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Abstract: The formulation and analytic solution of a new mathematical model with constitutive
curvature for analysis of tunnel ventilation shaft wall is proposed. Based on the Mindlin–Reissner
theory for thick shells, this model also takes into account the shell constitutive curvature and considers
an expression of the shear correction factor variable (αn) in terms of the thickness (h) and the radius
of curvature (R). The main advantage of the proposed model is that it has the possibility to analyze
thin, medium and thick tunnel ventilation shafts. As a result, two comparisons were made: the first
one, between the new model and the Mindlin–Reissner model without constitutive curvature with
the shear correction factor αn = 5/6 as a constant, and the other, between the new model and the
tridimensional numerical models (solids and shells) obtained by finite element method for different
slenderness ratios (h/R). The limitation of the proposed model is that it is to be formulated for a
general linear-elastic and axial-symmetrical state with continuous distribution of the mass.

Keywords: tunnel ventilation shafts; analytical modelling; analytic solution; bending theories;
cylindrical shells

1. Introduction

Tunnel ventilation shafts are vertical structural elements for accessing underground
structures such as tunnels. The structural analysis of tunnel ventilation shafts is performed
through a coaxial cylinder analysis scheme, in axial-symmetrical general state (load, ge-
ometry, material and boundary condition) (Figure 1). The importance of designing and
building these structures lies in the increasing needs of hydrosanitary network and new
means of communications. Thus, an optimum structural design is guaranteed if a reliable
analysis method is used.
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In the classical shell theory by Goldenveizer and Timoshenko [1–3], the three-dimensional
continuous solid is modelled by the middle surface of the solid plus the thickness of the
shell, Equation (1). This allows the use of the resultant internal forces per unit of arc longi-
tude: bending moment (MZ, Mθ), shear forces (Qz) and membrane axial forces (Nθ , Nz)
(Figure 1). In addition, Figure 1 also shows the set of variables to be considered.

f (α1, α2, α3) ∈ R3︸ ︷︷ ︸
STRESS

DEFORMATIONS
DISPLACEMENTS

= f (α1, α2) ∈ R2︸ ︷︷ ︸
MIDDLE SURFACE

OF THE SHELL

+ h(α3) ∈ R︸ ︷︷ ︸
FUNCTION f BEHAVIOR

INSIDE OF THE
SHELL THICKNESS

, (1)

Resultant internal forces per unit of arc longitude and middle deformations of the
shell (κz, κθ , γzN , εθ , εz) are related by the integration process inside the thickness of the
shell [2,3]. The integration process, defines the constitutive model that will be used in
the construction of the mathematical model, in terms of displacement (direct operational
model) or in resultant internal forces per unit of arc longitude (inverse operational model).

Equation (2) represents the classical linear-elastic constitutive model that relates the
resultant internal forces per unit of arc longitude and the middle deformations of the shell
inside the classical shell [1–4], which presents the following limitations [1,2,5]:

1. The model involves a bending of a flat plate
(

1
R = 0

)
plus a membrane behavior

without curvature (Figure 2);
2. Nonexistence of the constitutive coupling between the membrane forces and the

bending moments for any slenderness ratio
(

h
R

)
;

3. Shear correction factor (αn) is employed in the constant shear force, independently of
the shell slenderness ratio.

Nθ = K(εθ + µεz), NZ = K(εz + µεθ), Mz = D f κz

Mθ = µMz, QZ = αnK (1−µ)
2 γZN , D f =

1
12

Eh3

(1−µ2)
, K = Eh

1−µ2 , αn = 5
6

(2)
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the shell.

In this paper, a new Mindlin–Reissner mathematical flexural model for tunnel ven-
tilation shafts analysis is obtained; it takes into account the shell constitutive curvature
effect [2,3]; along with an update in the shear correction factor (αn) for the shear dis-
tribution. A new linear-elastic constitutive relationship between the resultant internal
forces per unit of arc longitude and the middle deformations was obtained for the model
construction. This constitutive relationship models the constitutive curvature effect in
the flexo-compression behavior of the tunnel ventilation shafts. The new model is a gen-
eralization of the Love–Kirchhoff and Mindlin–Reissner mathematical models, without
constitutive curvature for the analysis scheme of the coaxial cylinder (Figure 1).
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2. Coupled Constitutive Model for General Bending of a Coaxial Cylinder

The term ds∗, represents the differential arc increased in the shell differential arc (dθ)
of the middle surface (Figure 3). Figure 3 shows the stress state in a “differential point”
that belong to the surface S∗(ds∗dz).
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Figure 3. Geometrical details for modeling the shell curvature in the free body diagram of the tunnel
ventilation shaft differential slide.

