

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Bis{[(-)-(S)-1-(4-bromophenyl)ethyl]iminomethyl}thiophene

Angel Mendoza,^a* Sylvain Bernès,^b Guadalupe Hernández-Téllez,^c Oscar Portillo-Moreno^c and René Gutiérrez^c

^aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico, ^bDEP, Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño 64570 Monterrey, NL, Mexico, and ^cLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, PO Box 1067, 72001 Puebla, Puebla, Mexico Correspondence e-mail: angel.mendoza@correo.buap.mx

Received 7 February 2014; accepted 18 February 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.036; *wR* factor = 0.072; data-to-parameter ratio = 17.0.

The title compound, $C_{22}H_{20}Br_2N_2S$, was synthesized under solvent-free conditions. The molecule shows crystallographic C_2 symmetry, with the S atom of the central thiophene ring lying on a twofold rotation axis. Furthermore, as a consequence of the (*S*,*S*) stereochemistry, the molecule has a twisted conformation. The dihedral angle between the thiophene and benzene rings is 72.7 (2)° and that between the two benzene rings is 55.9 (2)°. In the crystal, molecules are arranged in a chevron-like pattern, without any significant intermolecular interactions.

Related literature

For the solvent-free organic synthesis, see: Tanaka & Toda (2000). For the structure of a chiral bis-aldimine compound, see: Espinosa Leija *et al.* (2009). For structures of thiophenes substituted in positions 2 and 5 by imine functionalities, see: Bernès *et al.* (2013); Kudyakova *et al.* (2012).

Experimental

Crystal data

 $C_{22}H_{20}Br_2N_2S$ $M_r = 504.27$ Monoclinic, C2 a = 24.5329 (15) Å b = 5.9762 (5) Å c = 7.5944 (5) Å $\beta = 98.536 (6)^{\circ}$

