
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 
 

FACULTAD DE CIENCIAS QUÍMICAS 
 
 

 
 
 

"SYNTHESIS AND CHARACTERIZATION OF NEW LUMINESCENT  
 

BIOSENSORS OF Al (III), DERIVATIVES FROM SCHIFF BASE WITH  
 

POTENTIAL USE AS PREVENTIVE DIAGNOSIS METHOD IN 
 

 NEURODEGENERATIVE DISEASES" 
 
 
 

BY 
 
 
 

M.C. JESSICA CECILIA BERRONES REYES 
 
 
 

AS PARTIAL REQUIREMENT TO OBTAIN THE DEGREE OF  
DOCTOR OF SCIENCE WITH 

ORIENTATION IN CHEMISTRY OF MATERIALS. 
 

 
 
 
 
 
 

July 2018 



 
 
 
 
 

SYNTHESIS AND CHARACTERIZATION OF NEW LUMINESCENT  
 

BIOSENSORS OF Al (III), DERIVATIVES FROM SCHIFF BASE WITH  
 

POTENTIAL USE AS PREVENTIVE DIAGNOSIS METHOD IN 
 

 NEURODEGENERATIVE DISEASES 
 
 
 

Aprobación de la Tesis: 
 

 
__________________________________________________________	  

Dr. Víctor Manuel Jiménez Pérez 
Presidente 

	  
	  

__________________________________________________________	  
Dr. Alberto Gómez Treviño  

Secretario 
 

	  
__________________________________________________________	  

Dr. Boris Illdusovich Kharissov  
Vocal 

 
	  

__________________________________________________________	  
Dr. Procoro Gamero Melo  

Vocal 
	  

	  
__________________________________________________________	  

Dr. Mario Sánchez Vásquez  
Vocal 

	  
	  

__________________________________________________________	  
Dra. Ma. Araceli Hernández Ramírez 

Sub-Directora de estudios de posgrado 	  



 
 
 
 
 

SYNTHESIS AND CHARACTERIZATION OF NEW LUMINESCENT  
 

BIOSENSORS OF Al (III), DERIVATIVES FROM SCHIFF BASE WITH  
 

POTENTIAL USE AS PREVENTIVE DIAGNOSIS METHOD IN 
 

 NEURODEGENERATIVE DISEASES 
 
 
 

Revisión de la Tesis: 
 
 
 
 

__________________________________________________________	  
Dr. Víctor Manuel Jiménez Pérez 

Director de la Tesis 
	  
	  
	  

__________________________________________________________	  
Dr. Alberto Gómez Treviño 

	  
	  
	  

__________________________________________________________	  
Dr. Eduardo Sánchez Cervantes 

	  
	  
	  

__________________________________________________________	  
Dr. Boris Ildusovich Kharissov 

	  
	  
	  

__________________________________________________________	  
Dra. Ma. Araceli Hernández Ramírez 

Sub-Directora de estudios de posgrado	  
 
 



 
RESUMEN 

 
MC Jessica Cecilia Berrones Reyes                                                    Julio 2018 
 
Universidad Autónoma de Nuevo León 
 
Facultad de Ciencias Químicas 
 

Título del estudio: SINTESIS Y CARACTERIZACIÓN DE NUEVOS 
BIOSENSORES LUMINISCENTES DE Al (III), DERIVADOS 
DE BESES DE SCHIFF CON POTENCIAL USO COMO 
METODO DIAGNOSTICO PREVENTIVO EN 
PADECIMIENTOS NEURODEGENERATIVOS. 

 
 

 
Número de páginas:   74                               Candidato para el grado de Doctor 

en Ciencias con Orientación en  
Química de los Materiales. 

 
Área de estudio:  Química de los Materiales. 
 
Propósito y Método de Estudio: Hoy en día, los investigadores están en 

búsqueda de sensores fluorescentes simples con respuesta rápida, alta 
sensibilidad y selectividad debido a sus múltiples aplicaciones en 
diagnóstico clínicos y monitoreo ambiental. Durante la última década, ha 
cobrado interés el desarrollar materiales que permitan no solo la detección 
de diferentes moléculas, sino también su obtención de imágenes dentro de 
las células vivas. Debido al impacto potencial de los iones de Al3+ en la 
salud humana y el medio ambiente, sensores altamente selectivos y 
sensibles para este metal son, por lo tanto, muy demandados. 

 
Contribuciones y Conclusiones: En este trabajo de investigación se reportó la 

síntesis de cuatro nuevos compuestos derivados de bases de Schiff los 
cuales fueron caracterizados mediante diversas técnicas espectroscópicas 
y espectrométricas. Se demostró la capacidad de los cuatro compuestos de 
sensar iones aluminio en solución y producir una señal detectable por 
fluorescencia. El compuesto 2 fue capaz de sensar este metal en cultivo 
celular y producir imágenes celulares donde se observa aumento la 
intensidad de fluorescencia producida por la unión metal-ligante. 

 
 
      FIRMA DEL ASESOR: 
 
__________________________ 
   Dr. Víctor M. Jiménez Pérez 



	  
SUMMARY 

 
MC Jessica Cecilia Berrones Reyes                                                     July 2018 
 
Universidad Autónoma de Nuevo León 
 
Facultad de Ciencias Químicas 
 
Study Title: SYNTHESIS AND CHARACTERIZATION OF NEW LUMINESCENT  

BIOSENSORS OF Al (III), DERIVATIVES FROM SCHIFF BASE 
WITH POTENTIAL USE AS PREVENTIVE DIAGNOSIS METHOD 
IN NEURODEGENERATIVE DISEASES 

 
 

 
Page number:  74                                            Candidate for the degree of Doctor 

of Science with Orientation in in  
Chemistry of Materials. 

 
Study area: Chemistry of Materials. 
 
Purpose and study method: Nowadays, researchers are in enthusiastic pursuit 

of simple fluorescent sensors with fast response, high sensitivity and 
selectivity, due to their widespread applications in clinical diagnostics and 
environmental monitoring. Over the past decade, there has been significant 
interest in developing materials that allow not only the detection of different 
targets but also their imaging within living cells. Due to the potential impact 
of Al3+ ions on human health and the environment, highly selective and 
sensitive chemosensors for this metal are hence highly demanded. 

 
 
Conclusions and contribution: This research work report the synthesis of four 

new compounds derived from Schiff bases that were characterized by 
various spectroscopic and spectrometric techniques. The ability of the four 
compounds to sense aluminum ions in solution and produce a signal 
detectable by fluorescence were demonstrated. Compound 2 was able to 
sense this metal in cell culture and produce cellular images where the 
intensity of fluorescence produced by the metal-ligand bond is increased. 
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1.INTRODUCTION 

 

Aluminum is a silvery-white metal, is considered the most plentiful metallic 

element in the earth’s crust.i Due to high reactivity, aluminum does not exist as 

the metal in the environment; it exists in a combined state with other elements. 

In nature it is found in soil, rocks (particularly igneous rocks), and clays as 

aluminosilicate minerals. It is deadly to growing plants and kills fish in acidified 

water. Principal sources of Al3+ contamination in human beings are food 

additives, aluminum-based pharmaceuticals, occupational dusts, aluminum 

containers, cooking utensils, paper industry, dye production and the textile 

industry (Scheme 1).ii 

 

Scheme 1. Principal sources of Al3+ contamination. 