From the stress–strain state definition for the “differential point”, which belong
to the surface S∗(ds∗dz), Equations (3) and (4), it is possible to integrate the surfaces
(dA1 and dA2) in order to obtain the resultant internal forces per unit of arc longitude:
bending moments (MZ, Mθ), shear and membrane axial forces (Nθ , Nz), Equation (5),
Figure 3. The resultant internal forces per unit of arc longitude of the middle surface of the
shell in terms of the deformations are obtained by integrating with respect to the axis n.
The axis (n) is orthogonal to the middle surface of the shell (Figure 3), Equations (7) and (8).
For the integration process, the term ( 1

1+ n
R
), Equation (6), was developed in n potential-

function (Taylor series expansion) [3] affecting the integrand with the substitution of the
stress-strain state for the “differential point”, Equations (3)–(5).

σz
∗ =

E
1− µ2 (εz

∗ + µεθ
∗), σθ

∗ =
E

1− µ2 (εθ
∗ + µεz

∗), τzn
∗ =

αn E
2(1 + µ)

γzn
∗ (3)

εz
∗ = εz + nκz, εθ

∗ = εθ
1+ n

R
, γzn

∗ = γzn

n ∈ R :
[
− h

2 , h
2

] (4)

Nz

(
f
l

)
=
∫ h

2
− h

2
σz
∗(1 + n

R
)
dn, Nθ

(
f
l

)
=
∫ h

2
− h

2
σθ
∗dn

Qz

(
f
l

)
=
∫ h

2
− h

2
τzn
∗(1 + n

R
)
dn, Mz

(
f l
l

)
=
∫ h

2
− h

2
σz
∗n
(
1 + n

R
)
dn

Mθ

(
f l
l

)
=
∫ h

2
− h

2
σθ
∗ndn, αn = 1/kn

f : f orces unit; l : length unit

(5)

1
1 + n

R
= 1 +

∞

∑
i=1

(
− n

R

)i
(6)

Equations (7) and (8) show a linear-elastic coupled constitutive model between
the membrane forces and the moments for any slenderness ratio of the shell. If the
shell curvature

(
1
R = 0

)
is neglected in Equations (7) or (8), the classical shell model,

Equation (2), is obtained. In addition, the linear-elastic coupled constitutive model, in
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Equations (7) and (8), is consistent with the coupled models defined by Galerkin, Novozhilov,
Finkel’shtein and Lur’e, and other authors [2,3].

The deformation expressions in terms of the forces and moments, Equation (9), are
obtained by inverting the coupled constitutive matrix [DC], Equation (8). It shall be noted
that the symmetry on the constitutive matrices, Equations (8) and (9) guarantees the
fulfillment of the shell theory general theorems [2,3,6].

Equation (10) represents the coupled constitutive matrix, Equation (8), for an unstiff-
ened orthotropic shell. It is noteworthy that Equation (10) generalizes the constitutive
model employed by authors Rotter and Sadowski [4], opening the possibility for future
research on this field

Nz = K(εz + µεθ) +
D f
R κz, Nθ = K(εθα1 + µεz)

Mz = D f
(
κz + εz

R
)
, Mθ = D f

(
µκz − εθ

R
)
, QZ = αnK (1−µ)

2 γZN

D f =
1

12
Eh3

(1−µ2)
, K = Eh

1−µ2 , α1 =
(

1 + h2

12R2

)
, αn

, (7)


Nz
Nθ

Mz
Qz

 =


K µK

D f
R 0

µK Kα1 0 0
D f
R 0 D f 0
0 0 0 Ehαn

2(1+µ)




εz
εθ

κz
γzn

 DC =


K µK

D f
R 0

µK Kα1 0 0
D f
R 0 D f 0
0 0 0 Ehαn

2(1+µ)


︸ ︷︷ ︸

Coupled constitutive matrix

(8)


εz
εθ

κz
γzn

 =


H11 H12 H13 0
H21 H22 H23 0
H31 H32 H33 0

0 0 0 (1+µ)
2Ehαn




Nz
Nθ

Mz
Qz


H11 = − R2α1

F , H22 =
D f
KF −

R2

F , H33 = − 12R2(α1−µ2)
KF , H12 = H21 = µR2

F

H13 = H31
Rα1

F , H23 = H32 − µR
F , F =

D f h2

12R2 − R2Eh

(9)


Nz
Nθ

Mz
Qz

 =


K1 µzθK2

D f 1
R 0

µzθK2 K2α1 0 0
D f 1

R 0 D f 1 0
0 0 0 Ezhαn

2(1+µzθ)




εz
εθ

κz
γzn

;

K1 = Ezh
1−µzθ µθz

K2 = Eθ h
1−µzθ µθz

D f 1 = 1
12

Ezh3

(1−µzθ µθz)

(10)

The shear correction factor (αn) of constitutive equations, Equations (1), (5), (7)–(9),
for parabolic and uniform distributions [7] are obtained from the tangential stress of the
energetic equilibrium. If a rectangular and homogeneous section (plate) is considered, the
shear correction factor per unit of length is αn = 5

6 Equation (11) [7], which is the default
value of the FEM software [8,9], and corresponds to the classic constitutive model for plates
in the Mindlin–Reissner bending state, Equation (1).

