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ABSTRACT  

     As an alternative to chemical pesticides the use of artificially inoculated endophytes in seeds 

have the advantage of controlling insect pests at a low application cost since little inoculum is 

required and protect the fungus from adverse environmental conditions. Using Beauveria 

bassiana as seed treatment in Zea mays plants establish them as endophytes in plants and 

enhance plant growth, induce drought tolerance, and can control insect pest Spodoptera 

frugiperda. The aim of the present study was to establish B. bassiana strains GHA, PTG4 and 

PTG6 as an endophyte in Z. mays and Arabidopsis thaliana to evaluate its effect on plant growth 

and yield, resistance to drought, tolerance to S. frugiperda and analyze the proteins present in B. 

bassiana-Z. mays interaction. Results showed that plants treated with B. bassiana strains GHA 

and PTG4 flowered earlier than untreated and PTG6 treated plants. Fresh and dry weight of B. 

bassiana plants showed significant difference compared with untreated plants.  Fifty percent of 

the B. bassiana-treated plants recovered their vigor with watering after a gradual drought stress. 

S. frugiperda larvae fed on B. bassiana-treated plants were late to reach their pupal stage and 

female moths were born with wing deformities and observed parthenogenesis, also controlled S. 

frugiperda population in the field studies. B. bassiana-treated plants guttation fluid contained 

proteins with 100 kDa to 150 kDa.   

 

     

 

 

Key words: B. bassiana, biological control, multitrophic interactions, protein effectors, 

proteomics. 
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RESUMEN 

 

      Como una alternativa a los plaguicidas químicos el uso de endófitos artificialmente 

inoculados en las semillas tiene la ventaja de controlar las plagas a un costo de aplicación 

reducido, ya que se requiere poco inoculo y también protege el hongo contra los factores 

abióticos. El uso de Beauveria bassiana en los tratamientos de las semillas de las plantas 

potencia su establecimiento como endófito, para que funcione como promotor de crecimiento, 

inductor de tolerancia a la sequía y para controlar la población de Spodoptera frugiperda en Z. 

mays.  El objetivo de este presente estudio fue establecer B. bassiana como endófito en las 

plantas de Z. mays y Arabidopsis thaliana y evaluar su efecto en el crecimiento, la resistencia, a 

la sequía, y a la tolerancia a S. frugiperda y analizar las proteínas que están presentes en la 

interacción de B. bassiana-Z. mays. Resultados mostraron que las plantas tratadas con las cepas 

GHA y PTG4 florecieron antes que las plantas no tratadas y tratadas con la cepa PTG6, y 

también se observó una diferencia significativa en el peso fresco y peso seco de las plantas 

tratadas con B. bassiana.  Mas de 50% de las plantas tratadas con B. bassiana se recuperó su 

vigor después del estrés por sequía. Las larvas de S. frugiperda que se alimentaron de las plantas 

tratadas con B. bassiana tardaron en llegar al estadio de pupa. Las hembras presentaron 

deformidades en las alas, y se observó partenogénesis. Los estudios en el campo también se pudo 

controlar la población de S. frugiperda.  Las gotas de savia de la xilema de las plantas tratadas 

con B. bassiana contienen proteínas con tamaño de 100 kDa - 150 kDa. 

 

 

Palabras clave: B. bassiana, control biológico, efectores proteicos, interacciones multitróficas, 

proteómica. 
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INTRODUCTION 

        

   Microbial control is the most viable alternative to synthetic chemical pesticides (Quesada et al., 

2014). In recent years, there is a growing appreciation of the prevalence, ecological significance, 

and management of potential fungal endophytes. Fungal endophytes are fungi that internally 

colonize plant tissues without causing evident damage or disease. Several studies suggest that 

fungal endophytes are involved in many beneficial interactions with their hosts, providing 

protection against a variety of stressors, including herbivores, pathogens, heat, and drought (Ek-

Ramos et al. 2013). Asymptomatic fungal endophytes are abundant and widespread in monocot 

and dicot plants. Amongst the potentially beneficial fungal endophytes are several specially known 

to be natural enemies of insects (entomopathogens). Entomopathogenic fungal endophytes have 

been isolated from a variety of different plant species and tissues. They are classified as no-

Clavipitaceae, referring to fungal endophytes that are usually transmitted horizontally. 

Clavipitaceae endophytes, on the other hand, are found in grasses and are vertically transmitted 

(Castillo Lopez et al. 2014). As endophytes, several Clavipitaceae entomopathogens including 

Beauveria bassiana, Lecanicillium lecanii, Metarhizium anisoplae, Purpureocillium lilacinum, 

and Isaria sp.  have negative effects on insect pests when in planta, antagonize to plant pathogens 

and promote plant growth. The activity of B. bassiana has received attention due to its negative 

effects on a variety of insect herbivores including cotton aphid (Castillo Lopez et al. 2014). 

Furthermore, effects of these fungi on herbivores when present within the plants as endophytes 

may represent a new venue for their use in pest management. 

     The main focus of this study was to understand the mechanisms involved during the beneficial 

interaction of fungal endophytes and their plant hosts, under biotic stress conditions where 

tolerance mechanisms have been developed by the economically important crop maize (Zea mays) 

and plant model Arabidopsis (Arabidopsis thaliana) and to control Spodoptera frugiperda using 

different strains of B. bassiana. To assess this, we performed one-dimensional electrophoresis to 

determine the different proteins profiles that are involved in these interactions. The results from 

this study are novel and have a contribution to the current knowledge regarding plant tolerance 

against drought and insect pests and provided new information on the beneficial interaction 

between fungal endophytes and their host plants. This study also provided information about the 

use of guttation liquids for the analysis of proteins. 
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ANTECEDENTS 

 

     Fungi have been known to be a rich repository of medicinally important compounds since the 

discovery of penicillin. Today, the range of drugs derived from fungi stretch from antibiotics to 

immune suppressants to anti-cholesterol drugs (statins). Despite plants remain the major source of 

drugs or their lead molecules, with every new bioactive molecule reported from a plant source, 

there are reports of endangered status or even extinction of medically important plants due to over-

harvesting. Hence, the focus has turned toward fungi namely “endophytes” which reside within 

these medicinally important plants and  from which may have acquired their potential medicinal 

values (Venugopalan and Srivastava 2015). 

 

 Endophytes  

     The term endophyte was coined by Heinrich Anton de Bary in 1884 (Venugopalan and 

Srivastava 2015). Although the term “endophyte” has several definitions, it is widely accepted that 

endophytes are microorganisms present in the plant tissues without causing any apparent 

symptoms (Ownley, Gwinn, and Vega 2010). Endophytic fungi often referred to as “symptomless 

fungi” occur ubiquitously in plants. They reside in intercellular spaces of stems, petioles, roots and 

leaves of plants without causing any obvious negative effects (Mohana Kumara et al., 2014).  

    The earliest records of the presence of endophytic fungi have come from the 400-million-year-

old fossils of the early Devonian Rhynie chert deposits, which suggest that endophyte-plant 

associations may have evolved along with the evolution of higher plants. Modern day studies on 

endophytic fungi can be traced back to mid-19th century. Based on differences in evolutionary 

relatedness, taxonomy, plant hosts and ecological functions, the endophytic fungi are classified as 

the Clavipitaceae or grass endophytes (C-endophytes) and the non-Clavipitaceae endophytes (NC-

endophytes) of vascular plants, ferns, conifers, and angiosperms, with the latter being further 

separated into three functional classes based on host colonization patterns, mechanism of 

transmission between host generations, in planta biodiversity levels and ecological functions 

(Venugopalan and Srivastava 2015). Evidence suggests that these fungal endophytes significantly 

improve host plant tolerance to drought, insect, diseases, and nematodes, and in exchange, plants 

provide protection, nutrition, and dissemination of the fungi. A few benefits to plants are also 

conferred by non Clavipitaceae endophytes (Castillo Lopez et al. 2014). 
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    The endophyte community within a plant is determined by fungi (genotype, competitive 

potential, tissue specificity, infection location) and host (genotype, variations in plant defenses, 

geographical location). Numerous studies have shown that endophyte richness and diversity are 

influenced by a vast array of abiotic and biotic factors including microclimate, microhabitat, and 

geographic location. A plant species may seem to be homogenous, but spatial and genetic 

differences render some plant more, and others less, susceptible to endophyte infection and 

subsequent colonization. For example, changing environmental conditions can influence host 

specificity. Ahlholm et al. in 2002 reported host-endophyte interactions in birch tree (Betula spp.), 

where the tree genotype directly influenced the presence of the fungal endophyte Ventura ditricha. 

Host genotype-enhanced resistance or increased susceptibility has been studied extensively within 

Arabidopsis thaliana, especially in relation to pathogens (Currie et al. 2014). 

    Endophytes benefit their hosts through improved tolerance to biotic stress such as drought, 

enhanced photosynthesis and transpiration, protection against pathogens through induced plant 

systemic resistance and the deterrence of phytophagous invertebrates. These benefits arise directly 

from endophyte metabolism or indirectly through production of compounds that alter host’s 

physiology. Conversely, plant does not always benefit from the presence of endophytes, and in 

some cases, plant fitness increased with the endophyte was absent. To unravel the complexity of 

endophyte-plant system, we must “think of individual plants as an ecosystem of interacting 

microbes” (Currie et al. 2014). 

   Plants responds to drought stress through a range of physiological and biochemical changes and 

research has shown that fungal endophytes are able to increase a host plant’s tolerance to drought 

stress, possibly through the enhancement of root development and leaf growth, regulating the 

opening and closing of stomata, osmotic regulation and improvement of the anti-oxidation 

protection system (Currie et al. 2014). 

   For crop plants, soil salinity is one of the most significant abiotic stresses, as it reduces crop yield 

by more than 50% (Currie et al. 2014). Several non-Clavipitaceae entomopathogens, including 

Beauveria bassiana, Lecanicillium lecanii, Metarhizium anisopliae and Isaria (Paecilomyces) spp.  

have negative effects on insect pests, when in planta may antagonize plant pathogens, and promote 

plant growth. The endophytic activity of B. bassiana has received attention due to its negative 

effects on a variety of insect herbivores including cotton bollworm. The fungus Purpureocillium 

lilicinum has been mainly considered a nematophagous, egg-parasitizing fungus, especially against 
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the root-knot nematode, Meloidogyne incognita, and several other plant-parasitic nematode 

species including Radopholus simillis, Heterodera spp., and Globodera spp. (Lopez and Sword 

2015). 

    B. bassiana has been reported as an endophyte in maize, potato, cotton, cocklebur and 

jimsonweed tomato, Theobroma gileri, in the bark of Carpinus caroliniana, in the seeds and 

needles of Pinnus monticola, in opium poppy, on date palm, coffee, in bananas, cocoa beans,  and 

in coffee seedlings (Vega et al. 2008). 

    Other entomopathogenic fungi have also been reported as endophytes, including Verticillium 

lecanii in an Araceae, V. lecanii and Paecilomyces farinosus in the bark of C. caroliniana; 

Paecilomyces sp. in Musa acuminata and in rice, and Paecilomyces varioti in mangroves. 

Cladosporium, another genus containing insect pathogenic species has been reported as an 

endophyte in Festuca, various grasses, mangroves, Cuscuta reflexa Roxb, Abutilon indicum, and 

Calotropis gigantean, M. acuminata, wheat, oak, Ilex, cacti and in apples (Vega et al. 2009). 

      

Beauveria bassiana 

   The genus Beauveria contains at least 49 species of which approximately 22 are considered 

pathogenic. B. bassiana, a white muscadine fungus is the most historically important of commonly 

used fungi in this genus. Originally known as Tritirachium shiotae, this fungus was renamed after 

the Italian lawyer and scientist Agostino Bassi who first implicated it as the causative agent of a 

white muscadine disease in domestic silkworms (Rai et al. 2014).  

     B. bassiana is a fungus that grows naturally in soils throughout the world and acts as a pathogen 

on various insect species, causing white muscadine disease, therefore belongs to the 

entomopathogenic fungi. An interesting feature of Beauveria spp. is the broad host specificity of 

many isolates. Hosts of agricultural and forest significance include Colorado potato beetle, codling 

moth, and several genera of termites, American boll worm and Helicoverpa armigera (Rai et al. 

2014). 
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Scientific classification of B. bassiana (http://eol.org) revised on June 12th, 2020. 

            Kingdom:  Fungi 

            Phylum:  Ascomycota 

            Class:  Sordariomycetes 

            Order:  Hypocreales 

            Family:  Cordycipitaceae 

            Genus:  Beauveria 

            Species:  B. bassiana  

 

  B. bassiana is the most appreciated endophytic fungal entomopathogen to date, with a widespread 

commercial availability as a potent mycopesticide.  Fungus establishes itself as an endophyte either 

naturally, e.g., by stomatal penetration, or with the aid of inoculation methods such as soil 

drenches, seed coatings and immersions, radicle dressings, root and rhizome immersions, stem 

injection, and foliar and flower sprays. Hence it is widely acknowledged as a success in a variety 

of plants such as grasses, agricultural crops, tomato, cotton, corn, and potato; the medicinal group 

including opium poppy, cocoa, and coffee; and trees such as Carpinus caroliniana and western 

white pine (Singh et al. 2015). 

 

B. bassiana as an entomopathogen 

    Some endophytes belong to genera that include fungal entomopathogens such as Beauveria 

(Vega et al. 2008). The entomopathogenic mitosporic ascomycete, B. bassiana is an important 

natural pathogen of insects and it has been developed as a microbial insecticide for use against 

many major arthropod pests in agricultural, urban, forest livestock and aquatic environment. It has 

been developed as a microbial insecticide for use against many major pests including lepidopterans 

and orthopterans. About 33.9% of the mycoinsecticides are based on B. bassiana, followed by 

Metarhizium anisopliae, Isaria fumosorosea, and Beauveria brongniartii (Khan et al. 2012). 

    The endophytic habit of B. bassiana may provide benefits to both plant and fungus. It is well 

known that plant species has a significant impact on shaping plant-associated microbial 

communities. As suggested by the bodyguard hypothesis, plant gains thorough reduction of 

damage against herbivorous insects or plant diseases;  fungus benefits through protection from 

environmental stress, acquisition of limiting nutrients from endophytic colonization as well as 

http://eol.org/
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exudates on plant surfaces, and use of plant surface as a staging platform for insect parasitism 

(Ownley et al. 2010).  

    B. bassiana has also been found naturally as an endophyte in several plant species and has been 

artificially introduced into many others. Artificial introduction of B. bassiana as an endophyte has 

been successful in maize, cacao, date palm, coffee, banana, radiata pine, fava beans, opium poppy, 

cotton, the common bean, and tomato (Greenfield et al. 2016). 

