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Synchronization is one of the most important emerging collective behaviors in nature, which results from the interaction in
groups of organisms. In this paper, network synchronization of discrete-time dynamical systems is studied. In particular, network
synchronization with fireflies oscillators like nodes is achieved by using complex systems theory. Different cases of interest on
network synchronization are studied, including for a large number of fireflies oscillators; we consider synchronization in small-
world networks and outer synchronization among different coupled networks topologies; for all presented cases, we provide
appropriate ranges of values for coupling strength and extensive numerical simulations are included. In addition, for illustrative
purposes, we show the effectiveness of network synchronization by means of experimental implementation of coupled nine
electronics fireflies in different topologies.

1. Introduction

In nature, several complex behaviors emerge from the inter-
action among living organisms to generate a common ben-
efit, for example, synchronization in shoaling fish to avoid
predators, organization of ants to build the nest, flock of birds,
and pod of dolphins, and one of the most spectacular syn-
chronization cases is the firefly flashing in Southeast Asia and
North America. In [1, 2] some studies on synchronization of
fireflies are reported. Such insects use their bioluminescence
for mating purposes where thousands of male fireflies flash
at the same time in a rhythmic form to attract the attention
of nearby females. Synchronization was introduced by C.
Huygens when he was surprised with the synchronization
of two pendulum clocks coupled mutually by the wall; an
experiment of Huygens’s clocks is studied in [3]. In the
last decades, synchronization has been studied on chemical,

biological, and ecological systems and electronics devices [4–
7]. Thus, synchronization is the effect to produce the same
dynamic behavior in two or more elements when they are
coupled with physical links; in addition, synchronization
can be classified into two types, mutual synchronization
(bidirectional coupling) and master-slave synchronization
(unidirectional coupling); these two types of synchronization
are widely discussed in [8, 9].

The fireflies are considered as oscillators that are cou-
pled by light pulses. The coupling and synchronization of
oscillators have been studied by scientists since the 60s in
biological systems; see, for example, [10–13]. In 1990, Mirollo
and Strogatz published an article where a mathematical
model is introduced to couple and synchronize an oscillator
by pulses in [14]; they assume that all the oscillators in the
system are identical; this model was pioneer to explain the
synchronization in complex systems such as neurons, cells

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 895379, 14 pages
http://dx.doi.org/10.1155/2015/895379



2 Mathematical Problems in Engineering

(0, 1)

(1
2
,
√3

2
)
(√2

2
,
√2

2
)

(√3

2 2
,
1)

(1, 0)

(√3

2
,
−1

2
)

(√2

2
,
−√2

2
)

(1
2
,
−√3

2
)

(0, −1)(−1
2
,
−√3

2
)

(−√2

2
,
−√2

2
)

(−√3

2
,
−1

2
)

(−1, 0)

(−√3

2
,
1

2
)

(−√2

2
,
√2

2
)

(−1
2
,
√3

2
)

y

x

𝜋

2 𝜋

3 𝜋

4
𝜋

6

11𝜋

6
7𝜋

4

7𝜋

6

5𝜋

3

2𝜋

3

5𝜋

4

5𝜋

6

4𝜋

3 3𝜋

2

3𝜋

4 90∘ 60∘

45∘

30∘

0∘

120∘

135∘

150∘

180∘

270∘

𝜋 0
𝜃

300∘
315∘

330∘210∘

225∘

240∘

Figure 1: The unitary circle that represents a circular unitary motion in the fireflies.
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Figure 2: Behavior of an isolated firefly (7): (a) temporal dynamics 𝑥(𝑘) blinking two times per second, (b) angular frequency 𝑤(𝑘), and (c)
phase-portrait 𝑥(𝑘) versus 𝑥(𝑘 − 1).
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of the heart, and fireflies. Another work about the analysis
of oscillators coupled by pulses was presented by Ernst et al.
in [15] based on the Mirollo-Strogatz model but with cou-
pling cancellation; other approximations tomodeling fireflies
synchronization have been proposed in [16, 17]. Therefore,
the study and analysis on synchronization of fireflies can
help to understand the emergence of collective behavior in
other organisms and their applications such as robotics and
communications.

