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Abstract

The objective of this work is study the properties of connectedness dimension of

the spectrum of a ring through the use of commutative algebra tools, mainly local

cohomology. We also study how connectedness dimension is related to a special

family of graphs whose vertices are minimal prime ideals.
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Chapter 1

Introduction

Algebraic Geometry gives us a way to connect Geometry and Algebra. We can

study geometric properties through algebraic ones and vice versa.

For example, if K is an algebraic closed field, we know there is a dictionary

between ideals of K [x1, . . . , xn] and algebraic varieties of the affine space An
K ;

radical ideals correspond to algebraic varieties, prime ideals correspond to irre-

ducible varieties and maximal ideals correspond to singletons.

One of such properties is connectedness. For instance, The spectrum of a

local ring is a connected space. This happens since the maximal ideal belongs

to all the non empty closed sets of the space. But what about the subspaces of

such spectrum?. The connectedness dimension of a ring is an invariant that lets us

know a way to measure how connected a space by studying the connectedness of

it subspaces.

One of the tools of commutative algebra used to study the connectedness of

such spaces is local cohomology. In this thesis we study how local cohomology

and the connectednes dimension of a ring are related.

The mains results of chapter 4 are:

Theorem 1.0.1. Let (A,m) be a Noetherian equidimensional complete local ring

with dim(A) = d ≥ 3. Suppose there exists an x ∈ m such that x is a non

zero divisor of A and that (x) is a radical ideal. Let t be an integer such that

t ∈ [1, d− 2]. Then

Γt(A/(x)) is connected⇒ Γt(A) is connected.

As a consequence

c(A) = c(A/(x)) + 1.
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Theorem 1.0.2. Let (A,m) be a Noetherian equidimensional complete local ring

containing a field, of dim(A) = d ≥ 3, with separably closed residue field. Sup-

pose there exists x ∈ m such that x is a non zero divisor of A and that (x) is a

radical ideal. Let t be an integer such that t ∈ [1, d− 2]. Then

#Γt(A) = #Γt(A/(x)).

The main results of chapter 5 are:

Theorem 1.0.3 ([HL90]). Let S = K [[x1, . . . , xn]] be a power series ring over

a separably closed field K. Let I be an ideal of S such that d = dim(S/I) ≥ 2.

Then

Hn−1
I (S) = 0⇔ Spec0(S/I) is connected.

Corollary 1.0.4. Let S = K [[x1, . . . , xn]] be a power series ring over a sep-

arably closed field K. Let I be an ideal of S such that dim(S/I) ≥ 2. Let

t = #Spec0(S/I). Then Hn−1
I (S) ∼= ES(K)t−1.

In chapter 2 we review some of the background needed to study both things.

We talk about some graphs that we can associate to a ring, the completion of a

ring and injective modules.

In chapter 3 we review local cohomology and state some of its properties. We

also give equivalent definitions of local cohomology.

In chapter 4 we talk about connectedness dimension of rings and we also de-

fine some graphs associated to a ring. Through these graphs we can study some

aspects related to the connectedness dimension of a ring. In this chapter we also

present new results regarding connectedness dimension of rings modulo certain

elements of the ring.

Finally, in chapter 5 we talk about the relation of local cohomology and the

graphs previously discussed in chapter 4.
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Chapter 2

General Background

In this section we present some of the background knowledge we use during the

next chapters. We present definitions for key concepts and also present some

propositions. We provide proof for some of the propositions in this section, while

others are simply announced.

2.1 Graphs Γ

In a Noetherian ring the amount of minimal primes is finite and non zero. We can

construct a graph whose vertices are these minimal primes in the following way.

Definition 2.1.1 ([NnBSW19]). Let A be a Noetherian local ring of dimension d
and fix an integer t such that t ∈ [0, d]. We define the graph Γt(A) as a simple

graph whose vertices are the minimal primes of A and there is and edge between

p and q distinct minimal primes if and only if ht(p+ q) ≤ t.

Notice that if Γs(A) is a subgraph of Γt(A) for every s and t such that 0 ≤ s ≤
t ≤ d. Then given such s and t, if Γs(A) is connected , then Γt(A) is connected

too. Γ0(A) is connected if and only if A has only one minimal prime. Notice that

if A has only one minimal prime, not only Γ0(A) is connected, but also Γt(A) for

every t. Γd(A) is always connected not matter the amount of minimal primes of

A.
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2.2 Completion of a Ring

Several results of Chapters 4 and 5 regard complete local rings. To talk about

them first we define the I-adic completion of a ring.

Definition 2.2.1. LetA be a ring and let I be an ideal ofA. The I-adic completion

of A is the ring

lim←−
t

A/I t

We denote it by ÂI or simply Â if it is clear we are talking about the I-adic

completion of A.

There is a morphism ψ going from A to ÂI which maps elements of A to the

constant sequence of residue classes of that element.

We say that a ring A is complete with respect to its I-adic completion if this

ψ is an isomorphism.

In the case of a local ring (A,m) we say A is complete if it is complete with

respect to its m-adic completion.

Consider the natural maps

φn : ÂI → A/In

and define the ideals

În := kerφn

The following proposition allows us to go to the quotient ring and keep apply-

ing some results of chapters 4 and 5 that were valid in the original ring.

Proposition 2.2.2. Let A be a Noetherian complete local ring. Let A be an ideal

of A. Then A/I is also a Noetheriean complete local ring.

2.3 Connectedness Dimension

Connectedness dimension is a ring invariant and one of our main objects of study.

We define it in the following way:

Definition 2.3.1. Let A be a ring. We define the connectedness dimension of A,

and denote it as c(A), as

c(A) = min

{

dim

(

A

I

) ∣

∣

∣

∣

Spec(A)− V (I) is disconnected

}

We take the convention that the empty set is disconnected.
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We have the following proposition that allows us to check whenever an open

subspace of Spec(A) is disconnected in terms of some ideals of A.

Proposition 2.3.2. Let A be a Noetherian ring. Let a be an ideal of A. Suppose

Spec(A) − V (a) is not empty. Then Spec(A) − V (a) is disconnected if and only

if there is I, J ⊆ a ideals of A such that:

1.
√
I,
√
J (
√
a

2. I ∩ J =
√
0

3.
√
I + J =

√
a

Proof. (⇒) Since Spec(A)− V (a) is disconnected and non empty, there are non

empty open sets U, V such that they form a partition of Spec(A) − V (a).
Since Spec(A) − V (a) is an open subspace of Spec(A), it follows that U
is an open set of Spec(A). So Spec(A) − U = V (J ′) for some ideal J ′ of

A. This means that V = V (J ′) − V (a). Similarly there is an ideal I ′ of A
such that Spec(A) − V = V (I ′) and U = V (I ′) − V (a). Let I = I ′ ∩ a

and J = J ′ ∩ a. Notice that U = V (I)− V (a) and V = V (J)− V (a). By

construction I and J are contained in a. Now we proceed to prove the three

desired properties.

(1) Since I ⊆ a, we know that
√
I ⊆ √a. Suppose equality holds, then

U = V (I) − V (a) = ∅, a contradiction. So
√
I (
√
a. Similarly for

J .

(2) We have the following chain of equalites

V (I ∩ J) = V (I) ∪ V (J)

= (Spec(A)− U) ∪ (Spec(A)− V )

= Spec(A)− (U ∩ V )

= Spec(A)

= V (0)

This means that
√
I ∩ J =

√
0.
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(3) We have the following chain of equalities

V (I + J) = V (I ∪ J)
= V (I) ∩ V (J)

= (Spec(A)− U) ∩ (Spec(A)− V )

= Spec(A)− (U ∪ V )

= V (a)

This means that
√
I + J =

√
a.

(⇐) Let U = V (I) − V (a) and V = V (J) − V (a). We prove that U, V form

a partition of Spec(A) − V (a). Since I ⊆ a, we know that V (a) ⊆ V (I).
This is an strict containment since

√
I (
√
a. So U 6= ∅. Similarly for V .

We have the following chain of equalities

U ∪ V = (V (I)− V (a)) ∪ (V (J)− V (a))

= (V (I) ∪ V (J))− V (a)

= V (I ∩ J)− V (a)

= V (0)− V (a)

= Spec(A)− V (a)

and also the following chain of equalities

U ∩ V = (V (I)− V (a)) ∩ (V (J)− V (a))

= (V (I) ∩ V (J))− V (a)

= V (I ∪ J)− V (a)

= ∅
This means that U, V form a partition of Spec(A)−V (a) by non empty sets.

Thus U, V are open sets of Spec(A) − V (a), so they form a disconnection

of this space.

The following theorem gives us a lower bound for the connectedness dimen-

sion of a quotient ring. We use it in the proof of Theorem 4.0.16

Theorem 2.3.3 (Grothendieck’s connectedness theorem). Let A be a Noetherian

equidimensional complete local ring. Let I be a proper ideal of A. Then

c(A/I) ≥ min { c(A), dim(A)− 1 } − ara(I)
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Related to the definition of connectedness dimension is another ring invariant

regarding minimal primes of a ring.

Definition 2.3.4. Let A be a ring. We define the number m(A) as

m(A) = min

{

dim

(

A
⋂

P∈S P +
⋂

Q∈T Q

) ∣

∣

∣

∣

∣

(S, T ) is a partition of Min(A)

}

It turns out that the relation is that they are equal. So we can compute con-

nectedness dimension just by focusing on the minimal primes of the ring.

Proposition 2.3.5. Let A be a Noetherian local ring. Then c(A) = m(A).

Proof. (c(A) ≥ m(A)) Take an ideal a of A such that Spec(A)−V (a) is discon-

nected and c(A) = dim(A/a).

Suppose V (a) = Spec(A). Then
√
a =
√
0, so dim(A/a) = dim(A). This

means that c(A) = dim(A). But dim(A) is an upper bound for m(A),
since this is the minimum of the dimension of quotient rings of A. So

c(A) ≥ m(A).

Suppose V (a) ( Spec(A).

Suppose a ⊆ P for some minimal prime P of A. Let S = { P } and

T = Min(A) − { P }. This is a partition of the minimal primes of A. Let

I = P and J =
⋂

Q∈T Q. Notice that Spec(A)− V (I + J) is disconnected

by proposition 2.3.2. Since a ⊆ I+J , then dim(A/a) ≥ dim
(

A
I+J

)

. But by

definition of m(A), we know that dim
(

A
I+J

)

≥ m(A). So c(A) ≥ m(A).

Suppose a * P for every minimal prime P of A. By proposition 2.3.2,

we know there are I, J ideals of A such that U = V (I) − V (a) and

V = V (J) − V (a) form a disconnection of Spec(A) − V (a). Since the

minimal primes of A do not lie in V (a), each of them must lie either in U
or in V , but not in both. Let X = { P ∈ Min(A) | P ∈ V (I) } and Y =
{Q ∈ Min(A) | Q ∈ V (J) }. Notice that X, Y is a partition of Min(A).
By our choice of I and J we know that

√
I + J =

√
a. Since I ⊆ ⋂P∈X P

and J ⊆ ⋂

Q∈Y Q, then
√
a =

√
I + J ⊆

√

⋂

P∈X P +
⋂

Q∈Y Q. So

dim(A/a) ≥ dim
(

A⋂
P∈X P+

⋂
Q∈Y Q

)

. Again by the definition of m(A), we

have that dim
(

A⋂
P∈X P+

⋂
Q∈Y Q

)

≥ m(A). So c(A) ≥ m(A).
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(c(A) ≤ m(A)) Take a partition (S, T ) of the minimal primes of A such that

m(A) = dim
(

A
I+J

)

, where I =
⋂

P∈S P and J =
⋂

Q∈T Q.

Now suppose S = ∅ or T = ∅. Say S = ∅. Then m(A) = dim(A/J) =
dim(A/

√
0) = dim(A). Since c(A) is the minimum of the dimension of

quotient rings of A, it follows that m(A) ≥ c(A).

Now suppose S 6= ∅ and T 6= ∅ and let a = I + J . By Proposition 2.3.2,

V (I) − V (a) and V (J) − V (a) form a disconnection of Spec(A) − V (a).
By definition of c(A), we have that dim(A/a) ≥ c(A), so m(A) ≥ c(A).

2.4 Injective Modules

Local cohomology is a right derived functor, so many of its properties can be

deduced from the properties of injective modules. In this section we state and

provide proofs for some of them. We start defining what an injective module is.

Definition 2.4.1. Let A be a ring and let E be an A-module. We say E is an

injective module if one of the following equivalent conditions holds:

1. HomA( , E) is an exact contravariant functor.

2. The induced homomorphism HomA(N,E) → HomA(M,E) is surjective

for every injective A-linear map M → N .

3. Every A-linear map from a submodule M of N to E can be extended to a

map from N to E.