Food 
additives 

Utensils 

Industry 
Al3+-

based 
drugs 
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Aluminum intake from foods, particularly those containing aluminum 

compounds used as food additives, represents the major route of aluminum 

exposure for the general public, excluding persons who regularly ingest 

aluminum-containing antacids and buffered analgesics, for whom intakes may 

be as high as 5 g/day (WHO, 1997). At an average adult intake of aluminum 

from food of 5 mg/day and a drinking-water aluminum concentration of 0.1 mg/L, 

the contribution of drinking-water to the total oral exposure to aluminum will be 

about 4%. The contribution of air to the total exposure is generally negligible.ii 

 

In 1989, World Health Organization (WHO) listed Al3+ to be one of the food 

pollution sources and limited Al3+ concentration to 200 mg/L (7.41 µM) in 

drinking water. Tolerable weekly aluminum dietary intake in the human body is 

estimated to be 7 mg/kg of the body weight.iii 

 

Many studies show that aluminum is a neurotoxin. It is widely bioavailable 

to humans and has a direct and active access to the brain where it accumulates 

in a region-specific manner that highly implicates its involvement in the damage 

of the human nervous system and induce several health hazards iv  such 

Alzheimer’s disease,v Parkinson's disease, amyotrophic lateral sclerosis,vi etc.  

 

As a result of the close relationship between Al3+ and human health, the 

investigation of reliable detection methods for Al3+ becomes more and more 

important. To date, some conventional methods with high sensitivity for 
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Al3+detection based on atomic absorption or emission spectroscopy have been 

developed. However, these methods require expensive instruments and intricate 

sample preparation processes. It is necessary to find other ways to design new 

chemosensors for Al3+, and fluorometric and colorimetric methods appear to be 

a favorable alternative for their simplicity and selectivity.vii 

 

Fluorescent techniques are attractive and versatile tools for both analytical 

sensing and optical imaging because of their nondestructive methodology, high 

sensitivity, fast response time, technical simplicity and wide range of available 

indicator dyes (Scheme 2).viii,ix Recently, fluorescent probes have had significant 

interest because of their potential applications in medicinal and environmental 

research. Thus, many fluorescent chemosensors specific for Hg2+, Cu2+, Zn2+ or 

other transition metals have been developed.x Compared to these transition 

metal ions, only a few fluorescent chemosensors have been reported for 

detection of Al3+. xi  Jang et al. synthesized a colorimetric fluorescent 

chemosensor based on Schiff bases, useful in the detection of Al3+ and Cu2+.xii 
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Scheme 2. Advantages of fluorometric methods. 

 

Metal complexes of Schiff base ligands have showed several properties 

like selective extraction, xiii  antitumor activity, xiv antioxidative activity, xv  and 

attractive electronic and photo physical properties.xvi  In addition, Schiff base 

derivatives having a fluorescent moiety are appealing tools for designing optical 

probes for metal ions.xvii The poor coordination ability of Al3+ compared to the 

transition metal ionsxviii  makes the development of an Al3+ fluorosensor difficult. 

Most of the reported Al3+ sensors suffer from interference caused by Fe3+ and 

Cu2+,xix poor water solubility and tedious synthetic methods of preparation.xx So 
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far, it has not been considered the biocompatible molecular design using 

biological fragments.  

 

Recently, we have reported a series of eight new luminescent organotin 

compounds derived from Schiff bases and their application on fluorescent 

bioimaging where at least three complexes showed stain cell.xxi  Based on the 

above, we propose in this project the synthesis, chemical and optical 

characterization, and determination of biological activity for sensing Al3+ of four 

new compounds derived from Schiff base (Figure 1), using a naphthalene 

moiety as fluorophore and an organic molecule or biological fragment to improve 

the solubility and increase biocompatibility. 

 

 

 
Figure 1. New compounds derived from Schiff base proposed. 
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2.BACKGROUND 

 

2.1 Luminescent Probes 

 

One of the main challenges currently facing in the area of supramolecular 

chemistry is the development of molecular systems capable of binding to 

specific substrates with high selectivity and specificity. This selective bonding 

process selective between a receiver and a substrate it is called molecular 

recognition and is the foundation of functioning of most biologic processes.xxii  

 

There are numerous experimental methods for the detection of analytes, 

such as atomic absorption spectrometry, chromatography, etc. These 

techniques are expensive and generally difficult to continuous monitoring. In 

contrast, fluorescence-based methods offer distinct advantages in selectivity, 

sensitivity, real-time response and low cost.xxiii  On the other hand, one of the 

research lines in supramolecular chemistry focuses on the design and synthesis 

of molecular receptors capable of selectively binding to an analyte of interest 

(molecule, cation or anion), based on suitable chemical and structural 

characteristics. The selection of receptor molecules with the capability of 

indicating its link with the substrate by transmitting a signal type has led to the 

obtaining of so-called molecular optical sensors or chemosensors. 
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There are two basic processes in analyte detection: molecular recognition 

and signal transduction. To efficiently carry out these two processes, 

chemosensory usually consist of three components: a receiver (to bind to a 

specific analyte), a display unit (charged with giving the answer) and a spacer 

(which changes the geometry electronic system modulates the interaction 

between the two units (Scheme 3).xxiv Due to its properties, chemosensory offer 

interesting and attractive potential applications in the field of analytical; in fact, 

they allow us to carry out measurements in real time and space when used 

immobilized on surfaces or even free in solution.xxv 

 

 

 
Scheme 3. Components of a chemosensor. 

 

 

Nowadays, researchers are in enthusiastic pursuit of fluorescent sensors 

due to their widespread applications in clinical diagnostics, environmental 

Chemosensor 

Receiver 

Display 
Unit 

Spacer 
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monitoring, etc. Driven by the increasing demand for simple fluorescent sensors 

with fast response, and high sensitivity and selectivity, over the past decade, 

there has been significant interest in developing materials that allow not only the 

detection of different targets but also their imaging within living cells. 

 

2.2  Luminescent probes for metal cations 

 

The detection of metal cations is of great importance in different areas 

such as chemistry, biology, clinical biochemistry and environmental. Sodium, 

potassium, magnesium and calcium ions are involved in important biological 

processes as are the transmission of nerve impulses, muscle contraction, 

regulation of cell activity, etc. Zinc, on the other hand, is an essential component 

of many enzymes (e.g., carbonic anhydrase) and plays an important role in 

enzyme regulation, gene expression, neurotransmission, etc. xxvi  

 

With respect to the toxicity of many metal ions it is well known that 

mercury, lead and cadmium are toxic for the organism and its early detection in 

the environment is of great importance. xxvii  Likewise, it has been reported that 

aluminum accumulation in the organism may contribute to the appearance of 

certain neurodegenerative diseases. Because of the above, it is important to 

have efficient and practical detection methods for some metal cations. 