In this paper, we use a dynamical model to synchronize
in several topologies based on the coupling matrix. First, the
model of a firefly is presented and simulated; then, five fireflies
are coupled in nearest-neighbor network, star network, and
small-world network, where the synchronization is achieved
in all the reported cases. We use the MatLab software to
simulate the synchronization process that is verified with
the graphics of temporal dynamics, phase, and error among
the nodes. Additionally, we extend the analysis to outer
synchronization of two and three coupled networks; we prove
the effectiveness of the proposed synchronization scheme
with numerical results and experimental implementation.
This paper is organized as follows. In Section 2 we give a
brief review on complex dynamical networks. In Section 3,
the proposed firefly dynamical discrete simple model is
presented. Network synchronization of different topologies is
shown in Section 4. In Section 5, the outer synchronization
of two and three networks is presented. In Section 6, experi-
mental implementation of fireflies is presented. Finally, some
conclusions are mentioned in Section 7.

2. Preliminaries

In this section, we give a brief review on synchronization of
complex dynamical networks.

2.1. Synchronization of Complex Networks. We consider a
complex network is composed of 𝑁 identical nodes, linearly
and diffusively coupled through the first state of each node.
In this network, each node constitutes an 𝑁-dimensional
discrete-time map. The state equations of this network are
described by

x
𝑖 (
𝑘 + 1) = 𝑓 (x𝑖 (𝑘)) + u𝑖 (𝑘) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where x
𝑖
(𝑘) = (𝑥

𝑖1(𝑘), 𝑥𝑖2(𝑘), . . . , 𝑥𝑖𝑁(𝑘))
𝑇
∈ R𝑁 are the state

variables of the node 𝑖 and u
𝑖
(𝑘) = (𝑢

𝑖1(𝑘), 0, . . . , 0) ∈ R𝑁 is
the input signal of the node 𝑖 and is defined by

u
𝑖 (
𝑘) = 𝑐

𝑁

∑

𝑗=1
𝑎
𝑖𝑗
Γx
𝑗 (
𝑘) , 𝑖 = 1, 2, . . . , 𝑁, (2)

where the constant 𝑐 > 0 represents the coupling strength of
the complex network and Γ ∈ R𝑁×𝑁 is constant 0-1 matrix
linking coupled state variables.Meanwhile,A = (𝑎

𝑖𝑗
) ∈ R𝑁×𝑁

is the couplingmatrix, which represents the coupling topology
of the complex network. If there is a connection betweennode

N1

N2N3

N4

N5

Figure 3: Network of five coupled fireflies in nearest-neighbor
topology.

𝑖 and node 𝑗, then 𝑎
𝑖𝑗
= 1; otherwise, 𝑎

𝑖𝑗
= 0 for 𝑖 ̸= 𝑗. The

diagonal elements of coupling matrix A are defined as

𝑎
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗
= −

𝑁

∑

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑗𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (3)

If the degree of node 𝑖 is 𝑑
𝑖
, then 𝑎

𝑖𝑖
= −𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑁.

Now, suppose that the complex network is connected
without isolated clusters. Then, A is a symmetric irreducible
matrix. In this case, it can be shown that zero is an eigenvalue
of A with multiplicity 1 and all the other eigenvalues ofA are
strictly negative; see [18, 19].

In accordance with [19], the complex network (1)-(2) is
said to achieve (asymptotically) synchronization if

x1 (𝑘) = x2 (𝑘) = ⋅ ⋅ ⋅ = x
𝑁 (
𝑘) , as 𝑘 → ∞. (4)

Diffusive coupling condition (3) guarantees that the synchro-
nization state is a solution, s(𝑘) ∈ R𝑁, of an isolated node;
that is,

s (𝑘 + 1) = 𝑓 (s (𝑘)) , (5)

where s(𝑡) can be an equilibrium point, a periodic orbit, or a
chaotic attractor. Thus, stability of the synchronization state,

x1 (𝑘) = x2 (𝑘) = ⋅ ⋅ ⋅ = x
𝑁 (
𝑘) = s (𝑘) , (6)

of complex network (1)-(2) is determined by the dynamics
of an isolated node, that is, function 𝑓 and solution s(𝑘),
the coupling strength 𝑐, the inner linking matrix Γ, and the
coupling matrix A.

3. Dynamics of a Simple Firefly Discrete Model

In this section, a simple firefly discrete-time mathematical
model is described, in order to be used as fundamental nodes
to construct different coupled networks.