Notice that injective modules do exist. The 0 module is an example of injective

module. The definition 3 of injective module can be stated in terms of fixing

N = A. In that case the A-submodules of A coincide with the ideals of A. In

other words:

Proposition 2.4.2. Let A be a ring and let E be an A-Module. E is injective if

and only if for every ideal I ofA and for everyA-linear map φ : I → E, φ extends

from A to E.

Proof. Suppose E is injective. Let I be an ideal of A and let φ be an A-linear

map from I to E. Since I is a submodule of A, it follows from the definition of

injective modules that we can extend φ from A to E.
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Now, let N be an A-module and M a submodule of N . Let f :M → E be an

A-linear map. We show that we can extend f to a map from N to E.

Define the set

X =
⋃

M ′⊆N

{ g :M ′ → E | g is A-linear } .

We define a partial order in X as follows, if g1, g2 ∈ X we say that g1 ≤ g2
whenever the domain of g1 is contained in the domain of g2 and g2 is an extension

of g1.
Let Y = { g ∈ X | f ≤ g }. Notice that every ascending chain in Y has upper

bound in Y . By Zorn’s lemma Y has a maximal element. Let h : L → E be a

maximal element of Y . Since h ∈ Y , h is an extension of f .

To complete the proof we must show that L = N , we do this by contradiction.

Suppose L ( N . This means there is an x ∈ N such that x /∈ L. Consider

the ideal I = (L : x) of A and let φ be the A-linear map φ : I → E where

φ(r) := h(rx). By hypothesis, we can extend φ to a map ψ : A→ E.

Consider the maps h1 : L ⊕ A → E and h2 : L ⊕ A → L + Ax defined

respectively by h1(l, a) := h(l) + ψ(a) and h2(l, a) := l + ax. Since h2 is

surjective, we have the isomorphism

L+ Ax ∼= L⊕ A
ker(h2)

.

Let (l, a) ∈ ker(h2). This means that ax = −l ∈ L, so a ∈ I . This implies

that

h1(l, a) = h(l) + ψ(a)

= h(−ax) + ψ(a)

= −h(ax) + φ(a)

= −h(ax) + h(ax)

= 0.

Thus ker(h2) ⊆ ker(h1), and so, we have a well defined A-linear map

H : L+ Ax ∼= L⊕ A
ker(h2)

→ E,

such thatH(l+ax) = h(l)+ψ(a). Observe thatH is an extension of h, and since

L ( L+ Ax, then h < H . This contradicts the maximality of h.
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Our first goal is to prove that every module embeds in an injective module. We

need several results in order to do so. We begin with the following definition.

Definition 2.4.3. Let A be a domain and let M be an A-module. M is called

divisible if one of the following equivalent conditions holds.

1. aM =M for all a ∈ A− {0}.

2. For allm ∈M and for all a ∈ A−{0}, there ism′ ∈M such thatm = am′.

Proposition 2.4.4. Let A be a domain and let M be an A-module. Then

M is injective ⇒M is divisible.

Furthermore, if A is a principal ideal domain, then

M is injective ⇔M is divisible.

Proof. Suppose M is injective. Let m ∈ M and let a ∈ A − {0}. Consider the

ideal I = (a). Let φ : I → M such that φ(a) = m, this map is well defined since

A is a domain. Since M is injective, we know from Proposition 2.4.2 that there is

an extension ψ of φ from A to M . Let m′ = ψ(1). Observe that

m = φ(a) = ψ(a) = aψ(1) = am′,

and so, M is divisible.

Now let A be a principal ideal domain and suppose M is divisible. Let I be

an ideal of Aand let φ : I → M be a A-linear map. We know I = (a) for some

a ∈ A since A is a principal ideal domain. If a = 0, then φ is the zero function

and we can extend it to the zero function from A to M . Suppose a 6= 0 and let

m = φ(a). Since M is divisible, there is a m′ ∈ M such that m = am′. Let

ψ : A→M such that ψ(1) = m′. Observe that

ψ(a) = aψ(1) = am′ = m,

and so, ψ is an extension of φ. Proposition 2.4.2 implies that M is injective.

Proposition 2.4.5. Let A be a ring and let φ :M → N be an A-linear map. If M
is divisible, then φ(M) is divisible too.
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Proof. Suppose M is divisible and let a ∈ A − {0}. Since M is divisible, we

know that aM =M , so

aφ(M) = φ(aM) = φ(M).

Thus φ(M) is injective too.

Proposition 2.4.6. Q and Q/Z are injective Z-modules.

Proof. Let q = a
b
∈ Q and let n ∈ Z − {0}. Observe that q′ = a

nb
is such that

q = nq′. Thus Q is a divisible Z module, and since Z is a principal ideal domain,

Proposition 2.4.4 that Q is an injective Z-module.

Proposition 2.4.5 implies that Q/Z is also divisible and from Proposition 2.4.4

we conclude that Q/Z is an injective Z-module.

Observation 2.4.7. Aqui va el lemma 0.3 de loc y tambien antes se debe agregar

lo de la discusion previa del dual

Theorem 2.4.8. Let B → A be a ring homomorphism. Let M and N be A-

modules and let L be a B-module. There is a natural isomorphism of A-modules

HomB(M ⊗A N,L)→ HomA(M,HomB(N,L)).

Corollary 2.4.9. Let A be a B-algebra. Let M be a flat A-module and let E be

an injective B-module. Then HomB(M,E) is an injective A-module.

Theorem 2.4.10. LetA be a ring and letM be anA-module. There is an injective

A-module E such that M embeds in E.

2.5 Essential Extensions

Definition 2.5.1. Let A be a ring and let h : M → N be a monomorphism of A-

modules. We say that h is an essential extension if any of the following equivalent

conditions holds.

1. Every nonzero submodule of N has nonzero intersection with h(M).

2. Every nonzero element of N has a nonzero multiple in h(M).

3. If φ : N → Q is a homomorphism of A-modules and φh is injective, then

φ is injective.
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Whenever we say that M ⊆ N is an essential extension we understand h to be the

inclusion map from M to N .

Essential extensions do exist. For any moduleM , any isomorphism ofM is an

essential extension. We call such essential extensions improper. Another example

is the following, let A be a domain and let K = Frac(A), then K is an essential

extension of A.

Proposition 2.5.2. Let A be a ring. Let M , N and L be A-modules. Then

1. Let f :M → N and g : N → L be monomorphisms. Then

gf is an essential extension ⇔ f and g are essential extensions.

2. If M ⊆ L and {Ni}i is a family of modules such that M ⊆ Ni ⊆ L for

every i and
⋃

iNi = L, then

M ⊆ L is an essential extension ⇔ ∀i,M ⊆ Ni is an essential extension.

3. If M ⊆ N then there exists a maximal submodule N ′ of N such that M ⊆
N ′ is essential. (In this case we say thatN ′ is a maximal essential extension

of M within N ).

Proof. (1) Suppose f and g are essential extensions. Let φ : L → Q be a homo-

morphism of A-modules such that φgf is injective. This implies that φg is

injective since f is an essential extension. Thus, φ is injective since g is an

essential extension. We conclude that gf is an essential extension.

Conversely, suppose gf is an essential extension. Let φ : L → Q be a

homomorphism of A-modules such that φg is injective. Then φgf is also

injective since f is injective. Thus φ is injective since gf is an essential

extension. We conclude that g is an essential extension. Now, let n ∈
N − {0}. Since g is injective, g(n) ∈ L− {0}. Then there is an a ∈ A and

a m ∈ M such that ag(n) is nonzero and gf(m) = ag(n) since gf is an

essential extension. So g(f(m)) = g(an). Since g is injective we conclude

that an is nonzero and f(m) = an. Thus, f is an essential extension.

(2) Suppose M ⊆ L is an essential extension. (1) implies that M ⊆ Ni is an

essential extension for every i.

Conversely, suppose M ⊆ Ni is an essential extension for every i. Let l be

a nonzero element of L. There is an i such that l ∈ Ni, since
⋃

iNi = L.

Since M ⊆ Ni is an essential extension, then l has a nonzero multiple in

M . This implies that M ⊆ L is an essential extension.
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(3) Let X = { L ⊆ N |M ⊆ L is an essential extension }. Notice that X is

nonempty since M ∈ X . (2) implies that every ascending chain of ele-

ments of X has an upper bound in X . It follows from Zorn’s lemma that X
has a maximal element.

Definition 2.5.3. If M ⊆ N is an essential extension and N has no proper essen-

tial extension we shall say that N is a maximal essential extension of M .

Proposition 2.5.4. Let M1,M2, N1, N2 be A-modules such that Mi ⊆ Ni is an

essential extension for every i. Then:

M1 ⊕N2 ⊆ N1 ⊕N2 is an essential extension.

Proof. Let (n1, n2) be a nonzero element of N1 ⊕ N2. Then n1 6= 0 or n2 6= 0.

Say n1 6= 0. Since M1 ⊆ N1 is an essential extension, then there is an a ∈ A such

that an1 = m1 is a nonzero element of M1. If an2 = 0, then we are done since

a(n1, n2) = (m1, 0) is a nonzero multiple of (n1, n2) in M1 ⊕M2. If an2 6= 0,

then we can find a b ∈ A such that ban2 = m2 is a nonzero element of M2 since

M2 ⊆ N2 is an essential extension. Then ba(n1, n2) = (bm1,m2) is a nonzero

multiple of (n1, n2) in M1 ⊕M2. We conclude that M1 ⊕M2 ⊆ N1 ⊕ N2 is an

essential extension.

Notice that the previous proposition can be extended to arbitrarily large fami-

lies of modules because of the direct sum.

Proposition 2.5.5. Let A be a ring and let M,N be A-modules. Then

M ⊕N is injective ⇔M,N are injective.

Proof. Let π1 and π2 be the projection maps fromM⊕N toM andN respectively.

Suppose M ⊕N is injective. Let T be an A-module and let S be a submodule

of T . Let f : S → M be an A-linear map and let j : M → M ⊕ N be the

inclusion map. Since M ⊕ N is injective there is a ψ that extends jf from T to

M ⊕N . Notice that ψ = (π1ψ, π2ψ). Let s ∈ S. Then

(f(s), 0) = jf(s) = ψ(s) = (π1ψ(s), π2ψ(s)),

so f(s) = π1ψ(s). This means that π1ψ is an extension of f from T to M . We

conclude that M is injective. The proof for the injectivity of N is analogous.
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Conversely, suppose M and N are injective. Let T be an A-module and let S
be a submodule of T . Let f : S → M ⊕N be an A-linear map. Since M and N
are injective, there is a φ that extends π1f from T to M and a ψ that extends π2f
from T to N . Let g : T →M ⊕N be defined by g = (φ, ψ). Let s ∈ S. Then

f(s) = (π1f(s), π2f(s)) = (φ(s), ψ(s)),

so f(s) = g(s). This means that g is an extension of f from T toM . We conclude

that M ⊕N is injective.

Proposition 2.5.6. Let A be a ring. Let M be an A-module.

1. M is injective if and only if every essential extension of M is improper.

2. IfM is anA-module andM ⊆ E withE injective, then a maximal essential

extension of M within E is an injective module.

3. If M ⊆ E and M ⊆ Ẽ are two maximal essential extensions of M , then

there is an isomorphism of E with Ẽ that is the identity map on M .

Proof. (1) Let M be an injective A-module. Let h : M → N be an essential

extension. Consider the indentity map i : M → M . Since M is injective

and h is a monomorphism, there is a φ : N → M such that i = φh. Since

h is an essential extension, then φ must be injective. Let m ∈ M . Then

m = i(m) = φ(h(m)), so φ is surjective. We conclude that M ∼= N .

Conversely, suppose every essential extension ofM is improper. From The-

orem 2.4.10 we know there is an injective module E such that M embeds

in E. This lets us regard M as a submodule of E.

Let X = { L ⊆ E | L ∩M = 0 }. Notice that X is nonempty since 0 ∈ X .

Given an ascending chain of elements ofX , the union of the elements of the

chain is again a submodule L of E such that L ∩M = 0, so L is an upper

bound of the chain and belongs to X . Zorn’s lemma implies the existence

of maximal elements of the set X .

Let N be a maximal element of X . Let π be the projection map from M to

E/N . Notice that π is injective since M ∩N = 0. We proceed to prove that

π is an essential extension. Let T be a non zero submodule of E/N . We

can write T = S/N for some submodule S of E such that N ( S. Suppose

T ∩ π(M) = 0, then

0 = T ∩ π(M) =
S

N
∩ M +N

N
=

(M +N) ∩ S
S

.

18



This implies that (M +N) ∩ S ⊆ N . Thus

M ∩ S =M ∩ (M ∩ S) ⊆M ∩ ((M +N) ∩ S) ⊆M ∩N = 0.