Data collection

```
Agilent Xcalibur (Atlas, Gemini)
diffractometer
Absorption correction: numerical
(CrysAlis PRO; Agilent, 2013)
T_{\rm min} = 0.400, T_{\rm max} = 0.815
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.036\\ wR(F^2) &= 0.072\\ S &= 1.03\\ 2107 \text{ reflections}\\ 124 \text{ parameters}\\ 1 \text{ restraint}\\ \text{H-atom parameters constrained} \end{split}$$

 $V = 1101.11 (14) Å^{3}$ Z = 2 Mo K\alpha radiation $\mu = 3.79 \text{ mm}^{-1}$ T = 298 K 0.52 × 0.15 × 0.06 mm

6101 measured reflections 2107 independent reflections 1630 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

 $\begin{array}{l} \Delta \rho_{max} = 0.20 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.35 \ e \ \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 914 \ \mbox{Friedel pairs} \\ \mbox{Absolute structure parameter:} \\ 0.011 \ (8) \end{array}$

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2013); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Support from VIEP-UAP (GUPJ-NAT12-G-2013) is acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5340).

References

- Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies Inc., Santa Clara, CA, USA.
- Bernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, 01428.
- Espinosa Leija, A., Hernández, G., Cruz, S., Bernès, S. & Gutiérrez, R. (2009). Acta Cryst. E65, 01316.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kudyakova, Y. S., Burgart, Y. V., Slepukhin, P. A. & Saloutin, V. I. (2012). Mendeleev Commun. 22, 284–286.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.

supplementary materials

Acta Cryst. (2014). E70, o345 [doi:10.1107/S1600536814003651]

2,5-Bis{[(-)-(S)-1-(4-bromophenyl)ethyl]iminomethyl}thiophene

Angel Mendoza, Sylvain Bernès, Guadalupe Hernández-Téllez, Oscar Portillo-Moreno and René Gutiérrez

1. Comment

In continuation of our work focused on chiral bisimines (Espinosa Leija *et al.*, 2009; Bernès *et al.*, 2013), we have now synthesized the title compound under the solvent-free approach because of the cleaner, safer, and easier aspects to perform in the synthetic work. So, solvent-free conditions are becoming more popular and it is often claimed that the best solvent is no solvent. (Tanaka & Toda, 2000).

The bis-aldimine compound shows an *E* configuration over every imine bond (Fig. 1). The molecule is an (*S*,*S*) diastereoisomer as expected by synthetic procedure. The asymmetric unit contains a half-molecule. The S atom of the molecule is located on a twofold rotation axis of the space group *C*2. and as a consequence the Br-aldimines groups are placed opposite to the central thiophene ring. Only some previous reports of 2,5-thiophene compounds with achiral or chiral substituents have showed C_2 crystallographic symmetry like title compound (Kudyakova *et al.*, 2012, space group *C*2/*c*; Bernès *et al.*, 2013, space group *P*22₁2₁). The crystal packing does not feature any particular interactions (intra or intermolecular) and the supramolecular arrangement in the solid state shows a chevron-like pattern viewed along the *b* axis (Fig. 2).