The simple dynamical model of a firefly is expressed by
means of the following discrete-time system based on [20]

𝑥 (𝑘 + 1) = sin (𝑤 (𝑘) 𝑡 (𝑘)) ,

𝑡 (𝑘 + 1) = 𝑡 (𝑘) + 𝜋

1000
,

(7)
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Figure 4: Temporal dynamics of (a) 𝑥
𝑖
(𝑘) and (b) 𝑤

𝑖
(𝑘) with 𝑖 = 1, 2, . . . , 5 and error (c) 𝑥1(𝑘) − 𝑥𝑖+1(𝑘) with 𝑖 = 1, 2, . . . , 4, in the uncoupled

nearest-neighbor network.
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Figure 5: Phase diagrams (a) 𝑥1 versus 𝑥2, (b) 𝑥1 versus 𝑥3, (c) 𝑥1 versus 𝑥4, and (d) 𝑥1 versus 𝑥5 in the uncoupled nearest-neighbor network.

where 𝑥(𝑘) is the simple representation of a firefly in discrete-
time, 𝑤(𝑘) = 2𝜋𝑓 is the angular frequency in radians with
𝑓 the blink frequency, 𝑡(𝑘) is the sampling time, and 𝑘 is the
number of iterations.

Isolated firefly (7) does not receive stimulus from any
other firefly in the network, and it is flashing with a period
of time of 𝑡 seconds. If a firefly blinks with a certain period,
we take on the sequence of flashes as a circular unitary
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Figure 6: Temporal dynamics of (a) 𝑥
𝑖
(𝑘) and (b) 𝑤

𝑖
(𝑘) with 𝑖 = 1, 2, . . . , 5 and errors (c) 𝑥1(𝑘) − 𝑥𝑖+1(𝑘) and (d) 𝑤1(𝑘) − 𝑤𝑖+1(𝑘) with

𝑖 = 1, 2, . . . , 4, in the coupled nearest-neighbor network with 𝑐 = 0.01.
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Figure 7: Phase diagrams (a) 𝑥1 versus 𝑥2, (b) 𝑥1 versus 𝑥3, (c) 𝑥1 versus 𝑥4, and (d) 𝑥1 versus 𝑥5 in the coupled nearest-neighbor network.

motion; see Figure 1, where the angular position 𝜃 is a point
in the unitary circle and a short flash or pulse of the firefly
occurs when a rotation is completed.

Figure 2 shows the behavior of isolated firefly (7) for
initial conditions 𝑥(0) = 0, 𝑡(0) = 0, 𝑓 = 2Hz, and 𝑘 = 600
iterations (note that, for appreciation purposes, we use the
interpolation option of the Matlab simulation software).

4. Network Synchronization of Coupled
Fireflies in Different Connection Topologies

In this section, network synchronization of coupled fireflies
(7) in different topologies and the corresponding numerical
results are reported. In the following cases of study,we assume
that all the fireflies are connected, without self-loops and
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Figure 9: Graph for a star network corresponding to A𝑠.

without multiple edges between two fireflies. To be consistent
with notation in complex network (1)-(2), we have considered
the following change of variable:

x
𝑖
= [

𝑥
𝑖1

𝑥
𝑖2
] = [

𝑤
𝑖1

𝑥
𝑖2
] = [

𝑤
𝑖

𝑥
𝑖

] . (8)

4.1. Nearest-Neighbor Coupled Network. First, we consider
a complex network according to (1)-(2) composed of 𝑁 =

5 coupled fireflies periodic oscillators (7) as fundamental
nodes in nearest-neighbor coupled topology; see Figure 3.
The corresponding state equations to this dynamical network
are arranged as follows: the first firefly𝑁1 is given by

