. 

 

Figure 26. FE-SEM micrographs of the samples a) 15Z-85T-1255A and b) 15Z-
85T. 

 

Figure 27. 300,000X FE-SEM micrograph of the sample T. 
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4.4.3 XRD 

     Due to the thermal treatment performed to the electrodes, XRD analysis was 

performed to the samples to confirm that the materials do not change its crystalline 

phase. In Fig. 28 are presented all the XRD spectra. Since a phase should be 

present in the material in a percentage larger than 5% to be detected by XRD, the 

Au nanospheres crystallographic planes would not be detected, therefore only the 

samples 5Z-95T, 10Z-90T, 15Z-85T and T were analyzed by this technique. In the 

sample T can be identified the principal diffraction peaks corresponding to the 

(101), (200) and (105) crystallographic planes in the angles 25.3°, 48.0° and 53.9°, 

respectively, which correspond with the JCPDS card No. 21-1272 for TiO2 anatase 

phase (tetragonal). The mentioned diffraction peaks are present in all the samples. 

Although they do not present displacements, the ample width of the peaks is 

attributed to the nanoscale dimensions of the particles. Regarding to the ZnO, in 

the sample 5Z-95T, its characteristic diffraction peaks cannot be clearly 

distinguished since its percentage in the sample is in the detection limit, therefore 

the signals could be lost through the noise. However, in the samples with larger 

proportion of ZnO the diffraction peaks corresponding to the (100), (002), (101) 

and (110) crystallographic planes of the wurtzite phase are present (JCPDS card 

No.00-036-1451) in the angles 31.7°, 34.4°, 36.2° and 56.6°, respectively. 

Between the samples 10Z-90T and 15Z-85T is observed from the XRD spectra 

that as the content of ZnO increases its diffraction peaks present a larger intensity, 

since a longer content of ZnO represents an increased probability of having a 

diffracted X-ray that can be detected by the equipment. Between 62° and 64° there 
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are two diffraction peaks that overlap due to its proximity, they correspond to the 

(204) and (103) crystallographic planes for anatase and wurtzite, respectively.  

 

Figure 28. XRD patterns of samples T, 5Z-95T, 10Z-90T and 15Z-85T, and 
JCPDS card of wurtzite ZnO (JCPDS card No. 00-036-1451) and anatase TiO2 

(JCPDS card No. 21-1272). 

 

     Additionally, there are some diffraction peaks that do not agree with any of the 

patterns. Because the analysis was performed on the electrode, the additional 

peaks belong to the cassiterite phase (tetragonal) of SnO2 present in the FTO. In 

the angles 26.6°, 33.9°, 51.8° and 66.0° are present the signals for the (110), (101), 

(211) and (301) crystallographic planes of cassiterite, respectively. Furthermore, 

four diffraction peaks of TiO2 and SnO2 are combined due to its proximity; (004) 

and (200) crystallographic planes in the angle 38°, and (211) and (220) at 55°, 

corresponding to anatase and cassiterite, respectively.  
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4.5 DSSC characterization 

4.5.1 First set of experiments of DSSC 

     With the obtention of the J-V curve it is possible to identify the 𝐽𝑆𝐶 and the 𝑉𝑂𝐶. 

The 𝐽𝑆𝐶 is defined as the maximum current that can be obtained from the solar cell. 

It can be found in the y-axis of the J-V curve when the V equals to 0 mV. The 𝑉𝑂𝐶 

represents the maximum voltage given by a solar cell and can be obtained in the 

x-axis of the J-V curve when the value of J is 0 mA cm‒2. With Eq. 9 and 10 is 

possible to calculate more photovoltaic parameters of the solar cell, as the 𝐹𝐹 and 

the efficiency. The 𝐹𝐹 is a parameter that measures the ideality of a solar cell, the 

closer it is to 1, the closer the J-V curve is to a perfect square shape and the DSSC 

is to a better performance. And finally, the efficiency is perhaps the most important 

photovoltaic parameter, because it represents the relation between the power 

output of the solar cell and the light power that irradiates it.  