2. Experimental

Under solvent-free conditions, a mixture of 2,5-thiophenedicarboxaldehyde (100 mg, 0.71 mmol) and (S)-(–)-1-(4bromophenyl)ethylamine (285 mg, 1.42 mmol) in a 1:2 molar ratio were mixed at room temperature, giving a white solid. The crude was recrystallized from CH₂Cl₂, affording colorless crystals of the title compound.

Yield 96%; m.p. 147–149 °C. Spectroscopic data: $[a]_D^{25} = +59.6$ (c 1, CHCl₃). IR (KBr): 1623 cm⁻¹ (C=N). ¹H NMR (400 MHz, CDCl₃/TMS): $\delta = 1.51$, 1.53 (d, 6H, CHCH₃), 4.44, 4.45, 4.47, 4.49(q, 2H, CH), 7.29–7.45 (m, 10 H, Ar), 8.36 (s, 2 H, *H*C=N). ¹³C NMR (100 MHz, CDCl₃/TMS) $\delta = 25.1$ (CCH₃), 68.7 (CHCH₃), 120.6 (Ar), 128.3 (Ar), 130.1 (Ar), 131.4 (Ar), 144.0 (Ar), 145.1 (Ar), 152. 7 (HC=N). MS—EI: m/z = 504 (M^+).

3. Refinement

The absolute configuration was determined using the anomalous dispersion of the Br atom, and was that expected from the synthesis, carried-out with an enantiomerically pure amine. All H atoms were placed in calculated positions, with C— H bond lengths fixed to 0.96 Å for the methyl group and 0.93 Å for aromatic CH groups. Isotropic displacement parameters were calculated as $U_{iso}(H) = 1.5U_{eq}(\text{carrier atom})$ for the methyl group and $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$ otherwise.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis RED* (Agilent, 2013); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Figure 1

The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

A packing diagram of the title compound, viewed along the *b* axis.

2,5-Bis{[(-)-(S)-1-(4-bromophenyl)ethyl]iminomethyl}thiophene

Crystal data	
$C_{22}H_{20}Br_2N_2S$	F(000) = 504
$M_r = 504.27$	$D_{\rm x} = 1.521 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2	Melting point: 420 K
Hall symbol: C 2y	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 24.5329 (15) Å	Cell parameters from 1609 reflections
b = 5.9762 (5) Å	$\theta = 4.4 - 25.2^{\circ}$
c = 7.5944 (5) Å	$\mu = 3.79 \text{ mm}^{-1}$
$\beta = 98.536 \ (6)^{\circ}$	T = 298 K
$V = 1101.11 (14) Å^3$	Prism, colourless
Z = 2	$0.52 \times 0.15 \times 0.06 \text{ mm}$

Data collection

Agilent Xcalibur (Atlas, Gemini) diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.5564 pixels mm ⁻¹ ω scans Absorption correction: numerical (<i>CrysAlis PRO</i> ; Agilent, 2013) $T_{\min} = 0.400, T_{\max} = 0.815$	6101 measured reflections 2107 independent reflections 1630 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 26.1^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -30 \rightarrow 30$ $k = -7 \rightarrow 7$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.072$ S = 1.03 2107 reflections 124 parameters 1 restraint 0 constraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0288P)^2 + 0.0296P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20$ e Å ⁻³ $\Delta\rho_{min} = -0.35$ e Å ⁻³ Absolute structure: Flack (1983), 914 Friedel pairs Absolute structure parameter: 0.011 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.15628 (2)	0.49000 (18)	0.61658 (7)	0.1112 (4)	