αn = I2

A1

[∫ h
2
− h

2
[g1(n)]

2dn
]−1

g1(n) =
∫ z
− h

2
ndn, A1 =

∫ h
2
− h

2
dn, I =

∫ h
2
− h

2
n2dn

αn =
5
6

(11)

By inserting in Equation (11) the shell curvature geometrical relations (Figure 3), an
expression for the shear correction factor variable (αn) per unit of arc longitude in cross-
cylindrical and homogeneous sections is obtained, Equations (12) and (13), which depends
on the thickness and the radius of curvature of the shell (Figure 3).

αn = I2

A1

[∫ h
2
− h

2
[g1(n)]

2(1 + n
R
)
dn
]−1

g1(n) =
∫ z
− h

2

(
1 + n

R
)
ndn ; A1 =

∫ h
2
− h

2

(
1 + n

R
)
dn; I =

∫ h
2
− h

2

(
1 + n

R
)
n2dn

(12)
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αn(h, R) =
140R3

168R3 − 140R2h + 34Rh2 + 7h3 (13)

The advantage of the new shear correction factor, Equation (13), is that it takes into
account the slenderness ratio of the tunnel ventilation shaft in a geometrical optimization
analysis (Table 1).

Table 1. Comparison between the new shear correction factor for tunnel ventilation shafts, and the

shear correction factor for plates for different slenderness ratios
(

h
R

)
.

( h
R ) αn= 5

6 (Plate) αn (Shafts) Relative Error (%)

0.05 0.833 0.869 4.142

0.10 0.833 0.907 8.159

0.12 0.833 0.923 9.751

0.15 0.833 0.947 12.038

0.20 0.833 0.990 15.859

0.22 0.833 1.008 17.361

0.25 0.833 1.035 19.517
(αn) Shafts was assumed as a pattern.

3. New Mathematical Operational Model

For this study, the internal equilibrium equations generate an equation set of one hy-
perstatic degree (HD), Equation (14) [1]. The kinematics equations, Equation (15), (Mindlin–
Reissner) in cylindrical coordinate associated to Equation (14) can be obtained through the
principle of the virtual works (PVW) but also with the transposition method [1,10,11].

n
∑

i=1
F→

ez
= 0⇒ dNz

dz + qzPP = 0,
n
∑

i=1
F→

en
= 0⇒ Nθ

R −
dQz
dz + qn = 0

n
∑

i=1
M→

eθ
= 0⇒ dMz

dz −Qz = 0, GH = 1 (Nz, Nθ , Mz, Qz)
(14)

εθ = −Un
R , εz =

dUz
dz , κz = − dψz

dz , γzn = − dUn
dz − ψz

DF = 3 (Un, Uz y ψz )
(15)

By substituting the kinematics equations, Equation (15), and the coupled constitutive
equations, Equation (7), into the equilibrium equations, Equation (14), a new mathematical
operational model, Equation (16), is obtained, whose unknowns are the middle surface
displacement of the shell (Un, Uz, ψz). Equation (16) generalizes the mathematical model
for the isotropic shell presented by Rotter and Sadowski [4].

The analytical solution of the differential set equations, Equation (16), for complex
boundary conditions and the inclusion of sections (loads, stiffness, etc.) is inapproachable.
However, if the new mathematical model is formulated in terms of the resultant internal
forces per unit of arc longitude (inverse operational model), it is possible to obtain an
analytical solution of the model.

K d2Uz
dz2 −

µ
R

dUn
dz −

D f
R

dψz
dz = −qz

2µ
Rαn(1−µ)

dUz
dz + d2Un

dz2 − 2α1
αnR2(1−µ)

Un +
dψz
dz = − 2qn

αnK(1−µ)
D f
R

d2Uz
dz2 + αnK (1−µ)

2
dUn
dz − D f

d2ψz
dz2 + αnK (1−µ)

2 ψz = 0

(16)

The compatibility equations of deformations (Saint-Venant identities) and resultant
internal forces functions per unit of arc longitude were obtained [12,13] for mathematical
modeling in terms of the resultant internal forces per unit of arc longitude.

