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Abstract: The packing of different circles in a circular container under balancing and distance
conditions is considered. Two problems are studied: the first minimizes the container’s radius,
while the second maximizes the minimal distance between circles, as well as between circles and the
boundary of the container. Mathematical models and solution strategies are provided and illustrated
with computational results.
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1. Introduction

The circular packing problem (CPP) consists of placing several circles in a larger
object called a container. The circles must be arranged without mutual overlapping (the
non-overlapping condition) and completely inside the container (the containment condi-
tion). CPPs (including CPPs in non-Euclidean geometry) form a broad category at the
boundary between computational geometry and combinatorics [1–3]. The optimized CPP
aims to find “the best” layout, e.g., maximizing the space utilization of the container or mini-
mizing the size of the container. Optimized CPPs have multiple applications in logistics and
production planning, biology and medicine, chemistry and additive manufacturing [4–6].

Various types of CPP can differ according to circle sizes (different or equal) [4,7–9] and
container shapes (circles or polyhedrons) [10–12]. In open-dimension CPPs, the shape of
the container is typically fixed, while the size is optimized [13,14]. The problem of packing
circles into containers with prohibited zones is considered in [15–18]. Prohibited zones
typically result in non-convex, multiconnected and/or disconnected containers.

Additional constraints motivated by applications can be introduced. For example, in
a satellite module layout design, equilibrium/balance constraints are imposed to assure
the proximity of the gravity center of the container to the corresponding center of the
circles [19–23]. In many applications, CPPs are formulated for circles defined in non-
Euclidean norms [17,24,25]. Nesting, i.e., the stacking of circular disks one over another,
can also be considered [26–30].
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Solution approaches to CPPs can be roughly divided into four large classes [4,6,31].
The techniques of the first group are based on nonlinear programming formulations of
the CPP, and these approaches apply different exact or approximation methods for this
class of optimization problems [5,11,12,15,20,21]. The second class of approaches is based
on tessellating or approximating the container with a finite grid [24,26,32–34]. Then, the
CPP is approximately reduced to a large-scale discrete programming problem in order
to assign the centers of the circles to grid nodes. Using metaheuristic techniques for
CPPs forms the third class of approaches [35,36]. The last group is represented by hybrid
approaches combining the algorithmic ideas of the previous groups [7,8,10,13,14,19,28,31].
A collection of benchmark problem instances and corresponding best-known solutions is
presented on E. Specht’s website [37], specifically for the problem of packing circles into
various containers.

The objective in most optimized packing problems is to find the densest possible pack-
ing arrangement, e.g., maximizing the occupation of the container or finding the minimal
container for an open-dimension problem. However, in many up-to-date applications, the
dense packing concept must be revised.

In sparse packing [38], the distance between the objects, as well as between the objects
and the container, must be sufficiently large. In container-loading applications, these
conditions arise to facilitate access to the objects during loading/unloading. Generating
lightweight void structures by 3D printing requires sufficient distance between the voids to
assure the mechanical strength of the part [39]. Sparse packing arises in thermal deburring,
which is a state-of-the-art technology for cleaning 3D-printed parts of non-sintered powder
particles [38]. The burrs are removed from 3D objects by exploding gas mixtures in a closed
chamber. To achieve a reasonable processing quality and a “uniform” distribution of power
and thermal effects, the parts must be placed at sufficient distances from one another.

In this work, the packing of different circles in a circular container under balancing
and distance conditions is considered. Dense and sparse formulations are studied. The
first problem aims to minimize the container’s radius. In the second, the minimal distance
between circles, and between the circles and the container’s boundary, is maximized.

2. Dense Packing Circular Problem with Distance and Balancing Conditions

In this section, a circular packing problem is studied under balancing and distance
conditions. The objective is to obtain the smallest possible circular container (dense packing).