     After the obtention of the J-V curves and the photovoltaic parameters it was 

possible to determine the performance of the devices. Even though the 𝑉𝑂𝐶 

significantly increased for all the cells (about 100 mV), as well as the 𝐹𝐹, the overall 

efficiency of the DSSC with ZnO or ZnO/Au nanoflowers decreased, as can be 

seen in Fig. 29 and Table 6. The increase in 𝑉𝑂𝐶 could be attributed to the coupling 

of ZnO and TiO2, due to the high electron mobility in ZnO which facilitates the 

electron-hole transfer and improves the charge carrier separation [60]. However, 

the 𝐽𝑆𝐶 decreases as the content of ZnO increases and it is even more affected by 

the presence of Au nanoparticles, as seen in the J-V curves (Fig. 29). Even though      
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ZnO has a larger electron transport mobility its electron injection is not as fast as 

in TiO2 [98] resulting in decreased 𝐽𝑆𝐶 . In DSSC the 𝐽𝑆𝐶 relates to the light 

harvesting, electron injection and regeneration as well as the electron collection 

efficiency [10], which depends on the dye used. Furthermore, it is known that ZnO 

dissolves under acidic conditions due to its solubility product constant (Ksp) 

(3.86x10‒10), like is the ethanolic solution of N719 dye, forming Zn2+-dye 

complexes, which block the electron transport [99]. Therefore, the use of N719 dye 

could be the reason of the lower  𝐽𝑆𝐶 of the devices. Unfortunately, it does not exist 

yet a commercial sensitizer that is effective for both TiO2 and ZnO but, due to the 

high performance of devices with N719 dye, it was chosen as sensitizer for the 

cells. From the J-V curves, the most efficient DSSC is the sample 5Z-95T, even 

though its counterpart with Au nanoparticles has a larger 𝑉𝑂𝐶.  

 

Figure 29. J-V curves of DSSC with different proportions of ZnO or ZnO/Au and 
TiO2. 
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Table 6. Photovoltaic parameters of DSSC with different proportions of ZnO or 
ZnO/Au and TiO2. 

Sample 
𝑽𝑶𝑪     

(mV) 
𝑱𝑺𝑪       

(mA cm‒²) 
𝑽𝒎𝒂𝒙      
(mV) 

𝑱𝒎𝒂𝒙     
(mA cm‒

²) 
𝑭𝑭 

Efficiency 
(%)  

T 
706.61 ± 

11.52 
7.20 ±    
0.67 

506.89 ± 
11.54 

6.15 ±   
0.73 

0.61 ±   
0.01 

3.12 ±   
0.34 

5Z-95T 
786.58 ± 

41.58 
2.86 ±   
1.44 

600.14 ± 
20.06 

2.55 ±   
1.29 

0.68 ±   
0.04 

1.96 ±   
0.08 

10Z-90T 
799.75 ± 

0.01 
2.74 ±   
1.10 

626.70 ± 
11.54 

2.38 ±   
1.01 

0.68 ±   
0.02 

1.49 ±   
0.61 

15Z-85T 
819.76 ± 

0.01 
2.12 ±   
0.35 

660.00 ± 
0.01 

1.82 ±   
0.34 

0.69 ±   
0.01 

1.20 ±   
0.22 

5Z-95T-601A 
813.13 ± 

11.51 
2.91 ±    
0.74 

626.74 ± 
41.52 

2.61 ±   
0.71 

0.69 ±   
0.03 

1.62 ±   
0.33 

10Z-90A-1099A 
779.82 ± 

19.98 
1.47 ±   
0.26 

613.40 ± 
11.58 

1.20 ±   
0.25 

0.64 ±   
0.02 

0.74 ±   
0.16 

15Z-85T-1255A 
773.25 ± 

11.55 
2.08 ±   
0.24 

620.13 ± 
0.04 

1.68 ±   
0.16 

0.65 ±   
0.01 

1.04 ±   
0.10 

      

