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A packing (layout) problem for a number of clusters (groups) composed of convex objects (e.g., circles, ellipses, or convex polygons)
is considered.The clusters have to be packed into a given rectangular container subject to nonoverlapping between objects within a
cluster. Each cluster is represented by the convex hull of objects that form the cluster. Two clusters are said to be nonoverlapping if
their convex hulls do not overlap. A cluster is said to be entirely in the container if so is its convex hull. All objects in the cluster have
the same shape (different sizes are allowed) and can be continuously translated and rotated. The objective of optimized packing is
constructing a maximum sparse layout for clusters subject to nonoverlapping and containment conditions for clusters and objects.
Here the term sparse means that clusters are sufficiently distant one from another. New quasi-phi-functions and phi-functions to
describe analytically nonoverlapping, containment and distance constraints for clusters are introduced.The layout problem is then
formulated as a nonlinear nonconvex continuous problem. A novel algorithm to search for locally optimal solutions is developed.
Computational results are provided to demonstrate the efficiencyof our approach.This research ismotivated by a container-loading
problem; however similar problems arise naturally in many other packing/cutting/clustering issues.

1. Introduction

A two-dimensional packing problem of objects in a container
is NP-hard [1]. This problem is typical in logistics (trans-
porting rolls of wallpaper, pipes, boxes, paint buckets, etc.,)
and also has important applications in computer science,
industrial engineering, manufacturing and production pro-
cesses, healthcare, project portfolio selection, nanophysics,
and agriculture (see, e.g., [2] and the references therein).

Various shapes of objects were studied. In particular,
cutting and packing problems for ellipses are presented in [3–
6], circular packing problems are investigated in [7–13], and
packing problems for convex polygons are considered in [11–
16]. Papers [17–21] are devoted to irregular packing involving
arbitrary shaped objects.

Inmany cases the objects are not independent and have to
be grouped in a number of certain clusters of nonoverlapping
objects. This is typical, for example, for a container loading

problem [22], where the objects in a large maritime container
may form various clusters according to a type of objects
(similar shapes, parts of the samemachine). Similarly, clusters
can be formed according to a supplier or a client (final
destination) to facilitate loading/unloading the container.

While the composition of the cluster (number of objects
and their shapes) is typically predefined, the overall shape
of the cluster is frequently not specified. Bearing in mind a
cluster as a number of objects placed in a flexible sack we
define the shape of a cluster as a convex hull of the objects
in the cluster. Note that the objects are nonoverlapping and
the shape of the cluster (convex hull) depends on the layout
of the objects in the cluster.

Throughout this paper it is assumed homogeneous
clusters composed of the same shapes (different sizes are
allowed). The number of clusters as well as the number of
objects and their shapes and sizes is given. The shape of
the cluster is represented by the convex hull of the objects
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in the cluster. A feasible clusters layout has to meet the
following conditions: (a) objects in the cluster are mutually
nonoverlapping and (b) clusters aremutually nonoverlapping
and nonoverlapping with the complement of the rectangular
container.

Concerning optimized packing of clusters, different
objectives can be used. For example, we may look for the
“densest” layout fixing one dimension of the rectangular
container and minimizing the other subject to feasibility
of the clusters layout. On the contrary, we may fix both
dimensions of the container and look for a “sparsest” layout
maximizing a certain “distance” between the clusters. This
objective is motivated by the need of more space between
clusters to facilitate access for their loading/unloading. In this
paper the latter approach is used.

To the best of our knowledge the problem of optimized
packing for clusters of objects was never considered before.
The main contributions of the paper are (1) new formulation
of the layout problem for clusters of objects; (2) new mathe-
matical modeling tools for representing nonoverlapping and
containment of clusters; (3) novel NLP model for optimized
packing of clusters; and (4) new algorithm to get initial
feasible solution to accelerate a local optimization procedure.

The paper is organized as follows. In Section 2 a layout
problem for clusters of objects is formulated. Section 3
provides nonoverlapping and containment conditions for
clusters obtained by phi-function technique. Mathematical
model for the optimized layout problem is stated in Section 4.
Solution algorithm and numerical experiments are presented
in Sections 5 and 6, respectively. Conclusions in Section 7
complete this paper.

2. Problem Formulation

LetΩ = {(𝑥, 𝑦) ∈ 𝑅2 : 0 ≤ 𝑥 ≤ 𝑙, 0 ≤ 𝑦 ≤ 𝑤} be a rectangular
domain (a container) and 𝑇𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛} = 𝐼𝑛, be an
ordered collection of convex objects. Each object 𝑇𝑖 is defined
by its metrical characteristics. In particular, an ellipse 𝐸𝑖 is
defined by its semiaxes 𝑎𝑖 and 𝑏𝑖, a circle 𝐶𝑖 is defined by its
radius 𝑟𝑖, and a convex polygon 𝐾𝑖 is defined by its vertices
𝑝𝑖𝑘 = (𝑝𝑥𝑖𝑘, 𝑝𝑦𝑖𝑘), 𝑘 = 1, . . . , 𝑙𝑖.

The position of the object 𝑇𝑖 is characterized by the vector
of variable placement parameters 𝑢𝑖 = (V𝑖, 𝜃𝑖), where V𝑖 =(𝑥𝑖, 𝑦𝑖) is a translation vector and 𝜃𝑖 is a rotation angle. The
center of the object coincides with the origin of its local
coordinate system. Rotated by an angle 𝜃𝑖 and translated by
a vector V𝑖 an object 𝑇𝑖 is defined as 𝑇𝑖(𝑢𝑖) = {𝑝 ∈ 𝑅2 : 𝑝 =
V𝑖+𝑀(𝜃𝑖)⋅𝑝0, ∀𝑝0 ∈ 𝑇0𝑖 }, where𝑇0𝑖 denotes nontranslated and
nonrotated object 𝑇𝑖 and𝑀(𝜃𝑖) = ( cos 𝜃𝑖 sin 𝜃𝑖

− sin 𝜃𝑖 cos 𝜃𝑖 ) is a standard
rotation matrix.

Remark 1. The position of a circle 𝐶𝑖 is characterized by the
motion vector 𝑢𝑖 = (V𝑖, 0) = (𝑥𝑖, 𝑦𝑖, 0).

In this paper we define a cluster of objects (or simply a
cluster) as a group of objects having the same shape. The
ordered collection of objects 𝑇𝑖, 𝑖 = 1, . . . , 𝑛, is divided into𝑁
clusters Λ 1 = {𝑇1, . . . , 𝑇𝑛1}, Λ 2 = {𝑇𝑛1+1, . . . , 𝑇𝑛2}, . . . , Λ𝑁 ={𝑇𝑛𝑁−1+1, . . . , 𝑇𝑛} with respect to index sets Ξ1 = {1, . . . , 𝑛1},

and Ξ2 = {𝑛1 + 1, . . . , 𝑛2}, . . . , Ξ𝑁 = {𝑛𝑁−1 + 1, . . . , 𝑛}, 𝑛 =
∑𝑁
𝑞=1𝑚𝑞, where𝑚𝑞 = card(Ξ𝑞), 𝑞 ∈ {1, 2, . . . , 𝑁} = 𝐽𝑁.
We introduce vectors of placement parameters of clusters

Λ 1, Λ 2, . . . , Λ𝑁 in the form 𝑧1 = (𝑢1, . . . , 𝑢𝑛1), 𝑧2 =
(𝑢𝑛1+1, . . . , 𝑢𝑛2), . . . , 𝑧𝑁 = (𝑢𝑛𝑁−1+1, . . . , 𝑢𝑛) and use notation
Λ 𝑞(𝑧𝑞) for a cluster Λ 𝑞 that involves moving objects 𝑇𝑖(𝑢𝑖),𝑖 ∈ Ξ𝑞.

With each cluster Λ 𝑞(𝑧𝑞) = ⋃𝑖∈Ξ𝑞
𝑇𝑖(𝑢𝑖) we associate the

convex hull of objects 𝑇𝑖(𝑢𝑖), 𝑖 ∈ Ξ𝑞, denoted by 󵱰Λ 𝑞(𝑧𝑞) =𝑐𝑜𝑛VΛ 𝑞(𝑧𝑞), 𝑞 ∈ 𝐽𝑁.
Throughout this paper the following definitions are used:

(1) two clustersΛ 𝑞(𝑧𝑞) and Λ 𝑔(𝑧𝑔) do not overlap each other
if their convex hulls 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔) do not overlap, 𝑞 >
𝑔 ∈ 𝐽𝑁; (2) a cluster Λ 𝑞(𝑧𝑞) belongs to a container Ω if its
convex hull 󵱰Λ 𝑞(𝑧𝑞) belongs to a container Ω, 𝑞 ∈ 𝐼𝑁.
Cluster Layout ProblemCLP.Arrange the collection of clusters
Λ 𝑞(𝑧𝑞), 𝑞 ∈ 𝐽𝑁, sufficiently distant one from another into a
rectangular container Ω, such that

int𝑇𝑖 (𝑢𝑖) ∩ int𝑇𝑗 (𝑢𝑗) = ⌀,
for 𝑖 > 𝑗, (𝑖, 𝑗) ∈ Σ𝑞 × Σ𝑞, 𝑞 ∈ 𝐽𝑁,

(1)

int 󵱰Λ 𝑞 (𝑧𝑞) ∩ int 󵱰Λ 𝑔 (𝑧𝑔) = ⌀, for 𝑞 > 𝑔 ∈ 𝐽𝑁, (2)

󵱰Λ 𝑞 (𝑧𝑞) ⊂ Ω for each 𝑞 ∈ 𝐼𝑁, (3)

The first constraint assures nonoverlapping of objects within
the same cluster and the second guarantees nonoverlapping
of clusters, while the third relation presents containment
conditions for clusters into Ω.