Let Si, i = 1, 2, . . . , n be a family of circles with radii ri and weights wi. Let S be an
external circle (container) centered at the origin and having radius r. By the definition, the
center of gravity of the circle S is also located at the origin. Denote by (xi, yi) the unknown
center coordinates of Si, and let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Let ρij > 0 be the minimum permitted distance between Si and Sj, 1 ≤ i < j ≤ n. In
addition, let ρi > 0 be the minimum permitted distance between Si and the boundary of
the object S∗ = R2\intS, i = 1, . . . , n. More specifically, let

dist
(
Si(vi), Sj

(
vj
))
≥ ρij, 1 ≤ i < j ≤ n,

dist(Si(vi), S∗) ≥ ρi, i = 1, . . . , n
(1)

where dist(A, B) = min
a∈A,b∈B

dist(a, b) and dist(a, b) refer to the (Euclidean) distance be-

tween two points a and b.
A dense circular balanced packing (DCBP) problem can be stated as follows. Pack the

circles Si, i = 1, 2, . . . , n in a minimum-radius circular container S subject to the distance
constraints in (1), such that the gravitation center of the family of circles Si, i = 1, 2, . . . , n is
located at the origin (i.e., coincides with the gravity center of S).

A trivial lower bound on the minimal radius of S is

rlow = max
i=1,...,n

ri + ρ, ρ = max{ max
i=1,...,n

ρi, 0.5 max
1≤i<j≤n

ρij}
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The DCBP is stated as a nonlinear optimization problem in R2n+1:

r∗ = min
r,x,y

r (2)

subject to
(xi − xj)

2 + (yi − yj)
2 ≥ (ri + rj + ρij)

2, 1 ≤ i < j ≤ n, (3)

x2
i + y2

i ≤ (r− ri − ρi)
2, i = 1, . . . , n, (4)

n

∑
i=1

λixi = 0,
n

∑
i=1

λiyi = 0, (5)

r ≥ rlow (6)

where λi = wi/ ∑n
j=1 wj.

The constraints in (3) guarantee that the distance between the pair of circles Si and Sj
is at least ρij, 1 ≤ i < j ≤ n, while the constraints in (4) assure that the distance between Si
and the boundary of S is at least ρi i = 1, 2, . . . , n. The linear constraints in (5) state that the
gravity center of the family Si, i = 1, 2, . . . , n coincides with the origin, while the “dummy”
constraint in (6) provides the lower bound for the objective value.

2.1. Sequential Algorithm for DCBPs

Using penalty functions, the problem in (1)–(5) can be transformed into the uncon-
strained minimization of a non-smooth function

min
r,x,y
{f(r, x, y) = r + ΦP(r, x, y)} (7)

where the penalty function ΦP(r, x, y) has the form

ΦP(r, x, y) = P1F1(r, x, y) + P2F2(x, y) + P3max{0,−r + rlow} (8)

Here P = {P1, P2, P3}, where the penalization coefficients Pk, k = 1, 2, 3 are positive,
and the functions F1(r, x, y) and F2(x, y) are as follows:

F1(r, x, y) =
n
∑

i=1
max{0, x2

i + y2
i − (r− ri − ρi)

2}

+
n
∑

i=1

n
∑

j=i+1
max{0,−(xi − xj)

2 − (yi − yj)
2 + (ri + rj + ρij)

2}
(9)

F2(x, y) = max{0,
n

∑
i=1

λixi,−
n

∑
i=1

λixi}+ max{0,
n

∑
i=1

λiyi,−
n

∑
i=1

λiyi}, (10)

The local minimization in (2)–(6) is equivalent to the local minimization in the uncon-
strained non-smooth problem in (7)–(10). If ΦP(r, x, y) = 0 in the local minimum of the
function f(r, x, y) for certain values of the coefficients P = {P1, P2, P3}, then this point is
also a local minimum for the problem in (2)–(6). The choice of the penalty coefficients P1,
P2 and P3 allows the adjustment of the violation of the constraints in (3)–(6). The coefficient
P1 corresponds to the “total violation” of the quadratic constraints in (3)–(4), P2 “controls”
the linear constraints in (5), while P3 adjusts the constraint in (6).