0.5	0.2196 (2)	0.5	0.0472 (4)	
0.47486 (16)	0.0181 (7)	0.6292 (5)	0.0427 (10)	
0.4216 (2)	0.4840 (10)	1.0744 (5)	0.0657 (13)	
0.4194	0.6248	1.0129	0.099*	
0.4595	0.4499	1.1175	0.099*	
0.4013	0.4929	1.173	0.099*	
0.2306 (2)	0.4327 (11)	0.7169 (6)	0.0639 (15)	
0.33894 (18)	0.3489 (7)	0.8651 (5)	0.0441 (11)	
0.3243 (2)	0.5418 (9)	0.7670 (6)	0.0569 (13)	
0.3514	0.6457	0.7513	0.068*	
0.43094 (15)	0.2748 (6)	0.8052 (5)	0.0452 (9)	
0.2703 (2)	0.5823 (9)	0.6921 (7)	0.0674 (16)	
0.2613	0.711	0.6253	0.081*	
0.2971 (2)	0.1997 (9)	0.8837 (6)	0.0603 (13)	
0.3056	0.0688	0.9482	0.072*	
0.2431 (2)	0.2389 (11)	0.8092 (7)	0.0690 (14)	
0.2157	0.135	0.8218	0.083*	
0.3974 (2)	0.3024 (8)	0.9485 (5)	0.0501 (12)	
	x 0.15628 (2) 0.5 0.47486 (16) 0.4216 (2) 0.4194 0.4595 0.4013 0.2306 (2) 0.33894 (18) 0.3243 (2) 0.3514 0.43094 (15) 0.2703 (2) 0.2613 0.2971 (2) 0.3056 0.2431 (2) 0.2157 0.3974 (2)	x y $0.15628 (2)$ $0.49000 (18)$ 0.5 $0.2196 (2)$ $0.47486 (16)$ $0.0181 (7)$ $0.4216 (2)$ $0.4840 (10)$ 0.4194 0.6248 0.4595 0.4499 0.4013 0.4929 $0.2306 (2)$ $0.4327 (11)$ $0.33894 (18)$ $0.3489 (7)$ $0.3243 (2)$ $0.5418 (9)$ 0.3514 0.6457 $0.43094 (15)$ $0.2748 (6)$ $0.2703 (2)$ $0.5823 (9)$ 0.2613 0.711 $0.2971 (2)$ $0.1997 (9)$ 0.3056 0.0688 $0.2431 (2)$ $0.2389 (11)$ 0.2157 0.135 $0.3074 (2)$ $0.3024 (8)$	xyz $0.15628 (2)$ $0.49000 (18)$ $0.61658 (7)$ 0.5 $0.2196 (2)$ 0.5 $0.47486 (16)$ $0.0181 (7)$ $0.6292 (5)$ $0.4216 (2)$ $0.4840 (10)$ $1.0744 (5)$ 0.4194 0.6248 1.0129 0.4595 0.4499 1.1175 0.4013 0.4929 1.173 $0.2306 (2)$ $0.4327 (11)$ $0.7169 (6)$ $0.33894 (18)$ $0.3489 (7)$ $0.8651 (5)$ $0.3243 (2)$ $0.5418 (9)$ $0.7670 (6)$ 0.3514 0.6457 0.7513 $0.43094 (15)$ $0.2748 (6)$ $0.8052 (5)$ $0.2703 (2)$ $0.5823 (9)$ $0.6921 (7)$ 0.2613 0.711 0.6253 $0.2971 (2)$ $0.1997 (9)$ $0.8837 (6)$ 0.3056 0.0688 0.9482 $0.2431 (2)$ $0.2389 (11)$ $0.8092 (7)$ 0.2157 0.135 0.8218 $0.3974 (2)$ $0.3024 (8)$ $0.9485 (5)$	xyz U_{iso}^*/U_{eq} 0.15628 (2)0.49000 (18)0.61658 (7)0.1112 (4)0.50.2196 (2)0.50.0472 (4)0.47486 (16)0.0181 (7)0.6292 (5)0.0427 (10)0.4216 (2)0.4840 (10)1.0744 (5)0.0657 (13)0.41940.62481.01290.099*0.45950.44991.11750.099*0.40130.49291.1730.099*0.2306 (2)0.4327 (11)0.7169 (6)0.0639 (15)0.33894 (18)0.3489 (7)0.8651 (5)0.0441 (11)0.3243 (2)0.5418 (9)0.7670 (6)0.0569 (13)0.35140.64570.75130.068*0.43094 (15)0.2748 (6)0.8052 (5)0.0452 (9)0.2703 (2)0.5823 (9)0.6921 (7)0.0674 (16)0.26130.7110.62530.081*0.2971 (2)0.1997 (9)0.8837 (6)0.0603 (13)0.30560.06880.94820.072*0.2431 (2)0.2389 (11)0.8092 (7)0.0690 (14)0.21570.1350.82180.083*0.3974 (2)0.3024 (8)0.9485 (5)0.0501 (12)