The new functions for the resultant internal forces per unit of arc longitude, Equation (18),
and the new compatibility equation of deformations, Equation (17), were obtained by ap-
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plying the indeterminate coefficient method (ICM) [14]. By substituting Equation (18) in
the internal equilibrium equations of the shell, Equation (14), the equation satisfies itself,
which is the general solution of the internal equilibrium of the shell.

R
d2εθ

dz2 + κZ −
dγZN

dz
= 0 (17)

Nθ(z) = −R d2θ
dz2 − Rqn(z), Mz(z) = −θ, QZ = − dθ

dz

Nz = γm

(
Hz− z2

2 −
H2

2

) (18)

By substituting Equation (18) and the coupled constitutive model with curvature,
Equation (7), in the compatibility equation of deformations, Equation (17), the new inverse-
operational mathematical model is obtained, Equation (19).

d4θ

dz4︸︷︷︸
BENDING CONTRIBUTION

+ A1
d2θ

dz2︸ ︷︷ ︸
SHEAR FORCE CONTRIBUTION

+ B1θ︸︷︷︸
MEMBRANAL FORCE

CONTRIBUTION

= FCG(z)

FCG(z) =
H21

RH22

d2 Nz
dz2 −

d2qN
dz2 + H31

R2 H22
Nz − H32

RH22
qN

A1 = − 1
RH22

(
H23 + H32 − 1

R
(1+µ)
2Ehαn

)
, B1 = H33

R2 H22

(19)

The coefficients A1 and B1 from the Equation (19) characterize the influence of the
shear and the membrane force facing the bending respectively.

4. Particular Cases

If the constitutive curvature of the shell is disregarded in the mathematical model,
Equation (19), the following mathematical model is obtained, Equation (20).

d4θ
dz4 + A d2θ

dz2 + Bθ = FSG(z); FSG(z) = − µ
R

d2 Nz
dz2 −

d2qN
dz2

A = − 12
5

(1+µ)
R2 y B = 4

C4 ; C4 = h2R2

3(1−µ2)

(20)

The mathematical model expressed in Equation (20), is a strong-operational formu-
lation in terms of the resultant internal forces per unit of arc longitude of the Mindlin–
Reissner flexural model for a coaxial cylinder; and its numerical resolution by FEM (weak-
formulation) represents a reference for the analysis of thick shells.

Furthermore, Equation (21) shows a comparative analysis between the second member
of the mathematical models, FCG(z) and FSG(z), with and without constitutive curvature
respectively, Equations (19) and (20). Equation (21) shows the additional effects originated
by the axial forces and the orthogonal load model that are not considered in Equation (20).

FCG(z) =
H21

RH22︸ ︷︷ ︸
∼=− µ

R

d2Nz

dz2 −
d2qN

dz2

︸ ︷︷ ︸
First order e f f ect

FSG(z)

+
H31

R2H22
Nz︸ ︷︷ ︸

O f the axial f orce

− H32

RH22
qN︸ ︷︷ ︸

O f the circum f erential f orce︸ ︷︷ ︸
Constitutive Second order e f f ect

(21)

If the shell constitutive curvature and the shear deformation [15] are disregarded
(γzn = 0) in the general mathematical model, Equation (19), the bending model in opera-
tional formulation of Love–Kirchhoff in term of the resultant internal forces per unit of arc
longitude is obtained, Equation (22).

γZN = 0⇒ ψz =
dUn

dz
⇒ d4θ

dz4 +
4

C4 θ = − µ

R
d2Nz

dz2 −
d2qN

dz2 (22)
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Since the dependency between the twist, ψz, and the fundamental displacement, Un,
are conditioned, the Love–Kirchhoff model for the bending of a coaxial cylinder generates
an equality between the hyperstatic degree (θ = 1) and the degree of freedom, Un, of the
model. This means that the formulation in terms of the resultant internal forces per unit of
arc longitude, Equation (22), and the formulation in terms of fundamental displacement,
Equation (23), endure to only one differential equation.