𝑤1 (𝑘 + 1) = 𝑤1 (𝑘) + 𝑢11 (𝑘) ,

𝑥1 (𝑘 + 1) = sin (𝑤1 (𝑘) 𝑡 (𝑘)) ,

𝑢11 (𝑘) = 𝑐 (−2𝑤1 (𝑘) +𝑤2 (𝑘) +𝑤5 (𝑘)) ,

(9)

the second firefly𝑁2 is given by

𝑤2 (𝑘 + 1) = 𝑤2 (𝑘) + 𝑢21 (𝑘) ,

𝑥2 (𝑘 + 1) = sin (𝑤2 (𝑘) 𝑡 (𝑘)) ,

𝑢21 (𝑘) = 𝑐 (−2𝑤2 (𝑘) +𝑤1 (𝑘) +𝑤3 (𝑘)) ,

(10)
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Figure 10: Synchronization diagram for the star network.
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Figure 11: Graph for a small-world network corresponding to Asw.
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Figure 12: Synchronization diagram for the small-world network.

the third firefly𝑁3 is given by

𝑤3 (𝑘 + 1) = 𝑤3 (𝑘) + 𝑢31 (𝑘) ,

𝑥3 (𝑘 + 1) = sin (𝑤3 (𝑘) 𝑡 (𝑘)) ,

𝑢31 (𝑘) = 𝑐 (−2𝑤3 (𝑘) +𝑤2 (𝑘) +𝑤4 (𝑘)) ,

(11)
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Figure 13: Small-world network in mass.
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Figure 14: Graph of outer synchronization between two coupled
complex networks, with different topologies.

the fourth firefly𝑁4 is given by

𝑤4 (𝑘 + 1) = 𝑤4 (𝑘) + 𝑢41 (𝑘) ,

𝑥4 (𝑘 + 1) = sin (𝑤4 (𝑘) 𝑡 (𝑘)) ,

𝑢41 (𝑘) = 𝑐 (−2𝑤4 (𝑘) +𝑤3 (𝑘) +𝑤5 (𝑘)) ,

(12)

and the fifth firefly𝑁5 is given by

𝑤5 (𝑘 + 1) = 𝑤5 (𝑘) + 𝑢51 (𝑘) ,

𝑥5 (𝑘 + 1) = sin (𝑤5 (𝑘) 𝑡 (𝑘)) ,

𝑢51 (𝑘) = 𝑐 (−2𝑤5 (𝑘) +𝑤4 (𝑘) +𝑤1 (𝑘)) ,

(13)

with

𝑡 (𝑘 + 1) = 𝑡 (𝑘) + 𝜋

1000
. (14)

The corresponding coupling matrixA for the network shown
in Figure 3 is given by

A =

[

[

[

[

[

[

[

[

[

−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

]

]

]

]

]

]

]

]

]

. (15)

For illustrative purposes, we present the scenario where the
oscillators fireflies of the network are uncoupled (isolated

fireflies). From (9) to (28) by choosing 𝑐 = 0, the control
inputs 𝑢

𝑖1 = 0; therefore, the five isolated fireflies of the
network are unsynchronized assuming different initial con-
ditions. Figures 4 and 5 show the collective behavior of five
isolated fireflies oscillators: temporal dynamics of states 𝑥

𝑖
(𝑘)

and 𝑤
𝑖
(𝑘) for 𝑖 = 1, 2, . . . , 5, synchronization errors 𝑥1(𝑘) −

𝑥
𝑖+1(𝑘) for 𝑖 = 1, 2, 3, 4, and phase diagrams among the

oscillators fireflies 𝑥1 versus 𝑥𝑖 for 𝑖 = 2, 3, 4, 5, with initial
conditions 𝑤1(0) = 2𝜋2, 𝑤2(0) = 2𝜋5, 𝑤3(0) = 2𝜋1,
𝑤4(0) = 2𝜋6, 𝑤5(0) = 2𝜋4, 𝑥1(0) = 𝑥2(0) = 𝑥3(0) =
𝑥4(0) = 𝑥5(0) = 0, 𝑡(0) = 0, and 𝑘 = 600. Consider
now the scenario, where the oscillators fireflies of the network
are coupled in nearest-neighbor topology (see Figure 3). For
network synchronization purposes, we increase the coupling
strength values of 𝑐, for 𝑐 > 0. Let 𝑐 = 0.01 with the same
initial conditions as well as in uncoupled nearest-neighbor
network. Figure 6 shows the temporal dynamics and errors,
where𝑤1(𝑘)−𝑤𝑖+1(𝑘) is computed to observe the behavior of
the error among the angular frequencies of the synchronized
oscillators.