We conclude that S ∈ X , which contradicts the maximality of N . Thus

T has nonzero intersection with π(M). This means that π is an essential

extension.

Since every essential extension of M is improper, we conclude that π is an

isomorphism between M and E/N . Thus M +N = E. Since M +N = E
and M ∩ N = 0, then M ⊕ N = E. Proposition 2.5.5 implies that M is

injective.

(2) Let S be a maximal essential extension ofM withinE. Let T be anA-module

such that S ⊆ T is an essential extension. Observe that T ⊆ E since E is

injective. Since M ⊆ S and S ⊆ T are essential extension, Proposition

2.5.2 implies that M ⊆ T is an essential extension of M within E. The

maximality of the essential extension M ⊆ S implies that S = T . We

conclude from (1) that S is injective.

(3) Suppose f : M → E and g : M → Ẽ are maximal essential extensions.

We know from (1) that E is an injective module. This implies there is a

φ : Ẽ → E such that f = φg. Since g is an essential extension and f
is injective, φ must also be injective. Proposition 2.5.2 implies that φ is

injective. Since g is a maximal essential extension, φ must be bijective.

Definition 2.5.7. Let A be a ring. Let M and E be A-modules. If M ⊆ E is a

maximal essential extension of M over A we say that E as an injective hull for M
and write E = EA(M), or E = E(M) when the ring A is understood.

Note that every A-module has an injective hull.

Corollary 2.5.8. LetA be a ring and letE be an injectiveA-module. The injective

hull of E is E itself. That is, EA(E) = E.

Proof. This follows from (1) and (2) in Proposition 2.5.6.

The following observation is key in the proof of Proposition 2.6.4.

Observation 2.5.9. From the proof of (1) in Proposition 2.5.6 and from Propo-

sition 2.5.5 we can deduce that given injective modules E ′, E such that E ′ ⊆ E,

there is an injective submodule E ′′ of E such that E = E ′ ⊕ E ′′.

19



From the previous observation we can deduce the following theorem.

Proposition 2.5.10. Let K be a field and let E = EK(K). Then E = K.

Proof. Since E is a K-vector space, we know that E = K ⊕ E/K. Observation

2.5.9 implies that K is an injective module. Corollary 2.5.8 implies that E =
K.

Proposition 2.5.11. Let A be a ring and let M1,M2 be A-modules. Then

E(M1 ⊕M2) ∼= E(M1)⊕ E(M2).

Proof. We know that M1 ⊆ E(M1) and M2 ⊆ E(M2) are maximal essential

extensions. Proposition 2.5.4 implies that M1 ⊕M2 ⊆ E(M1) ⊕ E(M2) is also

an essential extension. Proposition 2.5.5 implies that E(M1) ⊕ E(M2) is also

an injective module, so there is a φ : E(M1 ⊕ M2) → E(M1) ⊕ E(M2) such

that is an extension of the inclusion map M1 ⊕M2 ⊆ E(M1) ⊕ E(M2). Since

M1 ⊕ M2 ⊆ E(M1 ⊕ M2) is an essential extension, φ must be injective. The

maximality of M1 ⊕M2 ⊆ E(M1 ⊕M2) implies that φ is bijective.

The previous proposition generalizes for any size of finite direct sums. If

the direct sum is not finite, this might not be true. However, when the ring is

Noetherian, the proposition holds for infinite direct sums too. We prove this later

on.

We also state the following observations, which we use during the proof of

Proposition 2.6.5.

Observation 2.5.12. Let A be a ring and let M ⊆ N be an essential extension of

A-modules. Then EA(M) = EA(N).

Observation 2.5.13. Let A be a ring and let M be an A-module. Suppose E is

an injective A-module such that M ⊆ E ⊆ EA(M). Then E = EA(M).

The concept of injective resolutions is key to the definitions of the local coho-

mology modules. We finish this section defining such resolutions.

Definition 2.5.14. Let A be a ring and let M be an A-module. We say that the

complex

C : 0→M → E0 → E1 → . . .

is an injective resolution of M if the Ei are injective modules and if C is an exact

sequence. Moreover, we say that the resolution is minimal if E0 = E(M) and

Ei = E(Im(Ei−1 → Ei)) for every i ≥ 1.
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Proposition 2.5.15. LetA be a ring and letM be anA-module. M has a minimal

injective resolution.

Notice also that any two minimal injective resolutions of the same module are

isomorphic as complexes.

2.6 Injective Modules over Noetherian Rings

Proposition 2.6.1. Let A be a ring and let M be an A-module. Let {Ni}i be a

family of A-modules. Then there is a monomorphism

ψ :
⊕

i

HomA(M,Ni)→ HomA(M,
⊕

i

Ni),

such that ψ is an isomorphism whenever M is finitely generated.

Proposition 2.6.2. Let A be a Noetherian ring. Let { Ei }i be a family A-modules

and let E =
⊕

iEi. If Ei is injective for every i, then E is injective.

Proof. Suppose Ei is injective for every i and let I be an ideal of A. Since Ei

is injective for every i, Proposition 2.4.2 and the definition of injective modules

imply that HomA(A,Ei) → HomA(I, Ei) is surjective for every i. This implies

that
⊕

i HomA(A,Ei)→
⊕

i HomA(I, Ei) is surjective. Since A is a Noetherian

ring, A and I are finitely generated A-modules. Thus Proposition 2.6.1 implies

that HomA(A,E) → HomA(I, E) is surjective. Proposition 2.4.2 and the defini-

tion of injective modules imply that E is injective.

The following observation is used during the proof of 2.6.5.

Observation 2.6.3. Given a field K and a K-vector space V , V is an injective

K-vector space. This follows from Proposition 2.5.10 and Proposition 2.6.2.

Proposition 2.6.4. Let A be a Noetherian ring and let E be nonzero injective

A-module. Let X = { EA(A/P ) | P ∈ Spec(A) }. Then E is a direct sum of

elements of X .

Proof. Let Y be the set of families of elements M of X such that M is embedded

inE and the sum of the elements of the family is an internal direct sum inE. Since

E is a nonzero module over a Noetherian ring, the set AssA(E) is not empty. Let

P ∈ AssA(E). We know that A/P is embedded in E, so EA(A/P ) is an element
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of X that is embedded in E. Since EA(A/P ) is an internal direct sum in E,

we conclude that the family { EA(A/P ) } belongs to Y . Thus Y is non empty.

Consider any increasing chain of elements of Y . There is a family element of Y
such that bounds above the chain. Zorn’s lemma implies the existence of maximal

elements of Y .

Let { Ei }i be a maximal element of Y and letE ′ be the sum of the elements of

such family. We know that E ′ ⊆ E. Observation 2.5.9 implies that E = E ′⊕E ′′,

where E ′′ is an injective submodule of E.

SupposeE ′′ 6= 0, this implies that AssA(E
′′) is not empty. LetQ ∈ AssA(E

′′).
We can think of A/Q as a submodule of E ′′. Thus EA(A/P ) is also a submodule

of E ′′. This means we can add EA(A/P ) to our previous collection { Ei }i to

make a new collection which still belongs to Y . This contradicts the maximality

of { Ei }i. Thus E ′′ = 0, which means that E = E ′.

Proposition 2.6.5. Let A be a Noetherian ring and let P be a prime ideal. Let

E = EA(A/P ) and let F = Frac(A/P ) = AP/PAP .

1. EA(F ) = E.

2. For every a ∈ A − P , the A-module homomorphism fa : E → E defined

by fa(e) = ae is an automorphism.

3. E is an AP -module. The scalar product is given by b
a
e := be′, where e′ is

the unique element of E such that e = ae′.

4. AnnE(P ) is isomorphic to F as F -vector spaces.

5. EAP
(F ) = E.

6. AssA(E) = { P }. The annihilator of every nonzero element of E is P -

primary. Every element of E is killed by a power of P .

7. Let Q ∈ Spec(A). HomAP
(F,EA(A/Q)P ) is 0 when Q 6= P and is iso-

morphic to F when Q = P .

Proof. (1) We know that A/P ⊆ Frac(A/P ) = F is an essential extension of

A/P -modules. Now we consider A/P and F as A-modules via restriction

of scalars. Let x = a
w

be a nonzero element of Frac(A/P ). Observe that

w
a

w
=
w

1

a

w
=
a

1
6= 0,
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since x is nonzero. Thus, x has a nonzero A-multiple in A/P . We conclude

that A/P ⊆ F is an essential extension of A-modules. Observation 2.5.12

implies that E = EA(F ).

(2) Let a ∈ A − P . Let ga : F → F be defined by ga

(

x
y

)

= ax
y

. Observe

that this injective morphism. Extending the codomain of ga gives us an

injective morphism from F to E. Since F ⊆ E is an essential extension of

A-modules by (1), we conclude that fa : E → E defined by f(e) = ae is

an injective morphism with image aE ⊆ E. Since E is injective, aE must

also be injective. Thus, we have that F ⊆ aE ⊆ E. Observation 2.5.13

implies that aE = E. Hence, fa is an automorphism.

(3) Notice that the automorphisms we defined in (2) imply that that the scalar

product is well defined. And so, E is an AP -module.

(4) First we prove that AnnE(P ) = AnnE(PAP ). Let e ∈ AnnE(PAP ) and let

p ∈ P . We know that p
1
∈ PAP , thus 0 = p

1
e = pe. This means that

e ∈ AnnE(P ). Now, let e ∈ AnnE(P ) and let p
w
∈ PAP . We know that

p ∈ P , thus 0 = 0
w

= pe
w

= p
w
e. This means that e ∈ AnnE(PAP ). We

conclude that AnnE(P ) = AnnE(PAP ).

Since AnnE(PAP ) is an AP -submodule of E and PAP is contained in

AnnAP
(AnnE(PAP )), we deduce that AnnE(PAP ) is an AP/PAP = F -

vector space. That is, AnnE(P ) is an F -vector space.

Observe that F ⊆ AnnE(P ) ⊆ E. Since F ⊆ E is an essential extension

of A-modules, Proposition 2.5.2 implies that F ⊆ AnnE(P ) is also an

essential extension of A-modules. Observe that F ⊆ AnnE(P ) is also

an essential extension of F -vector spaces. Observation 2.5.12 implies that

EK(K) = EK(AnnE(P )). Proposition 2.5.10 and Observation 2.6.3 imply

that K = AnnE(P ).

(5) Since F ⊆ E is an essential extension as A-modules, it is also an essential

extension as AP -modules. Let E ⊆ M be an essential extension of AP -

modules. Let m be a nonzero element of M . Since E ⊆ M is essential,

there is nonzero AP -multiple e ∈ E of m, say e = a
m
x, where w ∈ A− P .

From (1) we can deduce that we = am is a nonzero element of E. This

means that m has a nonzero A-multiple in E. Thus, E ⊆ M is an essential

extension of A-modules. Since F ⊆ E is a maximal essential extension of

A-modules, we conclude that E =M . Hence, E = EAP
(F ).
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(6) Since E is an injective hull for A/P , we know that A/P is embedded in E.

Thus P ∈ AssA(E). Now, let Q ∈ AssA(E). We know there exists a

nonzero e ∈ E such that AnnA(e) = Q. We know that A/Q ∼= Ae ⊆ E.

SinceE is an essential extension ofA/P and e is nonzero, there is an a ∈ A
such that ae is nonzero and ae ∈ A/P . We know that the annihilator of

every nonzero element of A/P is P , hence AnnA(ae) = P . On the other

hand, ae ∈ Ae ∼= A/Q. We know that the annihilator of every nonzero

element of A/Q is Q, hence AnnA(ae) = Q. Thus that Q = P . We

conclude that AssA(E) = { P }.
Let e be a nonzero element of E. Let I = AnnA(e). We know that A/I ∼=
Ae ⊆ E. Thus, AssA(A/I) ⊆ AssA(E) = { P }. Since e 6= 0, then

I 6= A. Thus A/I is a nonzero Noetherian ring. Hence, AssA(A/I) 6= ∅.
We conclude that AssA(A/I) = { P }. This implies that I is a P -primary

ideal.

In a Noetherian ring every ideal contains a power of its radical. This means

there is an n such that P n ⊆ I = AnnA(e), since I is P -primary. This

means that P ne = 0.

(7) Let Q ∈ Spec(A). Suppose Q = P . Consider E as an AP -module as dis-

cussed in (2). Notice that the map f : E → EP of AP -modules is an

isomorphism. We conclude that HomAP
(F,EP ) ∼= HomAP

(F,E).

Let g ∈ HomAP
(F,E). Let

[

a
w

]

∈ F and let p ∈ P . Observe that

pg
([ a

w

])

=
p

1
g
([ a

w

])

= g
(p

1

[ a

w

])

= g
([pa

w

])

= g(0) = 0,

thus Im(g) ⊆ AnnE(P ). Since F ⊆ E, we conclude that HomAP
(F,E) =

HomAP
(F, F ). Since HomAP

(F, F ) = F , we have that HomAP
(F,EP ) ∼=

F .