    

Mechanism of action of entomopathogenic B. bassiana 

    B. bassiana infects insects via attachment of cells, namely spores or aerial conidia, to host 

surface. All life stages of the fungus appear to be infectious including hyphae, serial conidia, 

single-celled blastospores (produced during saprophytic growth under certain nutrient conditions) 

and submerged conidia. The extent to which these latter fungal forms infect insects in nature is 

unknown; asexually produced (aerial) conidia are the main dispersal and infectious structures, 

capable of resisting to a greater extent, more than hyphae and blastospores, various abiotic stress. 

B. bassiana conidia are hydrophobic, binding to similarly hydrophobic insect epicuticle or waxy 

layer, structure rich in hydrocarbons, fatty acids, and wax esters. As a nonmotile organism, 

targeting of insects by fungus is considered a passive event, with airborne, water dispersed, and/or 

presence in substrate over which insects would forage, i.e., leaf surface and soil, mediating initial 

contact with potential hosts. Thus, infection can be viewed as an opportunistic program initiated 

by conidia that happen to find themselves on a host cuticle. In this respect, although preferential 

site of infection, typically those where sclerotization of cuticle is lower, that is mouthparts and 

anus, have been noted for many insects, the fungus can initiate infection essentially anywhere on 

host cuticle. This contrasts with other microbial pathogens, which must be ingested and/or utilize 

more specific route of entry into the host (Ortiz and Keyhani 2016).  

   Spore germination and successful infection by B. bassiana relies on various factors e.g., 

susceptible host, host stage and certain environmental factors such as temperature and humidity. 

Generally, germination of B. bassiana conidia starts after about 10 hrs. and is completed in 20 hrs. 

at 25°C (Keswani, Singh, and Singh 2013).  

   To enable infection, conidia must adhere to the host cuticle and subsequently germinate to form 

a germ tube and an appressorium. The cuticle can then be breached using a combination of 

mechanical pressure and enzymatic degradation, enabling hyphae to grow through the cuticle and 
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invade the insect hemocoel, where they switch to growth as single-celled blastospore. These cells 

circulate freely through the hemocoel, where they exploit the hemolymph for nutrition and secrete 

toxins that eventually kill the host. Successful invasion requires that the fungal cells evade or 

overcome immune responses, both during growth through the cuticle and especially in hemocoel. 

When host is killed, the cuticle must be breached again from inside to allow escape from insect 

body and sporulate on the cadaver, enabling conidia to be dispersed and start a new infection 

(Valero-Jiménez et al. 2016). 

    Hydrophobic interactions predominate with B. bassiana conidia containing an outermost or 

rodlet layer comprised of proteins known as hydrophobin. At least two hydrophobin proteins Hyd1 

and Hyd2 have been characterized in B. bassiana (Ortiz and Keyhani 2016).  Studies show that 

Hyd1 is localized to aerial surface and submerged conidia, and at the base of germinating conidia, 

but was not detected on blastospores. Likewise, Hyd2 is found on conidial aerial surface and at the 

base of the germinating conidia. However, Hyd2 was not found on submerged conidia and 

blastospores. In addition, neither Hyd1 nor Hyd2 were observed on hyphae or hyphal bodies (Ortiz 

and Keyhani 2016). 

   A specific adhesion gene (Mad1), mediating attachment to insect cuticles has been characterized 

in the related entomopathogenic fungus, Metarhizium robertsii, and although a homolog has been 

identified in B. bassiana genome, its contributions to adhesion to insect surfaces and/or virulence 

has yet to be characterized. The extent to which this initial binding is consolidated with additional 

factors and the cue(s) used by the fungus to initiate its infection program remains unknown (Ortiz 

and Keyhani 2016). 

   It is likely that more than one mode of action is operative in suppression of plant disease by B. 

bassiana. Isolates of the fungus are known to produce numerous secondary metabolites like 

beauvericin, beauverolides, bassianolides, oosporein, cyclosporin A, and oxalic acid, with 

antibacterial, antifungal, cytotoxic, and insecticidal activities. Effects of these compounds on 

microorganisms and insects have been reported. Recently, another antimicrobial compound, 

bassianolides, from B. bassiana fermentation culture under low nitrogen conditions, was 

characterized. Bassianolides has activity against fungi and Gram-positive cocci. Antibiosis assays 

with B. bassiana against various plant pathogens in vitro have been reported. For example, B. 

bassiana strain 11-98 suppresses plant disease cause by the soil borne plant pathogen Rhizoctonia 

solani and Pythium myriotylum and its application to tomato seeds gave protection against 
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damping off (Ownley et al. 2010). Similarly, cotton seed treatments reduced the severity of R. 

solani damping off in seedlings (Ownley et al. 2010). 

  

Proposed mechanism of action of other known fungal endophytes (Piriformospora indica, 

Colletotrichum, and others) 

   Piriformospora indica is a model organism used in mycorrhizal research (Shrivastava and Varma 

2014). P. indica, a root colonizing and growth promoting basidiomycete fungus, was recognized 

in the Indian Thar desert. P. indica has been found to be a potent new candidate symbiont for 

providing enormous growth-promoting activity to a broad spectrum of plants, including 

agricultural and medicinal crops. In this perspective, P. indica has become a paramount tool in 

improving the productivity of several crops such as Brassica campestris sp. chinensis 

Lycopersicon esculentum, Hordeum vulgare, Piper nigrum, Glycine max, Cicer arietinum, 

Arabidopsis sp., Oryza sativa, and Nicotiana tabacum under natural and/or stress conditions 

(Ansari, Gill, and Tuteja 2014).  

    P. indica has shown to be very versatile and has the potential to colonize  a variety of different 

plants, but research  to understand molecular mechanisms underlying symbiosis, has basically been 

done on the agronomical important monocotyledonous crop plant barley (Hordeum vulgare) and 

the dicotyledonous genetic model plant Arabidopsis thaliana. During colonization of roots, plant 

host induces the expression of defense-related genes, which is in turn reprogrammed and actively 

suppressed by the P. indica own survival genes and to establish the beneficial interaction. 

Furthermore, it has  been demonstrated that in P. indica-colonized roots, expression of various 

defense-related genes, like pathogenesis-related (PR) genes, ethylene signaling molecules, and 

ethylene-targeted transcription factors are mildly up regulated during the initial stages of 

colonization, but down regulated in the later stages, supporting the idea that either the fungus does 

not stimulate extensive defense gene expression for longer periods of time, or they down regulate 

them after an initial activation period (Trivedi et al. 2016).  

    Mechanisms behind the unique action of P. indica suggest that fungal interactions are 

characterized by increase in efficiency of nutrient uptake from soil due to better hyphal penetration 

as compared to thicker root hairs. Plants deliver phosphor assimilates to fungus and during 

mycorrhizal association; plants acquire phosphates from extensive network of extra radical 

hyphae. Interaction of P. indica with plant alters pathway for nitrogen metabolism, thereby helping 
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plants to absorb more nitrogen. This phenomenon gives higher resistance to water deficiency and 

makes plants drought tolerant. Enhanced growth of plants under mycorrhizal conditions amplifies 

its starch requirement. This starch is obtained from deposition in root amyloplasts and then, it is 

interpreted that one of the major starch degrading enzymes, the glucan- water di kinase, is activated 

by P. indica (Shrivastava and Varma 2014). 

   Uptake and transportation of important macronutrients like iron, zinc, manganese, copper, etc., 

are also regulated by the fungus. Along with this, beneficial phytohormones are synthesized by 

plant associated with P. indica. The cumulative effect of macro/micronutrients and phytohormones 

regulates plant metabolism leading to value addition, early flowering, plant growth promotion, etc. 

(Shrivastava and Varma 2014).  

     Colletotrichum species are extensively studied as model organisms for research into genetics. 

The biotrophic life strategies adopted by Colletotrichum species may also contribute to their 

prominence as symptomless endophytes of living plant tissues (Cannon et al. 2012). 

    The genus Colletotrichum (Sordariomycetes, Ascomycota) comprises around 600 species 

attaching over 3,200 species of monocot and dicot plants. These pathogens use the following  

multistage hemi biotrophic infection strategy: dome shaped appressoria first puncture host surface 

using a combination of mechanical force enzymatic degradation, bulbous biotrophic hyphae 

enveloped by an intact host plasma membrane then develop inside living epidermal cells, and 

finally, the fungus switches to necrotrophy and differentiates thin, fast growing hyphae, and kill 

and destroy host tissues (O’Connell et al. 2012). 

    Although most characterized species of fungal genus Colletotrichum are destructive pathogens, 

a species known as C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana 

populations in central Spain. Colonization by Ct initiates in roots and systemically spreads into 

shoots. Ct transfers the macronutrient phosphorous to shoots, promotes plant growth, and increase 

fertility only under phosphorous-deficient conditions, a nutrient status that might have facilitated 

the transition from pathogenic to beneficial lifestyles. The host’s phosphate starvation response 

(PSR) system controls Ct root colonization and is needed for plant growth promotion. PGP also 

requires PEN2 – dependent indole glycosylates metabolism, a component of innate immune 

responses, indicating a functional link between innate immunity and the PSR system during 

beneficial interactions with Ct (Hiruma et al. 2016). 
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 Arabidopsis thaliana and Zea mays plant models 

   Arabidopsis model has been extensively used to study plant-pathogen interactions, particularly 

to elucidate defense responses (Verma et al. 2014). Arabidopsis has been established as an 

important model system for studying plant biology and plant-microbe interactions (Martinuz et al. 

2015). In the year 2000, the first plant genome was completely sequenced. The plant species that 

was selected for sequencing is known as Arabidopsis or mouse-earned cress, shortened from its 

full Latin name Arabidopsis thaliana. Arabidopsis is not a crop species, but it belongs to the 

Brassicaceae family, which include oilseed rape, cabbage, mustard, turnip, and cauliflower. It was 

selected because Arabidopsis is quite easy to grow in the lab, as it has a relatively small genome 

(Nobuta and Meyers 2005).  

    A. thaliana has a broad natural distribution throughout Europe, Asia, and North America. Many 

different ecotypes have been collected from natural populations. The entire life cycle, including 

seed germination, formation of a rosette plant, bolting of the main stem, flowering, and maturation 

of the first seeds is completed in 6 weeks. Flowers are 2 mm long, self-pollinate as the bud opens, 

and can be crossed by applying pollen to the stigma surface. Seeds are 0.5 mm in length at maturity 

and are produced in slender fruits known as siliques. Seedlings develop into rosette plants that 

range from 2 to 10 cm in diameter, depending on growth conditions. Leaves are covered with small 

unicellular hairs known as trichomes that are convenient models for studying morphogenesis and 

cellular differentiation (Meinke et al. 1998). 

    By resolving the genome sequence, the high number of natural and artificially generated 

mutants, and the relatively ease of use under laboratory conditions, A. thaliana has over the past 

decades developed into a key model plant for plant biology research at every level, which not only 

covers genomics, transcriptomics and proteomics but also all of the others, like phenomics, 

metabolomics, interactomics and ionomics. A. thaliana is also used to characterize the microbiome 

of its rhizosphere in studies involving plant-microbe interrelationships and to unravel the 

mechanisms leading to disease, mutualism, or symbiosis (Martinuz et al. 2015). 

   When an organism is not known to colonize Arabidopsis, it is important that the organism being 

examined shows the same interactions phenotypes in the model when compared with original host. 

A good example of this is the beneficial basidiomycete Piriformospora indica which has a large 

host range. However, like for arbuscular mycorrhiza, Arabidopsis is only  used as a model for non-
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host resistance. It illustrates that there may be limitations for using a model plant in studying plant-

microbe interactions, particularly when tripartite interactions are involved (Martinuz et al. 2015). 

    Analysis of the Arabidopsis genome revealed 1,528 tandem arrays containing 4,140 individual 

genes, with arrays ranging up to 223 adjacent members. Thus 17% of all genes of Arabidopsis are 

arranged in tandem arrays. (The Arabidopsis Genome Initiative 2000) 

    Significant advances in understanding plant growth and development have been made by 

focusing on the molecular genetics of this simple angiosperm. The 120 mega base genomes of 

Arabidopsis are organized into 5 chromosomes and contains an estimated 20,000 genes. More than 

30 mega bases of annotated genomic sequence have already been deposited in GenBank by the 

consortium of laboratories in Europe, Japan, and the United States.  The entire genome was 

sequenced in the year 2000, which enhanced the value of Arabidopsis as a model for plant biology 

(Meinke et al. 1998).  

   One of the original ideas behind using Arabidopsis as a model system was to facilitate the 

identification of related genes of importance in crop plants (Meinke et al. 1998). 

 

Scientific classification of A. thaliana 

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=23041#null 

revised on June 25th, 2020. 

 

Kingdom:           Plantae 

Subkingdom:     Viridiplantae 

Class:               Magnoliopsida 

Order:             Brassicales 

Family:           Brassicacease 

Genus:           Arabidopsis 

Species:         A. thaliana    

 

   Maize has a long history of genetic and genomic tool development and is considered one of the 

most accessible higher plant systems. With fully sequences genome, a suite of cytogenetic tools, 

methods for both forward and reverse genetics, and characterized phenotype markers, maize is 

amenable to studying questions beyond plant biology. Major discoveries in the areas of 

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=23041#null
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transposons, imprinting and chromosome biology came from work in maize. Moving forward in 

the post-genomic era, this classic model system will continue to be at the forefront of basic 

biological study (Nannas and Dawe 2015). 

   The term maize (Zea mays ssp. mays) is often used synonymously with corn, particularly in the 

United States and about its agricultural use. Whereas both terms are correct, maize is a name that 

refers uniquely to this plant (Nannas and Dawe 2015). Maize is a giant grass that was domesticated 

from wild grasses (teosintes) about 9,000 years ago, in southwestern Mexico. This process 

involved seed enlargement, elimination of the protective hard fruit case surrounding the seed, 

enhancement of husk leaves to protect an enlarged cob, development of non-shattering structures 

to keep seed on the cob, switching of seed placement on the plant and reduced shoot branching to 

permit greater nutrient allocation to seeds. These changes so profoundly affected seed dispersal 

and germination that domesticated maize does not  survive in the wild, intimately tying maize 

genetics to human selection and migration (Johnston-Monje and Raizada 2011).  

     Many varieties or “races” differ in physical properties, but generally maize is a single-stalk 

plant that grows to approximately 8 feet tall with about 20 long, narrow leaves growing 

individually from nodes along the stalk. Several characteristics make it an attractive genetic 

system. It is easy to culture on any scale, from a few plants in pots to many acres. It can be grown 

successfully year-round in greenhouses and growth chambers with proper lighting; it is also quite 

handy and can be grown outdoors under a range of conditions, from tropical to temperate climates. 

Maize is a naturally out crossing species, which makes its genetic architecture more like other out 

crossing organisms such as humans rather than self-pollinating plants. Whereas its genetics are 

like humans, maize retains the major strength of plant genetics, including the ability to self-cross 

and quickly produce homozygotes or F2 populations (Nannas and Dawe 2015). 