Equation (23) is the most widely used mathematical model for analytical analysis
and structural flexo-compression design, whose scheme of analysis is reduced to a coaxial
cylinder (Figure 1) [1,2,16–20].

d4Un

dz4 +
4

C4 Un =
qN
D f

+
µ

RD f
Nz C4 = h2R2

3(1−µ2)
;

S.F.S =
{

e(
z
c )cos

( z
c
)
z, e(

z
c )sin

( z
c
)
z + e(−

z
c )cos

( z
c
)
z, e(−

z
c )sin

( z
c
)
z
} (23)

5. Analytical Resolution of the New Mathematical Model

The mathematical model, with and without constitutive curvature in terms of the
resultant internal forces per unit of arc longitude, Equations (19) and (20), is the nonho-
mogeneous fourth-order-linear differential equations with constant coefficients. The main
difficulty is to obtain its homogeneous solution, θc, due to the shear of each model (terms A
and A1). The general solution of the model is the sum of two solutions due to its linearity,
Equation (24), i.e., the homogeneous solution, θc, and the particular solution, θp [21,22].

By applying the general theory of differential equation [21], the homogeneous solution
θc(z), Equations (27) and (28), is obtained, and the characteristic equation, Equation (25),
and the fundamental solution system (F.S.S), Equation (26), are obtained. Out of the two
F.S.S, the most employed in engineering is the case D < 0 due to the fact that the thickness
is smaller in comparison with the principal radius of curvature

(
h
R � 1

)
.

θ(z) = θc(z) + θp(z), (24)

m4 − Am2 + B = 0⇒ m1 =
√

α , m2 =
√

β, m3 = −
√

α , m4 = −
√

β

Being : D = A2 − 4B, α = A
2 +

√
D

2 y β = A
2 −

√
D

2
(25)

I f D > 0⇒ (real solutions)⇒ S.F.S =
{

e
√

α z, e−
√

α z, e
√

βz , e−
√

βz
}

I f D < 0⇒ (complex solutions)⇒ S.F.S =

{
eλ1zcosλ2z, eλ1zsinλ2z+

e−λ1zcosλ2z, e−λ1zsinλ2z
} (26)

θc(z) = A1eλ1z cos λ2z + A2eλ1z sin λ2z + A3e−λ1z cos λ2z + A4e−λ1z sin λ2z (27)

Being :
λ1 =

√
r cos θ

2
λ2 =

√
r sin θ

2

} r = 1
2

√
A2 + |D|

θ = Tan−1
(√

|D|
A

)
(28)

If the mathematical condition λ1 = λ2 = 1
c is evaluated in the new F.S.S, Equation (26),

then the general solution of the Love–Kirchhoff model with constitutive isotropy is ob-
tained, Equation (23).

The particular or nonhomogeneous solutions (θp1 and θp2), Equation (30), are obtained
by applying the Lagrange’s parameters variation method [21], and depend on the function
that operates on the left-hand side term of the differential equations, FCG(z) and FSG(z).

Figure 4 and Equation (29) shows the results when a load model characterized by the
own weight of the tunnel ventilation shaft wall, qzpp(z), the horizontal effective stress, K0σ′,
and the overload action, qn2 , are defined.’

qzpp(z) = −γmh
qn(z) = qmz + qn1 ; qm =

qn2−qn1
H ; qn1 = K0H(γs − γa) + γa H + qn2

(29)
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θp1 = f1z + f2 ⇒ For Equation (18)
θp2 = 0 ⇒ For Equation (19)

Being : f1 = −H32qm
B1RH22

+ H31γmh
B1R2 H22

; f2 = − H32qn1
B1RH22

− H31γmhH
B1R2 H22

(30)Mathematics 2021, 9, x FOR PEER REVIEW 9 of 18 
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Figure 4. Load model.

Once the general solution, Equations (27) and (30), of the resultant internal forces per
unit of arc longitude (θ) is obtained, it is necessary to evaluate the boundary conditions
imposed on the mathematical model (Table 2) [23]. Six-boundary conditions are required
to solve the flexo-compression problem with coupled constitutive curvature (Table 2).
Boundary conditions used in EN 1993-1-6 Eurocode [23] were adopted in this paper, along
with the Mindlin–Reissner and Timoshenko bending theory particularity.

Table 2. Comparison between the new shear correction factor for tunnel ventilation shafts, and the

shear correction factor for plates for different slenderness ratio
(

h
R

)
.

ID Simple Term

Radial Displacement (Un)
Twist Angle (ψz)

Shear (Qz)
Bending Moment (Mz)

Axial Displacement (Uz)

BC1 r
Clamped

Un = 0 and ψz = 0 Uz = 0

BC1 f Un = 0 and Mz = 0 Uz = 0

BC2 r
Pinned

Un = 0 and ψz = 0 Uz 6= 0

BC2 f Un = 0 and Mz = 0 Uz 6= 0

BC3 Free edge Mz = 0 and Qz = 0 Uz 6= 0
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From a complete and fit definition of the function, θ, the internal forces per unit of arc
longitude (MZ, Mθ , Qz, Nθ , Nz) are founded by applying Equation (18). Subsequently, by
using the coupled constitutive equations, Equation (10), the deformations on the middle
surface of the shell (κz, κθ , γzN , εθ , εz) were obtained, and to conclude, the integration
process, the displacement field (Un, Uz, ψz) is determined by employing the Mindlin–
Reissner kinematics equations, Equation (15). The stress–strain state of the coaxial cylinder
is finally obtained through Equations (3) and (4).