In Figure 7, we can appreciate the phase diagrams, where,
after a transient, the involved signals overlap in a line of
45 degrees denoting synchronization. From Figures 6 and 7,
we can deduce that, with this coupling strength and initial
conditions, the network is synchronized.We obtained a range
of coupling strength 𝑐 numerically. We compute (for 𝑘 =

5000, so the calculation range of 𝑐 is approximate) a sweep
of 𝑐 from 0 to 1 at intervals of 0.0001. After removing the
first 4000 iterations of each of the states, we compare the error
between states 𝑥

𝑖+1(𝑘) and 𝑥1(𝑘) for 𝑖 = 1, 2, 3, 4, where if the
sum of absolute value of the errors is greater than 0.01, then
we established that the network is not synchronized (i.e., after
4000 iterations if (|(𝑥1(𝑘) − 𝑥2(𝑘))| + |(𝑥1(𝑘) − 𝑥3(𝑘))| +
|(𝑥1(𝑘) − 𝑥4(𝑘))| + |(𝑥1(𝑘) − 𝑥5(𝑘))|) > 0.01, we established
that there is no synchronization in the network). Figure 8
shows a diagram that we called synchronization diagram,
where the value of 0 denotes no synchronization and the
value of 1 denotes synchronization; thus, we can see the range
0.0019 < 𝑐 < 0.5521, where the nodes in the network are
synchronized.
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4.2. Star Coupled Network. Now, we consider a complex
network according to (1)-(2) composed of 𝑁 = 5 coupled
fireflies periodic oscillators (7) as fundamental nodes in
star coupled topology; see Figure 9. The corresponding state
equations to this dynamical network are arranged as follows:
the first firefly𝑁1 is given by

𝑤1𝑠 (𝑘 + 1) = 𝑤1𝑠 (𝑘) + 𝑢11𝑠 (𝑘) ,

𝑥1𝑠 (𝑘 + 1) = sin (𝑤1𝑠 (𝑘) 𝑡 (𝑘)) ,

𝑢11𝑠 (𝑘) = 𝑐 (−4𝑤1𝑠 (𝑘) +𝑤2𝑠 (𝑘) + ⋅ ⋅ ⋅ +𝑤3𝑠 (𝑘)

+𝑤4𝑠 (𝑘) +𝑤5𝑠 (𝑘)) ,

(16)

the second firefly𝑁2 is given by

𝑤2𝑠 (𝑘 + 1) = 𝑤2𝑠 (𝑘) + 𝑢21𝑠 (𝑘) ,

𝑥2𝑠 (𝑘 + 1) = sin (𝑤2𝑠 (𝑘) 𝑡 (𝑘)) ,

𝑢21𝑠 (𝑘) = 𝑐 (−𝑤2𝑠 (𝑘) +𝑤1𝑠 (𝑘)) ,

(17)

the third firefly𝑁3 is given by

𝑤3𝑠 (𝑘 + 1) = 𝑤3𝑠 (𝑘) + 𝑢31𝑠 (𝑘) ,

𝑥3𝑠 (𝑘 + 1) = sin (𝑤3𝑠 (𝑘) 𝑡 (𝑘)) ,

𝑢31𝑠 (𝑘) = 𝑐 (−𝑤3𝑠 (𝑘) +𝑤1𝑠 (𝑘)) ,

(18)
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Figure 17: Synchronization diagram for outer synchronization of
nearest-neighbor-star networks.

the fourth firefly𝑁4 is given by

𝑤4𝑠 (𝑘 + 1) = 𝑤4𝑠 (𝑘) + 𝑢41𝑠 (𝑘) ,

𝑥4𝑠 (𝑘 + 1) = sin (𝑤4𝑠 (𝑘) 𝑡 (𝑘)) ,

𝑢41𝑠 (𝑘) = 𝑐 (−𝑤4𝑠 (𝑘) +𝑤1𝑠 (𝑘)) ,

(19)

and the fifth firefly𝑁5 is given by

𝑤5𝑠 (𝑘 + 1) = 𝑤5𝑠 (𝑘) + 𝑢51𝑠 (𝑘) ,

𝑥5𝑠 (𝑘 + 1) = sin (𝑤5𝑠 (𝑘) 𝑡 (𝑘)) ,

𝑢51𝑠 (𝑘) = 𝑐 (−𝑤5𝑠 (𝑘) +𝑤1𝑠 (𝑘)) ,

(20)

with

𝑡 (𝑘 + 1) = 𝑡 (𝑘) + 𝜋

1000
. (21)