It has been reported some useful molecules capable to sensing important 

metal cations, Fabbrizzi et al.xxviii  showed that dioxotetramine A (Figure 2), 

which contains an anthracene unit, is a good sensor for Ni2+ and Cu2+ ions. 
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Compound B reported by Ma et al.xxix  showed high sensitivity and a dual 

response towards Pb2+ ions in a solvent mixture of water/DMSO. Dong et al.xxx 

reported the fluorescent probe C based on a naphthalimide and alkyne acting 

with radiometric response to Hg2+ and Au3+ ions in aqueous solution. 

 

 

 
Figure 2. Structure for some fluorescent chemosensors for metal ions. 

 

2.3  Aluminum sensors 

 

Aluminum is the third most prevalent element and the most abundant metal 

in the earth’s crust. But evidences suggest that aluminum has severe toxicity in 

the central nervous system, which can cause idiopathic Parkinson’s disease, 

impairment of memory and Alzheimer’s disease.xxxi  Aluminum is found in its 

ionic form in most animal and plant tissues as well as in natural waters. Main 

sources of Al3+ to accumulate on human beings are food additives, aluminum- 

based pharmaceuticals, cosmetics, occupational dusts, aluminum containers 

and cooking utensils.xxxii  
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Due to the potential impact of Al3+ ions on human health and the 

environment, highly selective and sensitive chemosensors for Al3+ are hence 

highly demanded. Consequently, it is a challenging work to design and 

synthesize a highly selective and sensitive chemosensor for Al3+ in acid 

aqueous medium. Known methods for aluminum detection, such as graphite 

furnace atomic absorption spectrometry and inductively coupled plasma atomic 

emission spectrometry, are generally expensive and time-consuming in practice. 

Comparatively, optical detection, particularly fluorescence methods, shows 

unique potential for high sensitivity. Compared to transition metals, the detection 

of Al3+ has always been problematic due to the lack of spectroscopic 

characteristics and poor coordination ability. To the best of our knowledge, only 

a few fluorescent chemosensors have been reported for detection of Al3+ with 

moderate success to date. Thus, it is still highly desirable to develop new or 

improved methods for the selective evaluation of Al3+ ions in aqueous 

environments.xxxiii  

 

Have been reported aluminum sensors based on polymer derivatives,xxxiv  

pyrimidine, xxxv cumarine derivatives xxxvi  and Schiff bases, xxxvii  this molecules 

demonstrate a new cost-effective, rapid, and simple key to the inspection of Al3+ 

ions in water samples in the presence of a complex matrix.  

 

2.4  Schiff bases and naphthalene derivatives 
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Lately new compounds with biological activity have been developed from 

Schiff bases. These molecules possess the azomethine fragment   (-N = CH), 

which is the key to the design of new compounds with anticonvulsant, 

antidepressant, analgesic, anti-inflammatory and anti-malarial activity.xxxviii  Their 

analysis has been a pattern to develop new Schiff bases compounds with 

diverse biological activity. It has been described the synthesis of complexes 

derivatives of Schiff bases that have high thermal stability to air and moisture. 

The investigations of Schiff bases compounds with other application like 

chemosensors are currently ongoing.  

 

In addition, naphthalene moiety has been proved as an ideal fluorophore, 

and its correlative derivatives have been synthesized as effective fluorescent 

probe in determination of some metal ions. xxxix  Recently, highly selective 

fluorescent probe for Al3+ using naphthalene derivate has been reported;xl they 

exhibited high signal response toward and showed good application prospect, 

but all the fluorescent sensors need organics solvent to enhance the dissolving 

property of the sensors during the process of measuring.  

 

 

 

 

 

3. HYPOTHESIS 
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Schiff bases compounds have a good aluminum sensing capability in cell 

culture. 

 

4. GENERAL OBJECTIVE 

 

Synthesize and characterize four new Schiff bases compounds and test its 

aluminum sensing capability in cell culture. 

 

4.1 Specific Objectives 

 

• Synthesize four new Schiff bases compounds by a conventional method. 

 

• Spectroscopic (1H and 13C NMR; IR) and optical (UV-vis, fluorescence) 

characterization of synthesized compounds. 

 

• Measure the fluorescence spectra of the four new compounds with 

aluminum and other metals. 

 

• Perform imaging detection assays of aluminum in cell culture. 

 

 

5. MATERIALS AND METHODS 
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5.1 Materials 

 

5.1.1 Synthesis and characterization 

 

All starting materials were purchased from Sigma-Aldrich Chemical 

Company. Solvents were used without further purification. Melting points were 

determined on an Electrothermal Mel-Temp apparatus, and are not corrected. 

Infrared spectra were recorded using a Burker Tensor 27-FT-IR 

spectrophotometer equipped with a Pike Miracle TM ATR accessory with a single 

reflection ZnSe ATR crystal. Multinuclear magnetic resonance experiments as 

1H, and 13C NMR spectra were recorded on a Bruker advance DPX 400. 

Chemical shifts (ppm) are relative to (CH3)4Si for 1H and 13C. Mass spectra were 

recorded on an AB Sciex API 2000 TM LC/MS/MS System. UV-Vis absorption 

spectra were measured on a Shimadzu 2401 PC spectrophotometer. The 

emission spectra have been recorded with a Fluorolog 3 spectrofluorometer, by 

exciting 10 nm below the longer wavelength absorption band. 

 

 

 

5.1.2 Bioassays 

 

Human epithelial cells Hs27 (ATCC-CRL-1634) were employed to obtain 

the cell images and to test the cytotoxic effects of compounds 1 to 4. Hs27 cells 

were maintained in Dulbecco’s Modified Eagle Media (DMEM, Invitrogen Life 
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Technologies) with 4 mM L-glutamine and supplemented with 10% fetal bovine 

serum (Gibco Life Technologies), 100 IU/mL of penicillin, and 100 g/mL of 

streptomycin. Culture of cell line was carried out at 37 °C in an incubator with 

95% air and 5% CO2 atmosphere.  

 

Equipment: 

• Incubator for cell culture. 

• Bell laminar flow biosafety Nuaire A-425-400 model. 

• Confocal laser microscopy (Olympus BX61WI). 

 

5.2 Methods 

 

5.2.1 Synthesis procedure of compounds 1-4. 

 

Compounds 1-4 (Scheme 4) were synthesized by adding a methanolic 

solution of 3,5-di-tert-butyl-2-hydroxybenzaldehyde to the equimolar methanolic 

solution of L-glutamine in presence of KOH for compound 1, and by adding a 

methanolic solution of 2-hydroxynaphthaldehyde to the equimolar methanolic 

solution of L-glutamine for compound 2, L-glucosamine for compound 3, and 4-

amino-3-hydroxybenzoic acid for compound 4, in presence of KOH, following by 

boiling under reflux for 24 hours and using a Dean-Stark trap to promote 

dehydration. 
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Scheme 4. Synthesis of the four new compounds derived from Schiff base. 

 

5.2.1.1 (S,E)-11-amino-8-((2,4-di-tert-butyl-1-hydroxybenzylidene) amino)-

11-oxopentanoic acid. (1) 
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(0.23 g, 1 mmol) and L-glutamine (0.14 g, 1 mmol) in methanol was heated to 

reflux for 24 hrs in a Dean-Stark tramp for the azeotropic removal of water, and 

allowed to cool to room temperature. All volatiles were removed under vacuum. 