3. Tools of Mathematical Modeling

In this study, we use phi-function technique as a constructive
tool for mathematical modeling of placement constraints
within the field of Packing&Cutting (see, e.g., [3, 23–25]).
For the reader’s convenience we provide definitions of a
phi-function (normalized phi-function) and a quasi-phi-
function (normalized quasi-phi-function) in the appendix.
In this section we introduce new tools to describe placement
constraints (2) and (3) analytically.

3.1. Nonoverlapping of Objects within a Cluster. To describe
relation (1) we use phi-functions and quasi-phi-functions for
a pair of different shapes of convex objects.

Let us consider two objects 𝑇𝑖(𝑢𝑖) and 𝑇𝑗(𝑢𝑗) that belong
to a cluster Λ 𝑞(𝑧𝑞), 𝑖 > 𝑗, (𝑖, 𝑗) ∈ Σ𝑞 × Σ𝑞, 𝑞 ∈ 𝐽𝑁.

According to the definition of a phi-function [23], we
have thatΦ𝑇𝑖𝑇𝑗 (𝑢𝑖, 𝑢𝑗) ≥ 0 if and only if int 𝑇𝑖(𝑢𝑖)∩int𝑇𝑗(𝑢𝑗) =⌀.

From the main property of a quasi-phi-function [3] it
follows that if Φ󸀠𝑇𝑖𝑇𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗) ≥ 0 for some 𝑢𝑖𝑗, then
int𝑇𝑖(𝑢𝑖) ∩ int𝑇𝑗(𝑢𝑗) = ⌀, where 𝑢𝑖𝑗 is a vector of extra
variables.



Mathematical Problems in Engineering 3

In particular, we provide nonoverlapping tools for a pair
of ellipses, circles, and convex polygons.

Quasi-Phi-Function for Two Ellipses. Let 𝐸𝑖(𝑢𝑖) and 𝐸𝑗(𝑢𝑗)
be ellipses given by their semiaxes (𝑎𝑖, 𝑏𝑖) and (𝑎𝑗, 𝑏𝑗), with
placement parameters 𝑢𝑖 = (𝑥𝑖, 𝑦𝑖, 𝜃𝑖) and 𝑢𝑗 = (𝑥𝑗, 𝑦𝑗, 𝜃𝑗).

A quasi-phi-function for 𝐸𝑖(𝑢𝑖) and 𝐸𝑗(𝑢𝑗) can be defined
as

Φ󸀠𝐸𝑖𝐸𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗 = 𝜙𝑖𝑗)
= 𝑥󸀠𝑖𝑗 (V𝑖, 𝜙𝑖𝑗) − 𝑥󸀠𝑗𝑖 (V𝑗, 𝜙𝑖𝑗)
− (𝑑𝑖𝑗 (𝜃𝑖, 𝜙𝑖𝑗) + 𝑑𝑗𝑖 (𝜃𝑗, 𝜙𝑖𝑗)) ,

(4)

where

𝑥󸀠𝑖𝑗 (V𝑖, 𝜙𝑖𝑗) = 𝑥𝑖 cos 𝜙𝑖𝑗 − 𝑦𝑖 sin 𝜙𝑖𝑗,
𝑥󸀠𝑗𝑖 (V𝑗, 𝜙𝑖𝑗) = 𝑥𝑗 cos𝜙𝑖𝑗 − 𝑦𝑗 sin 𝜙𝑖𝑗,

𝑑𝑖𝑗 (𝜃𝑖, 𝜙𝑖𝑗) = √𝑏2𝑖 + (𝑎2𝑖 − 𝑏2𝑖 ) cos2 (𝜃𝑖 − 𝜙𝑖𝑗),

𝑑𝑗𝑖 (𝜃𝑗, 𝜙𝑖𝑗) = √𝑏2𝑗 + (𝑎2𝑗 − 𝑏2𝑗 ) cos2 (𝜃𝑗 − 𝜙𝑖𝑗),

(5)

𝜙𝑖𝑗 ∈ 𝑅1 is an auxiliary variable (an angle between a straight
line passing through the origin of the global coordinate
system𝑋𝑂𝑌 and axis 𝑂𝑋).
Phi-Function for Two Circles. Let 𝐶𝑖(V𝑖) and 𝐶𝑗(V𝑗) be circles
given by their radii 𝑟𝑖 and 𝑟𝑗 with placement parameters V𝑖 =(𝑥𝑖, 𝑦𝑖) and V𝑗 = (𝑥𝑗, 𝑦𝑗).

A phi-function for 𝐶(V𝑖) and 𝐶𝑗(V𝑗) has the form [23]

Φ𝐶𝑖𝐶𝑗 (V𝑖, V𝑗) = (𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 − (𝑟𝑖 + 𝑟𝑗)2 . (6)

Quasi-Phi-Function for Two Convex Polygons. Let convex
polygons 𝐾𝑖(𝑢𝑖) and 𝐾𝑗(𝑢𝑗) be defined by their vertices 𝑝𝑖𝑘 =
(𝑝𝑥𝑖𝑘, 𝑝𝑦𝑖𝑘), 𝑘 = 1, . . . , 𝑙𝑖, 𝑝𝑗𝑘 = (𝑝𝑥𝑗𝑘, 𝑝𝑦𝑗𝑘), 𝑘 = 1, . . . , 𝑙𝑗, with
placement parameters 𝑢𝑖 = (𝑥𝑖, 𝑦𝑖, 𝜃𝑖) and 𝑢𝑗 = (𝑥𝑗, 𝑦𝑗, 𝜃𝑗)
and let 𝑃(𝑢𝑖𝑗) = {(𝑥, 𝑦) : 𝜇𝑖𝑗 = cos 𝜙𝑖𝑗 ⋅ 𝑥 + sin 𝜙𝑖𝑗 ⋅ 𝑦 + 𝛾𝑖𝑗 ≤ 0}
be a half plane.

Based on [26] a quasi-phi-function for 𝐾𝑖(𝑢𝑖) and 𝐾𝑗(𝑢𝑗)
can be derived in the form

Φ󸀠𝐾𝑖𝐾𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗)

= min {Φ𝐾𝑖𝑃 (𝑢𝑖, 𝑢𝑖𝑗) , Φ𝐾𝑗𝑃
∗ (𝑢𝑗, 𝑢𝑖𝑗)} ,

(7)

where 𝑢𝑖𝑗 = (𝜙𝑖𝑗, 𝛾𝑖𝑗) ∈ 𝑅2 is a vector of auxiliary variables,
Φ𝐾𝑖𝑃 (𝑢𝑖, 𝑢𝑖𝑗) = min

1≤𝑘≤𝑙𝑖
𝜇𝑖𝑗 (𝑝𝑖𝑘) (8)

is a phi-function for 𝐾𝑖(𝑢𝑖) and 𝑃(𝑢𝑖𝑗) and
Φ𝐾𝑗𝑃

∗ (𝑢𝑗, 𝑢𝑖𝑗) = min
1≤𝑘≤𝑙𝑗

(−𝜇𝑖𝑗 (𝑝𝑗𝑘)) (9)

is a phi-function for 𝐾𝑗(𝑢𝑗) and 𝑃∗(𝑢𝑖𝑗) = 𝑅2 \ int𝑃(𝑢𝑖𝑗).

3.2. Nonoverlapping of Clusters. Let us describe analytically
the placement constraint (2). To this aim we introduce a
quasi-phi-function for two objects 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔).

Now we consider an extension of the phi-function tech-
nique to convex hulls of clusters of objects. Note that convex
hull of objects in a cluster has variable shape and variable
metrical characteristics that depend on variable placement
parameters of objects in the cluster.

Let 𝑃𝑞𝑔 = {(𝑥, 𝑦) : 𝜇𝑞𝑔(𝑥, 𝑦) = cos𝜑𝑞𝑔 ⋅ 𝑥 + sin 𝜑𝑞𝑔 ⋅ 𝑦 +𝛾𝑞𝑔 ≥ 0} be a half plane with variable placement parameters
(𝜑𝑞𝑔, 𝛾𝑞𝑔).
Proposition 2. Acontinuous and everywhere defined function

Φ󸀠󵱰Λ 𝑞󵱰Λ 𝑔 (𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔)

= min {Φ󵱰Λ 𝑞𝑃𝑞𝑔 (𝑧𝑞, 𝜑𝑞𝑔, 𝛾𝑞𝑔) , Φ󵱰Λ 𝑔𝑃
∗
𝑞𝑔 (𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔)}

(10)

is a quasi-phi-function for 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔), where
Φ󵱰Λ 𝑞𝑃𝑞𝑔(𝑧𝑞, 𝜑𝑞𝑔, 𝛾𝑞𝑔) is a phi-function of󵱰Λ 𝑞(𝑧𝑞) and a half plane
𝑃𝑞𝑔, Φ󵱰Λ 𝑔𝑃

∗
𝑞𝑔(𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔) is a phi-function of 󵱰Λ 𝑔(𝑧𝑔) and the

half plane 𝑃∗𝑞𝑔 = 𝑅2\ int𝑃𝑞𝑔.
Proof. Based on the properties of a quasi-phi-function
[3] defined for two convex objects we can conclude that
Φ󸀠

󵱰Λ 𝑞󵱰Λ 𝑔(𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔) ≥ 0 if and only if there exists at least
one separated line 𝐿𝑞𝑔{(𝑥, 𝑦) : 𝜇𝑞𝑔(𝑥, 𝑦) = 0} for some 𝜑𝑞𝑔,
𝛾𝑞𝑔 such that 󵱰Λ 𝑞(𝑧𝑞) ⊂ 𝑃𝑞𝑔 and 󵱰Λ 𝑔(𝑧𝑔) ⊂ 𝑃∗𝑞𝑔 and therefore
󵱰Λ 𝑞(𝑧𝑞) ∩ 󵱰Λ 𝑔(𝑧𝑔) = ⌀ for 𝑞 > 𝑔 ∈ 𝐽𝑁.