To obtain information about the internal processes of the DSSC electrochemical 

methods were used:  

- EIS to obtain the 𝑅𝐶𝑇, 𝐶𝜇, and 𝑇1/2. The equivalent electrical circuit (shown 

in Fig. 30) was used in ZView software to simulate the data obtained from 

the Nyquist plots (Fig. 31). In Fig. 31 the symbols correspond to the 

experimental data, while the line corresponds to the model data. Once the 

simulation in ZView gave the values of 𝑅𝐶𝑇 and 𝐶𝜇, the 𝑇1/2 was calculated 

through the Eq. 11. Commonly, the Nyquist plots have 3 semicircles; the 

high frequency is related to the charge transfer resistance in the counter 

electrode (RPt), the second is related to the recombination resistance at the 
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interface of the semiconductor and the electrolyte and the 𝐶𝜇 (Rrec), and the 

low frequency is related to the diffusion impedance in the electrolyte (Rd) 

but in good electrolytes it can be dismissed (as it does in I⁻/I3⁻), finally the 

displacement from the origin corresponds to the conductive substrate 

resistance (Rs) [83].  

- IMVS to obtain the 𝑇1/2 and corroborate the results from EIS, and IMPS to 

calculate the chemical diffusion coefficient (𝐷𝑛) with the Eq. 12 and 13, 

respectively [100].  

 

 

Figure 30. Equivalent electrical circuit used to simulate EIS data in ZView 
software. 
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Figure 31. Nyquist plots of DSSC with different proportions of ZnO or ZnO/Au 
and TiO2. 

 

     The EIS measurements were done under 6 different light filters; no filter, 0.1, 

0.3, 0.5, 0.6 and 0.9, each one diminishing the DSSC VOC. For each cell, 6 different 

spectra were obtained and the 𝑅𝐶𝑇, 𝐶𝜇 and 𝑇1/2 were obtained for the 6 different 

VOC. Thereafter, the VOC vs. 𝑅𝐶𝑇, 𝐶𝜇 and 𝑇1/2 were graphed to compare the different 

devices as explained below. In the Fig. 22 are shown the Nyquist plots obtained 

with no light filter for the samples T, 5Z-95T, 10Z-90T, 15Z-85T, 5Z-95T-601A, 

10Z-90T-1099A and 15Z-85T-1255A, and its model data. The Nyquist plots of all 

the samples obtained under the different light filters are available in the Appendix. 

     Even though the cell efficiency of the sample T is higher than all the other cells, 

its 𝑅𝐶𝑇 is minor as shown in Fig. 32, which indicates it has the highest 

recombination rate among all the DSSC. As the proportion of ZnO increases, also 
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does the 𝑅𝐶𝑇, thus they are more likely to travel through the semiconductor, this 

means it is more difficult for the electrons to reach the oxidized dye or electrolyte 

and regenerate them. The enhancement of the 𝑅𝐶𝑇 could be attributed to the 

coupling of ZnO and TiO2 as previously mentioned. Contrary to the efficiency, in 

the 𝑅𝐶𝑇 the content of Au nanoparticles is beneficial, since its presence further 

increases it, although the mechanism of how this happens has not been elucidated 

yet [101]. Since the 𝐶𝜇 decreases as the ZnO content is increased (Fig. 33), we 

can assume that ZnO diminishes the presence of surface traps in the oxide layer 

[50].  

  

Figure 32. VOC vs 𝑅𝐶𝑇 curves for DSSC with different proportions of ZnO or 
ZnO/Au and TiO2. 
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Figure 33. VOC vs 𝐶𝜇 curves for DSSC with different proportions of ZnO or 

ZnO/Au and TiO2. 