   It is likely that every plant species harbors endophytes, and indeed seeds of many plant species 

have been reported harboring endophytes. Plant seeds usually fall to the soil, a microbially rich 

habitat, and lie dormant waiting for environmental cues to germinate, possibly recruiting surface 

microbes to help protect against degradation or predation. As seeds begin to germinate, seed 

endophytes may be important founders of the seedling microbial community as shown in rice, 

eucalyptus, and maize (Johnston-Monje and Raizada 2011).  

    During maize evolution, domestication, breeding and migration, some endophytes were lost, 

and it is also possible that endophytic genomes may have been modified, phenomena that might 
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contribute to the increase disease susceptibility of modern maize. Modern maize is susceptible to 

various pathogens including Fusarium, Spodoptera, etc. (Mousa et al. 2015). A promising 

alternative strategy to manage Fusarium outbreaks and reduce mycotoxin contamination may be 

using biological antagonists. Johnston-Monje and Raizada 2011 reported that wild, traditional, and 

modern maize possess endophytes that combat pathogens including F. graminearum in vitro. 

Other studies have identified other biological control agents that combat F. graminearum, 

including Bacillus and Pseudomonas spp. However, most of this research is preliminary and 

effective commercial biological control is not currently available (Mousa et al. 2015). 

    Inoculation of B. bassiana has been developed in Z. mays to control Ostrinia nubilalis, the 

European corn borer using aqueous and granular formulations. Furthermore B. bassiana has been 

found as endophyte in several plant species, and probably plays an important role to avoid attack 

of insect-pests implants (Verma et al. 2014). 

 

Scientific classification of Z. mays  

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=42269#null 

revised on June 25th, 2020. 

 

Kingdom:            Plantae 

Subkingdom:      Viridiplantae 

Class:                 Liliopsida 

Order:                Poales 

Family:              Poaceae 

Genus:                Zea 

Species:              Z. mays 

 

Drought 

   Plants require light, water, carbon and mineral nutrients for their optimal growth, progress, and 

reproduction. Because of their immobile conditions, plants are prone to extensive environmental 

stresses (abiotic) and stresses induced by living entities (biotic). Major abiotic stresses are drought, 

high or low temperature, salt, acidic conditions, heavy metals, nutrients, and starvation whereas, 

bacteria, viruses, fungi, parasites and harmful insects are the major biotic stresses (Lata et al. 2018). 

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=42269#null
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High salinity and drought are considered to be the major abiotic stress because, extended water 

stress induce a drop in leaf water potential and stomatal opening, diminishes leaf size, restrain root 

length, decrease seed number, size and viability, prolong flowering and fruiting period. (Lata et al. 

2018). 

    Due to global warming, the frequency and intensity of drought are predicted to rise in future. 

Plants have to develop many strategies like reprograming their metabolic cycles in response to 

different stresses to cope up with these conditions (Ghaffari et al. 2019). Scientists have been 

working on crop varieties which are able to remain productive under different stresses, which has 

been slow largely due to polygenic inheritance of tolerance. Another suggestion to improve plants 

capacity to cope up with different stresses the usage of beneficial microbes that can interact with 

the plants to improve their tolerance mechanisms. This plant-microbe interaction has found to 

benefit many plants against both abiotic and biotic stresses (Ghaffari et al. 2019). These beneficial 

microbes perhaps acts as a type of biological trigger activating host defense system to enhance 

plants tolerance through osmoprotection cell wall elasticity improvement of antioxidant system 

up-regulation (Ferus, Barta, and Konôpková 2019a).  

     The interaction of mechanical and drought stresses has a significant effect on wheat plant water 

status and physiological responses (Hosseini, Mosaddeghi, and Dexter 2017).  During a drought 

stress, the plants that have interaction with beneficial endophytes use significantly less water, 

increase biomass, reduce leaf conductance and slow transpiration (Lata et al. 2018). In 2017 

Hosseini and collaborators (Hosseini et al. 2018) reported that Piriformospora indica enhanced 

maize water status and physiological trains under combined drought and mechanical stresses. 

Another study from 2019 (Ghaffari et al. 2019) reported that P. indica improves drought stress 

adaptation through metabolic and proteomic reprogramming in barley.  B. bassiana enhanced 

drought tolerance in red oak seedlings (Ferus, Barta, and Konôpková 2019a). 

 

 Spodoptera frugiperda 

    Worldwide about 18 to 26 percentage reduction in crop production is due to insect pests; out of 

which a great part of it occurs in the fields before harvesting (Mantzoukas and Eliopoulos 2020). 

The Fall Armyworm, (FAW) Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), from 

the tropical and subtropical zones of America (Sisay et al. 2019) is a catastrophic insect pest of 

economic importance  (Bhusal and Bhattarai 2019). This voracious insect pest has a polyphagous 
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feeding nature in more than 80 host species including many commercial crops like maize, cotton, 

rice, soy bean, bean and other crops from Gramineae family (Bhusal and Bhattarai 2019; Jaramillo-

Barrios, Barragán-Quijano, and Monje-Andrade 2019; Kalleshwaraswamy, Poorani, and Maruthi 

2019) until 2015, damages due to S. frugiperda were reported only from America (Kannidi 

Siddhartha 2019). But in the last few years S. frugiperda attack has been reported from various 

parts of the world  (Kalleshwaraswamy, Poorani, and Maruthi 2019) in late 2016 it had been 

reported in Southern, Eastern and Northern parts of Africa (Siddhartha 2019) which briskly 

expanded across the country and by late 2018, it had been confirmed in almost 44 African countries 

(Bhusal and Bhattarai 2019). By 2018, intrusion of this insect pest was confirmed in Yemen and 

India and by 2019, devastation due to them were established in five more Asian countries including 

China (Hruska 2019). The destruction generated by this insect pest relies upon the geographic 

region, seed variety, planting time and the fundamental cultural habits in and around the field, 

although abiotic factors have an effect on egg and initial larval stage mortality during a rainy 

season and with various predators during dry season (Jaramillo-Barrios, Barragan-Quijano, and 

Monje-Andrade 2019).  

    S. frugiperda is treated as a crucial insect pest of maize, the third most essential cereal crop 

worldwide with a highest economic value in terms of production, potential and nutrition ( 

Siddhartha 2019). This insect pest causes extensive damage to maize plants by feeding on young 

leaf whorls, corn cob and tassel (Bhusal and Bhattarai 2019). Younger larvae prefer epidermal leaf 

tissue and make holes on them, which is the damage symptom by these insect pests. Dead heart is 

formed by feeding on young plants through the whorls. Older larvae in the whorls of grown-up 

plants feed on cobs or kernels can reduce the quality and quantity of the yield (Sisay et al. 2019).  

 

Scientific classification of S. frugiperda  

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=117472#nul

l revised on June 25th, 2020. 

 

Kingdom:           Animalia 

Phylum:              Arthropoda 

Class:                  Insecta 

Order:                 Lepidoptera 

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=117472#null
https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=117472#null
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Family:               Noctuidae 

Genus:                Spodoptera 

Species:              S. frugiperda 

 

      Synthetic or chemical insecticides or genetically modified crops has been using to control 

insect pests (Sisay et al. 2019). Chemical control is the practice most often used to control this 

insect pest; however, this method has been inefficient due to incorrect and indiscriminate use, thus 

causing acute and chronic poisoning to farm workers, and inducing development of resistance, 

elimination of native natural enemies and pollution of soil. An alternative to the use of insecticides 

to control these pests used native natural enemies. The parasitoids of FAW families 

Ichneumonidae, Braconidae, Eulophidae and Tachinidae have been found in many Mexican 

states. Also, entomopathogenic bacteria, viruses, nematodes, and fungi have been reported 

(Ordóñez-García et al. 2015). 

    Even though, these control measures are very efficient, their extensive usage has provoked 

ecological problems, environmental contamination, development of resistance and ultimately 

negative effects on human health (Russo et al. 2019). Since the insects have gained resistance to 

various chemical insecticides, farmers are compelled for recurrent application of large amount of 

them, which will lead the accumulation of chemicals in the agricultural fields (Sisay et al. 2019). 

Taking together, scientists in different parts of the world are forced to develop more 

environmentally safe, cost-effective and reliable strategies to control insect pests (Mantzoukas and 

Eliopoulos 2020).  

   Integrated Pest Management (IPM) a global idea for agriculture is a holistic concept of 

approaching the crop production system as a whole process rather than only pest elimination. This 

approach combines various techniques like using resistant varieties, cultural manipulation, trap 

companion cropping and biological control (Mantzoukas and Eliopoulos 2020). Biological control 

is one of the technique to control insect pests with slightest environmental impact (De Silva et al. 

2019). Cost-effectiveness, high yield, not harmful to beneficial insects and less chemical residues 

in the agricultural fields make entomopathogenic microorganisms as potential alternative to 

chemical pesticides (Mantzoukas and Eliopoulos 2020). At present, different species of bacteria 

(Bacillus spp., Enterobacter spp., Pseudomonas spp., Paenibacillus spp., etc.) and fungi 

(Beauveria, Metarhizium, Paecilomyces, Isaria, Lecanicillium, Hirsutella etc.) are being applied 
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as biocontrol agents (Mantzoukas and Eliopoulos 2020; De Silva et al. 2019). Entomopathogenic 

fungus capacity to accommodate and sustain in external habitats other than their ancestry made 

them very efficient and adequate candidates for biological control measures (Bamisile et al. 2019; 

Dash et al. 2018). Considering as facultative microorganism that do not require arthropods as a 

host to complete their life cycles, Metarhizium anisopliae and Beauveria bassiana are the best 

characterized and most employed entomopathogenic fungi in biological control programs (Baron, 

Rigobelo, and Zied 2019) 

   As for other destructive Spodoptera species, many studies in chemical ecology have focused on 

the elucidation of the sex pheromone of this species with the aim of developing pest management 

strategies(Pinto-Zevallos, Strapasson, and Zarbin 2016) In certain areas, the control of Spodoptera 

relies on the use of transgenic crops, expressing the Cry toxin of Bacillus thuringiensis (Arias et 

al. 2015).  However, several cases of resistance development have been reported. Cry1F resistant 

S. frugiperda was likely developed in 2006, in Puerto Rico; and although Cry1F resistant 

populations of S. frugiperda were not present in the U.S mainland during 2012, a 2013 study 

documented the first known Cry1F resistance in this (Li et al. 2016). 

 

Biological control of pests 

   Biological control makes use of living organisms or their products, which manage the insect pest 

populations thereby minimizing the damage to crop yield, in terms of quality and quantity (Sree 

and Varma 2015). Biological control agents are considered suitable alternatives to the use of 

chemical pesticides as these organisms are likely specific to host insects, besides being safe to 

environment and mankind. Therefore, biological control is defined as the use of living organisms 

to suppress the population density or impact of a specific pest organism making it less abundant 

or less damaging. Thus, the aim of biological control is to reduce pest population below the 

economic threshold (Khan and Ahmed 2015). 

   In recent years, biological control of crop pests with entomopathogenic bacteria, viruses, fungi, 

and nematodes has been recognized as a valuable tool in pest management. Microbial control 

includes all aspects of utilization of microorganisms or their by-products for the control of pests. 

Microbial control agents are relatively host specific and do not upset other biotic systems. They 

are safe to humans, vertebrates, and beneficial organisms; do not cause environmental pollution; 

and are compatible with most other control methods. They are ideal for both short- and long-term 
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pest suppression. Unlike chemical pesticides, they do not leave chemical residues on crops, are 

easy and safe to dispose of, and do not contaminate water systems (Khan and Ahmed 2015). 

   Adoption of biopesticides available from plant products is now emerging as one of the important 

means to be used in protection of crops and the environment from pesticidal pollution, which is a 

global problem. Neem is regarded as most effective and ecofriendly. Derived from the Neem tree 

(Azadirachta indica), this contains several chemicals, including ‘azadirachtin’, which affects the 

reproductive and digestive process of several important pests (Gupta and Dikshit 2010).  Nuñez-

Mejía and collaborators worked with A. indica on Trichoplusia ni survival immune response and 

gut bacteria changes after the exposure to the A. indica volatiles (Nuñez-Mejía et al. 2016). 

Besides, the two primary effects of azadirachtin seem to be the blockage of calcium channels, and 

induction of mitochondria-mediated apoptosis. These two actions induce a cascade of effects, such 

as blockage of mitosis and a reduction in protein synthesis (Siegwart et al. 2015).  Very few studies 

have highlighted the resistance to neem oil. Studies have demonstrated that the possible 

development of resistance may be due to the repeated treatments of a species (Siegwart et al. 2015). 

   Baculoviruses are target specific viruses which can infect and destroy a few important plant 

pests. They are particularly effective against the lepidopterous pests of cotton, rice, and vegetables. 

Their large-scale production poses certain difficulties, so their use has been limited to small areas 

(Dutta 2015). Lepidoptera larvae become increasingly resistant to NPV infections as they age 

(Siegwart et al. 2015). 

   Trichoderma is a fungicide effective against soil born disease such as root rot. It is particularly 

relevant for dry land crops such as groundnut, black gram, green gram, and chickpea, which are 

susceptible to these diseases. Preparations of Trichoderma biopesticide is cheap and require only 

basic knowledge of microbiology (Gupta and Dikshit 2010). 

    Trichogramma are minute wasps, which are exclusively egg parasites. They lay eggs in the eggs 

of various lepidopteran pests. After hatching, the Trichogramma larvae feed on and destroy the 

host egg. Trichogramma is particularly effective against lepidopteran pests like the sugarcane 

interned borer, pink bollworm and spotted bollworms in cotton and stem borers in rice. They are 

also used against vegetable and fruit pests (Gupta and Dikshit 2010) 

    Compared to other microorganisms, entomopathogenic fungi have received considerable 

attention as they are exceptionally virulent and function as lethal parasite of insect pests (Khan and 

Ahmed 2015). To date there are more than 700 species listed. Among these fungi, nine species are 
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commercialized or regularly studied: B. bassiana, B. brongniartii, Metarhizium anisopliae, 

Aschersonia aleyrodis, Lecanicillium lecanii, Paecilomyces fumosoroseus, Entomophaga 

maimaiga, Hirsutella thompsonii and Lagenidium giganteum. These fungi act as hyper parasites 

and penetrate their host through natural breaches in the cuticle or by creating breaches with 

enzymes such as chitinases.  Other insect-wall-degrading enzymes are synthesized by these 

entomopathogenic fungi for example, cuticle-degrading protease, which is classified into two 

families, Pr1 and Pr2. In M. anisopliae, a Pr1 causes the melanization of the insect, which is a 

normal immune response in insects, but in extreme cases, it can lead to insect death (Siegwart et 

al. 2015). 

 

Biological control using endophytes 

     Endophytes are microorganisms living in the internal tissues of the plants without causing any 

overt symptoms. The term “Endophyte” was introduced by De Bary in 1866 and was initially 

applied to any organism found within plant tissues that cause asymptomatic infections entirely 

within plant tissues without any symptoms of disease. An endophytic fungus lives in mycelial form 

in biological association with living plant at least for some time. Therefore, minimal requirement 

before a fungus to be termed as an endophyte should be the demonstration of its hyphae in the 

living tissue (Nisa et al. 2015).  