Next we define a phi-function of 󵱰Λ 𝑞(𝑧𝑞) and a half plane
𝑃𝑞𝑔 in (10) in the form

Φ󵱰Λ 𝑞𝑃𝑞𝑔 (𝑧𝑞, 𝜑𝑞𝑔, 𝛾𝑞𝑔)
= min {Φ𝑇𝑖𝑃𝑞𝑔 (𝑢𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔) , 𝑖 ∈ Ξ𝑞} ,

(11)

whereΦ𝑇𝑖𝑃𝑞𝑔(𝑢𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔) is a phi-function of an object 𝑇𝑖(𝑢𝑖)
and half plane 𝑃𝑞𝑔, 𝑖 ∈ Ξ𝑞.

It follows from the properties of the convex hull of
Λ 𝑞(𝑧𝑞) = ⋃𝑖∈Ξ𝑞

𝑇𝑖(𝑢𝑖) and characteristics of a separating line
between two convex objects that

(1) 󵱰Λ 𝑞(𝑧𝑞) ∩ 𝑃𝑞𝑔 = ⌀ ⇐⇒ Λ 𝑞(𝑧𝑞) ∩ 𝑃𝑞𝑔 = ⌀ and
therefore 𝑇𝑖(𝑢𝑖) ∩ 𝑃𝑞𝑔 = ⌀, for all 𝑖 ∈ Ξ𝑞. It implies that
min{Φ𝑇𝑖𝑃𝑞𝑔 (𝑢𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔), 𝑖 ∈ Ξ𝑞} > 0.

(2) int 󵱰Λ 𝑞(𝑧𝑞) ∩ int𝑃𝑞𝑔 ̸= ⌀ ⇐⇒ intΛ 𝑞(𝑧𝑞) ∩ int𝑃𝑞𝑔 ̸=
⌀ and therefore there exists at least one object 𝑇𝑖(𝑢𝑖), such
that int𝑇𝑖(𝑢𝑖) ∩ int𝑃𝑞𝑔 ̸= ⌀, 𝑖 ∈ Ξ𝑞. It implies that
min{Φ𝑇𝑖𝑃𝑞𝑔 (𝑢𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔), 𝑖 ∈ Ξ𝑞} < 0.

(3) (int 󵱰Λ 𝑞(𝑧𝑞) ∩ int𝑃𝑞𝑔 = ⌀) ∧ (𝑓𝑟 󵱰Λ 𝑞(𝑧𝑞) ∩ 𝑓𝑟𝑃𝑞𝑔 ̸=
⌀) ⇐⇒ (intΛ 𝑞(𝑧𝑞)∩ int𝑃𝑞𝑔 = ⌀)∧(𝑓𝑟Λ 𝑞(𝑧𝑞)∩𝑓𝑟𝑃𝑞𝑔 ̸= ⌀)
and therefore int𝑇𝑖(𝑢𝑖) ∩ int𝑃𝑞𝑔 = ⌀, for all 𝑖 ∈ Ξ𝑞, and there
exists at least one object 𝑇𝑖(𝑢𝑖), such that 𝑓𝑟𝑇𝑖(𝑢𝑖) ∩ 𝑓𝑟𝑃𝑞𝑔 ̸=
⌀, 𝑖 ∈ Ξ𝑞. It implies that min{Φ𝑇𝑖𝑃𝑞𝑔(𝑢𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔), 𝑖 ∈ Ξ𝑞} = 0.

Thus, the function Φ󵱰Λ 𝑞𝑃𝑞𝑔 (𝑧𝑞, 𝜑𝑞𝑔, 𝛾𝑞𝑔) defined in (11) is a
phi-function for 󵱰Λ 𝑞 and a half plane 𝑃𝑞𝑔.
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Similarly a phi-function of 󵱰Λ 𝑔(𝑧𝑔) and a half plane 𝑃∗𝑞𝑔 =
𝑅2 \ int𝑃𝑞𝑔 takes the form

Φ󵱰Λ 𝑔𝑃
∗
𝑞𝑔 (𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔)

= min {Φ𝑇𝑗𝑃
∗
𝑞𝑔 (𝑢𝑗, 𝜑𝑞𝑔, 𝛾𝑞𝑔) , 𝑗 ∈ Ξ𝑔} ,

(12)

where Φ𝑇𝑗𝑃
∗
𝑞𝑔(𝑢𝑗, 𝜑𝑞𝑔, 𝛾𝑞𝑔) is a phi-function of object 𝑇𝑗(𝑢𝑗),

𝑗 ∈ Ξ𝑔, and the half plane 𝑃∗𝑞𝑔.
Thus, Φ󵱰Λ 𝑞𝑃𝑞𝑔(𝑧𝑞, 𝜑𝑞𝑔, 𝛾𝑞𝑔) ≥ 0 if and only if Φ𝑇𝑖𝑃𝑞𝑔(𝑢𝑖,𝜑𝑞𝑔, 𝛾𝑞𝑔) ≥ 0 for each 𝑖 ∈ Ξ𝑞.
Now we can conclude that max(𝜑𝑞𝑔,𝛾𝑞𝑔)Φ󸀠

󵱰Λ 𝑞󵱰Λ 𝑔(𝑧𝑞,
𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔) is a phi-function for 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔) and
therefore Φ󸀠

󵱰Λ 𝑞󵱰Λ 𝑔(𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔) is a quasi-phi-function for
the objects.

It should be noted that a quasi-phi-function

Φ󸀠
󵱰Λ 𝑞󵱰Λ 𝑔 (𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔) − 0.5𝜌 (13)

is a normalized quasi-phi-function for 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔)
(see the appendix for more details). It means that if 𝜌 > 0
is the distance between 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔), defined in the
standard way as a minimum Euclidean pointwise distance,
then the inequality Φ󸀠

󵱰Λ 𝑞󵱰Λ 𝑔 (𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔)−0.5𝜌 ≥ 0 implies
dist(󵱰Λ 𝑞(𝑧𝑞), 󵱰Λ 𝑔(𝑧𝑔)) ≥ 𝜌.
Remark 3. We do not construct convex hulls of clusters to
describe nonoverlapping (2) in our problem.

Further we provide nonoverlapping tools (phi-functions)
for a half plane 𝑃𝑞𝑔 = {(𝑥, 𝑦) : 𝜇𝑞𝑔(𝑥, 𝑦) = cos𝜑𝑞𝑔 ⋅𝑥+sin 𝜑𝑞𝑔 ⋅𝑦 + 𝛾𝑞𝑔 ≥ 0} and the following types of objects 𝑇𝑖(𝑢𝑖), 𝑖 ∈ Ξ𝑞:
an ellipse 𝐸𝑖(𝑢𝑖); a circle 𝐶𝑖(V𝑖); and a convex polygon 𝐾𝑖(𝑢𝑖).
Phi-Function for an Ellipse andHalf Plane𝑃𝑞𝑔.Aphi-function
for an ellipse𝐸𝑖(𝑢𝑖) given by its semiaxes (𝑎𝑖, 𝑏𝑖) and half plane𝑃𝑞𝑔 can be defined in the form:

Φ𝐸𝑖𝑃𝑞𝑔 (𝑢𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔)
= 𝑥𝑖 cos𝜑𝑞𝑔 + 𝑦𝑖 sin 𝜑𝑞𝑔 + 𝛾𝑞𝑔
− √(𝑎2𝑖 − 𝑏2𝑖 ) ⋅ cos2 (𝜃𝑖 + 𝜑𝑞𝑔) + 𝑏2𝑖 .

(14)

Phi-Function for a Circle andHalf Plane𝑃𝑞𝑔.Thephi-function
for a circle 𝐶𝑖(V𝑖) given by its radius 𝑟𝑖 and half plane 𝑃𝑞𝑔 is
defined in [24] and has the form

Φ𝐶𝑖𝑃𝑞𝑔 (V𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔) = 𝑥𝑖 cos𝜑𝑞𝑔 + 𝑦𝑖 sin 𝜑𝑞𝑔 + 𝛾𝑞𝑔
− 𝑟𝑖.

(15)

Phi-Function for a Convex Polygon and Half Plane 𝑃𝑞𝑔. The
phi-function for a convex polygon𝐾𝑖(𝑢𝑖) given by its vertices

𝑝𝑖𝑘 = (𝑝𝑥𝑖𝑘, 𝑝𝑦𝑖𝑘), 𝑘 = 1, . . . , 𝑙𝑖, and half plane 𝑃𝑞𝑔 is defined in
[24] and has the form:

Φ𝐾𝑖𝑃𝑞𝑔 (𝑢𝑖, 𝜑𝑞𝑔, 𝛾𝑞𝑔)
= min

𝑘=1,...,𝑙𝑖
(𝑝𝑥𝑖𝑘 cos𝜑𝑞𝑔 + 𝑝𝑦𝑖𝑘 sin 𝜑𝑞𝑔 + 𝛾𝑞𝑔) .

(16)

3.3. Containment of Clusters into a Container. Let us derive
a phi-function representing analytically the containment
constraint (3), 󵱰Λ 𝑞(𝑧𝑞) ⊂ Ω ⇐⇒ int 󵱰Λ 𝑞(𝑧𝑞) ∩ Ω∗ = ⌀ for
each 𝑞 ∈ 𝐼𝑁, whereΩ∗ = 𝑅2 \ intΩ.