Proposition 2.6.6. Let A be a ring and let M,N be A-modules such that M ⊆ N
is an essential extension. Then Ass(M) = Ass(N).

Proof. We proceed by double containment.

Suppose P ∈ Ass(M). Then there is an injection from A/P to M and since

M ⊆ N , we have an inclusion from M to N . The composition of these maps

gives us an injection from A/P to N . So P ∈ Ass(N).
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Now suppose P ∈ Ass(N). Then P = Ann(n), for some n ∈ N not zero.

Since M ⊆ N is essential then there is a non zero multiple of n in M , say rn.

Now we proceed to prove that Ann(n) = Ann(rn).
Suppose x ∈ Ann(n). Then xn = 0, so x(rn) = 0 and hence Ann(n) ⊆

Ann(rn). Now suppose x ∈ Ann(rn). Then xrn = 0, so xr ∈ Ann(n). Since

Ann(n) = P is prime, then x ∈ Ann(n) or r ∈ Ann(n), but since rn 6= 0, then

r /∈ Ann(n) and hence x ∈ Ann(n). Thus Ann(rn) ⊆ Ann(n).
We conclude that Ann(n) = Ann(rn) and so Ann(rn) = P . Then P ∈

Ass(M).

To finalize this section we present additional results regarding injective mod-

ules, this time their proof is omitted.

Proposition 2.6.7. LetA be a Noetherian ring and letE be an injectiveA-module.

Let P ∈ Spec(A) and let F = Frac(A/P ) = AP/PAP . Then the number of

copies of E(A/P ) occurring in a representation of E as direct sum of modules of

this form is dimF HomAP
(F,EP ). Furthermore, E(A/P ) appears in such repre-

sentation if and only if P ∈ AssA(E).

Corollary 2.6.8. Let A be a Noetherian ring and let E be a nonzero injective

A-module. E is indecomposable if and only E ∼= E(A/P ) for some prime P of

A.

Theorem 2.6.9. Let A be a Noetherian ring and let S be a multiplicative subset

of A.

1. The injective modules over S−1A coincide with the injective A-modules E
with the property that for every E(A/P ) occurring as a summand P does

not meet S.

2. If E is any injective A-module then S−1E is an injective S−1A-module.

3. If M ⊆ N is an essential extension then S−1M ⊆ S−1N is an essential

extension. If M ⊆ E is a maximal essential extension then S−1M ⊆ S−1E
is a maximal essential extension.

Proposition 2.6.10. Let A be a Noetherian ring and let M be a finitely generated

A-module. Let

C : 0→M → E0 → E1 → . . .

be a minimal injective resolution of M . Let P ∈ Spec(A). Then the number of

copies of EA(A/P ) ocurring in Ei is finite, for every i. Furthermore, this number

is equal to dimF ExtiAP
(F,MP ), where F = Frac(A/P ).
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Proposition 2.6.11. Let (A,m, K) be a Noetherian local ring. A maximal essen-

tial extension of K over A is also a maximal essential extension of K over A is

also a maximal essential extension of K over Â. That is, EA(K) ∼= EÂ(K).

Theorem 2.6.12. Let (A,m, K)→ (S, n, L) be a local homomorphism of Noethe-

rian local rings and suppose that S is module-finite over the image of A. Let E be

an injective hull of K over A. Then HomA(S,E) is an injectuve hull L over S.

Corollary 2.6.13. If S = A/I , where (A,m, K) is a Noetherian local ring, and

E = EA(K), then the AnnE(I) ∼= HomA(A/I,E) is an injective hull for K over

S.

Theorem 2.6.14. Let (A,m, K) be an Artin Local Aing. Then EA(K) is a module

of finite length and its length is equal to the length of A.

Lemma 2.6.15. Let (A,m, K) be any Noetherian local ring and let ∨ denote

HomA( , E), where E = EA(K). Then for every finite length module, ℓ(M∨) =
ℓ(M).

Theorem 2.6.16. Let (A,m, K) be an Artin local ring and let E = EA(K). Then

the map A → HomA(E,E), which sends r to the map multiplication by r, is an

isomorphism.

Theorem 2.6.17. A Noetherian local ring (A,m, K) is injective as a module over

itself if and only if the Krull dimension of A is zero and the socle of is one-

dimensional as a K-vector space. Moreover A ∼= EA(K) in this case.

Theorem 2.6.18. Let (A,m, K) be a Noetherian local ring with E = EA(K)
and let ∨ denote the exact contravariant functor HomA( , E). There is a map

Ã→ HomA(E,E) which is an isomorphism.

Theorem 2.6.19. Let (A,m, K) be a local ring and let E = E(K). E is an Artin

A-module.

Theorem 2.6.20. Let (A,m, k) be a local ring and let M be an A-module. The

following conditions are equivalent:

1. Every element of M is killed by a power of m and the socle of M is a

finite-dimensional vector space over K.

2. Ass(M) = {m} and the socle of M is a finite-dimensional vector space

over K.
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3. M is an essential extension of a finite dimensional K-vector space.

4. The injective hull of M is a finite direct sum of copies of E = EA(K)

5. M can be embedded in a finite direct sum of copies of E

6. M is an Artinian A-module.

Theorem 2.6.21. Let (A,m, K) be a complete Noetherian local ring, let E =
EA(K) and let ∨ denote the functor HomA( , E).

1. If M is an Artinian module then M∨ is a Noetherian module.

2. If M is a Noetherian module then M∨ is an Artinian module.

3. IfM is an Artinian or Noetherian module then the induced mapM →M∨∨

is an isomorphism.
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Chapter 3

Local Cohomology

Local cohomology is a powerful tool of homologic algebra that we use in order

to study some objects in commutative algebra. There are several equivalent def-

initions of local cohomology. We begin with the next one and then we present

alternative ones. We also state some of the properties of local cohomology that

we use in the following chapters.

Let I and J be ideals of a ring A such that I ⊆ J . We know that there is

a surjective map from A/I to A/J which just sends x modulo I to x modulo

J . Such map induces a map from ExtiA(A/I,M) to ExtiA(A/I,M), for every

A-module M .

Definition 3.0.1. Let A be a Noetherian ring and let M be an A-module. Let I
be an ideal of A and let i ∈ N. Consider the decreasing sequence of ideals given

by the positive powers of I . Consider the following direct system induced by said

powers

ExtiA(A/I,M)→ ExtiA(A/I
2,M)→ ExtiA(A/I

3,M)→ . . . .

We define the ith local cohomology module of M with support in I as

H i
I(M) = lim−→

t

ExtiA(A/I
t,M).

Observe that if we compute the direct limit with a subsequence { It }t of { I t }t
then

H i
I(M) = lim−→

t

ExtiA(A/It,M).
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Similarly, if { Jt }t is a decreasing sequence of ideals of A such that is cofinal

with { I t }t, then

H i
I(M) = lim−→

t

ExtiA(A/Jt,M).

In particular, if I = (x1, . . . , xn), then the sequence { It }t where It = (xt1, . . . , x
t
n)

is cofinal with { I t }t. So we may use it to compute local cohomology.

The following proposition is useful at the moment of computing local co-

homology modules since it lets us change the ideal of support for the modules

without changing the modules themselves.

Proposition 3.0.2. Let A be a Noetherian ring and let M be an A-module. Let I
and J be ideals of A with the same radical. Then for every i

H i
I(M) ∼= H i

J(M).

Proof. This follows from the fact that the powers of I and the powers of J are

cofinal.

Definition 3.0.3. Let A be a ring and let I be an ideal of A. Let M be an A-

module. We define

ΓI(M) =
⋃

n∈N

AnnM(In).

Notice that ΓI( ) is a covariant additive functor of R-mods. We call this functor

the I-torsion functor.

It turns out that if we compute the ith derived functor of ΓI , this coincides

with the ith local cohomology functor H i
I( ). This follows from the fact that cal-

culating cohomology commutes with direct limits, so our first definition of local

cohomology is the same as taking the derived functors of the I-torsion functor.

So given a short exact sequence of R-modules

0→ L→M → N → 0

there is a long exact sequence

0→ · · · → H i−1
I (N)→ H i

I(L)→ H i
I(M)→ H i

I(N)→ H i+1
I (L)→ . . .

Since Ext is a right derived functor and local cohomology is defined in terms

of Ext, then for every i > 0 and for every injective A-module M we have that

H i
I(M) = 0.
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Proposition 3.0.4. Let A be a Noetherian ring and let I be an ideal of A. Let M
be an A-module. Then every element of H i

I(M) is killed by a power of I .

Local cohomology is also related to the depth of certain modules.

Theorem 3.0.5. Let A be a Noetherian ring and let I be an ideal of A. Let M be

a finitely generated A-module. Then

H i
I(M) = 0 for all i ⇔ IM =M.

Furthermore, if IM 6=M , then

depthI(M) = min
{

i
∣

∣ H i
I(M) 6= 0

}

.

Now we state the last one of our equivalent definitions of local cohomology.

This definition relies in Kozsul cohomology.

Theorem 3.0.6. Let A be a Noetherian ring and let I = (x1, . . . , xn) be an ideal

of A. Then H i
I( )
∼= H•(x∞; ) as functors.

Corollary 3.0.7. Let A be a Noetherian ring and let I be an ideal of A. Let

m = min
{

µ(J)
∣

∣

∣

√
I =
√
J
}

. Then for i > m we have that H i
I(M) = 0.

The following theorem gives us information about certain local cohomology

modules in the local case. It is of vanishing nature.

Theorem 3.0.8. Let (A,m) be a Noetherian local ring and let M be a finitely

generated A-module with dimension d. Then H i
m(M) = 0 for every i > d and

Hd
m(M) 6= 0.
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Chapter 4

Graphs and Connectedness

Dimension

Our goal in this chapter is to relate two concepts we have previously discussed

during Chapter 2: the graphs Γt of certain kinds of rings and their connectedness

dimension.

We also present some results about the relation of the connectedness dimen-

sion of rings and the connectedness dimension of those rings modulo certain el-

ements. Finally we present new results which can be seen as variations of that

ones.

First we state some useful properties to have in mind during this chapter.

Proposition 4.0.1. Let A be a Noetherian ring and let I1, . . . , In, J1, . . . , Jm be

ideals of A, then

1. ht(
⋂n

i=1 Ii) = min { ht(Ii) | 1 ≤ i ≤ n } .

2.
√

⋂n
i=1 Ii +

⋂m
j=1 Jj =

√

⋂n
i=1

⋂m
j=1(Ii + Jj).

3. ht(
⋂n

i=1 Ii +
⋂m

j=1 Jj) = min { ht(Ii + Jj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m } .

Proof. Let I =
⋂n

i=1 Ii and let J =
⋂m

j=1 Jj .

(1) Since for every j we have that I ⊆ Ij , then ht(I) ≤ ht(Ij) for every j, so

ht(I) ≤ min { ht(Ii) | 1 ≤ i ≤ n }. Now take a minimal prime P of I
such that ht(P ) = ht(I). By prime avoidance, there must be a j such that
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Ij ⊆ P , which means that ht(Ij) ≤ ht(P ). So we have the following chain

of inequalities

min { ht(Ii) | 1 ≤ i ≤ n } ≤ ht(Ij) ≤ ht(P ) = ht(I).

Thus ht(I) = min { ht(Ii) | 1 ≤ i ≤ n }.

(2) Let a, b, c be ideals of A. Notice that

(a+b)(a+ c) = a(a+b+ c)+bc ⊆ a+bc ⊆ a+b∩ c ⊆ (a+b)∩ (a+ c)

By taking radicals on this chain of subsets, we see that both ends have the

same radical, so all the ideals in the chain have the same radical. In par-

ticular
√

a+ (b ∩ c) =
√

(a+ b) ∩ (a+ c). Now, since I and J are the

intersection of finitely many ideals, we use the previous equality several

times in order to conclude that
√
I + J =

√

⋂n
i=1

⋂m
j=1(Ii + Jj).

(3) We know from (2) that
√
I + J =

√

⋂n
i=1

⋂m
j=1(Ii + Jj). This means that

ht(I + J) = ht
(

⋂n
i=1

⋂m
j=1 (Ii + Jj)

)

. By (1), we conclude that

ht(I + J) = min { ht(Ii + Jj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m } .

The following proposition is important for the proof of Lemma 4.0.23.

Proposition 4.0.2. Let A be a Noetherian ring and let I be an ideal of A. Then

Min(I) ⊆ AssA(A/I).

Connectedness dimension and Γ graphs are defined in terms of dimension and

height respectively. It is worth noting that in the setting we use during this chapter

we have a way of relating these two concepts.