The sequential algorithm to obtain the best local solution to the problem in (2)–(6) uses
the multistart method with randomly selected starting points and is based on a variant of
Shor’s r-algorithm (see, e.g., [40–43] and Appendix A) to locally minimize f(r, x, y). The
feasible starting points for the problem in (2)–(6) are not necessary. This algorithm can
also be used for the particular case of (2)–(6), where constraints on the center of gravity
of the system of circles are eliminated. It is sufficient to set P2 = 0; that it is equivalent to
excluding the constraints in (4) from the problem in (2)–(6).
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To present the sequential algorithm, denote by ntest the number of starting points
uniformly distributed inside the circular container of radius rup (the best upper bound
for the container’s radius). At the beginning of the process, rup = ∑n

i=1(ri + ρ), ρ =
max{ max

i=1,...,n
ρi, 0.5 max

1≤i<j≤n
ρij}. If the value of the local minimum decreases, then rup is

sequentially updated for all starting points. To obtain the local minimum of f(r, x, y), the
r-algorithm with an adaptive step-size and fixed space dilation [41] is used. The best local
minimum of the function f(r, x, y), corresponding to the penalty ΦP(r, x, y) close to zero, is
considered a solution to the problem in (2)–(6). This way, the best value rup of the radius is
obtained, together with the coordinates (xup, yup) of the circles.

2.2. Sequential Implementation of a Parallel Algorithm for DCBP

In a parallel algorithm, multiple searches for local solutions are implemented using the
modification of the r-algorithm. This differs from a sequential approach that starts only one
search. The parallel algorithm is implemented using the (k + 1)-processor “master–slave”
technique. One processor is selected as the “main” (Master), while the others are “subordi-
nate” (Slave).

In the Master processor, k starting points are randomly generated in a circle with a
radius rup = ∑n

i=1(ri + ρ), ρ = max{ max
i=1,...,n

ρi, 0.5 max
1≤i<j≤n

ρij}. Then, these points are sent to

the Slave processors. Each Slave processor starts the local minimization of the function
f(r, x, y) from its starting point. When the r-algorithm terminates on any Slave processor,
the results are transferred to the Master processor. As soon as the local minimum of the
problem in (2)–(6) is obtained, the radius of the container must be compared with the best
value rup. If the radius is smaller than rup, the value of rup is updated correspondingly, and
the values (xup, yup) of the coordinates of the centers of the circles are saved. Then, the
Master processor selects a new starting point, which is passed to the Slave processor on
which the r-algorithm just finished to begin the new search for the local minimum. The
process stops either when all starting points have been investigated or the computational
time limit has been exceeded.

The parallel algorithm is implemented using the C++ programming language and the
MPI parallel programming environment. The standard rand function is used to generate
pseudo-random numbers. For local minimization, the module ralgb5 is used, corresponding
to the Octave code [44] of the modification of the r-algorithm presented in [41]. The program
is coded to work for a cluster in an MPI environment and on a Linux operating system. It
can be executed on a single processor or on several processors in parallel.

Here, the cluster SKIT-4 of the V.M. Glushkov Institute of Cybernetics [45] is used.
The speedup of the parallel algorithm for the DCBP problem is studied for an instance
with 50 circles: 20 circles of radius 10, 15 circles of radius 20, 10 circles of radius 30 and
5 circles of radius 40. It is assumed that wi = ri, i = 1, 2, . . . , n. The multistart strategy
is implemented with 5000 starting points, and the number of processors ranges from 1
to 32. The results are presented in Table 1. Here, k denotes the number of processors,
tk is the problem solution time in seconds, Ck is the parallel algorithm speedup and Ek
is the parallel algorithm efficiency. The parallel speedup is calculated by the formula
Ck = t0/tk, k = 1, 4, 8, 12, 16, 24, 32, where t0 is the solution time for the serial algorithm
with one processor, and tk is the solution time for the parallel algorithm with k processors.
The effect of parallelization is estimated as Ek = Ck/k. It follows from Table 1 that for
4 processors the solution time is reduced by 2.95 times, for 8–5.78 times, for 16–13.43 times,
for 24–14.31 times and for 32–15 times.