 

          In Fig. 34 are shown the VOC vs. 𝑇1/2 curves, whose results agree with those 

of 𝑅𝐶𝑇, since a longer 𝑇1/2 relates to a minor recombination rate. Unfortunately, in 

this case no trend is appreciated with the presence of Au nanoparticles.  If the 

trend for T is extended to larger voltages, after 840 mV its 𝑇1/2 will be minor than 

all the other cells. 
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Figure 34. VOC vs 𝑇1/2 curves obtained by EIS for DSSC with different proportion 

of ZnO or ZnO/Au and TiO2. 

 

   In Fig. 35 are shown the Nyquist type plots obtained from IMVS for the sample 

T. Each semicircle represents a measurement taken with a different filter (no filter, 

0.1, 0.3, 0.5, 0.6 and 0.9). The value of the top of the arc (𝑤𝑚𝑎𝑥) is then obtained 

for each semicircle in ZView software and, the 𝑇1/2 is calculated with equation 12. 

Lastly each value of 𝑇1/2 is plotted and the Fig. 36 is obtained, there different 

samples can be compared. The values of 𝑤𝑚𝑎𝑥  obtained for each sample under 

different filters, the VOC and the 𝑇1/2 are shown on Table 7.  𝑇1/2 from IMVS was 

calculated to corroborate the results of 𝑇1/2 obtained from EIS, shown in Fig. 36, 

obtaining similar results being in both cases the sample 5Z-95T and 5Z-95T-601A 

the ones with larger 𝑇1/2. 
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Figure 35. IMVS Nyquist type plots measured at different light filters of sample T. 

  

Figure 36. VOC vs  𝑇1/2 curves obtained by IMVS for DSSC with different 

proportion of ZnO or ZnO/Au and TiO2. 
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     The same data processing and plotting done for IMVS was followed for IMPS. 

The obtained IMPS Nyquist type plots for sample T under different light filters are 

shown in Fig. 37.  

 

Figure 37. IMPS Nyquist type plots measured under different light filters of 
sample T. 

 

     After 𝑤𝑚𝑎𝑥 is obtained in ZView software, the 𝐷𝑛 is calculated with the Eq. 13 

and the values are graphed against the light intensity. The light intensity values are 

given by the supplier of the LED used (625 nm) and are always the same for each 

light filter used. The values of 𝑤𝑚𝑎𝑥 and 𝐷𝑛 for the DSSC measured under different 

light filters are displayed on Table 7. Since the 𝐷𝑛 obtained by IMVS is related to 

the electron transport, a larger value is preferred since it translates to an easier 
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movement. Unfortunately, in Fig. 38 no clear tendency is presented; however, T 

has one of the largest 𝐷𝑛 values.      

     The larger 𝐷𝑛 for sample T could be attributed to the fact that TiO2 nanospheres, 

especially in anatase phase, favor the electron transport due to its morphology. 

Thus, when ZnO nanoflowers are incorporated it becomes more difficult for the 

electrons to travel due to the bigger size of the particles. Furthermore, when Au 

nanospheres are present the electrons travel with even more difficulty, as seen in 

the 𝐷𝑛 values. This phenomenon could be attributed to the photocharging effect of 

the Au nanospheres, and since they are present in high quantity its effect is 

amplified. 

 

Figure 38. Light intensity vs 𝐷𝑛 curves for DSSC with different proportions of ZnO 
or ZnO/Au and TiO2. 
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Table 7. Data obtained from the IMVS and IMPS spectra for sample T, 5Z-95T, 
10Z-90T, 15Z-85T, 5Z-95T-601A, 10Z-90T-1099A and 15Z-85T-1255A. 