Proposition 4.0.3. Let A be a Noetherian complete local equidimensional ring

and let I be an ideal of A. Then

ht(I) + dim(A/I) = dim(A).

A graph is connected if and only if no matter how we partition its set of indices

in two non empty sets, we can always find an edge between a vertex of one of these

two disjoint sets and a vertex of the other one. This is the idea behind the next

proposition, which we use in the proof of Proposition 4.0.8.
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Proposition 4.0.4. Let (A,m) be a Noetherian local ring of dimension d with

more than one minimal prime. Let t be an integer such that t ∈ [1, d − 1]. Then

Γt(A) is connected if and only if ht(
⋂

P∈S P +
⋂

Q∈T Q) ≤ t for every (S, T )
partition of Min(A) such that S and T are non empty.

Proof. By Proposition 4.0.1, we know that given a (S, T ) partition of Min(A), we

have that

ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)

= min { ht(P +Q) | P ∈ S,Q ∈ T } ,

so there must be p ∈ S and q ∈ T such that ht
(

⋂

P∈S P +
⋂

Q∈T Q
)

= ht(p+q).

This means that for every (S, T ) partition of Min(A) such that S and T are non

empty , we have that

ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)

≤ t⇔ ∃p ∈ S, q ∈ T : ht(p+ q) ≤ t.

So, for any such partition (S, T ), you can find an edge between S and T . This

happens if and only if Γt(A) is connected.

In Chapter 2 we mentioned some results that would allow us to keep working

with quotient rings. The following proposition is similar to those in Chapter 2.

Proposition 4.0.5. Let (A,m) be a Noetherian equidimensional complete local

ring with dim(A) = d ≥ 1. Let x ∈ m such that x is not an element of any

minimal prime of A. Then ht(Q) = 1 for every minimal prime Q of (x), which

means ht(x) = 1, andA/(x) is a Noetherian equidimensional complete local ring

of dimension d− 1.

Proof. Let Q be a minimal prime of (x). By Krull’s principal ideal theorem, we

know that ht(Q) ≤ 1. Since x is not in any minimal prime of A, we have that Q
cannot be a minimal prime of A, since that would mean x ∈ Q. This means that

ht(Q) is not zero. So ht(Q) = 1.

We know that A/(x) is a Noetherian complete local ring, we only need to

show that it is also equidimensional and of dimension d− 1.

The dimension of this ring is d− 1 since we are going modulo a parameter.

We know that the minimal primes of A/(x) are of the form Q/(x), with Q a

minimal prime of (x). Let Q be a minimal prime of (x). Then dim
(

A
(x)
/ Q
(x)

)

=
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dim(A/Q). We know that in A the equality ht(Q) + dim(A/Q) = dim(A) = d
holds from Proposition 4.0.3, and since we have already established that ht(Q) =

1, we conclude that dim(A/Q) = d− 1. So dim
(

A
(x)
/ Q
(x)

)

= d− 1. This means

A/(x) is also equidimensional.

Given a Γ graph we focus our attention in its subgraph corresponding to certain

subset of minimal primes. One way to study such subgraph is by doing specific

quotients of the ring.

Proposition 4.0.6. Let (A,m) be a Noetherian equidimensional complete local

ring and let I be a proper ideal of A such that Min(I) ⊆ Min(A). Then A/I is

also a Noetherian equidimensional complete local ring and dim(A/I) = dim(A).
Furthermore, if J is an ideal of A such that I ⊆ J then ht(J) = ht(J/I). In

addition, if Σ is the subgraph of Γt(A) whose vertices are Min(I), then

Σ ∼= Γt(A/I).

Proof. We know that A/I is a Noetherian complete local ring. We also know that

the minimal primes of A/I are the ideals of the form P/I with P minimal prime

of A.

Observe that dim
(

A
I
/P

I

)

= dim(A/P ) = dim(A) for every minimal prime

P of A since A is equidimensional. This means A/I is also equidimensional and

dim(A/I) = dim(A).
Let J be an ideal of A such that I ⊆ J . By Proposition 4.0.3 we have that

ht(J/I) + dim
(

A
I
/J
I

)

= dim(A/I), so ht(J/I) = dim(A)− dim(A/J). Propo-

sition 4.0.3 implies that ht(J) = dim(A)− dim(A/J). Thus ht(J) = ht(J/I).
The correspondence between vertices of Σ and vertices of Γt(A/I) is given by

assigning each minimal prime P of I to the minimal prime P/I of A/I . Thus the

vertices are preserved. Notice that edges are also preserved since if there is a edge

between P and Q minimal primes of I , then ht(P + Q) ≤ t. This is the same as

saying that ht(P/I +Q/I) = ht
(

P+Q
I

)

≤ t since ht(P +Q) = ht
(

P+Q
I

)

by the

previous paragraph.

In particular we choose I to be exactly the intersection of the minimal primes

corresponding to the part of the graph we want to focus our attention on.

The next proposition gives us more information about how the graphs work

when we study the quotient ring with different ideals but with the same radical.

Observation 4.0.7. Let (A,m) be a Noetherian equidimensional complete local

ring and let I , J be ideals of A such that
√
I =
√
J . Then both A/I and A/J are
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Noetherian complete local rings of the same dimension and if A/I is equidimen-

sional, then A/J is also equidimensional and Γt(A/I) ∼= Γt(A/J).

This follows from the fact that Spec(A/I) ∼= Spec(A/J).
Now we are ready to begin exploring the relations between connectedness

dimension and the Γ graphs.

Proposition 4.0.8 ([NnBSW19]). Let (A,m) be a Noetherian equidimensional

complete local ring with dim(A) = d ≥ 2. Let t be an integer such that t ∈
[1, d− 1]. Then

Γt(A) is connected ⇔ c(A) ≥ d− t.
As a consequence, the connectedness dimension is given by

c(A) = max { i | Γd−i(A) is connected } .
Proof. We use Proposition 2.3.5, Proposition 4.0.1 and Proposition 4.0.3 to obtain

the following chain of equalities.

c(A) = m(A)

= min
(S,T ) is a partition of Min(A)

{

dim

(

A
⋂

P∈S P +
⋂

Q∈T Q

)}

= min
(S,T ) is a partition of Min(A)

{

dim(A)− ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)}

= d+ min
(S,T ) is a partition of Min(A)

{

− ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)}

= d− max
(S,T ) is a partition of Min(A)

{

ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)}

= d− max
(S,T ) is a partition of Min(A)

{

ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)}

.

Then

c(A) ≥ d− t ⇔ d− max
(S,T ) is a partition of Min(A)

{

ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)}

≥ d− t

⇔ max
(S,T ) is a partition of Min(A)

{

ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)}

≤ t,
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which is the same as saying that for every (S, T ) partition of Min(A) such that

S and T are non empty ht
(

⋂

P∈S P +
⋂

Q∈T Q
)

≤ t. Proposition 4.0.4 implies

that this happens if and only if Γt(A) is connected.

We can compute connectedness dimension by counting how many of the Γt(A)
graphs with t ∈ [0, d− 1] are connected.

Even if a graph Γt(A) is not connected we can also obtain information regard-

ing its connected components.

Definition 4.0.9. Let G be a graph and let X be a topological space. We denote

#G to the amount of connected components of G and denote #X to the amount

of connected components of the space X .

Corollary 4.0.10 ([NnBSW19]). Let (A,m) be a Noetherian equidimensional

complete local ring of dimension d ≥ 2 and let t be an integer such that t ∈
[1, d− 1]. Then:

#Γt(A) = max {#Spec(A)− V (I) | dim(A/I) < d− t } .
Proof. Suppose Γt(A) has only one connected component. This means Γt(A)
is connected, so we know c(A) ≤ d − t by Proposition 4.0.8. From the def-

inition of connectedness dimension, this means that for any ideal a such that

dim(A/a) < d − t the space Spec(A) − V (a) is connected. Take a = m and

notice that dim(A/m) = 0 since m is maximal. This means that the collection of

all #Spec(A)− V (I) such that dim(A/I) < d− t is not empty and it is equal to

{ 1 }, so its maximum is also 1.

Now suppose Γt(A) has n > 1 connected components. We denote by Σ1, . . . ,
Σn the n connected components of Γt(A). Define the ideals bi =

⋂

P∈Σi
P and

the ideal a =
⋂

i<j bi + bj . From Proposition 4.0.1 we know that ht(a) > t which

is the same as saying that dim(A/a) < d− t by Proposition 4.0.3.

Consider the sets V (bi) − V (a). We prove that they form a disconnection of

Spec(A)− V (a).
Suppose V (bi) − V (a) is empty. Then V (bi) ⊆ V (a), so

√
a ⊆

√
bi. Thus

ht(a) ≤ ht(bi). Since bi is an intersection of minimal primes, Proposition 4.0.1

implies that ht(bi) = 0. Then, t < ht(a) ≤ ht(bi) = 0, a contradiction. Thus the

sets V (bi)− V (a) are not empty.

We have the chain of equalities

⋃

i

V (bi) = V

(

⋂

i

bi

)

= V





⋂

P∈Min(A)

P



 = V (
√
0) = Spec(A).
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This means that
⋃

i(V (bi)− V (a)) = (
⋃

i V (bi))− V (a) = Spec(A)− V (a).
Given i, j such that i 6= j we have that a ⊆ bi+bj . So V (bi+bj) ⊆ V (a). This

means that V (bi + bj)−V (a) is empty. But (V (bi)−V (a))∩ (V (bj)−V (a)) =
V (bi + bj)− V (a), thus (V (bi)− V (a)) ∩ (V (bj)− V (a)) is empty.

So the sets V (bi) − V (a) form a partition of Spec(A) − V (a) by non empty

sets. Notice that they are open since Spec(A) − V (a) is open. This means that

they disconnect Spec(A)− V (a) and then n ≤ #Spec(A)− V (a).
We conclude that #Γt(A) ≤ max {#Spec(A)− V (I) | dim(A/I) < d− t }.
Now let c be an ideal of A such that dim(A/c) < d− t, equivalently ht(c) > t.

Let m = #Spec(A)− V (c) and let V (ci)− V (c) be its connected components.

If Spec(A)− V (c) is connected, that is m = 1, then n ≥ m.

Now suppose Spec(A) − V (c) is disconnected. Notice that Spec(A) − V (c)
is not empty since that would mean that ht(c) = 0, a contradiction.

Notice that the minimal primes of A are not in V (c), since that would mean

that ht(c) = 0. Also observe that each minimal prime of A belong to one and only

one of the V (ci)− V (c).
Now we prove that there is no edge between the minimal primes of A that

belong to V (ci) − V (c) and those who belong to V (cj) − V (c), whenever i 6= j.
Let i 6= j. We know that V (ci+cj)−V (c) = (V (ci)−V (c))∩(V (cj)−V (c)) = ∅.
Then, V (ci + cj) ⊆ V (c), and so,

√
c ⊆ √ci + cj . Therefore t < ht(c) ≤

ht(ci+ cj). Observe that there is no pair of minimal primes P ∈ V (ci)−V (c) and

Q ∈ V (cj) − V (c) such that ht(P + Q) ≤ t, since that would contradict the fact

that ht(ci + cj) > t. This means that n ≥ m.

We conclude that #Γt(A) ≥ max {#Spec(A)− V (I) | dim(A/I) < d− t }.

Now we proceed to study what happens when we go modulo a parameter. We

need additional tools in order to do so. The following lemma gives us information

about the behaviour between minimal primes of a ring and the minimal primes of

an ideal generated by a parameter. We only prove the second statement.

Lemma 4.0.11. Let (A,m) be a Noetherian equidimensional complete local ring

with dim(A) = d ≥ 1. Let x ∈ m such that x is not an element of any minimal

prime of A. Then

1. For every minimal prime Q of (x), there is a minimal prime P of A such

that P ⊆ Q.

2. For every minimal prime P of A, there is a minimal prime Q of (x) such

that P ⊆ Q.
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Proof. Let P be a minimal prime of A. Notice that A
P

is also a Noetherian equidi-

mensional complete local ring of dimension d, and that x is not contained in the

unique minimal prime of A
P

, so by Proposition 4.0.5 we know that A
P
/(x) ∼= A

P+(x)

is also a Noetherian equidimensional complete local ring of dimension d− 1 and

that ht(x) = 1.

Since

ht(x) + dim

(

A
P

(x)

)

= dim

(

A

P

)

,

we conclude that

dim

(

A

P + (x)

)

= d− 1.

We also know that

ht(P + (x)) + dim

(

A

P + (x)

)

= dim(A),

and so

ht(P + (x)) = 1.

Now takeQ ∈ Min(P+(x)) such that ht(Q) = ht(P+(x)). Since (x) ⊆ P+(x)
and ht(x) = ht(P + (x)) by Proposition 4.0.5, then Q ∈ Min(x). Finally P ⊆ Q
because Q ∈ Min(P + (x)).