    The plant interacts and intimately associates with an array of taxa that is organ-specific to roots, 

stems, leaves, flowers, fruits, and seeds with some of them having beneficial effects on plants. 

How the endophyte microbiota is able to penetrate plant tissues and establish an intimate 

symptomatic partnership with their hosts in the appropriate plant organs, how some might switch 

to a virulent form while others could be beneficial for their hosts, are some lingering questions 

requiring in-depth insight to obtain satisfactory answers (Compant et al. 2016). 

   Every plant examined to date harbors at least one species of endophytic fungus and many plants, 

especially woody plants, may contain literally hundreds or thousands of species. With the 

discovery of “Taxol” from an endophytic fungi Taxomyces andreanae of pacific yew plant by 

Stierle and colleagues, a new era of research in endophytic biology opened, since before that 

pacific yew plant was the only source of “Taxol” known. Therefore, it is gradually established that 

certain endophytes during their long mutualistic symbiosis, somehow acquires potential to produce 

the phytochemicals mimetic to those as their host have (Verma et al. 2014). 
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   Endophytes may contribute to their host plant by producing a plethora of compounds that provide 

protection and survival value to plants. Colonization of host plant by endophytic fungi is believed 

to contribute to host plant adaptation to biotic and abiotic stress factors. It is of special interest that 

in many cases, host plant tolerance to biotic stress has been correlated with fungal natural products. 

The nature and biological role of endophytic fungi with their plant host is variable. Endophytic 

fungi are known to have mutualistic relations to their hosts, often protecting plant against 

herbivory, insect attack or tissue invading pathogens and in some instances, endophytes may 

survive as a latent pathogen, causing quiescent infection for a long period and symptoms only 

when physiological or ecological conditions favors virulence (Nisa et al. 2015). 

   In terms of ecological interactions and evolutionary history, fungi that infect and kill insects are 

plainly fascinating. Most infect the host insect by transgressing the cuticle, that is, they do not have 

to be ingested to cause infection in the insect. This allows infection of insects with sucking 

mouthparts such as aphids. The breadth of variety of insect pathogenic fungi is significant, a group 

that comprises, over 100 fungal species. There are examples of insect pathogenic fungi found in 

most major fungal taxonomic groups from Chytridiomycota to basidiomycetes. Some of the insect 

pathogenic fungi are obligate pathogen whereas many are facultative. Adding further intrigue into 

their ecology is a subset of insect pathogenic fungi that additionally functions as endophytic 

symbionts of plants. Two genera of insect pathogenic fungi that fall within the category of 

endophytes are Metarhizium and Beauveria. The potential of these endophytes to control insect 

pests in agro ecosystems has been known since the early 20th century and numerous formulations 

of Metarhizium and Beauveria have been approved for use in crop protection (Barelli et al. 2016). 

   Metarhizium kills insect hosts within 3-7 days by producing toxins and absorbing nutrients. Once 

hemocoel nutrients are depleted, hyphae emerge from the insect cadaver and conidiate, resulting 

in the mummification of the insect host. Metarhizium is an excellent example of a fungus with a 

multifunctional lifestyle. It is an insect pathogen, a saprobe, and an endophyte. Metarhizium 

displays genotypic plasticity when exposed to dissimilar environments, thereby potentiating 

fungus effectiveness  to  saprophobically persist or as a colonizer of plant or insect hosts. It uses 

two different proteins, MAD1 and MAD2 to facilitate adherence on insect and plant surfaces 

respectively (Barelli et al. 2016). 

    More understanding is currently provided through mechanism-based studies, and using 

ecological, genetic and ‘-omics’ approaches. Despite this effort currently carried out by an 
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increasing number of research teams, several questions and hypothesis should still be put on the 

table and contrasted. Several studies related to endophytes are, moreover, mostly biased by 

experimental models evaluated under gnotobiotic conditions that are far away from natural 

conditions. We need to move beyond and to analyze how the whole plant and its associated 

microbiota are working together under multitrophic scenarios (Compant et al. 2016). 

 

Proteins 

     Plant pathogen interaction is a multifaceted process. At the beginning of the interaction, plants 

develop two pathways to recognize and resist pathogen attack. One pathway involves the 

formation of danger-associated molecular patterns (DAMPs) and Pathogen associated molecular 

patterns (PAMPs), whereas other ones result in effector-triggered immunity (ETI), and PAMPs-

triggered immunity (PTI) after recognition by specific pathogen effector molecules. Accordingly, 

downstream signaling cascades are activated, producing antimicrobial compounds that kill the 

pathogen and thereby maintain the homeostasis. Numerous proteins and signaling pathways are 

engaged in this precisely controlled multifaceted process. Currently, proteomics provides a 

comprehensive insight to understand the intricacy of plant-pathogen interactions. Proteome is 

defined as the total protein components of the cell that are specified by the genome at specified 

condition and study the structure and function of all these proteins present in a cell, organ or 

organism at a particular time is known as the proteomics. Proteomics aim to find out the identity 

and amount of each protein present in a cell and actual function mediating specific cellular 

processes (Lodha, Hembram, and Basak 2013). 

     Acclimation to stress is mediated through profound changes in the gene expression, which 

results in the changes in composition of plant transcriptome, proteome, and metabolome (Kosová 

et al. 2011). Studies by different investigators like Gygi and collaborators (Gygi et al. 1999) and 

Brosche and collaborators (Brosche et al. 2007) demonstrated that  changes in gene expression at 

transcriptional level often do not correspond to  changes at protein level. Thus, plant proteomic 

investigation is important since proteins unlike transcripts are direct effectors of plant stress 

response. Apart from the enzymes that catalyze changes in metabolite level, proteins also are 

components of transcription and translation machinery, which means, the proteins also regulate 

plant stress response at transcript and protein level. Proteins have direct stress acclimation 

functions, leading to changes in plasma membrane, cell cytoplasm, cytoskeleton as well as 
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intracellular compartment composition which involve changes in their properties (Brosche et al. 

2007).  

   Proteomics thus  lead to identification of potential protein markers, whose changes in abundance 

can be associated with quantitative changes in some physiological parameters used for a 

description of genotype’s level of stress (Kosová et al. 2011). 

    A study done by Alikhani and collaborators in 2013 (Alikhani et al. 2013) analyzed the proteome 

pattern of barley leaf sheaths in Piriformospora indica, colonized plants, which then compared 

with control plants under different salt stress conditions. Their results showed that P. indica 

reprogrammed the host physiology by altering the ion content and proteome pattern of barley leaf 

to cope with salt stress.  Analyzing and integrating the physiological and proteomics data, 

Ghabooli and collaborators in 2013, (Ghabooli et al. 2013) showed that P. indica promoted growth 

of barley and altered the proteome pattern of P. indica colonized barley leaves under drought stress 

conditions. 

   In 2012,  Sarhadi et al. (2012) used proteomic analysis to investigate the protein expression 

profiles of anther tissues in rice under salt stress. They compared the proteomic patterns of two 

rice genotypes, the salt sensitive and the salt resistant, under salt stress condition, and observed 

that there is a possible involvement of carbohydrate/energy metabolism and anther and pollen wall 

remodeling/metabolism in the adaptation of rice to salt stress at the reproductive stage. 

 

Guttation 

    Plants need continuous water stream to supply stem and leaves with organic substances and 

inorganic ions which passes through xylem vessels powered by root pressure or sometimes by 

transpiration stream. On high humid atmospheric conditions, the difference in the water potential 

between ground and air will be zero, so no transpiration occurs, which happens normally in the 

night or in rainy seasons. To maintain the transport of solutes under this conditions, plants secrete 

water through an opening in the leaves known as hydathodes  (Grunwald et al. 2003). The process 

of exudation of liquid droplets, loss of water from the tips, edges, adaxial and abaxial surfaces of 

uninjured leaves of a wide range plants is known as guttation (Singh 2016). Several transduction 

and transport proteins originating from both shoot and roots are found in the guttation fluid are 

also transported to the sites of active vegetative and reproductive growth where they are required 

for the formation and development of fruits and seeds in plants (Singh 2016). Some studies reports 
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the presence of peroxidase and catalases in maize and oats, reductase in timothy-grass, and 

peroxidases in strawberry, tomato and cucumber and recombinant proteins in tobacco 

(Komarnytsky et al. 2000).  Schmolke and collaborators in 2018 reported plant guttation fluid as 

a potential passage of pesticide exposure to honey bees (Schmolke, Kearns, and O’Neill 2018). 

 

Some of the Different Techniques Used in Proteomics. 

1. One-dimensional SDS gel electrophoresis 

            Electrophoresis is used to separate complex mixtures of proteins from cells, subcellular 

fractions, column fractions or immunoprecipitants to investigate subunit compositions and to 

verify homogeneity of protein samples. Proteins migrate in response to an electrical field through 

pores in a polyacrylamide gel matrix, pore size decreases with increasing acrylamide 

concentration. The combination of pore size and protein charge, size and shape determine the 

migration rate of the protein. In sodium dodecyl sulfate (SDS) electrophoresis, standard Laemmli 

method is described for discontinuous gel electrophoresis under denaturing conditions.  (Gallagher 

2006).  

 

2. Fluorescent Two-Dimensional “Difference Gel Electrophoresis (2D-DIGE) 

                  DIGE proteomics uses 2D gel electrophoresis to analyze differential protein regulation 

between control and target samples. In this technique, the two samples to be compared are each 

treated with one of the two different but structurally similar fluorescent dyes (cy2, cy3 and cy5 

etc.). Each dye reacts with amino groups, so that each protein is fluorescently labeled by the dye 

binding to lysine residues and the N-terminal amino group. The two protein mixtures to be 

compared are then mixed and run on a single 2D gel. Thus, every protein in one sample 

superimposes with its differentially labeled identical counterpart in other sample. Scanning of the 

gel at two different wavelengths that excite two dye molecules reveal whether any individual spot 

is associated with only one dye molecule rather than two. The resulting images are then analyzed 

by software which are specifically designed for 2D-DIGE analysis (Lodha et al. 2013). 

 

3. Mass Spectrometry 

       Mass spectrometry (MS) is an analytic technique which plays central role in the field of 

proteomics. Proteins of peptides are fragmented by using the trypsin. The fragmented proteins are 
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then separated using the liquid chromatography. The samples are then ionized and converted into 

the gaseous phase. Two soft ionization techniques, namely, Matrix–Assisted Laser 

Desorption/Ionization (MALDI) and Electron Spray Ionization (ESI) are used for the ionization. 

Peptides having a specific mass are fragmented using collision-induced dissociation and sent 

through a second mass spectrometry which generates a set of fragment peaks from which the amino 

acid sequence of the peptide are inferred. Protein identification algorithms are used to compare the 

results obtained with the known standards. Such algorithms fall into two categories: database 

search algorithms and de novo search algorithms (Lodha et al. 2013). 

 

Definition of the problem  

     Food production needs to be increased to meet the needs of the rapidly expanding world 

population. Unfortunately, several cereal losses are still inevitable owing to insect pests. Humans 

often face problems of the tremendous increase in the incidence of insect pests in agriculture and 

many urban areas. Chemical synthetic drugs with many side effects are being used to cope with 

these agriculture and medical problems. But insect pests are prone to develop “drug” resistances 

to decrease substantially the effectiveness of often used insecticides. Accordingly, there is an 

urgent need to work towards the production of safer insecticidal agents which are expected to be 

renewable, non-petrochemical, naturally, eco-friendly, and easily obtainable (Yu et al. 2010).  

    Since the late 1940’s, insect pest control has relied mostly on chemical insecticides, although in 

many industrialized nations, pest management strategies have been shifting to the use of transgenic 

plants expressing particular traits such as resistance to insects. However, the replacement of 

chemicals with transgenic plants does not represent a fundamental change in approach. A true 

paradigm shift would be a change from dependence on chemicals to a total system approach or to 

ecological engineering. A basic component of both approaches is a better understanding of the 

various ecological components in an ecosystem, including biological control agents. Among these, 

entomopathogenic fungi have been traditionally considered as important mortality factor for 

insects. Understanding the nature of these interactions could facilitate more effective exploitation 

of entomopathogenic fungi for pest biocontrol strategies throughout the world, including countries 

where the use of other strategies might not be affordable (Vega et al. 2009). 
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    Many entomopathogenic fungi play additional roles in nature, including as plant endophytes, 

antagonists of plant pathogens, beneficial rhizosphere-associates and possibly even plant growth 

promoters (Vega et al. 2009). Some entomopathogenic taxa have been identified as natural 

endophytes in more than one host plant species i.e., Beauveria bassiana and, Lecanicillium lecanii, 

indicating that they are multi-host endophytes infect several plant species (Quesada et al. 2014). 

    Some studies showed that the entomopathogen B. bassiana could be artificially inoculated into 

leaves of corn plants and behave as an endophyte (Quesada et al. 2014).  Compared with 

conventional biopesticides, the use of B. bassiana as inoculated endophytes have the advantage of 

targeting the pest within the plant at reduced application cost because little inoculum is required 

in cases where colonization is systemic. Furthermore, the endophytic fungus is protected inside 

the plant from abiotic and biotic factors. Most of these studies have only completed the first stage, 

that is, inoculation into the plant, although some of them have gone further, stating that the 

endophytic colonization of the plant by an entomopathogenic fungus affects the survivorship and 

development of insects, while reducing plant damage (Quesada et al. 2014).  

    Although the role of fungal endophytes as biological control agents of insect pests is recognized, 

the role of endophytic entomopathogens in the biological control of them is poorly studied. At the 

present time, reports of insect pests’ control in planta are scarce, but occur in different systems 

and deserve attention. Many studies indicate that the mechanisms by which endophytic 

entomopathogens  induce plant tolerance to insect pests are varied, and hypothetically, the 

following may be involved: (1) production of antifungal compounds, (2) competition for space 

and nutrients, (3) parasitism on the insect or (4) induction of host defense responses (Quesada et 

al. 2014). 

     B. bassiana produces an array of chemically diverse secondary metabolites which nominate it 

as superior entomopathogenic fungi. Beauvericin, bassianolide, bassianin, tenelllin, and 

cyclosporine A are the key secondary metabolites produced by B. bassiana. Investigation on 

Beauvericin has demonstrated that this metabolite has insecticidal, antibiotic, cytotoxic, and 

ionophoric properties. Recent research has shown that there are various tri-partite interactions 

between plant, pest insect and entomopathogenic fungi. Most interesting interactions are 

summarized as (a) Plant may affect the infection by the entomopathogen, (b) Plant may affect the 
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persistence of the entomopathogen, (c) B. bassiana can persist as an endophyte within plants. 