   IMVS IMPS 

 Sample  Filter 
VOC 
(mV) 

𝒘𝒎𝒂𝒙 
(Hz) 

𝑻𝟏/𝟐  

(s) 
𝒘𝒎𝒂𝒙 
(Hz) 

Dn 

(cm-2 s-1) 

T 

NF 0.550 108.30 0.0092336 760.66 3.96E-04 
0.1 0.525 89.998 0.0111114 682.65 3.55E-04 
0.3 0.501 62.906 0.0158967 510.11 2.66E-04 
0.5 0.478 45.535 0.0219611 501.66 2.61E-04 
0.6 0.466 39.502 0.0253152 433.20 2.25E-04 
0.9 0.428 26.727 0.0374153 288.47 1.50E-04 

5Z-95T 

NF 0.696 47.595 0.0210106 195.35 1.02E-04 
0.1 0.669 36.554 0.0273568 174.53 9.08E-05 
0.3 0.631 25.460 0.0392773 126.64 6.59E-05 
0.5 0.602 18.311 0.0546120 90.621 4.72E-05 
0.6 0.589 15.856 0.0630676 76.130 3.96E-05 
0.9 0.536 10.661 0.0937998 49.773 2.59E-05 

10Z-90T 

NF 0.689 135.00 0.0074074 427.29 2.22E-04 
0.1 0.667 119.27 0.0083843 387.95 2.02E-04 
0.3 0.645 93.094 0.0107418 320.50 1.67E-04 
0.5 0.625 73.352 0.0136329 259.59 1.35E-04 
0.6 0.615 66.304 0.0150820 232.19 1.21E-04 
0.9 0.572 49.212 0.0203202 168.50 8.77E-05 

15Z-85T 

NF 0.670 267.66 0.0037361 748.1 3.89E-04 
0.1 0.644 251.84 0.0039708 730.68 3.80E-04 
0.3 0.617 206.63 0.0048396 636.72 3.31E-04 
0.5 0.593 165.67 0.0060361 550.39 2.86E-04 
0.6 0.580 144.22 0.0069339 508.61 2.65E-04 
0.9 0.525 93.301 0.010718 399.57 2.08E-04 

5Z-95T-601A 

NF 0.427 84.76 0.011798 242.68 1.26E-04 
0.1 0.622 73.518 0.0136021 209.34 1.09E-04 
0.3 0.590 53.309 0.0187586 158.56 8.25E-05 
0.5 0.553 38.200 0.0261780 76.095 3.96E-05 
0.6 0.533 33.379 0.0299590 70.412 3.67E-05 
0.9 0.452 22.117 0.0452141 59.562 3.10E-05 

10Z-90T-1099A 

NF 0.652 123.04 0.0081274 623.52 3.25E-04 
0.1 0.619 113.49 0.0088113 558.77 2.91E-04 
0.3 0.586 89.751 0.0111419 433.49 2.26E-04 
0.5 0.550 69.895 0.0143072 324.34 1.69E-04 
0.6 0.532 61.168 0.0163484 300.35 1.56E-04 
0.9 0.467 40.564 0.0246524 212.48 1.11E-04 

15Z-85T-1255A 

NF 0.632 642.99 0.0015552 1407.8 8.81E-04 
0.1 0.623 568.70 0.0017584 1365.3 8.58E-04 
0.3 0.606 463.58 0.0021571 1205.9 7.24E-04 
0.5 0.584 344.91 0.0028993 1048.5 6.41E-04 
0.6 0.576 278.34 0.0035927 977.91 6.03E-04 
0.9 0.536 166.79 0.0059956 821.89 4.94E-04 
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     Given the results of the experiments, the proposed hypothesis was not 

accomplished, thus further experiments were performed based on the literature. It 

has been proven that the beneficial effect of the presence of plasmonic 

nanoparticles decays as the particles increase in size or in quantity [74]. Its 

adverse effect had been attributed to the fact that the plasmonic nanoparticles can 

perform as recombination centers, but recent researches suggest that this 

phenomenon does not completely explain the decay in performance [101].  

4.5.2 Second set of experiments of DSSC 

     For the second set of experiments the amount of Au was reduced thus, the 

synthesized ZnO/Au nanoflowers 10A and 8A (Fig. 18 and 19) were used. Hence, 

in the following comparisons the only varying parameter is the Au content, while 

the ZnO remains to be 5% in the devices. The devices will be named 5Z-95T-550A 

and 5Z-95T-418A, being the last digits the quantity of ppm of Au in the electrode. 