From the last part of the proof of Lemma 4.0.11 we deduce that every Q ∈
Min(P + (x)) such that ht(Q) = 1 must be a minimal prime of (x). It turns out

that every minimal prime of P+(x) is of height 1. Then Min(P+(x)) ⊆ Min(x).
Furthermore, Min(P + (x)) is the set of all Q ∈ Min(x) such that P ⊆ Q.

Corollary 4.0.12. Let (A,m) be a Noetherian equidimensional complete local

ring with dim(A) = d ≥ 1. Let x ∈ m such that x is not an element of any

minimal prime of A. For every minimal prime P of A, we have that

Min(P + (x)) = {Q ∈ Min(x) | P ⊆ Q}.

Proof. We proceed by double containment. Let X = {Q ∈ Min(x) | P ⊆ Q}
Take a minimal prime Q of (x) that contains P . Since P + (x) ⊆ Q and

ht(P + (x)) = ht(Q), then Q must be a minimal prime of P + (x). So X ⊆
Min(P + (x)).
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Now, let P ∈ Min(A) and let Q ∈ Min(P + (x)). We show that ht(Q) = 1.

From the proof of Lemma 4.0.11, we know that A
P+(x)

is a Noetherian equidimen-

sional complete local ring of dimension d − 1. We know from Proposition 4.0.3

that

ht

(

Q

P + (x)

)

+ dim

(

A
P+(x)

Q
P+(x)

)

= dim

(

A

P + (x)

)

.

Since Q
P+(x)

∈ Min
(

A
P+(x)

)

, we get that ht
(

Q
P+(x)

)

= 0. We conclude that

dim

(

A
P+(x)

Q
P+(x)

)

= dim

(

A

Q

)

= d− 1.

We also know that ht(Q)+dim(A/Q) = dim(A), and so ht(Q) = 1. This means

thatQ is a minimal prime of (x) and we knew from the beginning that it contained

P . So Min(P + (x)) ⊆ X .

The following definition plays a key role during the proof of Theorem 4.0.25.

Definition 4.0.13. Let (A,m) be a Noetherian equidimensional complete local

ring with dim(A) = d ≥ 1. Let x ∈ m be such that x is not an element of any

minimal prime of A. Given a minimal prime P of A, we define the dust of P to

be the set

D(P ) = {Q ∈ Min(x) | P ⊆ Q}.
Furthermore if Σ is a subgraph of Γt(A), then

D(Σ) =
⋃

P∈Σ

D(P ).

Definition 4.0.14. Let (A,m) be a Noetherian equidimensional complete local

ring with dim(A) = d ≥ 1. Let x ∈ m be such that x is not an element of any

minimal prime of A. Let Σ be a subgraph of Γt(A). Let Σ
′

be the subgraph of

Γt(A/(x)) such that its vertices are given by Q/(x) such that Q ∈ D(Σ). We call

Σ
′

the associated graph to Σ.

Notice that from Corollary 4.0.12 we know D(P ) = Min(P + (x)). From

Lemma 4.0.11, we can deduce that
⋃

P∈Min(A)D(P ) = Min(x).
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Lemma 4.0.15. Let (A,m) be a Noetherian equidimensional complete local ring

of dim(A) = d ≥ 1. Let x ∈ m such that x is a not an element of any minimal

prime of A. Let S be a non empty subset of Min(A) and let I =
⋂

P∈S P . Then

Min(I + (x)) =
⋃

P∈S

Min(P + (x)).

Proof. We proceed by double containment.

First we prove that Min(I+(x)) ⊆ ⋃P∈S Min(P+(x)). Take a minimal prime

Q of I + (x). By prime avoidance Q contains a prime P ∈ S. But I + (x) ⊆
P +(x) ⊆ Q. This implies that Q is also a minimal prime of P +(x). Notice this

also means that ht(I + (x)) = 1 since all the minimal primes of P + (x) are of

height 1 by Corollary 4.0.12.

Now, we prove that
⋃

P∈S Min(P+(x)) ⊆ Min(I+(x)). Let P ∈ S and letQ
be a minimal prime of P+(x). Since I+(x) ⊆ P+(x) and ht(I+(x)) = ht(P+
(x)) = ht(Q), we deduce that Q must also be a minimal prime of I + (x).

In the previous setting let Σ be the subgraph of Γt(A) whose vertices are the

elements of S. Observe that D(Σ) = Min(I+(x)), since D(P ) = Min(P +(x)).
Now we are ready for our study of connectedness dimension modulo a param-

eter. It turns out that if Γt(A) is connected, then Γt(A/(x)) is also connected. The

only moment when this is not necessarily true is when t = 0, as the following

example shows.

Let K be a field and consider the power series ring A = K[[s, t, u]]. Γt(A) is

connected for every t since A is a domain, but Γ0(A/(stu)) is not connected since

it has more than one minimal prime.

Additionally, observe that we restrict t to be less or equal than d − 2. We do

so because Γd−1(A/(x)) is connected regardless the connectedness of Γd−1(A).

Theorem 4.0.16 ([NnBSW19]). Let (A,m) be a Noetherian equidimensional com-

plete local ring containing a field, of dim(A) = d ≥ 3, with separably closed

residue field. Let x ∈ m such that x is a not an element of any minimal prime of

A. Let t be an integer such that t ∈ [1, d− 2]. Then,

Γt(A) is connected⇒ Γt(A/(x)) is connected.

Proof. Suppose A has more than one minimal prime. Recall that c(A) = dim(A)
if and only if A has only one minimal prime, so c(A) < dim(A) in this case. We

know from Theorem 2.3.3 that

c(A/(x)) ≥ min { c(A), dim(A)− 1 } − ara(x).
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Since ara(x) = 1 because (x) is a principal ideal, we conclude that

c(A/(x)) ≥ c(A)− 1.

Since Γt(A) is connected, Proposition 4.0.8 implies that c(A) ≥ d− t. Thus,

c(A/(x)) ≥ (d− t)− 1 = (d− 1)− t.

Once again Proposition 4.0.8 implies that Γt(A/(x)) is connected.

Now suppose A has only one minimal prime P . From Proposition 4.0.6 we

know that Γt(A) ∼= Γt(A/P ). Notice that A/P is a domain and that x ∈ A/P
does not belong to any minimal prime.

From Zhang’s work (proposition 2.2, reference 8) we know that since Γ1(A/P )
is connected, we have that

Γ1

(

A
P

(x)

)

∼= Γ1

(

A

P + (x)

)

is connected too.

This means that Γt

(

A
P+(x)

)

is connected for every t ∈ [1, d− 2].

From Corollary 4.0.12 we know that Min(P+(x)) = {Q ∈ Min(x) | P ⊆ Q },
and since P is the only minimal prime ofA, we deduce that every prime ideal con-

tains P . This means that Min(P + (x)) = Min(x). So
√

P + (x) =
√

(x).
It follows from Proposition 4.0.5 and Observation 4.0.7 that

Γt

(

A

P + (x)

)

∼= Γt(A/(x)).

Thus, Γt(A/(x)) must be connected too.

Corollary 4.0.17. Let (A,m) be a Noetherian equidimensional complete local

ring containing a field, of dim(A) = d ≥ 3, with separably closed residue field.

Let x ∈ m such that x is a not an element of any minimal prime of A. Let t be an

integer such that t ∈ [1, d − 2]. Let Σ be a subgraph of Γt(A) and let Σ
′

be the

subgraph of Γt(A/(x)) associated to D(Σ). Then,

Σ is connected⇒ Σ
′

is connected.

Proof. Suppose Σ is connected. Let I be the intersection of all the vertices of Σ.

From Proposition 4.0.6 we know that Σ ∼= Γt(A/I), so Γt(A/I) is also connected

and Theorem 4.0.16 implies that Γt

(

A
I+(x)

)

is also connected.
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From Lemma 4.0.15 we know that
√

I + (x) =
⋂

Q∈Min(I+(x))Q =
⋂

Q∈D(Σ)Q.

Observation 4.0.7 implies that Γt

(

A
I+(x)

)

∼= Γt

(

A⋂
Q∈D(Σ) Q

)

.

Notice that Proposition 4.0.6 implies that

Γt

(

A
⋂

Q∈D(Σ)Q

)

∼= Γt

(

A
(x)

⋂

Q∈D(Σ)
Q
(x)

)

∼= Σ
′

.

We conclude that Σ
′

is also connected.

The converse is also true if we add more restrictions to our paramater. In order

to do so we need the following definition:

Definition 4.0.18 ([NnBSW19]). Let (A,m) be a Noetherian local ring. We define

the following set of ideals:

ξ(A) =
{

P +Q
∣

∣

∣ P,Q ∈ Min(A) such that
√

P +Q ( m
}

.

Notice that if the dimension of the ring is positive, all the minimal primes of

A belong to ξ(A).
The condition we add in order to obtain the converse of Theorem 4.0.16 is that

the parameter is not in any minimal prime of any ideal of the set ξ(A). This can be

done using prime avoidance since there is only a finite amount of ideals in ξ(A).

Theorem 4.0.19 ([NnBSW19]). Let (A,m) be a Noetherian equidimensional com-

plete local ring with dim(A) = d ≥ 3. Let x ∈ m such that x is not in any minimal

prime of any ideal of the set ξ(A). Let t be an integer such that t ∈ [1, d − 2].
Then,

Γt(A/(x)) is connected ⇒ Γt(A) is connected.

Proof. Observe that if Γt(A/(x)) is connected, then Γt+1(A) is connected too.

This follows from the fact that for any ideal I such that (x) ⊆ I we have that

ht(I/(x)) + 1 = ht(I), which is true by Proposition 4.0.3. Proposition 4.0.8

implies that c(A) ≥ d− (t+ 1). Since t ∈ [1, d− 2], we get that c(A) ≥ 1.

Let (S, T ) be a partition of Min(A) such that c(A) = dim
(

A⋂
P∈S P+

⋂
Q∈T Q

)

.

If S or T is empty, then c(A) = dim(A). This implies thatA has only one minimal

prime, so Γt(A) is connected. Thus we can assume that neither of them is empty.

Suppose
√
P +Q = m for every P ∈ S,Q ∈ T . Then, ht(

⋂

P∈S P +
⋂

Q∈T Q) = d and dim
(

A⋂
P∈S P+

⋂
Q∈T Q

)

= 0 by Proposition 4.0.3. This means
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c(A) = 0, a contradiction. We conclude that there must be at least some P ∈ S
and Q ∈ T such that

√
P +Q ( m.

Observe that for any such P and Q, we have that x is not in any minimal

prime of P + Q. Thus, x is a parameter of A
P+Q

. This means that dim
(

A
P+Q

)

=

dim
(

A
P+Q+(x)

)

+ 1. Proposition 4.0.3 implies that ht(P + Q) = ht(P + Q +

(x))− 1.

With this last observation in mind we have that

c(A) = dim

(

A
⋂

P∈S P +
⋂

Q∈T Q

)

= d− ht

(

⋂

P∈S

P +
⋂

Q∈T

Q

)

= d−min { ht(P +Q) | P ∈ S,Q ∈ T }
= d−min { ht(P +Q+ (x))− 1 | P ∈ S,Q ∈ T }
= d−min { ht(P +Q+ (x)) | P ∈ S,Q ∈ T }+ 1

= d−min { ht((P + (x)) + (Q+ (x))) | P ∈ S,Q ∈ T }+ 1

= d− ht

(

⋂

P∈S

(P + (x)) +
⋂

Q∈T

(Q+ (x))

)

+ 1

= dim

(

A
⋂

P∈S(P + (x)) +
⋂

Q∈T (Q+ (x))

)

+ 1

≥ dim

(

A
⋂

p∈D(S) p+
⋂

q∈D(T ) q

)

+ 1

= dim

(

A
(x)

⋂

p∈D(S)
p

(x)
+
⋂

q∈D(T )
q

(x)

)

+ 1

≥ c(A/(x)) + 1.

Since Γt(A/(x)) is connected, c(A/(x)) ≥ (d − 1) − t by Proposition 4.0.8. So

c(A)− 1 ≥ (d− 1)− t. That is, c(A) ≥ d− t. We conclude, again by Proposition

4.0.4, that Γt(A) is connected.

Corollary 4.0.20. Let (A,m) be a Noetherian equidimensional complete local

ring with dim(A) = d ≥ 3. Let x ∈ m such that x is not in any minimal prime of
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any ideal of the set ξ(A). Let t be an integer such that t ∈ [1, d− 2]. Then

c(A) = c(A/(x)) + 1.