Another important aspect of this tri-trophic interaction is the fact that toxic metabolites of 

Beauveria spp. may enter the plants, though such reports validating the hazardous effects of its 

toxins on environmental health are still unreported (Keswani, Singh and Singh 2013)  

    Fungal entomopathogens, including Beauveria bassiana Vuillemin and Metarhizium anisopliae 

Sorokin, have been tested as biocontrol agents in laboratory and greenhouse trials against many 

pests. However, when fungi are sprayed onto plants, pests can be difficult to target because of their 

location on the underside of leaves such as the whitefly Aleurotrachelus socialis Bondar or because 

they are subterranean, such as the burrower bug Cyrtomenus bergi Froeschner. The efficacy of 

fungal entomopathogens is also limited by abiotic factors that reduce viability of fungal conidia. 

An alternative application method is to inoculate plants with fungal entomopathogens that become 

established as endophytes, thereby possibly providing the plant with protection against pests from 

within, lowering the volume of inoculum required, protecting the fungus against abiotic factors 

(Greenfield et al. 2016). 

     In addition, on sub-culturing the fungi in axenic medium, the endophytes tend to lose their 

ability to produce secondary metabolites. This process is referred to as attenuation, which has 

become a serious impediment to use of endophytic fungi as alternative source of plant secondary 

metabolites. Among the various reasons, it is hypothesized that the attenuation could be due a lack 

of host specific stimuli when the fungi are cultured in culture media, and/or due to silencing of 

genes in the culture media (Mohana Kumara et al. 2014). So, it is so important to grow these 

endophytes within the seed naturally, where they get the host specific stimuli to produce the 

secondary metabolites which have insecticidal (in the case of endophytic fungal entomopathogens) 

or growth promoting properties. 
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HYPOTHESIS 

 

        The use of B. bassiana in the treatments of plant seeds enhances its establishment as an 

endophyte, thus acting as a growth promoter, inducer of drought tolerance, and to control the 

population of S. frugiperda in corn. 
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GENERAL OBJECTIVE 

 

 The general objective of this study was to establish B. bassiana as an endophyte in Z. mays plant 

and evaluate its effects on plant growth and tolerance against drought and S. frugiperda damage. 

In addition, to analyze the proteins involved in this beneficial plant-fungus interaction.  

 

 

 

PARTICULAR OBJECTIVES 

 

1. To determine a method of inoculation for endophytic establishment of the three strains 

(GHA, PTG4 and PTG6) of B. bassiana in Z mays and A. thaliana.  

2. To evaluate the positive endophytic effects of B. bassiana on Z. mays and A. thaliana 

plant growth and yield. 

3. To evaluate the effect of endophytic B. bassiana in drought tolerance in Z. mays and A. 

thaliana 

4. To evaluate the endophytic effects of B. bassiana on S. frugiperda tolerance in Z. mays 

plant under laboratory and field conditions. 

5. To analyze the proteins involved in the Z. mays-B. bassiana interaction using plant 

guttation liquid. 
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MATERIALS AND METHODS 

 

1. Method of inoculation for endophytic establishment of the three strains (GHA, PTG4 

and PTG6) of B. bassiana in Z. mays and A. thaliana. 

Arabidopsis thaliana seeds (Seeds from previous studies of Dr. Ek Ramos were planted and 

second generation seeds were used in the present study) were collected, and surface sterilized with 

a sterile solution prepared with 5 mL Tween, 3.5 mL 70% ethanol and sterile 1.5 mL distilled 

water. The sterilizing procedure was as follows:  The Arabidopsis seeds were washed in 500µL 

70% ethanol for two minutes, followed by 500µL sterile solution for five minutes. Then the seeds 

were washed five times with sterile distilled water.   After that, the seeds were kept in 1 mL sterile 

distilled water for 1 week in 4° C to induce germination by scarification.  

Candidate endophyte spores of B. bassiana GHA strain, commercially obtained as Botanigard® 

22WP (BioWorks Inc., Victor NY), and PTG4 (GenBank accession number KC759730.1) and 

PTG6 (GenBank accession number KC759731.1) strains, isolated from Periplaneta americana 

[kindly provided by Dr. Patricia Tamez, from Autonomous University of Nuevo Leon (UANL), 

México] were stored at -80 °C in a So-Low Ultra freezer (Environmental Equipment, Cincinnati, 

OH). All B. bassiana strains were activated by plating stock cultures onto potato dextrose agar 

(PDA, BD Difco, CDMX, Mexico) and incubated in darkness at 25°C ± 2 °C for a week. To obtain 

a monosporic culture, a single selected colony was inoculated into a 500 mL Erlenmeyer flask, 

containing 200 mL of potato dextrose broth (PDB, BD Difco, CDMX, Mexico) and kept at 25 °C 

±2 in an automatic rotary shaker (Orbit1900, Labnet, CDMX, Mexico) at 120 rpm, for five days 

or until blastospores production. Blastospores were counted in a Neubauer chamber and each 

treatment was adjusted to a final concentration of 1 x 10⁶ spores/mL. Methyl cellulose (MC) 

(Sigma-Aldrich, St. Louis, MO) and cornstarch (CS) (Unilever Manufacturera, S. de R.L. de C.V., 

CDMX, Mexico) were mixed with blastospores, for adequate attachment to the seeds. Blastospores 

+ MC (2% MC final concentration) was prepared by first dissolving the reagent in warm distilled 

water at 35-40 °C to a pre-gelatinized state. Blastospores + CS (4% CS final concentration) was 

prepared in the same way but using boiling distilled water. Blastospores were then mixed with 
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each adherent material at room temperature, until a homogeneous suspension was obtained; next, 

seeds [15 seeds/treatment (MC or CS)/strain] were added and dried at 25 °C ± 2°C for 2 h. Controls 

included seeds without any treatment (CC) and seeds without fungi, but with MC (CMC) or CS 

(CCS). Fifteen seeds per treatment are planted in vermiculate soil and black soil mixed 

1:1proportion and previously sterilized, in seedling trays under growth chamber conditions; (25°C 

± 2°C) kept humid by covering with plastic lids until germination.  

Seedlings were daily irrigated with 5mL distilled water. Endophytic colonization was 

microbiologically determined in seedlings which plant height, fresh, and dry weights were 

recorded as mentioned below. Plants were surface sterilized, by first rinsing plants under tap water 

for five minutes, then submerged into 2% ethanol for two minutes, then five minutes in sterile 

water, and washed in sterile distilled water for five minutes; sterilization efficiency was determined 

by plating 100 μL of the last washing on PDA plates. Endophytic fungal inoculation efficiency 

was evaluated by plating 1-2 cm length fragments of leaves, shoots, and roots on PDA plates, 

under sterile conditions. Typical B. bassiana colonies were isolated and confirmed by PDA 

culturing and observed hyphal and conidial structures under a compound microscope (Zeiss Primo 

star, Carl Zeiss Microscopy Gmblt, Gottingen, Germany).  

Zea mays seeds Chalqueño seeds were obtained from Centro Internacional de Mejoramiento 

de Maíz y Trigo (CIMMYT), Mexico, and from Dr. Verónica Garrocho-Villegas, from 

Autonomous National University of Mexico (UNAM), Mexico. The same procedures were used 

as with A. thaliana, with the only difference that the inoculated seed were dried for 24 hours at 

25°C ± 2°C. Endophytic colonization of a subset of 15 plants/per treatment was tested at 14 days 

old Z. mays plants. They were analyzed for endophyte presence in root, stems and leaves following 

the same procedure as mentioned above for A. thaliana. 

 

2.  Potential endophytic effects of B. bassiana on Z. mays and A. thaliana plant growth 

and yield.  

   
      In the case of Z. mays plants, fourteen days after germination, plant height, fresh, and dry 

weights were recorded from half of the plants. Remaining plants were transplanted into individual 
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pots and maintained for observing plant performance and flowering time under greenhouse 

conditions.  For A. thaliana, the rosette formation and flowering time were recorded.  

 

3. Endophytic effect of B. bassiana in drought tolerance in Z. mays 

 

At day 14 after germination, seedlings were left without watering for 10 days. On day 11, plants 

were watered and stored in the growth chamber to observe their vigor recovery after 24 h. 

 

4. Endophytic effect of B. bassiana on S. frugiperda tolerance in Z. mays plants under 

laboratory and field trial.  

 

S. frugiperda eggs were kindly donated by Dr. José Refugio Lomelí-Flores, [Posgrado en Fito 

sanidad, Entomología y Acarología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de 

México, México] carefully placed in 700 ml plastic bottles and kept in the breeding room under 

controlled conditions (temperature of 27°C ± 3°C, humidity 60% ± 5,  photoperiod 14 light: 10 

dark) until hatched and then were transferred to individual diet cups with 5 ml modified artificial 

wheat germ diet as their food source (McGuire et al. 1997). This diet was replaced when necessary 

to prevent desiccation. To perform bioassay, S. frugiperda larvae belonging to the second 

laboratory generation were used. 

Each third instar S. frugiperda larvae (Fig. 1) was carefully transferred onto 10 days old Z. 

mays- B. bassiana treated, Z. mays-no treated and Z. mays plants with only methyl cellulose plants 

(larva/plant/treatment) and then covered with mesh bags to prevent escapes (Fig. 2).  
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Fig. 1. 3rd instar S. frugiperda larva in the artificial diet 

                                                           

Fig. 2. S. frugiperda larva on Z. mays plant covered with a mesh bag. 

 

Plants were replaced into the cages every 24 hours. When the larvae reached their 6th instar, 

were returned to the artificial diet to monitor pupal stage. Each pupa was examined under a 

stereoscope (Labomed Stereomicroscope, Luxeo2S, CA, USA) to determine their sex, weighed in 

a weighing balance (AND, A&D Company Limited, N-92, Korea) and their length was measured 

with a normal scholastic ruler. After that, pupae were transferred to individual plastic containers 

(7 cm diameter x 16 cm height) separating male and female, (4-5 pupae in one bottle), bottles were 
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covered with mesh bags. In the lower part of the bottle, a small piece of cotton embedded in sugar 

syrup was provided as food source for the adult flies. Bottles were analyzed every day to check 

adult emergence. The pupae were maintained under the most suitable laboratory conditions (25 °C 

± 2 °C temperature, 60% ± 5 relative humidity and 14:12 h light and dark photoperiod). During 

this experiment parameters like a) initial larval numbers, b) number of larvae dead during the 

experiment, c) number of larvae remained as larvae even after 6th instar of larval developmental 

stage, d) number of larvae remained as prepupa, e) number of larvae reached the pupal stage in 

reasonable time, f) larval weight before transferring back to the artificial diet, g) pupal weight, h) 

pupal length and i) pupal sex ratio were recorded.  

 

Field trial: Experiment 1 

  

The first field trial was done in an agricultural field situated in General Teran, Nuevo Leon with 

geographical distribution 25°16’00’’N99°41’00’’0.  The main agricultural products of this region 

include citric products, corn, sorghum, wheat, livestock products, etc. In this zone, maize crops are 

generally affected with S. frugiperda and farmers normally use Bacillus thuringiensis to control 

them.  One-hectare field was prepared as follows:  with the help of a tractor, the field soil was 

mixed and 38 furrows of 100 meters and 25 furrows of 80 meters, with a furrow to furrow distance 

80 cm, were prepared manually. With the above-mentioned seed inoculation procedure, 3300 Z. 

mays seeds criollo (kindly donated by the field owner, without any insecticidal or fungicidal 

application) variety were inoculated with B. bassiana strain GHA with a concentration of 1x10⁶ 

blastospores/mL and methyl cellulose as adherent. A total of 2500 seeds were used as no-treated 

plants without any fungal or adherent treatment. The seeds were planted during mid-February 2019 

on furrows with 25 cm between each seed, distance between each furrow was 80 cm and, in each 

furrow, 100 seeds were planted which were monitored every week.  First 33 furrows were used to 

plant B. bassiana treated seeds, then left 5 furrows and the left 25 furrows were used for the 

negative control treatments (Fig. 3) In this experiment, we recorded the germination percentage at 

3rd week after planting them and observed the presence of S. frugiperda larva between 5th true leaf 



50 
 

and 10th true leaf time period. Other than watering every day, neither any fertilizer, nor pesticides 

were applied in the fields during the whole experiment.  

 

 

 

 

Fig. 3. Dimensions applied in the field trial experiment 1 

 

 Field trial: Experiment 2 

 The second field trial was conducted in the same way as the first trial, during mid-April, 

removing only no-treated plants of the previous experiment, but leaving aside B. bassiana- maize 

plants of the first trial. We inoculated 500 maize seeds with B. bassiana GHA strain with a 

concentration of 1x10⁸ blastospores/ml and methyl cellulose as adherent and kept 500 seeds as 

negative control without any fungal or adherent treatment. The seeds were planted as same manner 

as the first field experiment (Fig. 4). Plant height and number of leaves of second and fourth furrow 

were recorded on 3rd week after planting seeds. Five corn cobs from each treatment were collected, 
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weighed with a weighing balance (AND, A&D Company Limited, N-92, Korea) and measured its 

length using a normal scholastic ruler.     

 

 

 

Fig. 4. Dimensions applied for the field trial experiment 2 

 

5.  Proteins present in the Z. mays-B. bassiana interaction using plant guttation liquid.  

 

Z. mays seeds were treated as mentioned above. Once they were germinated, guttation fluids 

were collected into Eppendorf tubes, every day until 14th day, from negative control without any 

fungal or adherent treatments plants and from with only methyl cellulose and B. bassiana treated 

plants and stored at -20 °C  freezer, until further use. Proteins were precipitated with acetone. For 

1mL guttation liquid, 10 drops of acetone were added to each tube, mixed by inversion, and stored 

at -80 °C in a So-Low Ultra freezer (Environmental Equipment, Cincinnati, OH) overnight.  Then 

they were centrifuged at 4°C in a climatized centrifuge (Eppendorf AG 22331 Hamburg, 

Centrifuge 5424R, 20BB Laboratory Equipment, Germany) for 20 min. Decanted the supernatant 
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liquid and kept open the lid for 5 minutes to evaporate rest of the acetone. To the precipitate added 

10 µl of sterile distilled water, mixed thoroughly and read in a nanodrop (Thermoscientific 

Nanodrop Lite Spectrophotometer, Accesso Lab, Mexico) at 280 nm using water as blank. Took 

the lowest value of the readings and calculated total proteins present in the final volume and 

adjusted the volume of each reading to get the same quantity of proteins. These were run in one-

dimensional vertical gel electrophoresis (Mini-PROTEAN Tetra cell, Bio-Rad, Mexico) according 

to the manufacturer’s instructions.  
   