The analytical solutions were implemented in the mathematical assistant MATH-
LAB [24], developing the user graphic interfaces with GUIDE tool. A computer program
was created for the stress–strain state analysis of tunnel ventilation shafts with and without
coupled constitutive curvature (Figure 5).
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Figure 5. Program analysis and viewer results.

6. Numerical Results and Discussions

In this section, fundamental concepts in the shells-analytical and numerical analy-
ses (FEM) in general bending state are illustrated. The physical–mechanical parameters
(Table 3) of a typical tunnel ventilation shaft built in the soft soil of Mexico City from
Espejel [25] were employed for numerical comparison.

Table 3. Physical, mechanical and geometrical properties of the tunnel ventilation shaft N◦1 of the project-“Río La Compañia”
from Espejel.

Physical and Mechanical Properties

E = 2.378× 107 kN
m2 γa = 10 kN

m3 γm = 20.46 kN
m3 γs = 10.23 kN

m3
µ = 0.2

K0 = 0.8 qn1 = 206.735 kN
m2 qn2 = 0

Geometrical Properties

h = 0.70 m H = 20.30 m R = 6 m Ratio
(

h
R

)
= 0.12

Bearing in mind that there is a continuity between the base and the tunnel ventilation
shaft wall, a clamped condition on the cylinder base (BC1r in z = 0) was assumed, along
with the free edge on the top (BC1r in z = H). The analytical results (with and without
constitutive curvature) were compared with FEM results, using the ABAQUS software [26]
(Figures 6 and 7) and considering different formulations (Table 4).
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Table 4. Finite element types and statistical meshing.

Finite Element Type Description
h
R =0.05 h

R =0.12 h
R =0.25

Nodes Elements Nodes Elements Nodes Elements

Solid elements 3D

C3D20R: A 20-node quadratic brick,
reduced integration 59,644 8432 289,708 57,528 326,636 71,928

C3D8R: An 8-node linear brick, reduced
integration, hourglass control 17,112 8432 77,456 57,528 84,952 71,928

Shell elements

S8R: An 8-node doubly curved thick shell,
reduced integration 8694 8568 8694 8568 8694 8568

S4R: A 4-node doubly curved thin or thick
shell, reduced integration, hourglass

control, finite membrane strains
25,956 8568 25,956 8568 25,956 8568
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It is known, [7,27,28] that the standard 8-nodes-solid element with complete inte-
gration (C3D8), presents a locking-shear problem when used for shells modeling. This
problem is bigger when the slenderness increases, and its bending behavior prevails. This
numerical locking indicates the incapacity of the interpolation functions (and its gradients)
to adapt to solid behavior that often invalidates the obtained solutions [28]. The elements of
reduced integration of first and second order (C3D8R and C3D20R), present more precision
in flexo-compression problems with bending predominance than the ones corresponding to
complete integration-elements, in addition to a reduction in the computing time [26]. The
second-order solid elements allow modeling of the curved surfaces with fewer elements,
and a greater approximation in areas of high stresses concentration. The shell element
S4R is valid for thin or thick-shell problems [26], but it has the disadvantage that it does
not obtain the shear per unit of thickness (Qz) as output, which allows the subsequent
calculation of the transversal stress. The S8R element is valid for thick shell analysis.

The numerical models used in this paper considered a different slenderness ratio in
the shell, and the employment of the shell elements (S4R and S8R) and solid elements
(C3D8R and C3D20R) (Table 4 and Figure 6).

The analytic solution with constitutive curvature shows numerical superiority com-
pared with shell-elements (S8S and S4R) for all results in the entire high of the tunnel
ventilation shaft (Figures 8–13; Tables 5–8).
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Figure 8. Circumferential stress in extrados for thin, medium and thick shells, considering different models.
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Figure 9. Circumferential stress in intrados for thin, medium and thick shells, considering different models.
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Figure 10. Longitudinal stress in intrados for thin, medium and thick shells, considering different models.
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Figure 11. Longitudinal stress in extrados for thin, medium and thick shells, considering different models.
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Figure 12. Longitudinal flexural moment for thin, medium and thick shells, considering different models.
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Figure 13. Circumferential flexural moment for thin, medium and thick shells, considering different models.