Lemma 4.0.21. Let (A,m) be a Noetherian equidimensional complete local ring

of dim(A) = d ≥ 1. Let x ∈ m such that x is not in any minimal prime of A. Let

t be an integer such that t ∈ [1, d − 2]. Let Σi and Σj be subgraphs of Γt(A). If

the graphs Σi and Σj do not share any vertices and there are no edges between

them, then D(Σi) and D(Σj) are disjoint. In particular the subgraphs Σ
′

i and Σ
′

j

of Γt(A/(x)) associated to Σi and Σj respectively do not share vertices.

Proof. Let Q ∈ D(Σi) ∩ D(Σj), then there are Pi ∈ Σi and Pj ∈ Σj such that

Q ∈ D(Pi) ∩ D(Pj). So Pi + Pj ⊆ Q, this means that ht(Pi + Pj) ≤ ht(Q) =
1 ≤ t. So there is an edge between Σi and Σj , a contradiction.

Theorem 4.0.22 ([NnBSW19]). Let (A,m) be a Noetherian equidimensional com-

plete local ring containing a field of dim(A) = d ≥ 3 with separably closed

residue field. Let x ∈ m such that x is not in any minimal prime of any ideal of

the set ξ(A). Let t be an integer such that t ∈ [1, d− 2]. Then

#Γt(A) = #Γt(A/(x)).

Proof. Suppose #Γt(A) = s. Let Σ1, . . . ,Σs be the s connected components

of Γt(A). Let Σ
′

1, . . . ,Σ
′

s be the subgraphs of Γt(A/(x) associated to the sets

D(Σ1), . . . , D(Σs) respectively. We show that the associated graphs are the con-

nected components of Γt(A/(x).
Define ideals ai =

⋂

P∈Σi
P . From Corollary 4.0.17 and its proof we know

that Σ
′

i
∼= Γt

(

A
ai+(x)

)

is also connected for each i.

From Lemma 4.0.21 we know that for distinct i and j, the graphs Σ
′

i and Σ
′

j

do not share vertices. Then they are distinct connected subgraphs of Γt(A/(x)).
It remains to show that for every pair of distinct Σ

′

i and Σ
′

j there are no edges

between them, so they are the connected components of Γt(A/(x)).
Suppose there is and edge between a pair of distinct Σ

′

i and Σ
′

j . Then, the graph

Γt

(

A
(ai∩aj)+(x)

)

is connected by Proposition 4.0.6 and Lemma 4.0.15. Since x is

not in any minimal prime of any ideal of the set ξ(A), we deduce that x is not in

any minimal prime of any ideal of the set ξ
(

A
ai+aj

)

. This means that Γt

(

A
ai∩aj

)

is also connected by Theorem 4.0.24. This implies there is some edge between Σi

and Σj , a contradiction.
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By changing a little bit the hypothesis of the previous four results, we show in

the following results that we obtain the same results. First a lemma that helps us

prove Theorem 4.0.24.

Lemma 4.0.23. Let (A,m) be a Noetherian equidimensional complete local ring.

Suppose there is an x ∈ m such that x is a non zero divisor of A and that (x) is

a radical ideal. Let (S, T ) be a partition of Min(A) such that S and T are non

empty, and I =
⋂

P∈S P and J =
⋂

Q∈T Q, then x is a non zero divisor of A
I+J

. In

particular x is not in any minimal prime of I + J .

Proof. Let (S, T ), I and J be as above and consider the exact sequence

0→ A

I ∩ J →
A

I
⊕ A

J
→ A

I + J
→ 0.

This sequence induces a long exact sequence of Tor of the form

. . .→ Tor1

(

A

I
⊕ A

J
,
A

(x)

)

→ Tor1

(

A

I + J
,
A

(x)

)

→ A

I ∩ J ⊗
A

(x)
→
(

A

I
⊕ A

J

)

⊗ A

(x)
→ A

I + J
⊗ A

(x)
→ 0.

Since x is a non zero divisor of A, then Tor1(A/I,A/(x)) = AnnA/I(x). Let

a ∈ AnnA/I(x). This means that ax ∈ I =
⋂

P∈S P . Since x is not in any

minimal prime of A, we conclude that a must belong to
⋂

P∈S P . This means that

a = 0 and so, AnnA/I(x) = 0. Similarly Tor1(A/J,A/(x)) = AnnA/J(x) = 0.

Then,

Tor1

(

A

I
⊕ A

J
,
A

(x)

)

= Tor1

(

A

I
,
A

(x)

)

⊕ Tor1

(

A

J
,
A

(x)

)

= 0.

We also know that Tor1

(

A
I+J

, A
(x)

)

= Ann A
I+J

(x) and by simplifying tensor prod-

ucts, we get

0→ Ann A
I+J

(x)→ A

I ∩ J + (x)
→ A

I + (x)
⊕ A

J + (x)
→ A

I + J + (x)
→ 0.
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Observe that

(x) ⊆
√
0 + (x)

= I ∩ J + (x)

⊆ (I + (x)) ∩ (J + (x))

⊆
√

(I + (x)) ∩ (J + (x))

=
√

I ∩ J + (x)

=

√√
0 +

√

(x)

=
√

0 + (x)

=
√

(x)

= (x),

which means we have I ∩ J + (x) = (I + (x)) ∩ (J + (x)). Since the sequence

0→ A

(I + (x)) ∩ (J + (x))
→ A

I + (x)
⊕ A

J + (x)
→ A

(I + (x)) + (J + (x))
→ 0

is exact, we conclude that Ann A
I+J

(x) = 0. This means that x is a non zero divisor

of A
I+J

, so x is not in any minimal prime of I + J .

Theorem 4.0.24. Let (A,m) be a Noetherian equidimensional complete local ring

with dim(A) = d ≥ 3. Suppose there exists an x ∈ m such that x is a non

zero divisor of A and that (x) is a radical ideal. Let t be an integer such that

t ∈ [1, d− 2]. Then

Γt(A/(x)) is connected⇒ Γt(A) is connected.

As a consequence

c(A) = c(A/(x)) + 1.

Proof. We know c(A) = dim
(

A
I+J

)

where I and J are the intersection of all the

elements of S and T respectively, for some partition (S, T ) of Min(A).
From Lemma 4.0.23, we know that x is not an element of any minimal prime
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of I + J , so

c(A) = dim

(

A

I + J

)

= dim

(

A

I + J + (x)

)

+ 1

≥ dim

(

A
⋂

P∈S

⋂

Q∈D(P )Q+
⋂

P∈T

⋂

Q∈D(P )Q

)

+ 1

= dim

(

A
(x)

⋂

P∈S

⋂

Q∈D(P )
Q
(x)

+
⋂

P∈T

⋂

Q∈D(P )
Q
(x)

)

+ 1

≥ c(A/(x)) + 1.

Suppose Γt(A/(x)) is connected. From Proposition 4.0.8 we have the inequal-

ity c(A/(x)) ≥ (d − 1) − t, so c(A/x) + 1 ≥ d − t. From our previous chain of

inequalities, we get that c(A) ≥ d− t. We conclude that Γt(A) is connected.

Theorem 4.0.25. Let (A,m) be a Noetherian equidimensional complete local ring

containing a field, of dim(A) = d ≥ 3, with separably closed residue field. Sup-

pose there exists x ∈ m such that x is a non zero divisor of A and that (x) is a

radical ideal. Let t be an integer such that t ∈ [1, d− 2]. Then

#Γt(A) = #Γt(A/(x)).

Proof. Suppose #Γt(A) = s. Let Σ1, . . . ,Σs be the s connected components

of Γt(A). Let Σ
′

1, . . . ,Σ
′

s be the subgraphs of Γt(A/(x) associated to the sets

D(Σ1), . . . , D(Σs) respectively. We show that the associated graphs are the con-

nected components of Γt(A/(x)).
Define ideals ai =

⋂

P∈Σi
P . From Corollary 4.0.17 and its proof we know

that Σ
′

i
∼= Γt

(

A
ai+(x)

)

is also connected for each i.

From Lemma 4.0.21 we know that for distinct i and j, the graphs Σ
′

i and Σ
′

j

do not share vertices. Thus they are distinct connected subgraphs of Γt(A/(x)).
It remains to show that for every pair of distinct Σ

′

i and Σ
′

j there are no edges

between them, so they are indeed the connected components of Γt(A/(x)).
For i 6= j, suppose there is an edge between q1/(x) ∈ Σ

′

i and q2/(x) ∈ Σ
′

j .

Let S be the set of vertices of Γt(A) in Σi and let T be the set of vertices of Γt(A)
which are not in Σi. Notice that (S, T ) is a partition of Min(A). Let I and J
be the intersection of all the elements of S and T respectively. Take p1 and p2
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such that q1 ∈ D(p1) and q2 ∈ D(p2). Since I + J ⊆ p1 + p2 + (x), we have

that ht(I + J) ≤ ht(p1 + p2 + (x)). Suppose equality holds and take a minimal

prime Q of p1 + p2 + (x) such that ht(Q) = ht(p1 + p2 + (x)). Since I + J and

p1+p2+(x) have the same height, Q must also be a minimal prime of I+J . But

Lemma 4.0.23 prevents this from happening since x ∈ Q. We have that

ht(I + J) + 1 ≤ ht(p1 + p2 + (x))

≤ ht(q1 + q2)

= ht(q1/(x) + q2/(x)) + 1.

Thus ht(I + J) ≤ ht(q1/(x) + q2/(x)) ≤ t. From the proof of Proposition 4.0.4

we know this means there is an edge between some prime in S and some prime in

T . Then, there is an edge between a vertex of Σi and a vertex of another connected

component of Γt(A), a contradiction.

We conclude that Σ
′

1,Σ
′

2, . . . ,Σ
′

s are the connected components of Γt(A/(x)).
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Chapter 5

Local Cohomology and Graphs

In this final chapter we study the connection between local cohomology and the

connectivity of the punctured spectrum of a ring, that is, the subspace of the spec-

trum of a local ring in which we only remove the singleton containing the maximal

ideal.

First we state some technical results we need in order to prove the main result

in this chapter.

Theorem 5.0.1 (Hartshorne-Lichtenbaum). Let (A,m) be a Noetherian complete

local domain of dimension d. If I is a proper ideal of A and I is not m-primary,

then Hd
I (A) = 0.

Theorem 5.0.2 (Mayer-Viétoris). Let I, J be ideals of a Noetherian ring A. Then

for every A-mod M , there is a long exact sequence:

. . .→ H i
I+J(M)→ H i

I(M)⊕H i
J(M)→ H i

I∩J(M)→ H i+1
I+J(M)→ . . . .

Proof. Note that In ∩ Jn is cofinal with (I ∩ J)n and that In + Jn is cofinal with

(I + J)n.

Consider the exact sequence:

0→ A

In ∩ Jn
→ A

In
⊕ A

Jn
→ A

In + Jn
→ 0.

Let E be an injective A-mod. E induces the following exact sequence:

0→ Hom

(

A

In ∩ Jn
, E

)

→ Hom

(

A

In
⊕ A

Jn
, E

)

→ Hom

(

A

In + Jn
, E

)

→ 0.
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By taking the direct limit with respect to n, and using the fact of the cofi-

nality of the sequence of ideals previously discussed, we get the following exact

sequence:

0→ H0
I+J(E)→ H0

I (E)⊕H0
J(E)→ H0

I∩J(E)→ 0,

which is the sames as:

0→ ΓI+J(E)→ ΓI(E)⊕ ΓJ(E)→ ΓI∩J(E)→ 0.

Now let M be any A-mod. And consider an injective resolution of M . The

previous exact sequence applied to every injective module of the resolution in-

duces a commutative diagram such that it gives us long exact sequence in the

cohomology of the Γ. That is the long exact sequence we were looking for.

Definition 5.0.3. Let (A,m) be a Noetherian local ring. We define the punctured

spectrum of A as the space Spec(A)− {m }. We denote it as Spec0(A).
We also write V 0(I) to denote the closed subset V (I)− {m } of Spec0(A).

The following result relates the punctured spectrum of a ring with its Γd−1

graph, it also gives us a way to relate local cohomology to the connectedness of

Γd−1 graphs.

Notice also that it is quite similar to Proposition 4.0.8 but the ring need not be

equidimensional nor complete.

Theorem 5.0.4. Let (A,m) be a Noetherian local ring of dimension d ≥ 2. Then,

the following are equivalent.

1. Spec0(A) is connected.

2. Γd−1(A) is connected.

3. c(A) ≥ 1.

Proof. Suppose Γd−1(A) is disconnected. This happens if and only if there is a

partition (S, T ) of the minimal primes of A in non empty sets such that ht(P +
Q) = d for every P ∈ S,Q ∈ T . From Proposition 4.0.1 we know this is

equivalent to ht(I+J) = d, where I =
⋂

P∈S P and J =
⋂

Q∈T Q. So
√
I + J =

m, I ∩ J =
√
0 and

√
I and

√
J are proper subsets of m; otherwise, dim(A) = 0.