The corresponding coupling matrix A𝑠 for the network
shown in Figure 9 is given by

A𝑠 =

[

[

[

[

[

[

[

[

[

−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

]

]

]

]

]

]

]

]

]

, (22)

where subscript 𝑠 refers to the star network. We carry out the
numerical simulations in the star network with 𝑐 = 0.01 and
initial conditions 𝑤1𝑠(0) = 2𝜋2.5, 𝑤2𝑠(0) = 2𝜋5.5, 𝑤3𝑠(0) =
2𝜋1.5, 𝑤4𝑠(0) = 2𝜋6.5, 𝑤5𝑠(0) = 2𝜋4.5, 𝑥1𝑠(0) = 𝑥2𝑠(0) =
𝑥3𝑠(0) = 𝑥4𝑠(0) = 𝑥5𝑠(0) = 0, 𝑡(0) = 0, and 𝑘 = 600. Taking
into account the above conditions, we obtain similar results as
in the nearest-neighbor network and synchronization among
the nodes was achieved. Figure 10 shows the synchronization
diagram, where we can see the range 0.0021 < 𝑐 < 0.3995,
where the nodes in the network are synchronized.

4.3. Small-World Coupled Network. A network with complex
coupled topology can be represented by a random graph, but
our intuition tells us clearly that many real complex networks
are neither completely randomnor completely regular. Some-
thing that we must emphasize is that most of the biological,
technological, and social networks lie between these two
extremes.These systems are highly clustered as regular arrays;
however, they have a characteristic path length, like random
networks; see [21]. These types of networks are called small-
world networks, in analogy to the small-world phenomenon
(popularly known as six degrees of separation).

In general terms, these networks are regular arrange-
ments made by connections or reconnections of pairs of
randomly chosen nodes. Even a very small number of
these added connections, commonly called shortcuts, do not
change the local properties (very high clustering typical of a
regular network) and cause those typical random networks
values to be present in the average path length; see [22].

Now, we consider a complex network according to (1)-
(2) composed of 𝑁 = 5 coupled fireflies periodic oscillators
(7) as fundamental nodes in small-world coupled topology;
see Figure 11. The corresponding state equations to this
dynamical network are arranged as follows: the first firefly𝑁1
is given by
𝑤1sw (𝑘 + 1) = 𝑤1sw (𝑘) + 𝑢11sw (𝑘) ,

𝑥1sw (𝑘 + 1) = sin (𝑤1sw (𝑘) 𝑡 (𝑘)) ,

𝑢11sw (𝑘) = 𝑐 (−3𝑤1sw (𝑘) +𝑤2sw (𝑘) +𝑤4sw (𝑘) + ⋅ ⋅ ⋅

+𝑤5sw (𝑘)) ,

(23)

the second firefly𝑁2 is given by
𝑤2sw (𝑘 + 1) = 𝑤2sw (𝑘) + 𝑢21sw (𝑘) ,

𝑥2sw (𝑘 + 1) = sin (𝑤2sw (𝑘) 𝑡 (𝑘)) ,

𝑢21sw (𝑘) = 𝑐 (−2𝑤2sw (𝑘) +𝑤1sw (𝑘) +𝑤3sw (𝑘)) ,

(24)

the third firefly𝑁3 is given by
𝑤3sw (𝑘 + 1) = 𝑤3sw (𝑘) + 𝑢31sw (𝑘) ,

𝑥3sw (𝑘 + 1) = sin (𝑤3sw (𝑘) 𝑡 (𝑘)) ,

𝑢31sw (𝑘) = 𝑐 (−2𝑤3sw (𝑘) +𝑤2sw (𝑘) +𝑤4sw (𝑘)) ,

(25)

the fourth firefly𝑁4 is given by
𝑤4sw (𝑘 + 1) = 𝑤4sw (𝑘) + 𝑢41sw (𝑘) ,

𝑥4sw (𝑘 + 1) = sin (𝑤4sw (𝑘) 𝑡 (𝑘)) ,

𝑢41sw (𝑘) = 𝑐 (−3𝑤4sw (𝑘) +𝑤1sw (𝑘) +𝑤3sw (𝑘) + ⋅ ⋅ ⋅

+𝑤5sw (𝑘)) ,

(26)