Let Φ𝑇𝑖Ω
∗(𝑢𝑖) be a phi-function of objects 𝑇𝑖(𝑢𝑖) and Ω∗,

𝑖 ∈ Ξ𝑞.
Proposition4. Acontinuous and everywhere defined function

Φ󵱰Λ 𝑞Ω
∗ (𝑧𝑞) = min {Φ𝑇𝑖Ω

∗ (𝑢𝑖) , 𝑖 ∈ Ξ𝑞} (17)

is a phi-function of 󵱰Λ 𝑞(𝑧𝑞) and the object Ω∗.

Proof. We show that if 󵱰Λ 𝑞(𝑧𝑞) ⊂ Ω then 𝑇𝑖 ⊂ Ω ⇐⇒
int𝑇𝑖(𝑢𝑖) ∩ Ω∗ = ⌀, 𝑖 ∈ Ξ𝑞.

We assume that Ω∗ = Ω∗
1 ∪ Ω∗

2 ∪ Ω∗
3 ∪ Ω∗

4 , where Ω∗
𝑠 ={(𝑥, 𝑦) | 𝑔𝑠(𝑥, 𝑦) ≤ 0} is a half plane, 𝑠 = 1, 2, 3, 4, 𝑔1(𝑥, 𝑦) =𝑥𝑖, 𝑔2(𝑥, 𝑦) = 𝑦, 𝑔3(𝑥, 𝑦) = −𝑥 + 𝑙, and 𝑔4(𝑥, 𝑦) = −𝑦 + 𝑤,

For each half plane Ω∗
𝑠 we can conclude that

(1) 󵱰Λ 𝑞(𝑧𝑞)∩Ω∗
𝑠 = ⌀ ⇐⇒ Λ 𝑞(𝑧𝑞)∩Ω∗

𝑠 = ⌀ and therefore
𝑇𝑖(𝑢𝑖) ∩ Ω∗

𝑠 = ⌀, for all 𝑖 ∈ Ξ𝑞;
(2) int 󵱰Λ 𝑞 ∩ intΩ∗

𝑠 ̸= ⌀ ⇐⇒ intΛ 𝑞(𝑧𝑞) ∩ intΩ∗
𝑠 ̸= ⌀

and therefore there exists at least one object 𝑇𝑖(𝑢𝑖), such that
int𝑇𝑖(𝑢𝑖) ∩ intΩ∗

𝑠 ̸= ⌀, 𝑖 ∈ Ξ𝑞;
(3) (int󵱰Λ 𝑞(𝑧𝑞) ∩ intΩ∗

𝑠 = ⌀)∧ (𝑓𝑟󵱰Λ 𝑞 ∩𝑓𝑟Ω∗
𝑠 ̸= ⌀) ⇐⇒

(intΛ 𝑞(𝑧𝑞) ∩ intΩ∗
𝑠 = ⌀) ∧ (𝑓𝑟Λ 𝑞(𝑧𝑞) ∩ 𝑓𝑟Ω∗

𝑠 ̸= ⌀) and
therefore int𝑇𝑖(𝑢𝑖)∩intΩ∗

𝑠 = ⌀, for all 𝑖 ∈ Ξ𝑞, and there exists
at least one object 𝑇𝑖(𝑢𝑖), such that 𝑓𝑟𝑇𝑖(𝑢𝑖) ∩ 𝑓𝑟Ω∗

𝑠 ̸= ⌀,
𝑖 ∈ Ξ𝑞.

Thus, 󵱰Λ 𝑞(𝑧𝑞) ⊂ Ω ⇐⇒ int𝑇𝑖(𝑢𝑖) ∩ Ω∗ = ⌀, 𝑖 ∈ Ξ𝑞. It
means that Φ󵱰Λ 𝑞Ω

∗(𝑧𝑞) ≥ 0 if and only if Φ𝑇𝑖Ω
∗(𝑢𝑖) ≥ 0 for

each 𝑖 ∈ Ξ𝑞.
Now we state by phi-functions containment conditions

for the object Ω∗ and the following types of objects 𝑇𝑖(𝑢𝑖),𝑖 ∈ Ξ𝑞: an ellipse 𝐸𝑖(𝑢𝑖); a circle 𝐶𝑖(V𝑖); and a convex polygon
𝐾𝑖(𝑢𝑖).
Phi-Function for an Ellipse Containment. A phi-function for
an ellipse 𝐸(𝑢𝑖) given by its semiaxes (𝑎𝑖, 𝑏𝑖) and the object
Ω∗ can be defined in the form

Φ𝐸𝑖Ω
∗ (𝑢𝑖) = min

𝑠=1,...,4
𝑔𝑖𝑠 (𝑢𝑖) ,

𝑔𝑖1 (𝑢𝑖) = 𝑥𝑖 − √𝑏2𝑖 + (𝑎2𝑖 − 𝑏2𝑖 ) cos2𝜃𝑖,

𝑔𝑖2 (𝑢𝑖) = 𝑦𝑖 − √𝑏2𝑖 + (𝑎2𝑖 − 𝑏2𝑖 ) sin2𝜃𝑖,
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𝑔𝑖3 (𝑢𝑖) = 𝑙 − 𝑥𝑖 − √𝑏2𝑖 + (𝑎2𝑖 − 𝑏2𝑖 ) cos2𝜃𝑖,

𝑔𝑖4 (𝑢𝑖) = 𝑤 − 𝑦𝑖 − √𝑏2𝑖 + (𝑎2𝑖 − 𝑏2𝑖 ) sin2𝜃𝑖.
(18)

The inequality Φ𝐸𝑖Ω
∗(𝑢𝑖) ≥ 0 guarantees that 𝐸𝑖(𝑢𝑖) ⊂ Ω.We

define the phi-function based on the idea of nonoverlapping
of an ellipse and half plane introduced in [5].

Phi-Function for a Circle Containment. A phi-function for a
circle 𝐶(𝑢𝑖) given by its radius 𝑟𝑖 and the object Ω∗ has the
form

Φ𝐶𝑖Ω
∗ (𝑢𝑖) = min

𝑠=1,...,4
𝑓𝑖𝑠 (𝑢𝑖) ,

𝑔𝑖1 (𝑢𝑖) = 𝑥𝑖 − 𝑟𝑖,
𝑔𝑖2 (𝑢𝑖) = 𝑦𝑖 − 𝑟𝑖,
𝑔𝑖3 (𝑢𝑖) = −𝑥𝑖 + 𝑙 − 𝑟𝑖,
𝑔𝑖4 (𝑢𝑖) = −𝑦𝑖 + 𝑤 − 𝑟𝑖,

(19)

The inequality Φ𝐶𝑖Ω
∗(𝑢𝑖) ≥ 0 guarantees that 𝐶𝑖(V𝑖) ⊂ Ω.

Phi-Function for a Convex Polygon Containment. A phi-
function for a convex polygon 𝐾(𝑢𝑖) given by its vertices
𝑝𝑖𝑘 = (𝑝𝑥𝑖𝑘, 𝑝𝑦𝑖𝑘), 𝑘 = 1, . . . , 𝑙𝑖, and the object Ω∗ has the form

Φ𝐾𝑖Ω
∗ (𝑢𝑖) = min

𝑘=1,...,𝑙𝑖
𝑠=1,...,4

𝑔𝑠 (𝑝𝑥𝑖𝑘, 𝑝𝑦𝑖𝑘) . (20)

The inequality Φ𝐾𝑖Ω
∗(𝑢𝑖) ≥ 0 guarantees that𝐾𝑖(𝑢𝑖) ⊂ Ω.

4. Mathematical Model

A mathematical model for layout clusters of objects in a
rectangular domain Ω can be formulated in the form

max
(𝑢,𝜙,𝜓,𝜌)∈𝑊⊂𝑅𝜎

𝜌, (21)

𝑊 = {(𝑢, 𝜙, 𝜓, 𝜌) ∈ 𝑅𝜎 : Φ󸀠󵱰Λ 𝑞󵱰Λ 𝑔 (𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔)

− 0.5𝜌 ≥ 0, 𝑞 > 𝑔 ∈ 𝐼𝑁, 𝜌 ≥ 0, Φ󸀠𝑇𝑖𝑇𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗)
≥ 0, 𝑖 > 𝑗, (𝑖, 𝑗) ∈ Ξ𝑞 × Ξ𝑞, 𝑞 ∈ 𝐼𝑁, Φ𝑇𝑖Ω

∗ (𝑢𝑖) ≥ 0, 𝑖

∈ 𝐼𝑛} ,

(22)

where 𝜌 is considered as a distance between convex hulls󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔), 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) is a vector of
placement parameters, 𝑢𝑖 = (V𝑖, 𝜃𝑖), V𝑖 = (𝑥𝑖, 𝑦𝑖), 𝜓 =
(𝜑𝑞𝑔, 𝛾𝑞𝑔, 𝑞 > 𝑔 ∈ 𝐽𝑁) is a vector of auxiliary variables
in a quasi-phi-function of convex hulls 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔),𝜙 = (𝑢𝑖𝑗, (𝑖, 𝑗) ∈ Ξ𝑞 × Ξ𝑞, 𝑞 ∈ 𝐼𝑁) is vector of auxiliary
variables in a quasi-phi-function of objects 𝑇𝑖(𝑢𝑖) and 𝑇𝑗(𝑢𝑗),

Φ󸀠𝑇𝑖𝑇𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗) is a quasi-phi-function of objects 𝑇𝑖(𝑢𝑖)
and 𝑇𝑗(𝑢𝑗), Φ𝑇𝑖Ω

∗(𝑢𝑖) is a phi-function of objects 𝑇𝑖(𝑢𝑖)
and Ω∗ defined in (17), Φ󸀠󵱰Λ 𝑞󵱰Λ 𝑔(𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔) is a quasi-
phi-function of convex hulls 󵱰Λ 𝑞(𝑧𝑞) and 󵱰Λ 𝑔(𝑧𝑔) defined in
(10), and 𝜎 = 1 + 3𝑛 + (𝜏𝑞/2)∑𝑁

𝑞=1𝑚𝑞(𝑚𝑞 − 1) + 𝑁(𝑁
−1) is the number of the problem variables. 𝜏𝑞 is a number
of auxiliary variables for a function that describes nonover-
lapping constraints for a pair of objects 𝑇𝑖(𝑢𝑖) and 𝑇𝑗(𝑢𝑗),(𝑖, 𝑗) ∈ Ξ𝑞 × Ξ𝑞, 𝑞 ∈ 𝐼𝑁. In particular, 𝜏𝑞 = 0 for two circles,
𝜏𝑞 = 1 for two ellipses, and 𝜏𝑞 = 2 for two convex polygons
(see Section 3.1).