Yield: 56%. Yellow solid. MP: 176 ºC 1H-NMR (400.13 MHz, CD3OD, 298 K) δ: 

1.28 (s, 9H, CH3-α), 1.38 (s, 9H, CH3-β), 2.23 (m, 2H, 3J=4.48 Hz, H-9), 2.25(m, 

2H, 3J=3.6, H-10), 3.38 (m, 1H, 3J=4.96, H-8), 7.15 (d, 1H, 3J=2.44, H-5), 7.33 

(d, 1H, 3J=2.44, H-3), 8.3 (s, 1H, H-7). 13C-NMR (100.61 MHz, CD3OD, 298 K) 

δ: 29.94 (C-β), 31.63 (C-9), 31.92 (C-α), 33.46 (C-10), 34.98 (C-13), 35.89 (C-

14), 75.69 (C-8), 119.70 (C-6), 127.54 (C-5), 127.67 (C-3), 137.42 (C-2), 140.97 

(C-4), 159.49 (C-1), 167.75 (C-7), 178.61 (C-11), 178.82 (C-12).COSY 

correlation [δH/ δH]: 7.15/7.33 (H-3/H-5), 2.23/2.25 (H-9/H-10), 2.23/3.38 (H-9/H-

8).HETCOR correlation [δH/ δC]: 1.28/31.92 (H-α/C-α), 1.38/29.94 (H-β /C-β), 

2.23/31.63 (H-9 /C-9), 2.25/33.46 (H-10 /C-10), 3.38/75.69 (H-8 /C-8), 

7.15/127.54 (H-5 /C-5), 7.33/127.67 (H-3 /C-3), 8.3/167.75 (H-7 /C-7). IR-ATR 

νmax cm-1: 3180, 2950, 1680, 1600 (C=N), 1590, 1360, 780. UV/Vis: λmax 

(nm) = 423 (Acetonitrile/Water 1:1). TOF calc. for [(C20H31N2O4+H)+]: 

363.227834; Found: 363.228060 (error = 0.225763 ppm). 

 

 

5.3.1.2 (S,E)-11-amino-8-(((1-hydroxynaphthalen-10-yl)methylene)amino)-

11-oxopentanoic acid. (2) 
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A solution of 2-

hydroxynaphthaldehyde (0.17 g, 1 

mmol) and L-glutamine (0.14 g, 1 

mmol) in methanol was heated to 

reflux for 24 hrs in a Dean-Stark 

tramp for the azeotropic removal of 

water, and allowed to cool to room temperature. All volatiles were removed 

under vacuum. Yield: 86%. Yellow solid. MP: 180 ºC. 1H-NMR (400.13 MHz, 

CD3OD, 298 K) δ: 2.29 (m, 2H, 3J=3.28 Hz, H-13), 2.32 (m, 2H, 3J=5.04 Hz, H-

14), 4.25 (m, 1H, 3J=4.88 Hz, H-12), 6.71 (d, 1H, 3J=9.36 Hz, H-2), 7.15 (t, 1H, 

3J=7.88 Hz, H-6), 7.38 (t, 1H, 3J=7.04 Hz, H-7), 7.53 (d, 1H, 3J=7.84 Hz, H-5), 

7.66 (d, 1H, 3J=9.36 Hz, H-3), 7.96 (d, 1H, 3J=8.36 Hz, H-8), 8.94 (s, 1H, H-

11).13C-NMR (100.61 MHz, CD3OD, 298 K) δ: 31.58 (C-13), 32.36 (C-14), 65.95 

(C-12),107.58 (C-10), 119.39 (C-8), 123.65 (C-6), 126.55 (C-2), 127.19 (C-4), 

129.39 (C-7), 130.07 (C-5), 136.07 (C-9), 139.81 (C-3), 158.79 (C-11), 175.94 

(C-16), 177.71 (C-15).COSY correlation [δH/ δH]: 2.29/2.32 (H-13/H-14), 

2.29/4.25 (H-13/H-12), 6.71/7.66 (H-2/H-3), 7.15/7.53 (H-6-H-5), 7.15/7.38 (H-

6/H-7), 7.38/7.96 (H-7/H-8).HETCOR correlation [δH/ δC]: 2.29/31.58 (H-13/C-

13), 2.32/32.36 (H-14/C-14), 4.25/65.95 (H-12/C-12), 6.71/126.55 (H-2/C-2), 

7.15/123.65 (H-6/C-6), 7.38/129.39 (H-7/C-7), 7.53/130.07 (H-5/C-5), 

7.66/139.81 (H-3/C-3), 7.96/119.39 (H-8/C-8), 8.94/158.79 (H-11/C-11). IR-ATR 

νmax cm-1: 3375, 3010, 1670, 1630 (C=N), 1605, 1310, 740.UV/Vis: λmax (nm) 
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= (400) 417 (Acetonitrile/Water 1:1). TOF calc. for [(C16H17N2O4+H)+]: 

301.118283; Found: 301.118528 (error = 0.244323 ppm). 

 

 

5.3.1.3 (16S,12S,13S,14R,15S)-15-(hydroxymethyl)-12-(((E)-(1-

hydroxynaphthalen-10yl)methylene)amino)tetrahydro-2H-pyran-16,13,14-triol.(3) 

 

A solution of 2-

hydroxynaphthaldehyde (0.17 g, 1 

mmol) and D-glucosamine (0.18 g, 

1 mmol) in methanol was heated to 

reflux for 24 hrs in a Dean-Stark 

tramp for the azeotropic removal of 

water, and allowed to cool to room temperature. All volatiles were removed 

under vacuum. Yield: 96%. Yellow solid. MP: 202 ºC. 1H-NMR (400.13 MHz, 

CD3OD, 298 K) δ: 3.41 (t, 1H, 3J=9.56 Hz, H-14), 3.57 (dd, 1H, 3J=3.56,10.08 

Hz, H-12), 3.78 (dd, 2H, 3J=4.96,12.56 Hz, H-17), 3.80 (t, 1H, 3J=10.76 Hz, H-

13), 3.88 (m, 1H, H-15), 5.32 (d, 1H, 3J=3.52 Hz, H-16), 6.70 (d, 1H, 3J=9.40 Hz, 

H-2), 7.17 (t, 1H, 3J=7.12 Hz, H-6), 7.40 (t, 1H, 3J=7.12 Hz, H-7), 7.55 (d, 1H, 

3J=7.16 Hz, H-5), 7.69 (d, 1H, 3J=9.40 Hz, H-3), 7.95 (d, 1H, 3J=8.36 Hz, H-8), 

8.92 (s, 1H, H-11).13C-NMR (100.61 MHz, CD3OD, 298 K) δ: 62.70 (C-17), 

66.93 (C-12), 71.83 (C-14), 73.35 (C-13), 73.41 (C-15), 92.75 (C-16), 107.34 (C-

10), 119.27 (C-8), 123.79 (C-6), 126.65 (C-2), 127.13 (C-4), 129.54 (C-7), 
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130.10 (C-5), 136.08 (C-9), 140.26 (C-3), 160.11 (C-11), 182.07 (C-1).COSY 

correlation [δH/ δH]: 3.41/3.80 (H-14/H-13), 3.41/3.88 (H-14/H-15), 3.57/3.80 (H-