and the fifth firefly𝑁5 is given by
𝑤5sw (𝑘 + 1) = 𝑤5sw (𝑘) + 𝑢51sw (𝑘) ,

𝑥5sw (𝑘 + 1) = sin (𝑤5sw (𝑘) 𝑡 (𝑘)) ,

𝑢51sw (𝑘) = 𝑐 (−2𝑤5sw (𝑘) +𝑤4sw (𝑘) +𝑤1sw (𝑘)) ,

(27)
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Figure 19: Graph of outer synchronization for three coupled networks.

with

𝑡 (𝑘 + 1) = 𝑡 (𝑘) + 𝜋

1000
. (28)

The corresponding coupling matrix Asw for the network
shown in Figure 11 is given by

Asw =

[

[

[

[

[

[

[

[

[

−3 1 0 1 1
1 −2 1 0 0
0 1 −2 1 0
1 0 1 −3 1
1 0 0 1 −2

]

]

]

]

]

]

]

]

]

, (29)

where subscript sw refers to the small-world network.

We carry out the numerical simulations in the small-
world network with 𝑐 = 0.01 and initial conditions𝑤1sw(0) =
2𝜋2.3, 𝑤2sw(0) = 2𝜋5.3, 𝑤3sw(0) = 2𝜋1.3, 𝑤4sw(0) = 2𝜋6.3,
𝑤5sw(0) = 2𝜋4.3, 𝑥1sw(0) = 𝑥2sw(0) = 𝑥3sw(0) = 𝑥4sw(0) =
𝑥5sw(0) = 0, 𝑡(0) = 0, and 𝑘 = 600. Taking into account the
above conditions, we obtain similar results as in the nearest-
neighbor and star networks and synchronization among the
nodes was achieved. Figure 12 shows the synchronization
diagram, where we can see the range 0.0017 < 𝑐 < 0.4325,
where the nodes in the network are synchronized.

With diffusive coupling, a network topology plays an
important role in synchronization; see [23, 24]. We can
corroborate this by analyzing and comparing the syn-
chronization diagrams of the three topologies presented
so far.
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Figure 21: Phase diagram xaverage versus 𝑥1 for three coupled
networks.

4.4. Small-World Coupled Network inMass. Now, we use𝑁 =

50 nodes in small-world network, with the only purpose to
emulate the interaction of fireflies and its synchronization in
mass.

Starting from a nearest-neighbor coupled topology, we
add 100 connections with the same probability to build
a small-world network, resulting in an average degree of
𝑧 = 6. For obvious reasons, we omit representations of
the coupling matrix and graph on small-world network with
𝑁 = 50. Figure 13 shows the synchronization with the
simple model proposed. Initial conditions are 𝑥

𝑖sw(0) = 0
and 𝑤

𝑖sw(0) = 2𝜋𝑓
𝑖sw, where 𝑓𝑖sw is randomly selected from

1 to 10Hz, with 𝑖 = 1, 2, . . . , 50, 𝑡(0) = 0, 𝑐 = 0.01,
and 𝑘 = 600. Figure 13 shows the simulation results, where
synchronization is achieved for a small-world network with
𝑁 = 50 nodes.

5. Outer Synchronization

Outer synchronization occurs among coupled complex net-
works, which means that the corresponding nodes of the
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Figure 22: Synchronization diagram for outer synchronization of
nearest-neighbor-star-small-world networks.

coupled networks will achieve synchronization [25–29]. The
interaction among communities (or networks) is something
that exists in our real world. One important example is the
infectious disease that spreads among different communities.
For example, avian influenza spreads among domestic and
wild birds, afterward infecting human beings unexpectedly;
AIDS, mad cow disease, bird flu, and SARS were originally
spread between two communities (or networks). This means
that the study of dynamics among coupled networks is
necessary and important [30]. We use the complex network
theory that was shown in Section 2 to couple a pair of nodes
between twonetworks andobtain synchronization among the
nodes of the networks (outer synchronization).