     In the J-V curves shown in Fig. 39, whose data is in Table 8, it can be clearly 

seen that in samples 5Z-95T-550A and 5Z-95T-418A the presence of Au has a 

beneficial effect in the 𝑉𝑂𝐶 and the 𝐽𝑆𝐶, both increasing as the amount of Au 

diminishes. These results agree with those previously reported in the literature 

[102].  

     The enhancement in 𝑉𝑂𝐶 is related to the photocharging effect propitiated by 

the Au nanospheres, as has been formerly reported [103]. The higher 𝑉𝑂𝐶 has been 

attributed to the increased electron density in the nanoparticles, which conducts 

the Fermi level of the semiconductor to negative potentials. As known, in DSSC 
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the 𝑉𝑂𝐶 is determined by the difference between the Fermi level of the 

semiconductor and the redox level of the electrolyte [15]. While the increase in the 

𝐽𝑆𝐶 could be attributed to the enhanced photon absorption promoted by the 

plasmons of the Au nanoparticles which increases the dye excitation, as has been 

reported by some authors [55] [104]. 

 

Figure 39. J-V curves for DSSC with 5% of ZnO and different amounts of Au. 
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     Table 8. Photovoltaic parameters of DSSC with 5% of ZnO nanoflowers and 
different amounts of Au nanoparticles. 

Sample 
𝑽𝑶𝑪    

(mV) 
𝑱𝑺𝑪      

(mA cm‒²) 
𝑽𝒎𝒂𝒙   
(mV) 

𝑱𝒎𝒂𝒙     
(mA cm‒²) 

FF 
Efficiency 

(%) 

5Z-95T-601A 
813.13 ± 

11.51 
2.91 ± 
0.74 

626.74 ± 
41.52 

2.61 ± 
0.71 

0.69 ± 
0.03 

1.62 ± 
0.33 

5Z-95T-550A 
839.85 ±  

0.03 
4.02 ±  
0.14 

653.39 ±  
30.49 

3.64 ± 
0.13 

0.70 ±  
0.03 

2.38 ± 
0.19 

5Z-95T-418A 
839.69 ± 

0.23 
4.55 ± 
0.43 

673.21 ± 
11.40 

4.15 ± 
0.34 

0.73 ± 
0.01 

2.79 ± 
0.25 

 

     For the second set of DSSC, EIS, IMVS and IMPS were also performed. In Fig. 

40 are shown the Nyquist plots for the DSSC with 5% of ZnO and different amounts 

of Au nanoparticles under no light filter. The Nyquist plots of all the samples 

collected under the different light filters are available in the Appendix. For IMVS 

and IMPS, the data obtained from the Nyquist type plots (𝑤𝑚𝑎𝑥, VOC, 𝑇1/2 and Dn) 

are shown in Table 9, and the treatment of the data was the same as the explained 

in Section 4.5.1. Although the data from sample 5Z-95T and 5Z-95T-601A has 

been previously displayed, it is shown for comparison with samples 5Z-95T-550A 

and 5Z-95T-418A. 
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Figure 40. Nyquist plots of DSSC with 5% of ZnO and varying quantity of Au 
measured under no light filter. 

 

     The enhanced performance of the DSSC could also be related to the elimination 

of surface traps in the semiconductor due to the incorporation of the metallic 

nanoparticles, hence diminishing the charge recombination. This can be confirmed 

by the VOC vs 𝑅𝐶𝑇 curves (Fig. 41) where it can be seen that the sample 5Z-95T-

418A has the larger 𝑅𝐶𝑇 thus agreeing with the other performance results. In this 

case, the 𝑅𝐶𝑇 increases as the quantity of Au is reduced, so does the 𝐶𝜇 (Fig. 42). 

Herein, the increase in 𝑅𝐶𝑇 could be attributed to the presence of Au nanoparticles, 

if they acted as a recombination center as had been though in the past, no 

enhancement in the 𝑅𝐶𝑇 could be observed.  
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Table 9. Data obtained from the IMVS and IMPS spectra for sample 5Z-95T, 5Z-
95T-601A, 5Z-95T-550A and 5Z-95T-418A. 