supplementary materials

H7	0.398	0.1616	1.0149	0.06*
C8	0.44434 (18)	0.0769 (7)	0.7709 (6)	0.0469 (12)
H8	0.4339	-0.038	0.8414	0.056*
C10	0.4853 (2)	-0.1907 (8)	0.5728 (7)	0.0540 (13)
H10	0.4743	-0.3205	0.625	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0529 (4)	0.2036 (8)	0.0729 (4)	0.0279 (5)	-0.0044 (3)	-0.0229 (5)
S 1	0.0553 (11)	0.0347 (8)	0.0547 (10)	0	0.0179 (8)	0
C9	0.043 (2)	0.038 (2)	0.047 (2)	0.001 (2)	0.0052 (18)	0.005 (2)
C11	0.058 (3)	0.085 (3)	0.053 (2)	0.009 (3)	0.005 (2)	-0.003 (3)
C4	0.044 (3)	0.106 (5)	0.042 (2)	0.005 (3)	0.006 (2)	-0.009 (3)
C1	0.044 (3)	0.053 (3)	0.037 (2)	0.001 (2)	0.012 (2)	0.002 (2)
C6	0.052 (3)	0.062 (3)	0.056 (3)	-0.002 (3)	0.007 (2)	0.016 (3)
N1	0.042 (2)	0.052 (2)	0.0439 (19)	0.0014 (17)	0.0134 (17)	0.0053 (16)
C5	0.063 (4)	0.084 (4)	0.053 (3)	0.010 (3)	0.003 (3)	0.014 (3)
C2	0.064 (4)	0.067 (3)	0.053 (3)	-0.002(3)	0.017 (2)	0.011 (3)
C3	0.051 (3)	0.094 (4)	0.065 (3)	-0.019 (3)	0.017 (3)	-0.005 (3)
C7	0.051 (3)	0.060 (3)	0.043 (2)	0.006 (2)	0.017 (2)	0.011 (2)
C8	0.039 (3)	0.051 (3)	0.051 (3)	0.000 (2)	0.008 (2)	0.013 (2)
C10	0.057 (3)	0.035 (2)	0.073 (3)	-0.001 (2)	0.017 (3)	0.005 (2)

Geometric parameters (Å, °)

Br1—C4	1.899 (5)	C1—C7	1.505 (6)
S1-C9 ⁱ	1.724 (4)	С6—Н6	0.93
S1—C9	1.724 (4)	C6—C5	1.383 (7)
С9—С8	1.442 (6)	N1—C7	1.468 (5)
C9—C10	1.356 (6)	N1—C8	1.265 (5)
C11—H11A	0.96	С5—Н5	0.93
C11—H11B	0.96	C2—H2	0.93
C11—H11C	0.96	C2—C3	1.382 (7)
C11—C7	1.509 (7)	С3—Н3	0.93
C4—C5	1.356 (7)	C7—H7	0.98
C4—C3	1.365 (7)	C8—H8	0.93
C1—C6	1.391 (6)	C10-C10 ⁱ	1.405 (10)
C1—C2	1.383 (7)	C10—H10	0.93
C9	91 4 (3)	C4C5H5	120.3
C_{8}^{-} C_{9}^{-} S_{1}^{-} C_{9}^{-} S_{1}^{-}	1216(3)	C6-C5-H5	120.3
C10-C9-S1	111.2 (3)	C1—C2—H2	119
C10—C9—C8	127.1 (4)	C3—C2—C1	122.0 (5)
H11A—C11—H11B	109.5	C3—C2—H2	119
H11A—C11—H11C	109.5	C4—C3—C2	118.9 (5)
H11B—C11—H11C	109.5	C4—C3—H3	120.6
C7—C11—H11A	109.5	С2—С3—Н3	120.6
C7—C11—H11B	109.5	C11—C7—H7	108.5
C7—C11—H11C	109.5	C1—C7—C11	113.2 (4)

C5—C4—Br1	119.5 (4)	С1—С7—Н7	108.5
C5—C4—C3	121.3 (5)	N1—C7—C11	109.9 (4)
C3—C4—Br1	119.2 (4)	N1—C7—C1	108.2 (3)
C6—C1—C7	122.2 (4)	N1—C7—H7	108.5
C2—C1—C6	116.9 (4)	С9—С8—Н8	117.9
C2—C1—C7	120.9 (4)	N1—C8—C9	124.1 (4)
С1—С6—Н6	119.3	N1—C8—H8	117.9
C5—C6—C1	121.3 (5)	C9—C10—C10 ⁱ	113.1 (3)
С5—С6—Н6	119.3	C9—C10—H10	123.5
C8—N1—C7	116.7 (3)	C10 ⁱ —C10—H10	123.5
C4—C5—C6	119.5 (5)		
Br1-C4-C5-C6	179.2 (4)	C2-C1-C6-C5	0.2 (7)
Br1—C4—C3—C2	-179.2 (4)	C2-C1-C7-C11	-122.6 (5)
S1—C9—C8—N1	4.2 (6)	C2-C1-C7-N1	115.3 (4)
S1-C9-C10-C10 ⁱ	1.2 (7)	C3—C4—C5—C6	-2.3 (8)
C9 ⁱ —S1—C9—C8	-177.3 (4)	C7—C1—C6—C5	-179.6 (4)
C9 ⁱ —S1—C9—C10	-0.4 (3)	C7—C1—C2—C3	179.7 (4)
C1C6C4	1.0 (7)	C7—N1—C8—C9	176.9 (4)
C1—C2—C3—C4	-1.0 (7)	C8-C9-C10-C10 ⁱ	177.9 (5)
C6—C1—C2—C3	-0.2 (7)	C8—N1—C7—C11	131.9 (4)
C6—C1—C7—C11	57.3 (5)	C8—N1—C7—C1	-104.0 (4)
C6—C1—C7—N1	-64.8 (5)	C10—C9—C8—N1	-172.2 (5)
C5—C4—C3—C2	2.3 (7)		

Symmetry code: (i) -x+1, y, -z+1.