Statistical Analysis 

      

    Effects of treatments on seed germination were analyzed and reported with mean values and 

standard errors from three different biological replicates. Furthermore, results of B. bassiana re-

isolation experiments were pooled per treatment and reported as the total percentage of re- 

isolation of B. bassiana from different tissues of each treatment. This was taken as an estimate of 

 the overall establishment of each strain of B. bassiana into Zea mays tissues, as these plants were 

a representative sample of the total plants treated. The remaining half of the total plants treated 

were transplanted and plant performance was recorded under greenhouse conditions. Data from 

plant performance were subjected to one-way ANOVA, and when a significant F test was obtained, 

separation of treatment means was performed using Duncan’s multiple range test. Data were 

analyzed using the software IBM SPSS Statistics Version 21. Prior to the statistical analysis, the 

values for the effects of B. bassiana-treated plants on the developmental stages of S. frugiperda 

were arcsine transformed. Before ANOVA, all data were tested for homogeneity of variance using 

Levene’s statistics. Considering there were only two groups to analyze in the germination data of 

the field trial experiment 1 and corn cob data from field trial experiment 2, Independent Sample 

T-test was used. Significance levels were calculated by Levene’s test for equality of variance. All 

values were graphed using the software Origin 50 Version 2. Different letters indicated statistically 

significant differences between treatments at a confidence level of 95%. These data were tested 

for normality and homogeneity of the variance.  
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RESULTS 

 
 

1. Method of inoculation for endophytic establishment of the three strain (GHA, PTG4 

and PTG6) of B. bassiana in Z. mays and A. thaliana.  

 

 Effect of B. bassiana and adherents on Z. mays germination 

      

    Germination percentage depended on strain, adherent type, and time, MCPTG4 was the best 

treatment. (Table 1).  

 

           Table 1. Zea mays germination percentage under B. bassiana-Z. mays seed treatment 

Treatments Germination at day 5 (%) Germination at day 14 (%) 

CC 56 ± 4 63 ± 4 

CMC 23 ± 4 50 ± 3 

CCS 23 ± 4 47 ± 0 

MCGHA 7 ± 7 53 ± 0 

CSGHA 17 ± 4 73 ± 8 

MCPTG4 46 ± 2 87 ± 7 

CSPTG4 27 ± 0 53 ± 0 

MCPTG6 14 ± 7 23 ± 10 

CSPTG6 40 ± 7 63 ± 10 

CC: Negative control (Untreated seeds), CMC: Negative control with the adherent methyl cellulose, CCS: 
Negative control with the adherent corn starch, MCGHA: B. bassiana strain GHA with methyl cellulose, 
CSGHA: B. bassiana strain GHA with corn starch, MCPTG4: B. bassiana strain PTG4 with methyl 
cellulose, CSPTG4: B. bassiana strain PTG4 with corn starch, MCTG6: B. bassiana strain PTG6 with 
methyl cellulose, and CSPTG6: B. bassiana strain PTG6 with corn starch. 
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   Some B. bassiana-treated seeds germinated slower than untreated ones at 5-day post sowing; 

interestingly, overall germination at day 14 significantly (p < 0.05) increased in almost all 

treatments, as compared with the controls. MCPTG4 showed consistent positive effects on 

germination percentage (Day-5 = 46 ± 2%; day 14 = 87 ± 7%), as compared with the controls 

(day 5: CC = 56 ± 4%, CMC = 23 ± 4%, CCS = 23 ± 4%. Day 14: CC = 63 ± 4%, CMC = 50 ± 

3%, CCS = 47 ± 0%), whereas the other treatments showed low germination percentages at day 

5, which was recovered at day 14, except for MCPTG6 treatment (23 ±10%). GHA strain 

showed significant inhibitory effects on germination at day 5, which was higher using MC 

(MCGHA = 53 ± 0%, CSGHA = 73 ± 8%), indicating that GHA strain could overcome early 

inhibitory effects and adherent type synergistic effects, but depended on which one was used, CS 

was the best. PTG4 strain did not show early inhibitory effects, treated seeds germinated well 

from day 5 (day 5: MCPTG4 = 46 ± 2%, CSPTG4 = 27 ± 0%), as compared with negative 

controls. However, it was noticed that MC potentiated positive strains effect on germination at 

day 14 (day 14: MCPTG4 = 87 ± 7%), which was higher than that of negative controls. PTG6 

strain showed early inhibitory effects only with MC (day 5: MCPTG6 = 14 ± 7%), which was 

not recovered at day 14 (MCPTG6 = 23 ± 10%). However, with CS there were no inhibitory 

effects observed (day 5: CSPTG6 = 40 ± 7%, day 14: CSPTG6 = 63 ± 10%), indicating that 

adherent type was important for PTG4 and PTG6 positive effects on germination.  

 

Effect of B. bassiana and adherents on A. thaliana germination 

  Germination percentage depended on strain, PTG6 was better, and depending on the adherent 

methyl cellulose was the best treatment. (Table 2). 
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Table 2 Effect of B. bassiana and adherents on A. thaliana germination 

Treatments % of germination 

CC 59 ± 0.07  

CMC 62 ± 0.16 

CCS 48 ± 0.186 

MCPTG4 61 ± 0.127 

MCPTG6 67 ± 0.037 

CSPTG4 51 ± 0.117 

CSPTG6 60 ± 0.04 

⃰MCGHA 33% 

⃰CSGHA 80% 

 

CC: Negative control (Untreated seeds), CMC: Negative control with the adherent methyl cellulose, CCS: Negative 
control with the adherent corn starch, MCGHA: B. bassiana strain GHA with methyl cellulose, CSGHA: B. 

bassiana strain GHA with corn starch, MCPTG4: B. bassiana strain PTG4 with methyl cellulose, CSPTG4: B. 

bassiana strain PTG4 with corn starch, MCTG6: B. bassiana strain PTG6 with methyl cellulose, and CSPTG6: B. 

bassiana strain PTG6 with corn starch.  ⃰MCGHA and CSGHA, did not have repetition.  

 

   Even though, there were a slight difference in the germination percentage in different treatments 

and the negative controls, statistical analysis with one-way ANOVA, did not show any significant 

difference among them (F (6,24) = 0.301, P = 0.928). 

 

 

B. bassiana re-isolation percentage in Z. mays plants.  

 

    There were no evidence of B. bassiana recovery from any of the negative control (CC, CMC, 

CCS) treatments from any of the plant tissues (roots, stems, leaves), whereas, each one of the three 

stains were recovered from roots regardless of which adherent was used.  (MCGHA = 100%, 

CSGHA = 100%, MCPTG4 = 100%, MCPTG4 = 100%, CSPTG4 = 100%, MCPTG6 = 100%, 

CSPTG6 = 100%). However, in stems and leaves recovery percentage was different depending on 

the strain and adherent used. In stems, GHA had 88% of B. bassiana recovery, which did not 

depend on adherents (MCGHA = 88%, CSGHA = 88%). PTG4 had the highest recovery 
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percentage of 100 when MC was the adherent, but it decreased when CS was used (63%) and in 

the case of PTG6 71% of recovery observed with CS as the adherent, but recovered only 25% with 

MC was used as the adherent. In leaves, GHA had 50% recovery, which did not depend on 

adherents (MCGHA = 50%, CSGHA = 50%); PTG4 had the highest recovery (100%) with MC, 

but with CS only 25% was recovered, and PTG6 had 75% of recovery which did not depend on 

adherent type. Therefore, results indicated high endophytic inoculation efficiency, particularly 

with MCPTG4 treatment. In addition, recovery percentage was depended on the strains and 

adherents used. But overall, maize plants were successfully colonized by all B. bassiana strains. 

Results are showed in the Table 3.  

 

Table 3 B. bassiana re-isolation percentage in Z. mays seedlings.  

Treatments % of B. bassiana re-

isolation from roots 

% of B. bassiana re-

isolation from stem 

% of B. bassiana re-

isolation from leaves 

CC 0% 0% 0% 

CMC 0% 0% 0% 

CCS 0% 0% 0% 

MCGHA 100% 88% 50% 

CSGHA 100% 88% 50% 

MCPTG4 100% 100% 100% 

CSPTG4 100% 63% 25% 

MCPTG6 100% 25% 75% 

CSPTG6 100% 71% 75% 

CC: Negative control (Untreated seeds), CMC: Negative control with methyl cellulose, CCS: Negative 
control with corn starch, MCGHA: B. bassiana strain GHA with methyl cellulose, CSGHA: B. bassiana 
strain GHA with corn starch, MCPTG4: B. bassiana strain PTG4 with methyl cellulose, CSPTG4: B. 
bassiana strain PTG4 with corn starch, MCPTG6: B. bassiana strain PTG6 with methyl cellulose, 
CSPTG6: B. bassiana strain PTG6 with corn starch.  
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B. bassiana re-isolation percentage in A. thaliana plants 

    Because of the small size of the plant, here we divided the plant into root and shoot only. Due 

to practical difficulty in handling this plant, we do not have 3 biological repetitions for this 

experiment. With all the available data, the fungal strain GHA could be re-isolated from both the 

root and shoot part of the plant. Results are shown in the Table 4. 

 

Table 4 B. bassiana re-isolation percentage in A. thaliana plants 

Treatments % of B. bassiana re-

isolation from roots 

% of B. bassiana re-

isolation from shoots 

CC 0 0 

CMC 0 0 

CCS 0 0 

MCGHA 71% 100% 

CSGHA 0 100% 

MCPTG6 0 67% 

CSPTG6 0 0 

CC: Negative control (Untreated seeds), CMC: Negative control with methyl cellulose, CCS: Negative 
control with corn starch, MCGHA: B. bassiana strain GHA with methyl cellulose, CSGHA: B. bassiana 
strain GHA with corn starch, MCPTG6: B. bassiana strain PTG6 with methyl cellulose, CSPTG6: B. 

bassiana strain PTG6 with corn starch.  

 

    B. bassiana was not recovered from any of the negative control treatments, (CC, CMC, CCS) 

from root or shoot of A. thaliana plants. Whereas, with the fungal strain GHA, using adherent 

methyl cellulose it was re-isolated from both root and shoot (MCGHA root = 71%, MCGHA shoot 

= 100%).  However, with the adherent corn starch it was re-isolated only from the shoot (CSGHA 

shoot = 100%). With the fungal strain PTG6, it could be re-isolated only from the shoot part of the 

plant with methyl cellulose (MCPTG6 67%). With adherent cornstarch and the fungal strain PTG6, 

it could not be re-isolated from roots of shoot.  
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2. Potential endophytic effects of B. bassiana on Z. mays and A. thaliana plant growth 

and yield. 

          

PTG6-treated plants (MCPTG6 and CSPTG6) showed a faster growth rate in plant height for the 

first two weeks after their transplantation (Figs. 5A and B; Figs. 6A and B), but there was no 

significant difference at week 6 (Fig. 5F and Fig. 6F), independently of the adherent used. For 

other treatments, no significant differences in plant height were observed. By the end of the 

growing season, 37% of the flowering plants were negative controls (CC, CMC, CCS) and the 

remaining 63% were MCGHA, MCPTG4, CSPTG4 and MCPTG6 treated plants indicating 

positive effects on flowering percentage after using B. bassiana strains, which did not depend on 

the adherents.  

 
Fig. 5. Effect of B. bassiana seed treatments with methyl cellulose as adherent on the height of Z. mays plants. 
CC: Negative control, CMC: Negative control with methyl cellulose, CCS: Negative control with cornstarch, 
MCGHA: Fungal strain GHA with methyl cellulose, MCPTG4: Fungal strain PTG4 with methyl cellulose and 
MCPTG6: Fungal strain PTG4 with methyl cellulose. Post hoc analysis was done by Duncan multiple range test (α 
0/05) after one-way ANOVA. Graphical bars with same letters indicate that there are no significant differences 
among them.  
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Fig. 6. Effect of B. bassiana seed treatments with corn starch as adherent on the height of Z. mays plants.  
CC: Negative control, CCS: Negative control with corn starch, CSGHA: Fungal strain GHA with corn starch, 
CSPTG4: Fungal strain PTG4 with corn starch and CSPTG6: Fungal strain PTG6 with corn starch. Post hoc analysis 
was done by Duncan multiple range test (α 0.05), after one-way ANOVA. Graphical bars with same letters indicate 
that there is no significant difference among them.  

 

    MCPTG4-treated plants flowered one to two weeks earlier than the rest of the plants. 

Furthermore, B. bassiana was re-isolated from corn cobs obtained from MCPTG4-treated plants. 

Figs. 7 A and B.  
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Fig. 7.  Re-isolation of B. bassiana from corn cobs. A) Fragments of corn cobs on PDA plates without surface 
sterilization indicated fungus presence. B) B. bassiana-similar colonies were separated to another PDA plates to 
confirm the presence of the fungus. 
 

    Therefore, MC was selected as the best adherent type because of its convenient preparation 

procedure, its synergetic effects on germination (Table 1), endophytic inoculation efficiency 

(Table 2), plant height (Fig. 5) and flowering time.  

     We also analyzed plants fresh and dry weight from CC, CMC, MCGHA, MCPTG4 and 

MCPTG6 plants measuring at day 14. MCPTG4 and MCPTG6- treated plants fresh and dry 

weights were significantly higher as compared with those of MCGHA and all the negative control 

treatments (Figs. 8 A and B). Thus, indicating positive effects of both strain son plant biomass 

gain during the first two weeks after germination. 

A B 
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Fig. 8. Effect of B. bassiana seed treatments with methyl cellulose as adherent on the fresh (A) and dry (B) 
weights of 14 days old Z. mays plants. CC: Negative control, CMC: Negative control with methyl cellulose, 
MCGHA: B. bassiana strain GHA with methyl cellulose MCPTG4: B. bassiana strain PTG4 with methyl cellulose, 
MCPTG6: B. bassiana strain PTG6 with methyl cellulose. Post hoc analysis was done by Duncan multiple range 
test, after one-way ANOVA. Graphical bars with same letters indicate that there are no significant differences 
among them.  

 

  In the case of A. thaliana, the plants treated with B. bassiana strain GHA, showed the 

inflorescence 1 week before the negative control plants.  

 

3.  Endophytic effects of B. bassiana in drought resistance in Z. mays. 

     

    Because of the positive effects observed on plant growth and flowering time, tolerance against 

abiotic stressor drought was selected to evaluate. Vigor recovery was assessed 24 h after watering 

10 days drought-stressed both untreated and B. bassiana-treated seedlings. Results showed a 

significant difference between untreated plants and B. bassiana-treated plants, as shown in Fig. 9. 

CC (5.63%) and CMC (28%) negative controls showed a slight vigor increment, but MCGHA 
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(63%), MCPTG4 (54%), MCPTG6 (55%) were much higher. These results showed vigor 

percentage recovery in B. bassiana-treated plants indicating induction of drought tolerance. GHA 

was significantly different to the other two fungal strains, showed the highest vigor percentage 

recovery effect.  
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Fig. 9. Recovery percentage of vigor after 10 days gradual drought on 14 days old Z. mays plants. CC: 
Negative control, CMC: Negative control with methyl cellulose, MCGHA: B. bassiana strain GHA with methyl 
cellulose, MCPTG4: B. bassiana strain PTG4 with methyl cellulose, MCPTG6: B. bassiana strain PTG6 with 
methyl cellulose. Post hoc analysis was done by Duncan multiple range test, after one-way ANOVA. Graphical bars 
with same letters indicate that there is no significant difference among them.  

 

4. Endophytic effect of B. bassiana on S. frugiperda tolerance in Z. mays plants under 

laboratory and field trial. 