12/H-13), 3.57/5.32 (H-12/H-16), 3.78/3.88 (H-17/H-15), 6.70/7.69 (H-2/H-3), 

7.17/7.40 (H-6/H-7), 7.17/7.55 (H-6/H-5), 7.40/7.95 (H-7/H-8).HETCOR 

correlation [δH/ δC]: 3.41/71.83 (H-14/C-14), 3.57/66.92 (H-12/C-12), 3.78/62.70 

(H-17/C-17), 3.80/73.35 (H-13/C-13), 3.88/73.41 (H-15/C-15), 5.32/92.75 (H-

16/C-16), 6.70/126.65 (H-2/C-2), 7.17/123.79 (H-6/C-6), 7.40/129.52 (H-7/C-7), 

7.55/130.10 (H-5/C-5), 7.69/140.26 (H-3/C-3), 7.95/119.27 (H-8/C-8), 

8.92/160.11 (H-11/C-11). IR-ATR νmax cm-1: 3265, 2920, 1605 (C=N), 1600, 

1360, 1030, 780.UV/Vis: λmax (nm) = (400) 417 (Acetonitrile/Water 1:1). TOF 

calc. for [(C17H20NO6+H)+]: 334.128514; Found: 334.128649 (error = 0.134931 

ppm). 

 

 

 

 

 

5.3.1.4 (E)-17-hydroxy-12-(((1-hydroxynaphthalen-10-

yl)methylene)amino)benzoic acid. (4) 
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amino-3-hydroxybenzoic acid (0.15 g, 1 mmol) in methanol was heated to reflux 

for 20 hrs in a Dean-Stark tramp for the azeotropic removal of water, and 

allowed to cool to room temperature. All volatiles were removed under vacuum. 

Yield: 92%. Yellow solid. MP: 312 ºC. 1H-NMR (400.13 MHz, (CD3)2SO, 298 K) 

δ: 6.74 (d, 1H, 3J=9.4 Hz, H-2), 7.28 (t, 1H, 3J=7.56 Hz, H-6), 7.49 (t, 1H, 

3J=7.04 Hz, H-7), 7.51 (dd, 1H, 3J=8.44/1.76 Hz, H-14), 7.56 (d, 1H, 3J=2.12 Hz, 

H-16), 7.66 (d, 1H, 3J=8.56 Hz, H-5), 7.80 (d, 1H, 3J=9.44 Hz, H-3), 8.04 (d, 1H, 

3J=8.52 Hz, H-13), 8.38 (d, 1H, 3J=8.4 Hz, H-8), 9.49 (s, 1H, H-11), 10.80 (s, 

1H, H-18).13C-NMR (100.61 MHz, (CD3)2SO, 298 K) δ: 108.25 (C-10), 116.42 

(C-16), 116.96 (C-8), 120.02 (C-13), 121.25 (C-14), 123.54 (C-6), 125.31 (C-2), 

126.06 (C-4), 128.17 (C-15), 128.36 (C-7), 129.13 (C-5), 132.45 (C-12), 133.87 

(C-9), 138.55 (C-3), 147.85 (C-17), 149.11 (C-11), 166.92 (C-18), 179.02 (C-

1).COSY correlation [δH/ δH]: 6.74/7.80 (H-2/H-3), 7.28/7.49 (H-6/H-7), 7.28/7.66 

(H-6/H-5), 7.49/8.38 (H-7/H-8), 7.51/8.04 (H-14/H-13).HETCOR correlation [δH/ 

δC]: 6.74/125.31 (H-2/C-2), 7.28/123.54 (H-6/C-6), 7.49/128.36 (H-7/C-7), 

7.51/121.25 (H-14/C-14), 7.56/116.42 (H-16/C-16), 7.66/129.13 (H-5/C-5), 

7.80/138.55 (H-3/C-3), 8.04/120.02 (H-13/C-13), 8.38/116.96 (H-8/C-8), 

9.49/149.11 (H-11/C-11). IR-ATR νmax cm-1: 3000, 1685, 1620 (C=N), 1600, 

1300, 1200, 740.UV/Vis: λmax (nm) = (451) 474 (Acetonitrile/Water 1:1). TOF 

calc. for [(C18H14NO4+H)+]: 308.091734; Found: 308.091166 (error = -0.568548 

ppm). 

 

5.2.2 Fluorescence Measurement 



	   21	  

 

Stock solutions of various metal ions (50 µM) were prepared with ultrapure 

water, respectively. A stock solution of each compound (10 µM) was prepared 

with a mixture acetonitrile/DMSO (95:5). For a typical detection, each compound 

solution was mixed with the stock aqueous solution of one metal ion. After the 

incubation at room temperature for 30 min, the corresponding fluorescence 

spectrum was recorded. 

 

5.2.3 Fluorescence Imaging of Al3+ in Living Cells 

 

Human epithelial cells Hs27 (ATCC-CRL-1634) were seeded in 6-well 

plates at a density of 1 x 105 cells per well in 2 mL of Dulbecco’s Modified Eagle 

Media (DMEM, Invitrogen Life Technologies) supplemented with 10% fetal 

bovine serum (Gibco Life Technologies) 100 IU/mL of penicillin, and 100 g/mL of 

streptomycin. Cells were maintained at 37 ºC in a controlled humid atmosphere 

of 5% CO2 and 95% air. Twenty-four hours later the medium was renewed and 

cells were loaded with Al3+ at concentrations of 100 and 50 µM (37 ºC for 60 

min). After removal of free Al3+ by washing with media, cells were exposed to 

the compounds (20 µM) and incubated for 30 minutes, and finally washed with 

PBS. Untreated cells were used as controls. Fluorescence images were 

collected using a confocal laser microscopy (Olympus BX61WI). 

 

5.3 Waste disposal 
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The laboratory safety and disposal of the waste generated in this research 

project were done according to the Internal Rules and Safety of the Faculty of 

Chemical Sciences, UANL. 

 

Both, chemical and biological waste that were used shall be placed in 

various containers; the remaining biological and physical reusable material were 

sterilized by moist heat. 

 

 

 

 

 

 

 

 

 

6. RESULTS AND DISCUSSION 

 

6.1 Synthesis 

 

We carried out the synthesis of Schiff bases 1-4 (Figure 3) by 

condensation reaction of the appropriate benzaldehyde or naphthaldehyde with 

the corresponding amine (e. g. L-glutamine, L-glucosamine, or 4-amino-3-

hydroxybenzoic acid) for 24 hours. The products were obtained after filtration of 
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the crude reaction and precipitation using hexane as yellow powders, and were 

isolated with yields from 56 to 97%. The low yields of L-glutamine compounds 

(56-86%) could be attributed to the partial solubility of the amino acid in 

methanol, only the fraction that solubilizes in methanol is the one that reacts, 

this values are consistent with previous reports of L-glutamine Schiff base 

complexes. xli 

 

 

 
Figure 3. Schiff bases 1-4. 

 

All compounds were completely soluble in DMSO, and partially soluble in 

organic solvents such as methanol and ethanol. The high solubility of the 

molecules in polar solvents, is due to the presence of functional groups like 

hydroxyl (-OH), carboxyl (-COOH) and amino (-NH2), that makes the molecules 
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more polar and presents more affinity for polar solvents like DMSO and water. 