5.1. Outer Synchronization of Two Networks. Suppose two
networks are the following: one in nearest-neighbor coupled
topology and another in star coupled topology, and these
networks are coupled as in Figure 14. First we show the case
where the two networks are decoupled. Figure 15 shows two
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Figure 23: Electronic circuit of a simple firefly.

synchronization states belonging to each one of the networks;
that is, the nodes of each network are synchronized, but
the two networks are unsynchronized. Also, we can observe
that the angular frequencies of the two networks tend to
different values, so it is obvious that the two networks are not
synchronized. If we couple the two networks, that is, if we
connect 𝑁1 of the nearest-neighbor network with 𝑁2 of the
star network, and we use a coupling strength 𝑐 = 0.03 with
initial conditions as previously mentioned in Sections 4.1 and
4.2, outer synchronization is obtained as shown in Figure 16,
where we clearly see that the dynamics of the states 𝑥

𝑖
(𝑘)

and 𝑥
𝑖𝑠
(𝑘) as well as the states 𝑤

𝑖
(𝑘) and 𝑤

𝑖𝑠
(𝑘) tend to the

same value, and errors among the states of the two networks
will be zero. As expected, the synchronization time for both
networks is greater than the synchronization time of a single
network even with the increase of the coupling constant 𝑐, so
in this case we simulate 𝑘 = 1000 iterations.

Figure 17 shows the synchronization diagram, where we
can see the range 0.0142 < 𝑐 < 0.3891, where the nodes
among the two networks are synchronized. We perform the
numerical verification to the cases shown in Figure 18 with
𝑐 = 0.03 and initial conditions as previously mentioned in
Sections 4.1, 4.2, and 4.3, achieving synchronization in each
of the presented combinations.

5.2. Outer Synchronization of the Three Different Topologies.
To complement the study of outer synchronization, we
present the outer synchronization among the networks that
have been presented in this paper.

Consider three networks (Figures 3, 9, and 11). We omit
the case where networks are decoupled. Assume that the
networks are coupled as in Figure 19. The corresponding
results for the coupling among the three networks (Figure 19)
are shown in Figure 20, where 𝑐 = 0.05, 𝑘 = 1000, and the
initial conditions are those previously used in Sections 4.1,
4.2, and 4.3. We also include a phase diagram in Figure 21,
where the abscissa axis is the average of the states x(𝑘) and

the ordinate axis is the state 𝑥1(𝑘); we use 𝑘 = 10000 in order
to eliminate the transient whereby outer synchronization can
be verified. Figure 22 shows the synchronization diagram,
where we can see the range 0.0297 < 𝑐 < 0.3659, where the
nodes among the three networks are synchronized.

6. Electronic Implementation

Electronic firefly has been proposed in [31] to emulate the
firefly flashing process. Nine circuits representing fireflies
were built and synchronized in [32]. Here, we reproduce such
circuit and we coupled nine fireflies in different topologies
to realize the experimental fireflies synchronization. A fire-
fly can be constructed with electronic components as 555
IC, resistances, capacitors, LEDs, IR, and phototransistors
(Figure 23). The nine electronic fireflies are in a 3 × 3 array
constructed in a 17 × 19 cm phenolic plate (Figure 24(a)).
Experimental results are shown in Figure 24, where synchro-
nization of coupled fireflies in different topologies is achieved.
Synchronization was verified with the sensing pulses on a
digital oscilloscope (Figure 25) [20]. The synchronization
time is instantaneous because coupling strength is considered
strong based on [32].

7. Conclusions

In this paper, network synchronization and outer synchro-
nization problems with simple firefly discrete models have
been investigated by using the theory of complex systems.
The simulation results show the effective synchronization and
outer synchronization with the simple model proposed. All
the results presented help to understand how the collective
behaviors work in nature and in living systems such as
fireflies, crickets chirping, heart cell, neurons, and women’s
menstrual cycles. In addition, experimental network syn-
chronization with nine electronic fireflies was presented.
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(a) (b)

(c) (d)

Figure 24: Experimental fireflies synchronization: (a) isolated nodes, (b) line network synchronization with 𝑁 = 3, (c) synchronization in
three different networks with𝑁 = 4,𝑁 = 3, and𝑁 = 2, and (d) network synchronization with𝑁 = 9.

(a) (b)

Figure 25: Synchronization verification between two fireflies by means of LED pulsation comparison by using an oscilloscope: (a) no
synchronization and (b) synchronization.
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