 

Effect of B. bassiana treated plants on the developmental stages of S. frugiperda 

 

The development, survival, and mortality of S. frugiperda fed on untreated Z. mays plants and B. 

bassiana-treated Z. mays plants are shown in table 5. S. frugiperda larvae fed on B. bassiana strain 

PTG4-treated plants markedly troubled with their life cycle. (Table 5). Statistical analysis with 
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one- way ANOVA showed significant difference in the mean percentage values (F (3, 11) = 20.657, 

P < 0.001) of larvae remained as larva during the experiment and pupa (F (3,11) = 5.170, P = 0.028). 

However, there were no significant difference among the number of dead larvae (F (3,11) = 0.88, P 

= 0.491) and prepupa (F (3,11) = 1.381, P = 0.317). 

 

Table 5. Effect of B. bassiana treated plants on the developmental stages of S. frugiperda 

Stages CC CMC MCPTG4 MCGHA 

Initial pupa 100% a 100% a 100% a 100% a 

Dead larva 6.67% a 3% a 3.67% a 0 a 

Still larva 3.33% a 3% a 22% b 0 a 

Prepupa 6.67% a 3% a 3.67% a 0 a 

Pupa 83.33% ab 91% ab 63.33% a 100% b 

 Values followed by the same letters in a row are nor significantly different and with different letters in a     
row are significantly different after running post hoc Duncan multiple range test (P = 0.05). CC: Negative 

control, CMC: Negative control with methyl cellulose, MCGHA: B. bassiana strain GHA with methyl 
cellulose, MCPTG4: B. bassiana strain PTG4 with methyl cellulose. 

 

 

   S. frugiperda sixth instar larvae fed on the plants (both B. bassiana treated and no-treated) 

weighed before transferring them back to the artificial diet showed that those larvae fed on plants 

treated with B. bassiana strain PTG4 was significantly different from other treatments with  F(3,48) 

= 4.813, P= 0.005 (Fig. 10). 
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Fig. 10. S. frugiperda larval weight on 6th instar with different treatments. CC: Negative control, CMC: 
Negative control with methyl cellulose, MCPTG4: B. bassiana fungal strain PTG4 with methyl cellulose, MCGHA: 
B. bassiana fungal strain GHA with methyl cellulose. Post hoc analysis done with Duncan multiple range test (α = 
0.05), after one-way ANOVA. Graphical bars with same letters indicate that there is no significant difference among 
them. 
 

 

   S. frugiperda pupal length showed a significant difference with the larvae fed on B. bassiana 

GHA treated plants when compared with other treatments with F (3, 98) = 4.491 P = 0.005 (Fig. 11).  
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Fig. 11. S. frugiperda pupal length with different treatments. CC: Negative control. CMC: Negative control with 
methyl cellulose, MCPTG4: B. bassiana fungal strain PTG4 with methyl cellulose, MCGHA: B. bassiana fungal 
strain GHA with methyl cellulose. Post hoc analysis done with Duncan multiple range test (α = 0.05) after one-way 
ANOVA. Graphical bars with same letters indicate that there is no significant difference among them.  
 

 

    S. frugiperda pupal weight showed a significant difference with the larvae fed on B. bassiana 

strain GHA treated plants when compared with negative controls and B. bassiana PTG4 strain fed 

larvae with F (3, 97) = 3.753, P = 0.014 (Fig. 12). 
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Fig. 12. S. frugiperda pupal weight with different treatments. CC: Negative control, CMC: Negative control with 
methyl cellulose, MCPTH4: B. bassiana fungal strain PTG4 with methyl cellulose, MCGHA: B. bassiana fungal 
strain GHA with methyl cellulose. Post hoc analysis done with Duncan multiple range test (α = 0.05) after one-way 
ANOVA. Graphical bars with same letter indicate that there is no significant difference among them.  
              

 

   When compared the population percentage of the male and female pupae, observed significant 

difference among different treatments with F (3,11) = 7.033, P = 0.012 for male and F (3,11) = 6.088, 

P = 0.018 for female for pupae developed from larvae fed on both strains of B. bassiana  and 

showed a lesser number of male than female pupae (Fig. 13).  
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Fig. 13. Male and female population percentage of S. frugiperda pupa with different treatments. CC: Negative 
control, CMC: Negative control with methyl cellulose, MCPTG4: B. bassiana fungal strain PTG4 with methyl 
cellulose, MCGHA: B. bassiana fungal strain with methyl cellulose. Post hoc analysis done with Duncan multiple 
range test (α = 0.05) after one-way ANOVA. Graphical bars with same letters indicate that is no significant 
difference among them.  

 

   Nevertheless, female adults emerged with wing deformities. We also observed parthenogenesis 

among the female pupae (Fig. 14). 
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Fig. 14. Adult female flies with wing deformity and parthenogenesis.  

 

  

Field trial: Experiment 1 

 

    Maize plant germination percentage was less in comparison with laboratory results, 

nevertheless, there was not any significant difference among negative control and B. bassiana 

treated plants in the field with F (5, 57) = 1.002 and P= 0.426. The average germination percentage 

on 3rd week after planting the seeds for the no-treated plants were71.5% ± 5.4 and for the plants 

treated with B. bassiana were80.33% ± 3.49    Number of leaves per plant on 4th week after planting 

the seeds also showed no significant difference among negative control plants and B. bassiana 

treated plants with F (5, 57) = 0.928 and P= 0.471. Average number of leaves per plant on 4th week 

after planting the seeds for the no-treated plants were 3.12 ± 0.22 and for the B. bassiana-treated 

plants were 3.49 ± 0.09.  

     To compare prevalence of S. frugiperda in fields, we divided the field into three section for 

both negative control and B. bassiana-treated plants. (Fig. 15).  We did observe that S. frugiperda 

larvae between 2nd and 3rd instar were found in almost all furrows of negative control plants, 

whereas in B. bassiana treated plants they were present in those furrows near to the negative 

control plants which were reduced going away from negative control plants and none were present 
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in the last 12 furrows of B. bassiana treated plants (Fig. 16).  We also observed the presence of 

various pathogenic and beneficiary insects during the experiments. 

 

 

 

 

 

 

Fig. 15. Tendency of the presence of S. frugiperda larva in the treatments and different larval instars 

observed. 

 

 

 

 

 

 



70 
 

 
Fig. 16. Appearance of S. frugiperda in the field trial experiment 1 CC1, CC2, CC3: Negative control 
plants, GHA1, GHA2, GHA3: B. bassiana strain GHA with methyl cellulose. Post hoc analysis is done 
with Duncan multiple range test (α = 0.05) after one-way ANOVA. Graphical bars with different letters 
indicate that there is no significant difference among them.  

 

 

 Field trial: Experiment 2 

 

Independent-Sample T test analysis showed no significant difference in the percentage of 

germination in all five furrows of negative control (Mean 91.20 ± 2.8) and five furrows of B. 

bassiana treated plants (mean 87.20 ± 3.5) with F = 0.225 and P = 0.648.  

 

Independent-Sample T test analysis showed no significant difference in the number of leaves and 

plant height.  Average number of leaves in no treated plants on 3rd week after planting the seeds 

was 5.20 ± 0.055, whereas for the B. bassiana-treated plants it was 5.23 ± 0.054.  The average 

plant height for the no treated plants were 12.04 ± 0.16 and for the B. bassiana-treated plants it 
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was 12.36 ± 0.15. In this trial, there were no S. frugiperda larvae detected neither in no treated 

plants nor in B. bassiana treated plants during the time of data collection.  

  

Independent sample T-test analysis showed a significant difference between negative control and 

B. bassiana treated plants in corn cob length with F= 0.006 and P= 0.937, whereas, no significant 

difference in corn cob weight with F= 0.048 and P= 0.831. Results are shown in the table 6. 

 

 

 

Table 6: Average weight and length of corn cobs.  

Parameters CC Average MCGHA Average 

Weight of fresh corn 

cob in grams 

209.15 ± 26.11 183.43 ± 24.65 

Length of fresh corn 

cob in centimeters 

18.20 ± 0.74 * 16.71 ± 0.75** 

Values followed by the same letters in a row are not significantly different and with different letters in a 

row are significantly different after independent sample T-test. CC: Negative control without any 

treatments or adherents, MCGHA: B. bassiana strain GHA with methyl cellulose.  
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5.  Proteins present in the Z mays-B. bassiana interaction using plant guttation liquid.  

 

One-dimensional electrophoresis with the guttation liquid from untreated maize plants and B. 

bassiana treated maize plants showed the presence of proteins between 100 kDa-150 kDa. Fig. 

17. 

 

 

 
Fig. 17. Detected proteins between 150-100 kDa of size in the guttation liquid of maize plants.   
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DISCUSSION 

 

    All experiments were performed using fresh cultures of B. bassiana strain from frozen stocks 

on account of former reports on the correlation between subcultures and the genetic and 

physiological parameters  (Eivazian-Kary and Alizadeh 2017) of B. bassiana in germination, 

conidiation and virulence (Jirakkakul et al. 2018). 

      

    Manufacturing and formulation are the decisive elements of the success of an entomopathogenic 

fungi as a commercial biocontrol agent. Solid substrate fermentation for aerial-conidia and liquid 

fermentation for blastospores are typical methods for their massive production. Though aerial 

conidia contain the main active ingredient as a biocontrol agent, it requires weeks for its 

sporulation and fermentation which can be decreased using blastospores. In addition, blastospores 

have got the capability to sustain drying and continue to be viable on long term storage 

circumstances (Mascarin et al. 2015), thus we used blastospores in our study. 

 

     At present exists a lot of methods like foliar spraying, plant dipping, stem injection, seed coating 

and root or soil drenching to inoculate artificially entomopathogenic fungi into different plants. In 

a review by McKinnon and collaborators (McKinnon et al. 2017) reported that seed coating and 

foliar treatments were used in most published bioassays for artificial inoculation. Some studies 

demonstrate that leaf is a feeble passage for entomopathogenic fungus entry to colonize in plants 

(Posada et al. 2007; Qayyum et al. 2015). However, an effective endophytic colonization of this 

fungus depends on factors like plant age, fungal species, inoculation methods and exposure to 

direct sunlight, rain and among others. Diverse studies show that B. bassiana does not maintain 

their survival and viability on exposure to direct sunlight or ultraviolet radiation (Inglis, Goettel, 

and Johnson 1995; Kaiser et al. 2019). Nevertheless, various studies reported that formulation with 

natural substances can overcome this obstacle (Fernandes et al. 2015; Kaiser et al. 2019; Kim et 

al. 2019; Lohse et al. 2015). In the present study, to make sure blastospores maintain viability and 

stability during exposure to direct sunlight or ultraviolet radiation, we used the seed coating 

method for an effective colonization; and to ensure the efficiency and stability of B. bassiana 

blastospores we used methyl cellulose or cornstarch for blastospore formulations (Kaiser et al. 

2019; Rondot and Reineke 2018). 
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1. Method of inoculation for endophytic establishment of the three B. bassiana strains 

(GHA, PTG4 and PTG6) in Z. mays and A. thaliana 

 

     The first parameters were to determine the effects of strains and/or adherent types on 

germination percentages. There are reports indicating germination augments when using 

endophytes either bacteria or fungi.  Zhu and collaborators in 2017 (Zhu et al. 2017) showed in 

vitro increases on Ammodendron bifolium (Pall.) germination, using Bacillus sp. Cohn Strain 

AG18, Kocuria sp. (Stack Brandt) strain AY9, and Staphylococcus sp. Rosenbach strain AY3. 

Furthermore, Russo and collaborators in 2019 (Russo et al. 2019) observed an improvement in B. 

bassiana-treated Z. mays seeds germination in soil. Jaber and Ownley in 2018 (Jaber and Ownley 

2018) found that B. bassiana or M. brunneum did not alter V. faba seed germination in vitro. In 

this study, MCPTG4-treated plants showed the highest germination percentage at day 14. The 

other two strains also had high germination percentage, but the adherent type used had either 

inhibitory or enhancing effects. Therefore, high germination depended on strains and adherent 

types used. Among adherent’s methyl cellulose (MC)showed higher performance than corn starch 

(CS). However, at day 5, B. bassiana treated plants germination was delayed, probably due to the 

type of seed coating used, which could have been rinsed off during watering, and then allowed 

germination to increase on day 14. Lata and collaborators in 2018 (Lata et al. 2018) reported 

similar delays in seedling emergence, with endophytic bacteria wheat seed treatments. Another 

explanation could be the later production of phytohormones by the fungus, one it had colonized 

the plant. (Arora and Ramawat 2017; Nisa et al. 2015). A plant is considered to be endophytically 

colonized based on the detection of the target fungal strain from any of its tissues (Sword, Tessnow, 

and Ek-Ramos 2017).  

 

     Re-isolation of all B. bassiana strains from Z. mays roots, stems and leaves indicated systemic 

plant colonization of these fungi as endophytes. Nonetheless, results showed root colonization in 

all treatments, followed by stems and leaves colonization ranging from 100% to 25%. These 

percentage differences were probably due to plant tissue size,  all root tissues were plated on PDA 

plates, whereas only selected pieces of stems or leaves could be placed on agar plates. Guo, Huang, 

and Wang 2008 reported that endophytic fungi tissue specificity is a result of their adaptation to 
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conditions present in each plant tissue. In this regards, recent reports have shown some 

microscopic analysis of stems and leaves of cross sections indicating hyphal growth of B. bassiana 

(McKinnon et al. 2017). In 2009, Tefera and Vidal  (Tefera and Vidal 2009) showed that the 

inoculation method used could alter colonization percentage in different plant tissues. In sorghum, 

they reported higher colonization in B. bassiana leaves using the leaf inoculation method, whereas 

seed inoculation resulted in higher root and stem colonization. Greenfield and collaborators in 

2019 (Greenfield et al. 2016) reported 84% of endophytic root colonization into cassava roots, 7-

9 days after soil drench inoculation. In addition, Sword and collaborators (Sword, Tessnow, and 

Ek-Ramos 2017) reported endophytic Phialemomium inflatum (Burnside) colonization in cotton 

plants after seed inoclation as follows: 50-80% in roots, 0-62.5% in stems, and 0-10% in leaves, 

whereas B. bassiana colonization was found to be 0-8.3% in roots or stems and 33-60% in leaves. 

Lata and collaborators in 2018 (Lata et al. 2018) re-isolated B. bassiana and M. brunneum from 

roots and shoots of wheat plants, 14 and 24 days post inoculation, using seed treatment and the 

highest colonization percentage was in root tissues. In a study by Moloinyane and Nchu 

(Moloinyane and Nchu 2019), after soil drenching of B. bassiana on grapevine plants, reported 

48% of re-isolation from leaf tissues. All these reports demonstrated that the inoculation method 

is a key factor on fungal colonization in different plant tissues. Taken together, factor like soil 

microorganisms, temperature, relative humidity, growth media,  plant age and species, inoculum 

density, and fungal species can affect successful colonization of fungi in different plant tissues. 