This property is favorable to perform the biological assays.  

 

6.2 Chemical structure elucidation 

 

Schiff bases were characterized by UV-Vis, spectroscopic methods (IR, 1 

and 2D-NMR) and mass spectrometry. 

 

6.2.1 Absorption and emission analysis 

 

The UV-Vis spectra of the compounds were obtained in mixture 

acetonitrile/ water (1:1). The structures of the four molecules presents n-π* and 

π-π* electronic transitions (Figure 4). In general all of the compounds exhibit a 

main peak in the visible, with maximum wavelength ranging between 342 and 

474 nm, which can be attributed to the HOMO–LUMO electronic transitions. 

 

The emission spectrum, showed wavelengths for compounds 1-4 between 

433 to 505 nm (Figure 5), being the compound 4 the most red-shifted, attributed 

to the presence of the carboxylic acid substituent that produce an electro 

subtractor effect that causes the displacement a low frequency. The data are 

represented in Table 1. 

 

TABLE 1 
Absorption and emission data of compounds 1-4 
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Compound Max. Absorption 

(nm) 

Emission 

(nm) 

1 342 465 

2 (400) 417 433 

3 (400) 417 433 

4 (450) 474 505 

 

 

 
Figure 4. UV spectra of compounds 1-4 in acetonitrile/water (1:1). 
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Figure 5. Emission spectra of compounds 1-4 in acetonitrile/water (1:1). 

 

 

6.2.2 Analysis of NMR data 

 

NMR spectroscopy is a reliable and powerful tool to obtain information 

about the structure, 1H and 13C analyses, collectively provide highly valuable 

information and hence are used for the characterization of compounds. 

 

1H-NMR spectra confirmed the formation of Schiff bases 1-4 (see 

appendix), with signals for H-7 (compounds 1) and H-11 (compounds 2, 3 and 4) 

in the range of 8.30 to 9.49 ppm, (Table 2) typical from an imine proton 

according to the reports from Santillan et al. xlii In the 13C NMR spectra, the 

principal signals correspond to C-11/C-7 (C=N) between 149.11 to 167.75 pm, 

C-1 (C-O) with shifts between 159.49 to 182.07 ppm, for compounds 1 to 3 C-8 
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(N-C) that appear between 65.95 to 75.69 ppm and for compound 4 C-12 that 

belongs to an aromatic system (N-C) in 132.45 ppm. 

 

 

 

 
Figure 6. Numbering of a) compound 1; b) compound 2, 3 and 4. 

 

 

TABLE 2 
Selected 1H and13C signals 

 

 1H 

H11/H7 

13C 

C11/C7           C1           C12/C8 

1 8.30 167.75 159.49 75.69 

2 8.94 158.79 181.07 65.95 

3 8.92 160.11 182.07 66.93 

4 9.49 149.11 179.02 132.45 

 

 

 

6.2.3 Analysis of IR data 

N
OH

N
OH
1 1

7 11
8 12

a) b)
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The IR spectral analysis showed the imine (C=N) stretching vibration 

bands for compounds 1-4 in 1600-1630 cm-1, previous reports showed a ligand 

derived from Schiff base with C=N band in 1618 cm-1.vii Spectra of compounds 1 

and 2 displayed the characteristic signal of the aromatic groups, while 

compounds 3 and 4 presented the typical band of the O-H group. Principal 

values are listed in Table 3. 

 

 

 

 

TABLE 3 
IR data of compounds 1-4 

 

 1 2 3 4 

C-H arom. 3180 cm-1 3010 cm-1 - - 

C=N 1600 cm-1 1630 cm-1 1600 cm-1 1620 cm-1 

C=O stre. 1680 cm-1 1670 cm-1 - 1685 cm-1 

O-H stre. - - 3265 cm-1 3000 cm-1 

C-H arom. IP 1360 cm-1 1310 cm-1 1200 cm-1 1300 cm-1 

C-H arom. OP 780 cm-1 740 cm-1 760 cm-1 740 cm-1 

 

 

6.2.4 High resolution mass spectrometry analysis. 
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The mass spectra of the four molecules were obtained by the TOF method. 

The spectra of compounds 1, 2 and 3 showed the peak base corresponds to the 

molecular ion peak and it is consistent with the theoretical molecular mass 

(errors: 0.621547 for compound 1, 0.811386 for compound 2 and 0.403831 for 

compound 3). (Scheme 5 and 6) while compound 4, presents a base peak after 

loss of the naphthaldehyde fragment and the peak of the molecular ion 

represent the 24% compared to the peak base (error: -1.845385) (Scheme 7). 

 

 

 

 

 
Scheme 5. Proposed fragmentation of compounds 1 and 2. 
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Scheme 6. Proposed fragmentation of compound 3. 
 

 

 

 
Scheme 7. Proposed fragmentation of compound 4. 

 

 

 

6.3 Fluorescence Measurement. 

 

6.3.1 Aluminum sensing 

 

The aluminum sensing behavior of the molecules was first measured. The 

emission spectrum of each compound was obtained as well as each compound 

in presence of Al3+ ions in a mixture acetonitrile/H2O = 1:1 (see appendix). Both 

signals were compared as we can see in figure 7 and we noticed that the 

emission signal is ten times higher when the metal is added for compounds 1-4, 

evidencing the capacity of the four compounds to generate a signal in presence 

of this metal. 
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Figure 7. Graphic of the increment in the fluorescence intensity of a) 
Compound 1, b) Compound 2, c) Compound 3 and d) Compound 4, in absence 
and presence of Al3+ ions. 

6.3.2 Quantum yield determination 

 

Quantum yield measurements were preformed to the four compounds after 

and before the exposure of Al3+ in order to compare the fluorescence emission 

(Figure 8). Compounds 1 to 4 exhibited low fluorescence emission at 465, 433, 

433 and 505 nm respectively with a small fluorescence quantum yield (ϕ = 1.33 - 

2.02 %) upon excitation at 330 nm (compound 1), 390 nm (compounds 2 and 3) 

and 440nm (compound 4). After the addition of Al3+ the fluorescence 

enhancement was evident (ϕ = 2.24 - 64.91 %). Compound 2 and 4 in presence 

of Al3+ were the molecules that showed better quantum yield, increasing from 
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2.02 to 34.02 (compound 2) and 1.64 to 63.91 (compound 4), an increment of 17 

and 40 times respectively, as we can see in table 4. 

 

 

 
Figure 8. Photographs of a) Compounds 1 - 4 and b) compounds 1 - 4 in 

presence of Al3+ ions (acetonitrile/H2O = 1:1) under UV lamp (365 nm). 
 

 

 

TABLE 4 
Quantum yield values  

 

 ϕ [%]  ϕ [%] 

C-1 1.33 C-1 / Al3+ 14.04 

C-2 2.02 C-2 / Al3+ 34.02 

C-3 0.38 C-3 / Al3+ 2.24 

C-4 1.64 C-4 / Al3+ 63.91 
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6.3.3 Selectivity studies  

 

To determinate the selectivity of the compounds, 9 metal ions with different 

valences (Fe3+, Zn2+, Cu2+, Cd2+, Pb2+, Ni2+, Co2+, Ag+, Hg2+) was examined as 

the alternative of Al3+ for the incubation with the four complexes. The criterion 

used to select these metals was that we want to use these complexes for 

sensing in biological media, and we have to be sure that other common metals 

in this media will not interfere.  The emission spectrum was obtained by exciting 

each compound 10 nm under the absorbance wavelength (figure 9).  