Figure 1 presents the solution time compared to the number of processors used,
Figure 2 shows the speedup diagram and Figure 3 provides the efficiency diagram of
the parallel algorithm for the problem instance. We may conclude that, once there are
16 processors in use, further increasing the number of processors does not result in a
significant impact on the solution time. This is due to the rising cost of information
exchange between parallel processors.
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Table 1. Solution time, speedup and efficiency for a DCBP problem instance with 50 circles solved on
the cluster SKIT-4.

k tk Ck Ek

1 2159.68 1.00 1.00

4 731.08 2.95 0.74

8 373.85 5.78 0.72

12 209.04 10.33 0.86

16 160.79 13.43 0.84

24 150.93 14.31 0.60

32 144.02 15.00 0.47
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For a problem instance with 100 circles (40 circles with radius 10, 30 with radius 20, 20
with radius 30 and 10 with radius 40) the sequential algorithm results in rup = 257.35311.
For the same instance, the parallel algorithm with eight processors and 100,000 start-
ing points gives an improved value rup = 257.1951 in 64,649 s (approximately 17 h
58 min). Sequential and parallel solutions are presented in Figures 4 and 5, respec-
tively, while Tables 2 and 3 provide corresponding center coordinates. As can be seen
from Figures 4 and 5, the layout for the circles differs significantly.
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Table 2. Coordinates of the placement of 100 circles for the sequential solution, rup = 257.35311.

i xup
i yup

i i xup
i yup

i i xup
i yup

i

1 139.4106 −148.7203 35 −192.0113 152.7411 69 −57.0781 139.3253
2 165.9300 −180.7356 36 −20.2820 57.6283 70 65.7095 −121.7164
3 −10.4564 139.3668 37 −33.4277 −76.2563 71 −60.8956 205.8394
4 90.6188 −228.0052 38 −25.6351 −26.4029 72 −66.4087 −215.3460
5 −85.8170 −120.5509 39 153.5649 88.7727 73 95.7131 204.0172
6 73.5905 127.7710 40 14.8656 116.2411 74 −174.8863 52.7062
7 −157.6668 127.7678 41 5.8499 −16.7581 75 31.2989 −218.4935
8 −177.5573 169.3267 42 65.9473 43.6220 76 −23.6507 99.4930
9 −70.5784 −169.3974 43 −25.8560 167.4177 77 −224.7904 15.9151

10 95.7456 55.2866 44 50.5852 229.8526 78 −81.3118 12.9985
11 −109.3281 44.9178 45 175.1576 157.1970 79 −170.0251 −13.1497
12 150.5197 110.5609 46 125.6546 43.9088 80 219.2165 52.2319
13 −74.5636 166.1256 47 178.0610 −69.8027 81 −16.3268 −178.7973
14 −171.4504 144.9147 48 −29.8828 5.3140 82 −196.1507 110.9455
15 −15.5382 −136.8047 49 137.0313 139.5792 83 −62.7066 −46.1440
16 171.8182 16.2934 50 −18.1262 −234.6541 84 14.7585 34.4732
17 −39.7282 242.1153 51 −53.7898 57.1181 85 −1.2195 225.3498
18 141.1580 −200.6803 52 −47.5357 −137.2039 86 111.8985 94.0562
19 −158.9000 91.5448 53 187.9781 −110.6151 87 49.9061 93.0860
20 201.8791 −139.4381 54 34.1020 −166.1113 88 −194.0441 −70.3082
21 37.9330 −105.8272 55 165.9846 59.2811 89 192.4508 108.1568
22 −28.6723 37.2911 56 96.9196 152.0312 90 −183.1233 −131.3388
23 −235.9375 −67.3175 57 15.3707 −128.5195 91 95.2733 −176.2139
24 −132.9352 54.7309 58 171.4069 −149.2078 92 −122.5708 −170.2925
25 93.6021 27.5218 59 −62.9718 −98.1434 93 214.4583 −19.6107
26 146.8699 −169.7488 60 218.3642 −81.6204 94 132.4803 −17.7144
27 11.3898 76.3379 61 −225.3420 67.9122 95 −101.7842 96.3677
28 34.5368 −2.5784 62 73.8224 2.3670 96 53.6401 −56.2562
29 154.2352 29.5161 63 144.4278 185.8271 97 −123.5010 −84.7191
30 −224.2984 −99.4403 64 −8.4552 −56.2468 98 −125.8419 174.7592
31 69.8306 −235.2059 65 −232.6625 −35.4856 99 123.4839 −99.2194
32 −174.5260 −172.4495 66 −132.3921 22.7355 100 36.0347 163.7371
33 5.5154 −85.0361 67 −118.9449 −22.8867
34 −79.2399 −141.5447 68 −19.4571 −105.0456
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Table 3. Coordinates of the placement of 100 circles for the parallel solution, rup = 257.1951.