Remark 5. In the case of two circles 𝐶𝑖(𝑢𝑖) and 𝐶𝑗(𝑢𝑗) we use
a phi-function Φ𝐶𝑖𝐶𝑗 (𝑢𝑖, 𝑢𝑗) instead of a quasi-phi-function
Φ󸀠𝑇𝑖𝑇𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗).

The feasible region 𝑊 given by (22) is defined by a
system of inequalities with differentiable functions. Our
models (21)-(22) are a nonconvex and continuous nonlinear
programming problem. This is an exact formulation in the
sense that it gives all optimal solutions to the layout problem.

The models (21)-(22) involve 𝑂(∑𝑁
𝑞=1𝑚2

𝑞) + 𝑂(𝑁2) non-
linear inequalities and 𝑂(∑𝑁

𝑞=1𝑚2
𝑞) + 𝑂(𝑁2) variables due to

the auxiliary variables in quasi-phi-functions.
We develop an efficient approach that employs a new

algorithm for generating initial feasible solutions to search for
local extrema of problems (21)-(22).

5. Solution Algorithm

Our solution strategy is based on themultistart algorithmand
consists of three major stages: (1) generate a set of feasible
starting points for the problems (21)-(22); (2) search for a set
of local maxima for the problems (21)-(22) starting from each
feasible point obtained at Stage (1); (3) choose the best local
maxima from those found at Stage (2).

To generate feasible starting points of the problems (21)-
(22) we develop a special algorithm CSPA (Cluster Starting
Points Algorithm) that involves the following Steps.

Step 1. With each cluster Λ 𝑞(𝑧𝑞) we associate a circular
region 𝜆𝐶𝑞 with variable center point V𝑞 = (𝑥𝑞, 𝑦𝑞) and
variable radius 𝜆𝑅𝑞, where 𝜆 is a scaling parameter and 𝑅𝑞 =
√∑𝑖∈Ξ𝑞

𝑆𝑖, 𝑆𝑖 is the area of object 𝑇𝑖, 𝑖 ∈ Ξ𝑞, 𝑞 ∈ 𝐼𝑁.

Step 2. Then we grow up all circular regions 𝜆𝐶𝑞, 𝑞 ∈ 𝐼𝑁,
within a rectangular container Ω as much as possible, solving
the following NLP subproblem:

max
(V,𝜆)∈𝑉

𝜆, (23)

𝑉 = {(V, 𝜆) ∈ 𝑅2𝑁+1 : Φ𝐶𝑞𝐶𝑔 (V𝑞, V𝑔, 𝜆) ≥ 0, 𝑞 > 𝑔

∈ 𝐼𝑁, Φ𝐶𝑞Ω
∗ (V𝑞, 𝜆) ≥ 0, 𝑞 ∈ 𝐼𝑁, 𝜆 ≥ 0} ,

(24)

where V = (V1, V2, . . . , V𝑁) is a vector of variable placement
parameters of circular areas 𝜆𝐶𝑞, 𝑞 ∈ 𝐼𝑁;
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Φ𝐶𝑞𝐶𝑔 (V𝑞, V𝑔, 𝜆) is a phi-function of circular areas𝜆𝐶𝑞 and𝜆𝐶𝑔 with center points V𝑞 = (𝑥𝑞, 𝑦𝑞) and V𝑔 = (𝑥𝑔, 𝑦𝑔) and
appropriate radii 𝜆𝑅𝑞 and 𝜆𝑅𝑔, 𝑞 > 𝑔 ∈ 𝐼𝑁,

Φ𝐶𝑞𝐶𝑔 (V𝑞, V𝑔, 𝜆) = (𝑥𝑞 − 𝑥𝑔)2 + (𝑦𝑞 − 𝑦𝑔)2

− (𝜆𝑅𝑞 + 𝜆𝑅𝑔)2 ;
(25)

Φ𝐶𝑞Ω
∗(V𝑞, 𝜆) is a phi-function of a circular area 𝜆𝐶𝑞 and the

object Ω∗ = 𝑅2 \ intΩ, 𝑞 ∈ 𝐼𝑁,
Φ𝐶𝑞Ω

∗ (V𝑞, 𝜆) = min
𝑠=1,...,4

𝑓𝑞𝑠 (V𝑞, 𝜆) ,

𝑓𝑞1 (V𝑞, 𝜆) = 𝑥𝑞 − 𝜆𝑅𝑞,
𝑓𝑞2 (V𝑞, 𝜆) = 𝑦𝑞 − 𝜆𝑅𝑞,
𝑓𝑞3 (V𝑞, 𝜆) = 𝑙 − 𝑥𝑞 − 𝜆𝑅𝑞,
𝑓𝑞4 (V𝑞, 𝜆) = 𝑤 − 𝑦𝑞 − 𝜆𝑅𝑞.

(26)

We search for a localmaximumof problems (23)-(24) starting
from a feasible point (V0 = (V01, V02, . . . , V0𝑁), 𝜆0 = 0), where
V0𝑞 ∈ Ω and 𝑞 ∈ 𝐼𝑁 are randomly generated points. Denote a
local maximum point of problems (23)-(24) by (V∗, 𝜆∗).
Step 3. Next we derive starting values of variables 𝜑0𝑞𝑔, 𝛾0𝑞𝑔
(obtained by trivial geometrical calculations); for each quasi-
phi-function Φ󸀠

󵱰Λ 𝑞󵱰Λ 𝑔(𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔), 𝑞 > 𝑔 ∈ 𝐼𝑁 in
the problems (21)-(22). These variables are considered as
parameters of separating lines between each pair of circular
areas 𝜆∗𝐶𝑞 and 𝜆∗𝐶𝑔 of radii 𝜆∗𝑅𝑞 and 𝜆∗𝑅𝑔 with center
points V∗𝑞 and V∗𝑔 , 𝑞 > 𝑔 ∈ 𝐼𝑁.
Step 4. Then we search for feasible points of the problems
(21)-(22) solving the following NLP subproblem:

max
(𝑢,𝜙,𝜓,𝛽)∈𝐺

𝛽, (27)

𝐺 = {(𝑢, 𝜙, 𝜓, 𝛽) ∈ 𝑅𝜎 : Φ󸀠
󵱰Λ 𝑞󵱰Λ 𝑔 (𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔, 𝛽)

≥ 0, 𝑞 > 𝑔 ∈ 𝐼𝑁, 0 ≤ 𝛽 ≤ 1, Φ󸀠𝑇𝑖𝑇𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗, 𝛽)
≥ 0, 𝑖 > 𝑗, (𝑖, 𝑗) ∈ Ξ𝑞 × Ξ𝑞, 𝑞 ∈ 𝐼𝑁, Φ𝑇𝑖Ω

∗ (𝑢𝑖, 𝜇)

≥ 0, 𝑖 ∈ 𝐼𝑛} ,

(28)

where 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛), 𝑢𝑖 = (V𝑖, 𝜃𝑖), V𝑖 = (𝑥𝑖, 𝑦𝑖), and𝜓 = (𝜑𝑞𝑔, 𝛾𝑞𝑔, 𝑞 > 𝑔 ∈ 𝐽𝑁); 𝛽 is a scaling parameter of our
objects; 𝜙 = (𝑢𝑖𝑗, (𝑖, 𝑗) ∈ Ξ𝑞 × Ξ𝑞, 𝑞 ∈ 𝐼𝑁) is a vector of
auxiliary variables in a quasi-phi-function of objects 𝛽𝑇𝑖(𝑢𝑖)
and 𝛽𝑇𝑗(𝑢𝑗); Φ󸀠𝑇𝑖𝑇𝑗 (𝑢𝑖, 𝑢𝑗, 𝑢𝑖𝑗, 𝛽) is a quasi-phi-function of
objects 𝛽𝑇𝑖(𝑢𝑖) and 𝛽𝑇𝑗(𝑢𝑗); Φ𝑇𝑖Ω

∗(𝑢𝑖) is a phi-function of

objects 𝛽𝑇𝑖(𝑢𝑖) and Ω∗;Φ󸀠
󵱰Λ 𝑞󵱰Λ 𝑔 (𝑧𝑞, 𝑧𝑔, 𝜑𝑞𝑔, 𝛾𝑞𝑔, 𝛽) is a quasi-

phi-function for two clusters defined in (10); 𝜎 = 1 + 3𝑛 +

(𝜏𝑞/2)∑𝑁
𝑞=1𝑚𝑞(𝑚𝑞 − 1) + 𝑁(𝑁 − 1) is the number of the

problem variables, and 𝜏𝑞 is the number of auxiliary variables.