   IMVS IMPS 

 Sample  Filter 
VOC 
(mV) 

𝒘𝒎𝒂𝒙 
(Hz) 

𝑻𝟏/𝟐 

(s) 
𝒘𝒎𝒂𝒙 
(Hz) 

Dn 

(cm-2 s-1) 

5Z-95T 

NF 0.696 47.595 0.0210106 195.35 1.02E-04 

0.1 0.669 36.554 0.0273568 174.53 9.08E-05 

0.3 0.631 25.460 0.0392773 126.64 6.59E-05 

0.5 0.602 18.311 0.0546120 90.621 4.72E-05 

0.6 0.589 15.856 0.0630676 76.130 3.96E-05 

0.9 0.536 10.661 0.0937998 49.773 2.59E-05 

5Z-95T-601A 

NF 0.427 84.760 0.0117980 242.68 1.26E-04 

0.1 0.622 73.518 0.0136021 209.34 1.09E-04 

0.3 0.590 53.309 0.0187586 158.56 8.25E-05 

0.5 0.553 38.200 0.0261780 76.095 3.96E-05 

0.6 0.533 33.379 0.0299590 70.412 3.67E-05 

0.9 0.452 22.117 0.0452141 59.562 3.10E-05 

5Z-95T-550A 

NF 0.750 89.821 0.0111333 439.48 2.29E-04 

0.1 0.700 78.125 0.0128000 385.86 2.01E-04 

0.3 0.668 57.708 0.0173286 287.84 1.50E-04 

0.5 0.636 43.613 0.0229289 217.47 1.13E-04 

0.6 0.623 38.067 0.0262695 199.45 1.04E-04 

0.9 0.567 27.080 0.0369276 136.17 7.09E-05 

5Z-95T-418A 

NF 0.718 68.289 0.0146436 549.64 2.86E-04 

0.1 0.694 58.448 0.0171092 499.61 2.60E-04 

0.3 0.670 41.078 0.0243439 370.57 1.93E-04 

0.5 0.644 28.478 0.0351148 267.72 1.39E-04 

0.6 0.633 23.867 0.0418989 227.38 1.18E-04 

0.9 0.579 15.432 0.0648004 147.16 7.66E-05 
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Figure 41. VOC vs 𝑅𝐶𝑇 curves for DSSC with 5% of ZnO and different amounts of 
Au. 

 

Figure 42. VOC vs 𝐶𝜇 curves for DSSC with 5% of ZnO and different amounts of 

Au nanoparticles. 
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     The results of 𝑇1/2 obtained by EIS (Fig. 43) and IMVS (Fig. 44) corroborate the 

results of the 𝑅𝐶𝑇. As previously mentioned, a longer 𝑇1/2 can be translated in a 

minor recombination rate, because the more the electrons live the more they travel 

before recombination. Thus, they are more likely to travel and reach the back 

contact instead of recombining with the oxidized dye or the electrolyte. 

 

Figure 43. VOC vs 𝑇1/2 curves obtained by EIS for DSSC with 5% of ZnO and 

different amounts of Au. 
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Figure 44. VOC vs 𝑇1/2 curves obtained by IMVS for DSSC with 5% of ZnO and 

different amounts of Au. 

 

     In Fig. 45 is shown that as the content of Au nanoparticles decreases, the 𝐷𝑛 

increases, thus agreeing with the efficiency results, 𝑅𝐶𝑇 and 𝑇1/2, since a larger 𝐷𝑛 

is related to an easier electron transport. The enhanced 𝐷𝑛 could be attributed to 

the higher electron density in the semiconductor due to the LSPR propitiated by 

the Au nanoparticles, since they store electrons (photocharging effect). The 

variation of 𝐷𝑛 in the samples could be explained by the different size and quantity 

of the Au nanospheres, which alters its absorption wavelength. Therefore, the 

enhancement in the 𝐷𝑛 is further increased as the metallic nanoparticles diminish 

in size and quantity. Even though, in the first experiments the presence of Au 

nanoparticles was damaging to the 𝐷𝑛, in these experiments is beneficial. This is 
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attributed to quantity and size of the particles. As the Au nanoparticles decay in 

size and quantity its photocharging effect is not as strong, thus they allow more 

electrons to flow through the semiconductor, instead of storing them.  