Table 5. Maximum circumferential stress in extrados for different slenderness ratio.

( h
R )

Le
ng

th
(m

) Maximum Circumferential Stress in Extrados (σθ) ( kN
m2 )

Analytical Solution FEM Shells FEM 3D

With
CC

Without
CC % EA S4R %

ES4R S8R %
ES8R C3D8R %

EC3D8R C3D20R % EA-
C3D20R

0.05 2.57 3833.002 3923.135 2.35 3596.92 6.16 3773.11 1.59 3730.3 0.514 3749.56 2.225

0.12 3.73 1523.094 1601.1821 5.13 1447.13 4.99 1447.63 5.21 1640.83 0.787 1628.02 6.445

0.25 5.1 644.19 706.634 9.69 586.868 8.90 587.301 9.69 752.557 0.557 748.391 13.923

Where: CC: Constitutive curvature;
EA: relative error between the analytical results (pattern: analytical solution with CC);
ES4R: relative error between the analytical result with CC and shell element S4R (pattern: analytical solution
with CC);
ES8R: relative error between the analytical result with CC and shell element S8R (pattern: analytical solution
with CC);
EC3D8R: relative error between the elements C3D8R and C3D20R (pattern: C3D20R);
EA-C3D20R: relative error between the analytical result with CC and the element C3D20R (pattern: C3D20R).

Table 6. Maximum circumferential stress in intrados for different slenderness.

( h
R )

Le
ng

th
(m

) Maximum Circumferential Stress in Intrados (σθ) ( kN
m2 )

Analytical Solution FEM Shells FEM 3D

With
CC

Without
CC % EA S4R %

ES4R S8R %
ES8R C3D8R %

EC3D8R C3D20R % EA-
C3D20R

0.05 3.06 3770.237 3673.337 2.57 3834.26 1.70 3599.85 4.52 3619.5 4.517 3790.72 0.543

0.12 4.38 1560.739 1471.875 5.69 1335.59 14.43 1336.09 14.39 1665.84 0.471 1673.72 7.239

0.25 5.85 712.314 634.328 10.95 649.409 8.83 649.813 8.77 828.22 1.459 840.48 17.993

See Table 5 for legend
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Table 7. Maximum longitudinal stress in extrados for different slenderness ratio.

( h
R )

Maximum Longitudinal Stress in Extrados (σz) ( kN
m2 ) z=0

Analytical Solution FEM Shells FEM 3D

With
CC

Without
CC % EA S4R %

ES4R S8R %
ES8R C3D8R %

EC3D8R C3D20R % EA-
C3D20R

0.05 6500.02 6556.31 0.87 4429.12 31.860 6006.91 7.586 412.305 93.334 6184.77 5.097

0.12 2452.9 2506.165 2.17 1623.46 33.815 1917.51 21.827 1265.24 53.086 2696.94 9.049

0.25 861.4145 910.11 5.65 432.582 49.782 537.565 37.595 535.274 57.637 1263.55 31.826

See Table 5 for legend

Table 8. Maximum longitudinal stress in intrados for different slenderness ratio.

( h
R )

Maximum Longitudinal Stress in Intrados (σz) ( kN
m2 ) z=0

Analytical Solution FEM Shells FEM 3D

With
CC

Without
CC % EA S4R %

ES4R S8R %
ES8R C3D8R %

EC3D8R C3D20R % EA-
C3D20R

0.05 7444.063 7386.986 0.77 5253.69 29.424 6837.6 8.147 412.305 94.214 7126.37 4.458

0.12 3390.943 3336.8407 1.60 2450.06 27.747 2748.18 18.955 2179.69 40.199 3644.93 6.968

0.25 1790.302 1740.786 2.77 1258.13 29.725 1368.24 23.575 1444.26 33.889 2184.61 18.049

See Table 5 for legend

The C3D8R element shows a bad convergence in the obtaining of the maximum
longitudinal stress at the base of the cylinder (clamped) (bending concentration) (Tables 7
and 8). Although, the elements are provide by the Hourglass control [26] there is a stiffness
of the shell in that section (Figures 10 and 11). Due to the linearity of the interpolation
functions, it is necessary to generate more than one C3D8R element inside the thickness of
the shell, which will be able to model the bending concentration in that cross section. The
C3D20R element employs trigonometric interpolation functions, which allow modeling
with one element into the small thickness of the shell

(
h
R ≤ 0.05

)
and the stress distribution

(circumferential and longitudinal) in the alteration zones [1,3].
For the longitudinal stress (longitudinal flexor-compression), in all shell domains, the

analytical solution with constitutive curvature shows numerical superiority than the one
obtained through the C3D8R element with more than one element inside the thickness of
the shell (Figures 10 and 11; Tables 7 and 8).