We use a feasible starting point (𝑢0, 𝜙0, 𝜓0, 𝛽0 = 0) to
solve the problems (27)-(28), where 𝜓0 = (𝜑0𝑞𝑔, 𝛾0𝑞𝑔, 𝑞 > 𝑔 ∈
𝐽𝑁) is obtained at Step 3; V0𝑖 = (𝑥0𝑖 , 𝑦0𝑖 ) ∈ 𝐶𝑞 is a vector of
random generated translation parameters and 𝜃0𝑖 ∈ [0, 2𝜋] is
a randomly generated rotation parameter of object𝛽𝑇𝑖 (𝑢𝑖) for
𝑖 ∈ Ξ𝑞, 𝑞 ∈ 𝐼𝑁; 𝜙0 = (𝑢0𝑖𝑗, (𝑖, 𝑗) ∈ Ξ𝑞 ×Ξ𝑞, 𝑞 ∈ 𝐼𝑁), and a vector
𝑢0𝑖𝑗 of auxiliary variables is found from the trivial geometrical
calculations depending on the object shape (except circles)
such that Φ󸀠𝑇𝑖𝑇𝑗 (𝑢0𝑖 , 𝑢0𝑗 , 𝑢0𝑖𝑗, 𝛽0 = 0) ≥ 0. In particular, for two
ellipses 𝑢0𝑖𝑗 = 𝜙0𝑖𝑗 and for two convex polygons 𝑢0𝑖𝑗 = (𝜙0𝑖𝑗, 𝛾0𝑖𝑗)
(see Section 3.1).

Global maximum of the problems (27)-(28) (i.e., 𝛽∗ = 1)
provides a feasible solution of the problems (21)-(22). A point
of global maximum can be used as a starting point to search
for local maximum of the problems (21)-(22).

Remark 6. Application of the decomposition algorithm
described in [3] is recommended to solve the problem (21)-
(22), when 𝑚𝑞 ≥ 11 for clusters Λ 𝑞(𝑧𝑞), 𝑞 ∈ 𝐽𝑁, in order to
reduce the computational costs (time and memory).

6. Computational Results

Here we present a number of examples to demonstrate the
efficiency of our methodology. We have run all experiments
on an AMD FX(tm)-6100, 3.30 GHz computer, Program-
ming Language C++, Windows 7. For the local optimisation
we use the IPOPT code https://projects.coin-or.org/Ipopt),
developed in [27]. Default options were used for running this
software.

We present our new instances for the layout problem in
a rectangular container Ω = {(𝑥, 𝑦) ∈ 𝑅2 : 0 ≤ 𝑥 ≤ 𝑙 =
15, 0 ≤ 𝑦 ≤ 𝑤 = 15}. We run our program 100 times for each
example.

Example 1. An ordered collection of 𝑛 = 30 ellipses is given.
The collection of ellipses is divided into 𝑁 = 3 clusters
Λ 𝑞(𝑧𝑞), 𝑞 = 1, 2, 3 : 𝑚1 = 10,𝑚2 = 10, and 𝑚3 = 10.

All ellipses are defined by their sizes {(𝑎𝑖, 𝑏𝑖), 𝑖 = 1, . . . , 30}
= { (2.0 1.5), (1.8 1.5), (1.6 1.5), (1.5 1.2), (1.3 1.0), (1.2 0.9),
(1.1 0.8), (1.0 0.75), (0.9 0.6), (0.8 0.5), (0.7 0.3), (2.0 1.5),
(1.8 1.5), (1.6 1.5), (1.5 1.2), (1.3 1.0), (1.2 0.9), (1.1 0.8),
(1.0 0.75), (0.9 0.6), (0.8 0.5), (0.7 0.3), (2.0 1.5), (1.8 1.5),
(1.6 1.5), (1.5 1.2), (1.3 1.0), (1.2 0.9), (1.1 0.8), (1.0 0.75) }.
Our Result

Placement Parameters of Ellipses. {(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 1, . . . , 30}
= { (10.469949 12.267537 2.244218), (7.279733 12.352075
2.063582), (2.471444 12.548774 13.249926), (8.464111
9.691723 0.145847), (12.920038 11.433172 5.530417), (4.909339
12.890715 1.640578), (4.716335 10.894489 0.195532),
(13.092110 13.335890 6.393843), (10.806375 9.993924 -
0.401328), (6.267221 10.149879 6.032813), (0.813462 5.582920
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Figure 1: Local optimal arrangement of clusters in Example 1.

1.582319), (2.129866 4.016161 2.043699), (4.516627 2.106510
5.713416), (2.014535 8.617626 4.606157), (5.875381 7.080877
1.710554), (5.246435 4.663067 0.181324), (3.712908 6.439680
3.845887), (1.613133 1.313706 6.313737), (4.250763 8.301450
4.942235), (1.768064 6.435263 0.065954), (13.527926 1.206001
2.906999), (10.087641 4.308896 2.501728), (12.390656
5.699737 2.716022), (8.409176 2.472279 4.931800), (9.003824
5.818192 1.638294), (13.004545 2.937130 5.336177), (13.095024
8.392657 -0.572537), (10.944860 1.726727 0.720864),
(10.969680 7.572605 5.373848), (10.898378 3.513018 -
0.101262) }.

The value of objective function is 𝜌∗= 2.109291, while the
computational time is 7131.446 sec.

Corresponding optimized layout is presented in Figure 1.

Example 2. An ordered collection of 𝑛 = 36 circles is given.
The collection of circles is divided into𝑁 = 4 clustersΛ 𝑞(𝑧𝑞),𝑞 = 1, 2, 3, 4 : 𝑚1 = 10,𝑚2 = 10,𝑚3 = 8, and 𝑚4 = 8.

All circles are defined by their radii:
{(𝑟𝑖), 𝑖 = 1, . . . , 36} = { (1.495), (1.500), (1.501), (1.206),

(1.009), (0.912), (0.815), (0.765), (0.621), (0.524), (0.336),
(1.550), (1.533), (1.512), (1.239), (1.042), (0.945), (0.848),
(0.7925), (0.654), (0.557), (0.380), (1.605), (1.566), (1.523),
(1.272), (1.075), (0.978), (0.881), (0.820), (0.687), (0.590),
(0.424), (1.660), (1.599), (1.534) }
Our Result

Placement Parameters of Circles. {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 36}=
{ (13.089089 1.910911), (9.282866 1.915911), (11.652953
4.566297), (13.378089 7.152616), (9.147148 4.421237),
(11.269926 6.948703), (9.688888 6.189878), (13.819089
5.231585), (13.954597 3.846912), (11.189529 2.595038),
(3.381819 14.237068), (4.209528 11.030014), (6.318116
8.780847), (1.927911 13.072089), (2.506044 8.821697),

Figure 2: Local optimal arrangement of clusters in Example 2.

(6.003824 12.979437), (1.360911 10.681408), (6.604792
11.144527), (4.222026 13.460604), (4.247002 8.078382),
(3.849810 0.972911), (4.971098 4.766312), (5.740826 2.020911),
(1.981911 1.981911), (1.938911 5.681867), (6.544523 5.269738),
(3.814234 3.883877), (4.418702 6.006885), (13.509939
9.758354), (11.287589 11.489670), (11.993830 10.158402),
(13.994089 11.147396), (11.771968 9.049173), (9.264512
12.924089), (9.777002 9.600308), (13.050089 13.050089) }.

The value of objective function is 𝜌∗ = 0.415912, while
the computational time is 484.461sec.

Corresponding optimized layout is presented in Figure 2.

Example 3. An ordered collection of 𝑛 = 36 objects is given.
The collection of ellipses is divided into 𝑁 = 4 clusters
Λ 𝑞(𝑧𝑞), 𝑞 = 1, 2, 3, 4 : 𝑚1 = 10 circles, 𝑚2 = 10 circles,
𝑚3 = 8 ellipses, and𝑚4 = 8 ellipses.

All circles are defined by their radii:
{(𝑟𝑖), 𝑖 = 1, . . . , 20}={ (1.5), (1.5), (1.5), (1.2), (1.0), (0.9),

(0.8), (0.75), (0.6), (0.5), (0.3), (1.5), (1.5), (1.5), (1.2), (1.0),
(0.9), (0.8), (0.75), (0.6) }

All ellipses are defined by their semi axes:
{(𝑎𝑖, 𝑏𝑖), 𝑖 = 21, . . . , 36}={ (0.8 0.5), (0.7 0.3), (2.0 1.5), (1.8

1.5), (1.6 1.5), (1.5 1.2), (1.3 1.0), (1.2 0.9), (1.1 0.8), (1.0 0.75),
(0.9 0.6), (0.8 0.5), (0.7 0.3), (2.0 1.5), (1.8 1.5), (1.6 1.5) }.
Our Result

Placement Parameters of Circles. {(𝑥𝑖, 𝑦𝑖), 𝑖 =
1, .., 20}={ (5.969333, 5.831559), (1.910221, 4.910224), (1.910221,
1.910223), (4.593503, 1.610221), (3.633171, 6.721701), (3.920715,
3.599532), (5.620213, 3.558210), (1.160222, 7.031545),
(4.001869, 5.097335), (6.120123, 2.358173), (11.629726,
8.900163), (13.089779, 13.089779), (13.089779 10.089779),
(8.950916, 11.115733), (10.406497,13.389779), (7.836995,
8.063426), (9.688425, 8.490281), (10.812773, 9.765367),
(11.294872, 11.568861), (7.474932, 9.621922) }.
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Figure 3: Local optimal arrangement of clusters in Example 3.

Placement Parameters of Ellipses. {(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 =
21, .., 36}=(11.912729 0.916670 9.295412), (10.183793 0.775760
-0.039353), (9.620035 5.473407 -0.639827), (11.012582
2.782653 -3.922661), (12.998276 6.515842 -3.441852),
(8.195878 1.909350 1.627631), (13.574899 3.775017 13.927174),
(13.533974 1.475715 3.943306), (4.818922 13.635480 -
0.705039), (6.200920 12.630733 3.035222), (6.736535
13.971098 -0.026565), (3.486483 11.514966 5.442422),
(4.430982 12.359577 0.186450), (4.973013 10.072013 -
1.233481), (2.113962 12.981281 2.518350), (1.910433 9.773977
17.233423) }.