Kasambala and collaboratos (Kasambala Donga, Vega, and Klingen 2018) reported that B. 

bassiana does not display any tissue preferences in endophytic colonization in plants.  Therefore, 

in the presnt study it was demonstrated that MCPTG4 treatment had a very high B. bassiana 

endophytic colonization efficiency in Z. mays, indicating this strain and adherent type mixture is 

a feasible seed coating method for further biotechnological applications.  

 

2. Potential endophytic effects of B. bassiana on Z. mays and A. thaliana plant growth and 

yield 

 

   In addition to effects on germination and endophytic establishments, putative effects on plant 

overall performance were evaluated. Results shown in Figs. 5 and 6 demonstrated that during the 

first 2-3 weeks, B. bassiana strain PTG6 stimulated plant growth, whereas GHA and PTG4 -treated 
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plants did not show significant differences, compared with untreated plants. One explanation could 

be the activation of plant adaptation processes after transplantation. Afterwards, there was no 

significant difference between B. bassiana-treated and untreated plants. However, in Fig. 8, at day 

14 there were significant differences in fresh and dry weight of B. bassiana-treated plants, 

indicating early positive effects. These observations have been also previously reported, after using 

other endophytes and inoculation treatments. Dash in 2018 (Dash et al. 2018) reported that B. 

bassiana enhanced Phaseolus vulgaris height, fresh shoot and root weight compared with 

untreated plants on day 7 after inoculation. Jaber and Ownley (Jaber and Ownley 2018) reported 

that, on day 14 post inoculation of wheat seeds with B. bassiana or M. brunneum, plants showed 

higher shoot height, root length and fresh root and shoot weights when compared with untreated 

plants. Russo and collaborators in 2019 (Russo et al. 2019) reported similar effects after spraying 

B. bassiana on corn plant leaves, with enhanced plant height, number of leaves, height, and node 

number where the first cob emerged. In contrast Moloinyane and Nchu in 2019 (Moloinyane and 

Nchu 2019) did not find any significant difference between B. bassiana treated and untreated 

grapevine plants on plant height, number of roots and leaves, and fresh and dry weights, four weeks 

after soil drenching treatment. Furthermore, Tall and Meyling (Tall and Meyling 2018) reported 

that B. bassiana-treated maize plants did not show any growth improvement during their 

experiment and suggested that fungus functioned as a link between plant and soil when nutrient 

scarcity occurred. Indeed, in the present study, GHA- and PTG4-treated plants flowered prior to 

PTG6-treated plants and controls, indicating a physiological adaptation to reproduce earlier despite 

biomass increase was not obvious in these treatments. This is relatively new, as only few previous 

reports indicated these effects can be induced by a fungal endophyte. P. indica promoted early 

flowering by regulating photoperiod and gibberellin pathways in Arabidopsis (Pan et al. 2017). In 

Coleus forskohlii (also known as Plectranthus barbatus Andrews), P. indica as root endophyte 

also induced early flowering and higher aerial biomass production (Das et al. 2012).  

 

3. Effect of endophytic B. bassiana in drought resistance in Z. Mays 

Abiotic stress drought was evaluated aiming for plant tolerance induction. As shown in Fig. 9, 

more than 50% of all B. bassiana-treated plants recovered their vigor upon watering, after a 

gradual drought for 10 days. MCPTG4 treatment showed high vigor performance compared with 

controls. However, the best treatment to induce tolerance was MCGHA. In a recent report, authors 
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demonstrated that under combined drought and mechanical stress, P. indica maintained maize 

water status and physiological traits by increasing root volume, leaf area, relative water content, 

leaf water potential, and proline content, whereas untreated plants showed less catalase and 

ascorbate peroxidase activities.  The mechanism proposed was that inoculated plants might have 

done osmotic adjustments by accumulating proline, or by reducing oxidative damage system 

activation, or by maintaining cell wall elasticity  (Hosseini et al. 2018). Llorens and collaborators 

in 2019 (Llorens et al. 2019) reported similar results indicating Aegilops sharonensis and Triticum 

diccocoides protected wheat plants from drought, by reducing stress response and improving plant 

physiological status. They found higher relative water content, proline, abscisic acid, and jasmonic 

isoleucine compound in endophyte-treated plants, in comparison with untreated plants, On the 

contrary, Ferus and collaborators  (Ferus, Barta, and Konôpková 2019a)  reported that B. bassiana 

relieved drought stress in red oak seedlings, but recorded small decreases in leaf relative water 

content and stomatal conductance, low free proline concentration but higher root growth, in 

comparison with untreated plants. They suggested that endophyte-treated plants response to 

drought was due to species-species interaction and concrete environmental conditions thus 

discrepancies regarding these studies may be due to plant species difference. The former two 

studies were done on monocotyledons whereas the later study was on a dicotyledon. Interestingly, 

in the present study, plant physiological status was improved and related to a recovery of vigor 

after drought stress. Further studies are needed to elucidate B. bassiana-induced drought tolerance 

in seed-treated plants to fully characterize the mechanism involved.  

 

4. Endophytic effect of B. bassiana on S. frugiperda tolerance in Z. mays plants under 

laboratory and field trials 

 

In this study, we did not monitor mortality rate of larvae separately for each larval instar. But 

we observed that a small percentage of larvae were dead, without any significant difference 

between larvae fed Z. mays no treated plants and Z. mays-B. bassiana treated plants. We did 

not observe any fungal outgrowth from S. frugiperda cadavers. This may be because larvae 

were not in direct contact with colonized B. bassiana. Mortality level of target insect pests with 

entomopathogens depends on larval developmental stage (Qayyum et al. 2015), inoculation 

method  (Sánchez-Rodríguez et al. 2018), or fungal strains (Vidal and Jaber 2015).  B. bassiana 
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mostly does not induce direct mortality in insect pests, but often show reduced larval growth 

rate, weight or longevity (Klieber and Reineke 2016; Lefort et al. 2016). In our study we 

observed that S. frugiperda larvae fed on B. bassiana strain PTG4 treated Z. mays plants were 

considerable affected their development prolonging their larval stage, declined larval weight 

and smaller number of pupas. Review notes by Vega in 2018 (Vega 2018) recorded that by 

blending liquid cultured B. bassiana after removing mycelia in the diet happened to reduce the 

percentage of population and prolonged the pupation time. Lopez and Sword in 2015 (Lopez 

and Sword 2015) did not find any differences in cotton boll worm larvae and pupal weight 

when they were fed on B. bassiana and Purpureocillium lilacinum inoculated cotton plants. In 

this present study we observed that larvae fed on B. bassiana strain GHA-treated plants, 

showed a decline in pupal length and weight. Since this was a no-choice experiment there were 

not enough left-over plant materials to quantify if there were any feeding preference in larvae 

between no-treated plants and B. bassiana treated plants. Another important observation of 

this study was that adult male-female ratio of those fed on B. bassiana-treated Z. mays plants.  

We observed a lesser number of adult male flies and female flies had some deformities in their 

wings. This result is agreement with Hassan and collaborators (Hassan, Abdullah, and Assaf 

2019) where reported a malformation occurred with B. bassiana treated squash beetle.  

Whereas, Vianna and collaborators in 2018 (Vianna et al. 2018) did not find any significant 

difference in the sex ratio of Helicoverpa gelotopoeon when they were fed on B. bassiana 

treated soy bean plants. Akutse and collaborators in 2013 (Akutse et al. 2013) observed higher 

number of males were emerged in their study with different fungal strains on Vicia faba and 

Phaseolus vulgaris against Liriomyza huidobrensis. We also observed parthenogenesis in 

female adults, which might be because that there were lesser number of male, and female adults 

were born with wing deformities, which urged the necessity for this feature. Mahmood and 

collaborators in 2019 (Mahmood et al. 2019) reported a reduced survival and fecundity of 

Sitobion avenae feed on maize plants inoculated with B. bassiana. Insect immunity can be 

influenced by successive exposures of the same pathogen and can have a long-term effect on 

their survival (Jensen, Enkegaard, and Steenberg 2019). We need to perform additional studies 

to evaluate whether B. bassiana has some effects on S. frugiperda’s successive generations. 

Bamisile and collaborators in 2019 (Bamisile et al. 2019) reported endophytic B. bassiana in 
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foliar treated citrus limon plants acted as growth suppressor to three successive generations of 

Diaphorina citri.  

 

      In the field trial experiment 1, there were no significant differences among the no treated 

and B. bassiana-treated plants germination, whereas there was a small decline in comparison 

with laboratory results. This decrease might be due to the uncontrolled environmental 

conditions and seed variety we used for field trials, which made us clear that germination 

percentage of Z. mays plants were not affected with B. bassiana. This conclusion is on 

concordance with the work of Russo and collaborators  (Russo et al. 2019) where they reported 

a 77%of negative control and 89% of B. bassiana-treated Z. mays plant germination. Average 

number of leaves per plant also did not show any significant difference among the no-treated 

and B. bassiana-treated plants. We divided the fields into three section of both the treatments 

to find out the tendency of larval appearance in different parts of the field. We did observe that 

there are significant differences between different sections. Even though there was a slight hike 

in the number of larvae in the initial furrows of B. bassiana-treated plants immediately after 

the no-treated plants, it declined eventually and became absolutely zero in the final 12 furrows 

of B. bassiana-treated plants. Ramírez-Rodríguez and Sánchez-Peña in 2016 observed that 

when B. bassiana was applied as an endophyte in Z. mays plants and let S. frugiperda larvae 

feed on them, it was not as pathogenic as in direct application. 

 

     In the second field trial, same results were obtained in terms of germination percentage, 

plant height, and average number of leaves of Z. mays plants in both treatments. But there was 

an increase in both germination percentage and average number of leaves in the second trial, 

that was 71.5% of no treated plants to 91.20% and from 80.33% to 87.20% in B. bassiana-

treated plants in the case of germination and in the case of the average number of leaves per 

plant we did observe an increase from 3.12 to 5.20 leaves per plant in no treated plants and 

from 3.49 to 5.23 leaves per plant in B. bassiana-treated plants. This difference might be due 

to the higher concentration of blastospores we used in our second trial, that was from 1 x 10⁶ 

blastospores /ml to 1 x 10⁸ blastospores/mL. Our studies agreed  with Lopez and Sword in 

2015 (Lopez and Sword 2015) reports, who showed that Gossypium hirsutum height increased 

by establishing B. bassiana as an endophyte in the plants. Dash and collaborators in 2018  
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(Dash et al., 2018) reported an increase in the number of leaves of P. vulgaris after treating 

them with B. bassiana. The most interesting factor in the second experiment is that we did not 

observe any S. frugiperda larvae neither in no treated plants no in B. bassiana-treated plants 

during the period of our study. Hernandez-Trejo and collaborators in 2019 (Hernandez-Trejo 

et al. 2019) reported that Metarhizium robertsii decreased S. frugiperda incidence from 41.3 

to 2.8% in the first application and 17.4 to 8.3% in the second application on maize plants. Our 

finding needs more field trials to understand the mechanisms underlined to these results. One 

of the possible reasons might be due to volatiles that may be produced by the B. bassiana-

treated plants which may function as insect repellents. Plants can dispense an array of volatile 

compounds from different plant parts including flowers, leaves, stems, fruits, and roots which 

can perform crucial roles in behavior of insects in feeding, mating, egg-laying, and aggregation 

of conspecifics. These volatiles can function in contrasting activities like insect attractants or 

repellents and can also activate neighboring plants defense system (Veloz-Badillo et al. 2019). 

For example, naphthalene used as a potential insect repellent has been found to be produced 

by B. bassiana and Muscodor vitigenus in various studies (Crespo et al. 2008; Daisy et al. 

2002). Another mechanism explained by Vega in his review on 2018 (Vega 2018) is the 

production of kairomones, chemical signals produced by the plants which are used by the 

insects to localize them. They probably can be interrupted by the endophytic entomopathogens 

in the plants.  

 

    We did not find any significant difference in the corn cob weight between the treatments, 

which is in concordance with the findings of Hernandez-Trejo in 2019  where application of 

M. robertsii on maize plants did not showed any significant difference in grain yield per hectare 

between treatments. Whereas Russo et al., ( 2019) found an increase in maize corn yield after 

applying B. bassiana under field conditions. Qayyum et al.,   (2015)  did find a decrease in 

tomato size after colonizing the plants with B. bassiana. All these contradictory results might 

be due to the difference in the fungal strains, host plant species varieties or even may be 

geographical regions. More investigations are required to confirm all these factors. We did find 

that corn cob length was little greater in no treated plants than the B. bassiana-treated plants. 

They yielded more than 2 corn cob per plant. In this study we did not damage any pollinators 

or any other insects.  
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5. Proteins present in the Z. mays-B. bassiana interactions using plant guttation liquid.  

 

               Guttation is a physiological process which refers the exudation of liquid droplets from 

the edges, adaxial and abaxial surfaces of an uninjured leaf through small openings in the 

leaves called hydathodes and has got a very important role in soil-plant environment system 

(Singh 2016). Transpiration is induced through the gradient between low air water potential 

and high soil water potential which occurs normally in night time when air cools down or in 

rainy days, where, the plants maintain the solute transport mainly through hydathodes 

(Grunwald et al. 2003). Several root and shoot signal transduction, transport proteins found in 

guttation fluid are transported to active vegetative and reproductive growth sites for fruits and 

seed growth and formation (Singh 2016). Guttation fluid can be recollected continuously 

during the whole life period of a plant without stressing out the plant (Komarnytsky et al. 

2000). Also, huge expenses in protein extraction and purification from biochemically complex 

plant tissues can overcome through this procedure (Komarnytsky et al. 2000). In our study, we 

could find out a lot of proteins from both no-treated and B. bassiana treated plants, with 100-

150 kDa size, which can be compared with the results of Grunwald and collaborators in 2003. 

(Grunwald et al. 2003) where they found out more than 200 proteins using one- and two-

dimensional electrophoresis. Further studies are needed to sequence these proteins and identify 

them.  
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CONCLUSIONS 

 

 

❖ Inoculation of B. bassiana in the seeds of Z. mays using methyl cellulose or corn starch, 

protected the fungus from adverse abiotic factors. 

 

 

 

❖ Improved flowering time of plants. 

 

 

 

❖ B. bassiana can be used as a biofertilizer and growth promoter. 

 

 

 

❖ Drought tolerance can be induced. 

 

 

 

❖ S. frugiperda can be controlled. 

 

 

 

❖ Xylem sap drop (guttation liquid) contain proteins of 100-150 kDa in size.  
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PERSPECTIVES 
 

 

 

❖ To do more studies in the field to check the results obtained in the laboratory. 

 

 

 

❖ Use other corn varieties and races. 

 

 

 

❖ Follow up on the study of S. frugiperda larvae that were born from parthenogenesis, to 

evaluate the possible effects on the following generations. 

 

 

 

❖ To analyze the microbiota of the excrement of S. frugiperda larvae after they were fed with 

plants treated with B. bassiana. 

 

 

 

❖ Analyze the protein profile and bioactive peptides present in plants treated with B. bassiana. 
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