 

Figure 45. Light intensity vs 𝐷𝑛 curves for DSSC with 5% of ZnO and different 
amounts of Au. 
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CHAPTER 5 

CONCLUSIONS 

 

1. It is possible to hydrothermally synthesize ZnO nanoflowers using a 

conductively heated sealed-vessel reactor without using additives in shorter 

times compared to traditional hydrothermal methods. 

 

2. Well-defined ZnO nanoflowers are obtained within 5 min of reaction in a 

conductively heated sealed-vessel reactor and, as the reaction continues, 

the rods with pyramidal tips composing the nanostructures continue to grow.  

 

3. The structural characterization demonstrated high crystallinity of hexagonal 

ZnO (wurtzite) in all the samples without impurities. 

 

4. The electrical characterization results showed that the increase in reaction 

time allows to obtain a lower sheet resistance, which is a parameter whose 

desired values can vary according to the application of the material. 

 

5. The coupling of ZnO nanoflowers and TiO2 nanoparticles in a DSSC 

increases the 𝑉𝑂𝐶 in about 100 mV. The enhancement is due to the high 
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electron mobility in ZnO which facilitates the electron-hole transfer and 

improves the charge carrier separation, as the same time that increases the 

𝑅𝐶𝑇.  

 

6. Even though the 𝐽𝑆𝐶 of the DSSC decreases when compared to a device of 

TiO2, the most efficient incorporation percentage of ZnO nanoflowers is 5% 

with 1.96% of efficiency.  

 

7. The enhancement in the devices with Au nanoparticles is due to the 

increased photon absorption and the photocharging effect promoted by the 

LSPR of the metallic nanoparticles. Nonetheless, the incorporation of Au 

nanoparticles is only beneficial in small proportions, the smaller its presence 

and size, the higher the 𝑅𝐶𝑇, 𝑇1/2 and Dn. This is attributed to the stronger 

photocharging effect that larger, and greater quantity, of Au nanoparticles 

produce. 

 

8. The most efficient device has 5% of ZnO with 8,366 ppm of Au 

nanoparticles, obtaining an of efficiency 2.79%, with a 𝐽𝑆𝐶 of 4.55 mA cm‒2, 

and a 𝑉𝑂𝐶 of 840 mV. Even though the device does not surpass the 

performance of a TiO2 DSSC, it is a promising alternative for systems where 

larger 𝑉𝑂𝐶 is needed. 

 

9. An optimal dye, that is one that sensitizes ZnO and TiO2 without 

compromising the chemical stability of none of them, will enhance the 𝐽𝑆𝐶. 

Therefore, a more efficient DSSC would be obtained. 
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Figure 46. Nyquist plots of sample T measured under different light intensities. 
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Figure 47. Nyquist plots of sample 5Z measured under different light intensities. 

 

 

Figure 48. Nyquist plots of sample 10Z measured under different light intensities. 
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Figure 49. Nyquist plots of sample 15Z measured under different light intensities. 

 

 

Figure 50. Nyquist plots of sample 5Z-12A measured under different light 

intensities. 
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Figure 51. Nyquist plots of sample 5Z-10A measured under different light 

intensities. 

 

 

Figure 52. Nyquist plots of sample 5Z-8A measured under different light 

intensities. 
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Figure 53. Nyquist plots of sample 10Z-10A measured under different light 

intensities. 

 

 

Figure 54. Nyquist plots of sample 15Z-8A measured under different light 

intensities. 

 