The value of objective function is 𝜌∗= 0.410222, while the
computational time is 1344.9 sec.

Corresponding optimized layout is presented in Figure 3.

Example 4. An ordered collection of 𝑛 = 36 objects is given.
The collection of objects is divided into𝑁 = 4 clustersΛ 𝑞(𝑧𝑞),𝑞 = 1, 2, 3, 4;𝑚1 = 10 circles,𝑚2 = 10 circles,𝑚3 = 8 ellipses,
and𝑚4 = 8 ellipses.

All circles are defined by their radii:
{(𝑟𝑖), 𝑖 = 1, . . . , 20}={ (1.625), (1.575), (1.525), (1.275),

(1.075), (0.975), (0.875), (0.8125), (0.675), (0.575), (0.400),
(1.625), (1.575), (1.525), (1.275), (1.075), (0.975), (0.875),
(0.8125), (0.675) }

All ellipses are defined by their semi axes:
{(𝑎𝑖, 𝑏𝑖), 𝑖 = 21, . . . , 36}={ (0.8 0.5), (0.7 0.3), (2.0 1.5), (1.8

1.5), (1.6 1.5), (1.5 1.2), (1.3 1.0), (1.2 0.9), (1.1 0.8), (1.0 0.75),
(0.9 0.6), (0.8 0.5), (0.7 0.3), (2.0 1.5), (1.8 1.5), (1.6 1.5) }.
Our Result

Placement Parameters of Circles. {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 20}
= { (5.025933 1.876324), (1.826324 1.826324), (3.974219
6.518053), (6.563760 7.583078), (3.350845 3.993889),
(1.451364 5.929808), (6.228908 4.078766), (1.109501

4.136463), (6.051897 5.654399), (4.881146 4.620133),
(2.547234 11.199363), (1.876324 13.109992), (1.826324
9.360637), (7.011083 11.353004), (4.211329 11.390181),
(8.183466 13.673676), (4.390190 13.773676), (6.234106
13.623755), (4.213121 9.302682), (5.668491 9.610177) }.
Placement Parameters of Ellipses. {(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 21, . . . , 36}
= { (11.954503 13.951223 14.239492), (11.755667 12.554007
2.556380), (9.866202 7.871985 -11.985510), (13.200316
7.946103 4.316218), (11.218788 10.594559 -25.265057),
(13.543329 13.252969 -23.435600), (10.483036 13.231361
1.774510), (13.776518 10.616527 16.797305), (8.189442
2.594354 -21.480649), (7.771967 1.076809 22.539607),
(14.052522 1.182705 20.790155), (9.223332 1.011216 -8.266075),
(14.056688 2.541830 -19.537970), (11.441889 1.774003 -
12.367135), (12.971454 4.412810 -15.416986), (9.596560
4.458588 44.002983) }.

The value of objective function is 𝜌∗ = 0.251325, while
the computational time is 1285.73 sec.

Corresponding optimized layout is presented in Figure 4.

Example 5. An ordered collection of 𝑛 = 36 objects is given.
The collection of objects is divided into𝑁 = 4 clustersΛ 𝑞(𝑧𝑞),𝑞 = 1, 2, 3, 4: 𝑚1 = 10 convex polygons, 𝑚2 = 10 circles,𝑚3 = 8 ellipses, and𝑚4 = 8 ellipses.

All polygons are defined by their vertices:
{{(𝑝𝑥𝑖𝑘, 𝑝𝑦𝑖𝑘), 𝑘 = 1, ..., 6}, 𝑖 = 1, . . . , 10} ={{ (1.975377

0.234652), (0.716736 1.400371), (-1.258641 1.165719), (-
1.975377 -0.234652), (-0.716736 -1.400371), (1.258641
-1.165719) }, { (1.711902 0.463525), (0.374241 1.467221),
(-1.337661 1.003696), (-1.711902 -0.463525), (-0.374241
-1.467221), (1.337661 -1.003696) }, { (1.425610 0.680986),
(0.083738 1.497944), (-1.341873 0.816959), (-1.425610 -
0.680986), (-0.083738 -1.497944), (1.341873 -0.816959) },
{ (1.213525 0.705342), (-0.156793 1.193426), (-1.370318
0.488084), (-1.213525 -0.705342), (0.156793 -1.193426),
(1.370318 -0.488084) }, {(0.919239 0.707107), (-0.336465
0.965926), (-1.255704 0.258819), (-0.919239 -0.707107),
(0.336465 -0.965926), (1.255704 -0.258819) }, { (0.705342
0.728115), (-0.488084 0.822191), (-1.193426 0.094076),
(-0.705342 -0.728115), (0.488084 -0.822191), (1.193426 -
0.094076) }, { (0.499390 0.712805), (-0.599103 0.670936),
(-1.098492 -0.041869), (-0.499390 -0.712805), (0.599103
-0.670936), (1.098492 0.041869) }, { (0.309017 0.713292),
(-0.669131 0.557359), (-0.978148 -0.155934), (-0.309017
-0.713292), (0.669131 -0.557359), (0.978148 0.155934) },
{ (0.140791 0.592613), (-0.699431 0.377592), (-0.840222
-0.215021), (-0.140791 -0.592613), (0.699431 -0.377592),
(0.840222 0.215021) }, { (0.062767 0.498459), (-0.659301
0.283203), (-0.722068 -0.215256), (-0.062767 -0.498459),
(0.659301 -0.283203), (0.722068 0.215256) }.

All circles are defined by their radii:
{𝑟𝑖, 𝑖 = 11, . . . , 20}={ (0.336, 1.55, 1.533, 1.512, 1.239, 1.042,

0.945, 0.848, 0.7925, 0.654 }
All ellipses are defined by their semi axes:
{(𝑎𝑖, 𝑏𝑖), 𝑖 = 21, . . . , 36}={ (0.8 0.5), (0.7 0.3), (2.0 1.5),

(1.8 1.5), (1.6 1.5), (1.5 1.2), (1.3 1.0), (1.2 0.9), (1.1 0.8),
(1.0 0.75), (0.9 0.6), (0.8 0.5), (0.7 0.3), (2.0 1.5), (1.8 1.5),
(1.6 1.5) }.
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Figure 4: Local optimal arrangement of clusters in Example 4.

Figure 5: Local optimal arrangement of clusters in Example 5.

Our Result

Placement Parameters of Polygons. {(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 1, . . . , 10}
= { (3.447806 9.597127 2.606907), (4.632826 12.154203
6.031453), (1.935707 13.328641 2.695960), (7.137488 11.281372
4.553086), (6.594090 13.766083 3.344861), (6.187148 9.257646
-0.386618), (1.270813 11.108185 0.670004), (5.355596 7.966335
0.229233), (4.062287 14.055842 3.636614), (7.862803 9.559287
6.671758) }
Placement Parameters of Circles. {(𝑥𝑖, 𝑦𝑖), 𝑖 = 11, . . . , 20}
= { (14.242145 4.607830), (11.278663 1.905800), (8.391616

6.969211), (9.039026 3.993831), (11.103865 5.862139),
(13.546072 3.321421), (13.699200 1.300800), (8.985716
1.203801), (13.126975 5.194957), (11.917846 4.076973) }.
Placement Parameters of Ellipses. {(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 21, . . . , 36} =
((3.646227 1.155469 1.533947), (1.038618 8.531725 0.246199),
(2.256484 6.610724 0.489860), (5.799650 1.865204 6.453077),
(5.363840 4.958834 1.597596), (1.798943 1.623608 5.811350),
(1.423676 4.102206 7.386076), (3.423022 3.445736 4.374109),
(9.931251 9.996600 5.101874), (11.636070 11.136792 2.665959),
(13.383614 11.035564 2.838929), (13.844824 7.219741 6.333814),
(14.343409 10.348285 1.605276), (12.459639 8.974386
0.003111), (9.963431 12.848701 1.699000), (13.051879 13.13605
10.285045) }.

The value of objective function is 𝜌∗ = 0.355801, while
the computational time is 4625.15 sec.

Corresponding optimized layout is presented in Figure 5.

Example 6. An ordered collection of 𝑛 = 30 objects is given.
The collection of objects is divided into𝑁 = 3 clustersΛ 𝑞(𝑧𝑞),𝑞 = 1, 2, 3 : 𝑚1 = 10 convex polygons, 𝑚2 = 10 circles, and𝑚3 = 10 ellipses.