i xup
i yup

i i xup
i yup

i i xup
i yup

i

1 −45.4108 106.9596 35 122.9228 −7.1056 69 84.7426 74.1280
2 70.2790 −41.6277 36 −80.7209 −121.0597 70 127.1753 −38.8218
3 82.4623 106.0466 37 −75.5893 78.1391 71 13.1500 149.8033
4 52.4820 82.9348 38 185.2119 59.8396 72 −224.0971 −22.2112
5 95.4186 −34.8836 39 −65.3203 97.5992 73 −138.3141 65.5081
6 55.4959 61.1422 40 −27.8345 158.9831 74 −35.0326 −222.4535
7 −10.6496 72.8616 41 −110.2915 −108.8296 75 −98.0049 202.3002
8 −37.8368 −20.6103 42 21.1518 76.4216 76 −8.7590 −155.9050
9 −135.0830 −88.5964 43 −12.8746 104.7842 77 −77.0574 36.1647

10 −52.8890 −4.5655 44 −81.7715 −18.3424 78 28.2801 −41.9345
11 −95.1176 −137.6949 45 154.9222 −7.2923 79 −68.9963 −170.5838
12 37.2911 48.7896 46 230.5373 −45.3839 80 −68.5395 −74.5900
13 −151.8092 −16.0172 47 114.3888 103.8789 81 206.2285 1.1733
14 123.9678 −111.0752 48 −97.9383 105.1093 82 −149.7678 168.1739
15 −29.3590 132.2116 49 −176.2423 −42.5563 83 122.4704 180.7840
16 −167.0885 −73.2191 50 86.9860 137.7383 84 −124.5224 −47.9457
17 −190.4386 2.9106 51 −23.2266 −49.0803 85 −68.3349 147.8602
18 115.1268 −131.2206 52 −11.5071 −103.2896 86 −209.5402 −82.4969
19 −109.4713 156.3334 53 −194.4786 −132.2679 87 −189.9519 120.9591
20 101.1534 −78.3999 54 218.3378 87.4377 88 177.8639 −53.9579
21 20.2577 108.4091 55 −42.5723 75.0849 89 133.2627 55.4251
22 −54.4610 −35.0199 56 31.4821 −93.8401 90 51.6126 −141.7886
23 176.9704 39.4416 57 69.5126 −73.6185 91 74.9291 12.9096
24 14.9748 −121.2538 58 51.7187 114.9257 92 −140.5877 −162.9234
25 130.6056 13.5093 59 230.4083 47.2095 93 55.7506 207.8480
26 198.7563 42.5033 60 −157.3516 17.1183 94 171.4856 128.0440
27 96.7626 −56.8425 61 −97.7063 −213.9397 95 173.2629 −127.6280
28 −110.8739 134.3782 62 133.0906 −80.4032 96 −26.5284 210.9667
29 161.2199 24.0819 63 92.0306 −109.0719 97 112.9423 −183.1747
30 244.4979 18.4780 64 −138.0666 117.5075 98 −208.9399 51.5080
31 55.0646 146.7503 65 −48.7620 −122.6821 99 36.2227 −212.1246
32 0.9221 −73.8021 66 218.9989 −85.7685 100 −6.6694 21.0142
33 −97.0099 73.1228 67 −162.6154 −104.9049
34 −173.1583 −10.7053 68 −117.5900 3.5901

2.3. Solving DCBP Using IPOPT

Several instances of the DCBP problem were solved by the NLP solver IPOPT [46]
available at https://projects.coin-or.org/Ipopt (accessed on 4 April 2022). A computer with
an AMD Athlon 64 X2 5200+ was used for numerical experiments with the decomposition
algorithm [31].

Three problem instances were considered, having the following circle distributions
characterized by the indicator (the number of equal circles):(their radius), as follows: (a) total
50 circles (20:10, 15:20, 10:30 and 5:40); (b) total 150 circles (50:10, 40:20, 30:30, 20:40 and
10:50); (c) total 300 circles, two collections of the 150 circles specified in (b). It was assumed
that wi = ri for i = 1, 2, . . . n.