This happens if and only if Spec(A) − V (m) = Spec0(A) is disconnected by

Proposition 2.3.2
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Suppose Spec0(A) is connected. If c(A) = 0, then there is an ideal I such

that dim(A/I) = 0 and Spec(A)− V (I) is disconnected. But this means that I is

m-primary, so Spec(A)− V (I) = Spec(A)− V (m) = Spec0(A), a contradiction

since Spec0(A) is connected. Then c(A) ≥ 1. Conversely if c(A) ≥ 1, then the

definition of connectedness dimension implies that Spec0(A) must be connected

since dim(A/m) = 0.

We also have an analogous to Corollary 4.0.10. First we state a result similar

to Proposition 4.0.6 that is useful during the proof of this corollary.

Proposition 5.0.5. Let (A,m) be a Noetherian local ring of dimension d and let

I be a proper ideal of A such that Min(I) ⊆ Min(A). Let Σ be the subgraph of

Γd−1(A) whose vertices are Min(I). Then

Σ ∼= Γd′−1(A/I),

where d′ is the dimension of A/I .

Proof. The correspondence between vertices of Σ and vertices of Γd′−1(A/I) is

given by asigning the vertex P of Σ to the vertex P/I of Γd′−1(A/I).
Observe there is an edge between P1 and P2 in Σ if and only if ht(P1 +P2) ≤

d − 1, which is equivalent to the ideal P1 + P2 being non m-primary. This is

the same as P1/I + P2/I being non m/I-primary, which happens if and only if

ht(P1/I+P2/I) ≤ d′−1, where d′−1 is the dimension ofA/I . We conclude that

there is an edge between P1 and P2 in Σ if and only if there is an edge between

P1/I and P2/I in Γd′−1(A/I).

Corollary 5.0.6. Let (A,m) be a Noetherian local ring of dimension d ≥ 2. Then

#Γd−1(A) = #Spec0(A).

Proof. If Γd−1(A) is connected the result follows from Theorem 5.0.4. Suppose

Γd−1(A) is disconnected and let Σ1, . . . ,Σs be the s connected components of

Γd−1(A). Define ideals ai =
⋂

P∈Σi
P . Observe that the V 0(ai)’s are a partition

of Spec0(A) by open sets. So s ≤ #Spec0(A).
Let di be the dimension of A/ai. From Proposition 5.0.5 we know that Σi

∼=
Γdi−1(A/ai). Since Σi is connected, then Γdi−1(A/ai) is also connected and by

Theorem 5.0.4 Spec0(A/ai) is also connected. Since Spec0(A/ai) ∼= V 0(ai), it

follows that s = #Spec0(A).
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Theorem 5.0.7 (Hochster-Huneke). Let (A,m) be a Noetherian complete local

domain of dimension d. Let I be a proper ideal of A such that dim(R/I) ≥ 2.

Then

Hd−1
I (A) = 0⇒ Spec0(A/I) is connected.

Proof. We prove the contrapositive. Suppose Spec0(A/I) is disconnected. From

Proposition 2.3.2 we know there are non m/I-primary ideals J1/I, J2/I ⊆ m/I
such that

√

J1/I + J2/I = m/I and J1/I ∩ J2/I =
√
0. So

√
J1 + J2 = m and√

J1 ∩ J2 =
√
I .

From the Mayer-Viétoris sequence for J1 and J2 we get the exact sequence

Hd−1
J1∩J2

(A)→ Hd
J1+J2

(A)→ Hd
J1
(A)⊕Hd

J2
(A).

Since Ji/I is not m/I-primary, then Ji is not m-primary. So Theorem 5.0.1 im-

plies that Hd
Ji
(A) = 0. Notice also that since J1 ∩ J2 and I have the same radical,

then Hd−1
J1∩J2

(A) = Hd−1
I (A) by Proposition 3.0.2. J1 + J2 and m also have the

same radical, so Hd
J1+J2

(A) = Hd
m(A) by Proposition 3.0.2. Then our sequence

becomes

Hd−1
I (A)→ Hd

m(A)→ 0.

We know from Theorem 3.0.8 that Hd
m(A) 6= 0. The exactness of our sequence

implies that Hd−1
I (A) 6= 0.

Proposition 5.0.8. Let (A,m) be a Noetherian local ring of dimension d ≥ 2. Let

P be a minimal prime of A. Then

Spec0(A) is connected ⇒ dim(A/P ) ≥ 2.

Proof. Suppose Spec0(A) is connected. We proceed by contradiction. Suppose

there is a minimal prime P of A such that dim(A/P ) < 2. Note that if P is the

only minimal prime of A then dim(A) = dim(A/P ) < 2, a contradiction. Then,

we can assume that A has more than one minimal prime.

If dim(A/P ) = 0, then P is m-primary. Hence, there is no edge between P
and any other minimal prime of A in Γd−1(A), that is, Γd−1(A) is disconnected.

This contradicts the fact that Γd−1(A) is connected from Theorem 5.0.4.

If dim(A/P ) = 1, then there is a prime P ′ of A such that P ( P ′ ( m.

Let I = P and J be the intersection of all the minimal primes of A except P .

Note that I and J are non m-primary subsets of m such that I ∩ J =
√
0 and√

I + J = m. Thus, Proposition 2.3.2 implies that Spec(A)− V (m) = Spec0(A)
is disconnected, a contradiction.
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We state the following lemma without providing proof.

Lemma 5.0.9. Let S = K [[x1, . . . , xn]] be a power series ring over a separably

closed field K. Let P ∈ Spec(S) such that dim(S/P ) ≥ 2. Then Hn−1
P (S) = 0.

Theorem 5.0.10 ([HL90]). Let S = K [[x1, . . . , xn]] be a power series ring over

a separably closed field K. Let I be an ideal of S such that d = dim(S/I) ≥ 2.

Then

Hn−1
I (S) = 0⇔ Spec0(S/I) is connected.

Proof. Since S is a Noetherian complete local ring of dimension n such that

dim(S/I) ≥ 2, it follows from Theorem 5.0.7 that ifHn−1
I (S) = 0, then Spec0(S/I)

is connected.

Now suppose Spec0(S/I) is connected, then Γd−1(S/I) is connected by The-

orem 5.0.4. Let t be the number of minimal primes of S/I . We proceed by

induction on t.
Suppose t = 1. Let P/I be the minimal prime of S/I , with P prime of S that

contains I . From Proposition 5.0.8 we know that

dim

(

S
I
P
I

)

= dim

(

S

P

)

≥ 2.

Lemma 5.0.9 implies that Hn−1
P (S) = 0. Since P/I is the only minimal prime of

S/I , we deduce that P is the only minimal prime of I , that it,
√
I = P . From

Proposition 3.0.2 we know that Hn−1
I (S) = 0.

Suppose the result holds for t − 1 minimal primes and suppose S/I has t
minimal primes. Let P1/I, . . . , Pt−1/I, Pt/I be the minimal primes of S/I , where

P1, . . . , Pt−1, Pt are the minimal primes of I . Observe that there is a vertex of

Γd−1(S/I) such that if we remove that vertex. The graph Γd−1(S/I) would still

be connected. Suppose Pt/I is such vertex. Let Σ be the subgraph of Γd−1(S/I)
whose vertices are P1/I, . . . , Pt−1/I and set J =

⋂t−1
i=1 Pi. By Proposition 5.0.5

we know that

Σ ∼= Γd′−1

(

A
I

⋂t−1
i=1

Pi

I

)

∼= Γd′−1(S/J),

where d′ is the dimension of S/J . We conclude that Γd′−1(S/J) is connected too.

From the Mayer-Viétoris sequence for J and Pt we get the exact sequence

Hn−1
J (S)⊕Hn−1

Pt
(S)→ Hn−1

J∩Pt
(S)→ Hn

J+Pt
(S)→ Hn

J (S)⊕Hn
Pt
(S).
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Notice dim(S/J) ≥ 2 by Proposition 5.0.8. Since Γd′−1(S/J) is connected

and it has t − 1 minimal primes, then by our induction hypothesis we know that

Hn−1
J (S) = 0.

Let m = (x1, . . . , xn) be the maximal ideal of S. Since Γd−1(S/I) is con-

nected, there is a j ∈ [1, t− 1] such that ht(Pj/I + Pt/I) ≤ d− 1, so Pj + Pt is

not m-primary. By construction of J we know that J + Pt ⊆ Pj + Pt, so J + Pt

is not m-primary. Observe that neither J nor Pt are m-primary since they are

contained in J + Pt. Theorem 5.0.1 implies that

Hn
J+Pt

(S) = Hn
J (S) = Hn

Pt
(S) = 0.

Then our sequence becomes

0→ Hn−1
J∩Pt

(S)→ 0→ 0

so Hn−1
J∩Pt

(S) = 0 and since J ∩ Pt =
√
I , we conclude by Proposition 3.0.2 that

Hn−1
I (S) = 0.

Corollary 5.0.11. Let S = K [[x1, . . . , xn]] be a power series ring over a sep-

arably closed field K. Let I be an ideal of S such that dim(S/I) ≥ 2. Let

t = #Spec0(S/I). Then Hn−1
I (S) ∼= ES(K)t−1.

Proof. We proceed by induction on t.
Suppose t = 1. This means that Spec0(S/I) is connected. It follows from

Theorem 5.0.10 that Hn−1
I (S) = 0. Observe that EK(S)

t−1 = 0 since t = 1. So

in this case Hn−1
I (S) = ES(K)t−1.

Suppose the result holds for t−1 connected components. Suppose Spec0(S/I)
has t connected components, namely V 0(J1/I), . . . , V

0(Jt/I). Let a =
⋂t−1

i=1 Ji.
From the Mayer-Viétoris sequence for a and Jt we get the short exact sequence

Hn−1
a+Jt

(S)→ Hn−1
a (S)⊕Hn−1

Jt
(S)→ Hn−1

a∩Jt
(S)→ Hn

a+Jt(S).

Observe that

V 0

(

a

I
+
Jt
I

)

= V 0
(a

I

)

∩ V 0

(

Jt
I

)

=
⋃

i 6=t

(

V 0

(

Ji
I

)

∩ V 0

(

Jt
I

))

= ∅.

This implies that a+Jt is a m-primary ideal, so from Proposition 3.0.2 we conlude

that Hn−1
a+Jt

(S) = Hn−1
m (S) and Hn

a+Jt
(S) = Hn

m(S). Since S is a Gorenstein ring,

Hn−1
m (S) = 0 and Hn

m(S) = ES(K).
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We know from the proof of Corollary 5.0.6 that Spec0(S/Jt) is connected.

Theorem 5.0.10 implies that Hn−1
Jt

(S) = 0. From the proof of Corollary 5.0.6 we

know that Spec0(S/a) has t−1 connected components, soHn−1
a (S) ∼= ES(K)t−2

by our induction hypothesis.

Since a ∩ Jt =
√
I , Proposition 3.0.2 implies that Hn−1

a∩Jt
(S) = Hn−1

I (S).
Then our sequence becomes

0→ ES(K)t−2 → Hn−1
I (S)→ ES(K)

. Since ES(K)t−2 is injective, the sequence splits. Hence,

Hn−1
I (S) = ES(K)t−2 ⊕ ES(K) = ES(K)t−1.

This last proposition relates the depth of a ring with the connectivity of the

punctured spectrum of a ring.

Proposition 5.0.12. Let (A,m) be a Noetherian local ring such that depth(A) ≥
2. Then Spec0(A) is connected.

Proof. We proceed by contradiction. Suppose Spec0(A) is not connected. From

Proposition 2.3.2 we know there are ideals I, J ⊆ m such that both of them are

not m-primary, I ∩ J =
√
0 and

√
I + J = m.

From the Mayer-Viétoris sequence for I and J we get the exact sequence

H0
I+J(A)→ H0

I (A)⊕H0
J(A)→ H0

I∩J(A)→ H1
I+J(A).

From Theorem 3.0.5 we know that H0
m(A) = H1

m(A) = 0 since depth(A) ≥
2.

Since I ∩ J =
√
0, we know from Proposition 3.0.2 that H0

I∩J(A) = H0
0 (A).

From the definition of local cohomology it follows that H0
0 (A) = A.

From the definition of local cohomology we know that H0
I (A) = ΓI(A) and

H0
J(A) = ΓJ(A).

Then our sequence becomes

0→ ΓI(A)⊕ ΓJ(A)→ A→ 0.

Since A is indecomposable, we get ΓIA = A or ΓJ(A) = A. Say ΓI(A) = A.

This implies that
√
I =

√
0, so V 0(I) = Spec0(A), contradicting the fact that

V 0(I) and V 0(J) form a disconnection of Spec0(A).
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