All polygons are defined by their vertices:
{{(𝑝𝑥𝑖𝑘, 𝑝𝑦𝑖𝑘), 𝑘 = 1, . . . , 6}, 𝑖 = 1, . . . , 10} = {{ (2.000000

0.000000), (1.000000 1.732051), (-1.000000 1.732051), (-
2.000000 0.000000), (-1.000000 -1.732051), (1.000000
-1.732051) }, { (1.800000 0.000000), (0.900000 1.558846),
(-0.900000 1.558846), (-1.800000 0.000000), (-0.900000
-1.558846), (0.900000 -1.558846) }, { (1.700000 0.000000),
(0.850000 1.472243), (-0.850000 1.472243), (-1.700000
0.000000), (-0.850000 -1.472243), (0.850000 -1.472243) },
{ (1.600000 0.000000), (0.800000 1.385641), (-0.800000
1.385641), (-1.600000 0.000000), (-0.800000 -1.385641),
(0.800000 -1.385641) }, { (1.400000 0.000000), (0.700000
1.212436), (-0.700000 1.212436), (-1.400000 0.000000),
(-0.700000 -1.212436), (0.700000 -1.212436) }, { (1.300000
0.000000), (0.650000 1.125833), (-0.650000 1.125833),
(-1.300000 0.000000), (-0.650000 -1.125833), (0.650000
-1.125833) }, { 1.200000 0.000000), (0.600000 1.039230),
(-0.600000 1.039230), (-1.200000 0.000000), (-0.600000
-1.039230), (0.600000 -1.039230) }, { (1.100000 0.000000),
(0.550000 0.952628), (-0.550000 0.952628), (-1.100000
0.000000), (-0.550000 -0.952628), (0.550000 -0.952628) },
{ (1.000000 0.000000), (0.500000 0.866025), (-0.500000
0.866025), (-1.000000 0.000000), (-0.500000 -0.866025),
(0.500000 -0.866025) }, { (0.900000 0.000000), (0.450000
0.779423), (-0.450000 0.779423), (-0.900000 0.000000),
(-0.450000 -0.779423), (0.450000 -0.779423) }}.

All circles are defined by their radii:
{𝑟𝑖, 𝑖 = 11, . . . , 20}= { 0.336, 1.55, 1.533, 1.524, 1.513, 1.242,

1.23, 1.048, 0.951, 0.854 }.
All ellipses are defined by their semi axes:
{(𝑎𝑖, 𝑏𝑖), 𝑖 = 21, . . . , 30}={ (0.8 0.5), (0.7 0.3), (2.0 1.5),

(1.9 1.6), (1.8 1.5), (1.6 1.5), (1.5 1.2), (1.3 1.0), (1.2 0.9),
(1.1 0.8) }.
Our Result

Placement Parameters of Polygons. {(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 1, . . . , 10}
= { (13.006728 7.204303 2.567940), (7.917914 11.613054
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Figure 6: Local optimal arrangement of clusters in Example 6.

4.423250), (13.314400 11.008183 4.712389) (11.061231 13.271814
2.094380), (10.629721 10.486177 3.665191), (10.185459
8.006747 3.615137), (13.586642 13.747413 3.141592), (13.807690
4.598105 2.567940), (8.341396 9.221119 3.376054) (8.985800
14.007219 6.283185) }
Placement Parameters of Circles. {(𝑥𝑖, 𝑦𝑖), 𝑖 = 11, . . . , 20}
= { (8.537177 3.208783), (12.787093 1.765862), (9.700995
1.746357), (4.878381 1.737357), (7.206433 6.712881), (5.794319
4.347302), (9.055276 4.686597), (11.178919 3.862321),
(7.286139 1.164357), (7.371932 2.967318) }.
Placement Parameters of Ellipses. {(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 21, . . . , 30}
= { (0.720674 11.248417 4.850299), (4.490215 8.752444
3.338436), (1.734800 2.740444 1.764414), (1.981734 9.367337
5.537979), (4.912270 13.064601 2.125433), (1.778636
13.250446 3.779380), (1.425379 6.137135 4.902743), (3.677896
7.396278 2.407474), (4.702453 10.211496 2.031648), (3.268506
5.159948 1.494571) }.

The value of objective function is 𝜌∗= 0.213358, while the
computational time is 7986.627 sec.

Corresponding optimized layout is presented in Figure 6.

7. Conclusions

We consider a new packing (layout) problem for a num-
ber of clusters of convex objects. This research is moti-
vated by a container-loading problem; however, we think
that similar problems arise naturally in many other pack-
ing/cutting/clustering issues. The layout is considered for a
rectangular container of a given size subject to nonoverlap-
ping of (continuously translated and rotated) objects within
a cluster. The objects are specified by their sizes and have
the same shape for the appropriate cluster. Each cluster is
represented by the convex hull of objects that form this

cluster. It is assumed that two clusters do not overlap each
other if so are their convex hulls and a cluster belongs to
a rectangular container if the corresponding convex hull
does.New tools ofmathematicalmodeling of nonoverlapping
and containment for clusters are provided. An extension of
the phi-function technique to the cluster convex hulls is
presented taking into account variability of their shapes and
metrical characteristics. New quasi-phi-functions and phi-
functions are introduced. These functions avoid constructing
convex hull for each cluster. A novel mathematical model
for optimized layout of clusters is considered and stated
as a nonlinear continuous problem. A novel algorithm for
searching for initial feasible solutions to accelerate a local
optimization procedure is developed. Computational results
are provided to demonstrate the efficiency of our approach.
The computational results are presented for new instances of
the layout problem for clusters involving ellipses, circles, and
convex polygons.

Appendix

Let 𝐴 ⊂ 𝑅2 and 𝐵 ⊂ 𝑅2 be two objects. The position of
object 𝐴 is defined by a vector of placement parameters 𝑢𝐴 =(V𝐴, 𝜃𝐴), where V𝐴 = (𝑥𝐴, 𝑦𝐴) is a translation vector and 𝜃𝐴
is a rotation angle. The object 𝐴, rotated by an angle 𝜃𝐴 and
translated by a vector V𝐴, is denoted by 𝐴(𝑢𝐴).
Definition [see [23]]. A continuous and everywhere defined
function Φ𝐴𝐵(𝑢𝐴, 𝑢𝐵) is called a phi-function for objects
𝐴(𝑢𝐴) and 𝐵(𝑢𝐵) if

Φ𝐴𝐵 (𝑢𝐴, 𝑢𝐵) < 0, if int𝐴 (𝑢𝐴) ∩ int𝐵 (𝑢𝐵) ̸= ⌀;
Φ𝐴𝐵 (𝑢𝐴, 𝑢𝐵) = 0,
if int𝐴 (𝑢𝐴) ∩ int𝐵 (𝑢𝐵) = ⌀ and 𝑓𝑟𝐴 (𝑢𝐴) ∩ 𝑓𝑟𝐵 (𝑢𝐵) ̸= ⌀;
Φ𝐴𝐵 (𝑢𝐴, 𝑢𝐵) > 0, if 𝐴 (𝑢𝐴) ∩ 𝐵 (𝑢𝐵) = ⌀.

(A.1)

Phi-functions allow us to distinguish the following three
cases: 𝐴(𝑢𝐴) and 𝐵(𝑢𝐵) are intersecting so that 𝐴(𝑢𝐴) and𝐵(𝑢𝐵) have common interior points; 𝐴(𝑢𝐴) and 𝐵(𝑢𝐵) do not
intersect; i.e., 𝐴(𝑢𝐴) and 𝐵(𝑢𝐵) do not have common points;
𝐴(𝑢𝐴) and 𝐵(𝑢𝐵) are tangent; i.e.,𝐴(𝑢𝐴) and 𝐵(𝑢𝐵) have only
common frontier points.

The inequality Φ𝐴𝐵(𝑢𝐴, 𝑢𝐵) ≥ 0 describes the nonover-
lapping constraint, i.e., int𝐴(𝑢𝐴) ∩ int𝐵(𝑢𝐵) = ⌀, and
the inequality Φ𝐴𝐵∗(𝑢𝐴, 𝑢𝐵) ≥ 0 describes the containment
constraint 𝐴(𝑢𝐴) ⊂ 𝐵(𝑢𝐵), i.e., int𝐴(𝑢𝐴) ∩ int 𝐵∗(𝑢𝐵) = ⌀,
where 𝐵∗ = 𝑅2 \ int𝐵.
Definition [see [23]]. A phi-function Φ̃𝐴𝐵(𝑢𝐴, 𝑢𝐵) is called
a normalized phi-function of 𝐴(𝑢𝐴) and 𝐵(𝑢𝐵) if its values
coincide with the Euclidian distance between the objects
𝐴(𝑢𝐴) and 𝐵(𝑢𝐵), provided that int𝐴(𝑢𝐴) ∩ int 𝐵(𝑢𝐵) = ⌀.

Let 𝜌 be theminimum allowable distance between objects
𝐴 and 𝐵, then Φ̃𝐴𝐵 ≥ 𝜌 ⇐⇒ dist(𝐴, 𝐵) ≥ 𝜌. Here,
dist(𝐴, 𝐵) = min𝑎∈𝐴,𝑏∈𝐵𝑑(𝑎, 𝑏) and 𝑑(𝑎, 𝑏) is the Euclidean
distance between two points 𝑎 and 𝑏 in 𝑅2.
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Definition [see [3]]. A continuous and everywhere defined
function Φ󸀠𝐴𝐵(𝑢𝐴, 𝑢𝐵, 𝑢󸀠) is called a quasi-phi-function for
twoobjects𝐴(𝑢𝐴) and𝐵(𝑢𝐵) ifmax𝑢󸀠Φ󸀠𝐴𝐵(𝑢𝐴, 𝑢𝐵, 𝑢󸀠) is a phi-
function for the objects.

Here 𝑢󸀠 is a vector of auxiliary continuous variables that
belongs to Euclidean space.

Based on features of a quasi-phi-function the nono-
verlapping constraint can be described in the form: if
Φ󸀠𝐴𝐵(𝑢𝐴, 𝑢𝐵, 𝑢󸀠) ≥ 0 for some 𝑢󸀠, then int𝐴(𝑢𝐴)∩ int𝐵(𝑢𝐵) =⌀.

Definition [see [3]]. Function Φ̃󸀠𝐴𝐵(𝑢𝐴, 𝑢𝐵, 𝑢󸀠) is called a nor-
malized quasi-phi-function for objects 𝐴(𝑢𝐴) and 𝐵(𝑢𝐵), if
function max𝑢󸀠Φ̃󸀠𝐴𝐵(𝑢𝐴, 𝑢𝐵, 𝑢󸀠) is a normalized phi-function
for the objects.
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