Photographs of the solutions of the experiment under UV lamp (365 nm) were 

taken (see appendix). 

 

 

Compound 1 presented weak fluorescence emission by itself, and in 

presence of Zn2+ ions, the signal increased significantly, making evident its high 

affinity for this metal, followed by Al3+ ions with also considerable fluorescence 

emission (figure 9a). None of the other ions could turn on the fluorescence of 

this compound under the same conditions.  
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Figure 9. Fluorescence spectra of a) Compound 1, b) Compound 2, c) 
Compound 3 and d) Compound 4, in presence of different metal ions (50 µM), 
(acetonitrile/H2O = 1:1). 

 
 

Compound 2 displayed a high emission peak when Al3+ ions were present, 

(figure 9b) also, a lower signal is observed when this complex was in existence 

with Zn2+ ions. If we compare the structure of compound 1 and 2, we can 

observe that the difference is in the fluorophore moiety, so it seems like the 

naphthaldehyde fraction favors the aluminum sensing, as we will observe with 

the other molecules with this fraction as well.  

 

a) b) 

c) d) 
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Compound 3 and 4 exhibited a remarkable affinity by Al3+ ions, no other 

metal can show significant fluorescent emission, being this two complexes the 

most selective for sensing Al3+ ions (figures 9c and d). 

 

 
6.3.4 Fluorescent competitive experiments 

 

In order to show the high selectivity of the compounds toward Al3+, the 

fluorescent competitive studies of other metal ions were also investigated. We 

prepared solutions of each metal with Al3+, in equivalent amounts, and then this 

solution was added to the solution of each complex.  

 

The fluorescence intensities were recorded, respectively. As shown in 

figure 10, the fluorescence emission intensity of compounds 1, 2, 3 and 4 in 

presences of Zn2+, Cd2+, Pb2+, Ni2+, Co2+ and Ag+, did not show significant 

variation by comparison with the fluorescence intensity of each compound with 

aluminum. By the other hand, when metals such Fe3+, Cu2+ and Hg2+ are 

present, the fluorescence is quenched about 45 to 90% compared with the 

fluorescence obtained only with Al3+; in spite of the low response, the signal can 

be detectable. This fluorescence quenching mechanism of the compounds may 

be attributed to the charge transfer effect. This effect may occur when the 

excited compound encounters metal ions that act as electron-accepting groups, 

the partial electrons will transfer to the metal cations. Therefore, the number of 

emitted electrons will decrease. As a result, the fluorescence is quenched. 
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Figure 10. Graphic of the fluorescence intensity of compounds 1-4 (10 µM) 
upon addition of Al3+(50 µM), in presence of various metal ions (50 µM). 
Compound 1 excited at 330 nm (blue bars), compound 2 excited at 390 nm (red 
bars), compound 3 excited at 390 nm (green bars) and compound 4 excited at 
440 nm (purple bars). 

 
 
 
 
 
6.3.5 Sensitive quantitation of Al3+ 

 

The absorption titrations and fluorescence emission of compounds 1-4 

towards Al3+ (concentration from 1.25 to 40 µM) were carried out in a mixture 

acetonitrile/water (1:1). 

 

 The fluorescence intensity of compounds 1-4 gradually increased with the 

progressive addition of Al3+ as we can see in figures 11, 12, 13 and 14. Upon 
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gradual addition of Al3+ to a solution of each compound, the absorption spectra 

showed changes in the intensity of the bands. Figure 11 corresponds to the 

absorption graph for compound 1, where we can appreciate an increasing in the 

absorption bands at 265 and 345 nm when Al3+ concentration get bigger in the 

solution. The UV-Vis spectrum of compound 2, shows that while we increased 

the Al3+ concentration from 1.25 to 7.5 µM the intensity of the band at 397 nm 

decreases, and after the addition of 10 µM of Al3+, this signal disappear and a 

new band at 370 nm appears, increasing its intensity as the concentration of the 

metal rises (figure 12). Absorption graphic of compound 3 (figure 13) displays 

that the band at 417nm decreases as the concentration of Al3+ increases and the 

spectrum of compound 4 (figure 14) shows the absorption band at 473 nm 

gradually decrease while the band at 310 nm is increasing as the concentration 

of Al3+ grow. 

	  
 

 

	  

a)                                                                                                                       b)                                                                                                                       
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Figure 11. a) UV–Vis and b) fluorescence spectra (excited at 330 nm) of 

Compound 1 (10 µM) in presence of different concentrations of Al3+ (0-40 µM). 
	  

	  

	  

	  
Figure 12. a) UV–Vis and b) fluorescence spectra (excited at 390 nm) of 

Compound 2 (10 µM) in presence of different concentrations of Al3+ (0-40 µM). 
	  

	  

	  

a)                                                                                                                       b)                                                                                                                       

a)                                                                                                                       b)                                                                                                                       
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Figure 13. a) UV–Vis and b) fluorescence spectra (excited at 390 nm) of 
Compound 3 (10 µM) in presence of different concentrations of Al3+ (0-40 µM). 
	  

	  

	  

	  
Figure 14. a) UV–Vis and b) fluorescence spectra (excited at 440 nm) of 

Compound 4 (10 µM) in presence of different concentrations of Al3+ (0-40 µM).  
	  

	  

	  

6.3.6 Detection limit 

 

The detection limit (LOD) of each compound was calculated (table 5) 

according to the equation DL= 3σ/K, where σ is the standard deviation of the 

blank solution (measured 12 times) and K is the slope of the calibration curve 

from the fluorescence titration experiments (figure 15).  

 

 

a)                                                                                                                       b)                                                                                                                       



	   40	  

 

Figure 15. Changes of emission intensity of compounds 1-4 at a) 465 nm 
(Compound 1); b) 433 nm (Compound 2); c) 433 nm (Compound 3) and c) 505 
nm (Compound 4).   
 

 

All compounds exhibit a good detection limit from 0.09 to 1.02, which is 

below the WHO acceptable limit (0.05 mg/L or 1.85 µM of Al3+) in drinking water. 

Compounds 2, 3 and 4 displays a LOD lower than previous molecules derived 

from Schiff bases reported (figure 16). xliii, xliv 
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TABLE 5 
LOD data of compounds 1-4 

 

Compound LOD (µM) 

1 1.022 

2 0.103 

3 0.317 

4 0.091 

 

 

 

Figure 16. Comparison of the limits of detection between compounds 1-4 
and molecules previously reported (5xliii, 6ix and 7xliv). 
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6.3.7 Binding stoichiometry 

 

The binding stoichiometry of compounds 1-4 to Al3+ was determined by the 

Job´s method on the basis of fluorescence emission spectrum by keeping the 

sum of the concentration of the Al3+ and the complexes constant and varyng the 

molar fraction of each compound from 0.1 to 0.9. It could be seen from figure 17 

that the fluorescence intensity at 465 nm (Compound 1), 433 nm (Compound 2), 

433 nm (Compound 3) and 505 nm (Compound 4) exhibited a maximum when 

the molar fraction of each compound was 0.5 demonstrating a possible 1:1 

binding stoichiometry between the compounds and Al3+. 
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Figure 17. Job´s plot for the complexation of a) compound 1; b) compound 
2; c) compound 3; d) compound 4, with Al3+ in a mixture acetonitrile : water 
(1:1). 