An important aspect for structural design in reinforced concrete is the change in
the circumferential flexural moment configuration with the increment of the slenderness
ratio of the shell (Figure 13) for analytical solution with constitutive curvature. For a
slenderness ratio of 0.25, the studied shell did not have an inversion in the circumferential
flexural moment (Figure 13), exalting the physical phenomena that occur: a decreasing
of the circumferential negative moment when increasing the slenderness ratio. That is,
when the shell is not thin anymore

(
h
R > 0.05

)
, the bending moment analysis in the

circumferential direction is insufficient if the classical constitutive relationship is applied,
Equation (31), [1,4,5] on a revolution shell (isotropic, orthotropic and anisotropic) under a
general distribution of axial-symmetric pressures.

Mθ = ±µ Mz, (31)
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7. Conclusions

The formulation and analytic solution presented in this paper displays the generality of
combining the Mindlin–Reissner theory, the shear correction factor properly for cylindrical
shell and the general coupled constitutive model (isotropic and orthotropic) without
disregarding the shell curvature from the constitutive.

The proposed mathematical model presents three independent degrees of freedom
(Un, Uz, ψz) and it is formulated in terms of the resultant internal forces per unit of arc
longitude. This has the advantage of allowing the analysis of cylindrical shell by analytical
formulation with thin, medium and thick thickness under a general distribution of axial-
symmetric pressures with the very best numerical reliability in the entire shell domain.

Potentially engineering applications include tunnel ventilation shafts, tubular piles
under earth pressures, tanks under hydrostatic pressures, reinforced concrete silos un-
der granular solid pressures, gas-filled cisterns, simple alteration effect analysis in thin
and medium shells and chimneys. A practical example has been illustrated in a tunnel
ventilation shaft analysis for different slenderness ratio

(
h
R

)
, resulting in the following

significant conclusions:

1. When the isotropic shell is thin,
(

h
R ≤ 0.05

)
its predominant resistant mechanism

is the circumferential membrane force with an inversion of bending moments in
the both main directions. From an increase in the slenderness ratio, the flexural
contribution in the two main directions dominated the internal equilibrium of the shell
and the inserting of the constitutive curvature acquires the biggest importance in the
structural response of the shell. For analysis and tunnel ventilation shafts design with
slenderness ratio of h

R ≥ 0.12 it is recommendable to insert the constitutive curvature;
2. The equations and the general methodology displayed in this paper might be usefully

employed in the analysis and design of the cylindrical shell (isotropic and orthotropic)
under general distribution of axial-symmetric pressures. The mathematical model
formulated in terms of the internal forces per unit of arc longitude allows to solve
differential equation systems of multiple degrees of freedom and to model the complex
boundary conditions by the Saint-Venant simplification. For this study case, the
equations can be applied by means of the basic spreadsheets as tools to assist in
the design.
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Nomenclature

qn1 , qn2 Lateral earth pressure plus hydrostatic pressure plus overload on the shaft
D, d External and internal diameter of the shaft, respectively
qzpp Body load
h Thickness of the wall-shaft (shell thickness)
R Principal radius of curvature
Mz, Mθ Bending moments
Qz Shear force
Nθ , Nz Membrane-axial forces
κz, κθ , γzN , εθ , εz Deformations
Un, Uz, ψz Displacement
γm Shaft material weight
γa Water weight
γs Soil weight
K0 Coefficient of lateral earth pressure at rest
H Shaft height
D f Cylindrical flexion stiffness of a plate
K Membrane stiffness
E Elasticity modulus
µ Poisson ratio
C Characteristic longitude of the shell
D Discriminant
αn Shear correction factor
e exp
FCG(z) Function with constitutive curvature
FSG(z) Homogeneous function without constitutive curvature
(α1, α2, α3) ∈ R3 Orthogonal curvilinear coordinates
θc(z) Solution of the homogeneous equation
θp(z) Solution of the particular equation. Indeterminate coefficient method
Acronyms used
(F.S.S) Fundamental system solution
(HD) Hyperstatic Degree
(DF) Degree of freedom
(ICM) Indeterminate coefficient method
(FEM) Finite element method
(NTL) Natural terrain level
(PL) Phreatic Level
(BC) Boundary condition
(PWP) Porous water pressure
Note: The term “Constitutive curvature” refers to the inclusion of the shell curvature in the
Pconstitutive equations relating the resultant internal forces per unit of arc longitude and the
middle shell deformations, Equations (7) and (9).
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