 
 
6.4 Fluorescence Imaging of Al3+ in Living Cells 

 

To evaluate the capacity of the compounds to penetrate the cell membrane 

and produce a fluorescent signal when Al3+ is present in cell culture, confocal 

fluorescence microscopy measurement was carried out. Briefly, human epithelial 

cells Hs27 (ATCC-CRL-1634) were seeded in 6-well plates in Dulbecco’s 

Modified Eagle Media, 24 hours later the medium was renewed and cells were 

loaded with Al3+ at concentrations of 100 and 50 µM (37 ºC for 60 min). After 

removal of free Al3+ by washing with media, cells were exposed to the 

compounds (20 µM) and incubated for 30 minutes. After washing with PBS, cells 

were analyzed using a confocal laser microscopy (Olympus BX61WI). 

 

Compounds 3 and 4 (20 µM) did not produce any staining and when 

exposed to Al3+ (100 µM) this behavior remains. (Figure 18) This comportment 

can be attributed to the incapability of the molecules to penetrate the cell 

membrane and sense the Al3+ present in the cells, compound 4 have a 

carboxylic group that, depending on the pH of its environment and on the acid 

pKa, can loss a proton and produce a negative charge, this charge makes 

difficult the diffuse of the molecule across the lipid membrane, and similar with 

compound 3 that have five –OH groups that can be deprotonated making hard 

the membrane penetration. 
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Figure 18. Confocal microscopic images of human epithelial cells Hs27 treated 
with (1) compound 1, (2) compound 2, (3) compound 3 and (4) compound 4 (20 
µM); images in the absence (a) and presence (b) of Al3+ (100 µM). Incubation 
temprerature is 37 ºC. 
	  

 

Cells exposed to compound 1 (20 µM) present a weak blue staining that 

disappears when Al3+ (100 µM) is present in the cells. (Figure 18) Treatment of 

cells with 20 µM of compound 2 showed a blue staining pattern that arises when 

Al3+ is present in the cell culture, producing a stronger stain in the nucleus and 

cytoplasm, demonstrating the membrane penetrability of compound 2 and the 

complexation with Al3+ inside the cells (Figure 19). 

 

 Access of compound 1 and 2 in to the cells may be ascribed to the 

presence of glutamine fragment in the molecules, this amino acid can easily 

penetrate the cell membrane thanks to transport systems. As we can see in the 

fluorescence spectra of each compound, both molecules present low 

1a 2a 3a 4a 

1b 2b 3b 4b 
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florescence by itself, which arises when Al3+ is present, this comportment is the 

same in cell culture for compound 2, where we can appreciate the enhancement 

of fluorescent in presence of the metal, not the same for compound 1, where the 

fluorescence is quenched. 

 

	  

	  
	  
	  
Figure 19. Confocal microscopic images of human epithelial cells Hs27 treated 
with compound 2 (20 µM) in the absence (a) and presence (b) of Al3+ (100 µM); 
bright-field (1), fluorescent (2) and the overlay image (3). Incubation 
temprerature is 37 ºC. 

 

 

 

 

1a 2a 3a 

1b 2b 3b 
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7. CONCLUSIONS 

 

In summary, we have synthesized and characterized four new compounds 

derivative from Schiff bases. We proved that the four compounds could trap the 

aluminum and produce an increase in the emission intensity compared with the 

ligand without the metal and this complex present good quantum yields in 

solution. Only compounds 3 and 4 showed their selectivity toward aluminum 

ions.  Compound 2 exhibited the higher emission intensity with aluminum, but 

the emission peak with zinc still high, while compound 1 exhibit better response 

in presence of Zinc. As we notice in the fluorescent competitive experiments, the 

existence of iron, cupper and mercury ions, decreases the fluorescence 

intensity, and this may act as interference when sensing aluminum. 

Fluorescence bio images only work for compound 2 thanks to the presence of 

the amino acid in the molecule that favors the membrane penetration. The high 

quantum yields and the low detection limits of the four compounds make 

molecules 2, 3 and 4 auspicious for aluminum detection, and molecules 1 and 2, 

for zinc detection in liquid samples. 
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7.1 Perspectives 

 

As part of the knowledge generated in this research work was 

demonstrated that this Schiff base compounds can sense aluminum ions and 

produce a fluorescent response in solution with low detection limit and high 

quantum yields. New molecules with tertbutyl fragment must be synthesized and 

probed with different metals, to corroborate that this fragments favors the union 

with zinc over aluminum.  
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CHARACTERIZATION 
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1H-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 1.	   

	  

	  

13C-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 1. 
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1H/1H COSY spectrum of compound 1 (aliphatic region). 

 
1H/1H COSY spectrum of compound 1 (aromatic region). 
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1H/13C HETCOR spectrum of compound 1 (alifatic region). 

 
1H/13C HETCOR spectrum of compound 1 (aromatic region).	  
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1H-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 2. 

 

	  

	  

13C-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 2. 
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1H/1H COSY spectrum of compound 2 (aliphatic region). 

 
1H/1H COSY spectrum of compound 2 (aromatic region). 
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1H/13C HETCOR spectrum of compound 2 (alifatic region). 

 
1H/13C HETCOR spectrum of compound 2 (aromatic region).	  
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1H-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 3. 

 

 
13C-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 3. 
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1H/1H COSY spectrum of compound 3 (aliphatic region). 

 
1H/1H COSY spectrum of compound 3 (aromatic region). 
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1H/13C HETCOR spectrum of compound 3 (alifatic and aromatic region). 

 

 
1H-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 4. 
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13C-NMR (400 MHz, CD3OD, 298 K) spectrum of compound 4. 

 
1H/1H COSY spectrum of compound 4 (aromatic region). 
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1H/13C HETCOR spectrum of compound 4 (aromatic region).	  
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IR spectrum of compound 1. 

 

IR spectrum of compound 2. 
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IR spectrum of compound 3. 

 

IR spectrum of compound 4. 
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Mass spectrum of compound 1. 

 

Mass spectrum of compound 2. 
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Mass spectrum of compound 3. 

 

Mass spectrum of compound 4. 
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Fluorescence Measurement 

 

 

 

 

 

 

 

 

 



	   72	  

 

 

Fluorescence spectra of a) compound 1, b) compound 2, c) compound 3 and d) 

compound 4, (10µM, acetonitrile/H2O = 1:1) in the absence and presence of 

Al3+(50µM), inserted: Photographs of the solutions under UV lamp (365 nm). 

 

a) b) 

c) d) 
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Photographs of a) compound 1, b) compound 2, c) compound 3 and d) 

compound 4, (10 µM) with different metal ions (50 µM) under UV lamp (365 nm). 
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