Figure 6 shows arrangements of circles corresponding to the local minima of DCBP
for cases (a), (b) and (c).

https://projects.coin-or.org/Ipopt
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Figure 6. Locally optimal layouts of circles in DCBP: (a) n = 50, r * = 182.6996, CPU 1355.85 s for
100 runs; (b) n = 150, r * = 368.4018, CPU 45,910.3 s for 50 runs; (c) n = 300, r * = 520.5562, CPU
24,185.24 s for 50 runs.
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3. Sparse Balanced Packing Problem with Balancing Conditions

In this section, a sparse circular packing problem is considered under balancing
conditions. The objective is to place the circles in a fixed circular container maximizing the
smallest distance between the circles, as well as the distance between the circles and the
boundary of the container.

Denote the Euclidean distance between two circles by dij for i > j = 1, 2, . . . , n and the
distance between a circle and the boundary of the circular container by di, i = 1, 2, . . . , n. Let
d = min{dij, i > j = 1, 2, . . . , n, di, i = 1, 2, . . . , n} be the minimum among all these distances.

A sparse circular balanced packing (SCBP) problem is as follows. Pack the circles Si,
i = 1, 2, . . . , n, into a fixed circular container S, maximizing d, subject to a limited deviation
between the origin and the gravitation center of all circles Si, i = 1, 2, . . . , n. The maximal
allowed deviation is denoted by ε.

The SCBP problem is stated as follows:

d∗ = max
d>0,x,y

d (11)

subject to
(xi − xj)

2 + (yi − yj)
2 ≥ (ri + rj + d)2, 1 ≤ i < j ≤ n, (12)

x2
i + y2

i ≤ (r− ri − d)2, i = 1, . . . , n, (13)

− ε ≤
n

∑
i=1

wixi ≤ ε, −ε ≤
n

∑
i=1

wiyi ≤ ε. (14)

The constraints in (12) and (13) assure that the corresponding distances are at least d.
The constraint in (14) guarantees that the component-wise difference between the center of
gravity and the origin (the center of the container) is at most ε.

The problem in (11)–(14) has n(n− 1)/2 quadratic nonconvex constraints (12), n
quadratic non-convex constraints (13) and 4n linear balanced constraints (14).

The following technique is applied for the problem in (11)–(14):
Stage 1. Generate several feasible starting points by homothetic transformations of the

circles [21].
Stage 2. Obtain a local minimum for (11)–(14), starting from the points obtained at

Stage 1 and using the optimization procedure proposed in [47]. The procedure substitutes
solving the problem in (11)–(14) with O(n2) nonlinear constraints by analyses of several
optimization subproblems with O(n) constraints.

Stage 3. Consider the best local solution from Stage 2 as a solution to the original
problem in (11)–(14).

For computational experiments, a computer with an AMD Athlon 64 X2 5200+ was used.
Three problem instances were considered: (a) total 50 circles (20:10, 15: 20, 10:30 and

5:40); (b) total 100 circles (40:10, 30:20, 20:30 and 10:40); (c) total 150 circles (50:10, 40:20,
30:30, 20:40 and 10:50). Note that here, instances (a) and (c) coincide with instances (a) and
(b) from Section 2. For all problem instances, ε = 0 and wi = ri for i = 1, 2, . . . n. Moreover,
the radii of the containers in instances (a) and (b) were chosen as follows: Ra = 182.6996,
Rb = 257.3531, Rc = 368.4018, such that Ra and Rc coincide with corresponding radii
obtained in Section 2 for the dense packing problem. The radius of container S was found
as a solution to the dense packing problem considered in the previous section.

Figure 7 shows arrangements of circles corresponding to the local minima of SCBP for
cases (a), (b) and (c).
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Figure 7. Locally optimal arrangement of circles in SCBP: (a) n = 50, 𝒅 ∗ = 2.05510, CPU 1201.32 s 
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Figure 7. Locally optimal arrangement of circles in SCBP: (a) n = 50, d * = 2.05510, CPU 1201.32 s
for 100 runs; (b) n = 100, d * = 2.04864, CPU 8090.16 s for 100 runs; (c) n = 150, d * = 2.05183, CPU
19,571.66 s for 100 runs, CPU 8090.16 s for 100 runs.

4. Conclusions

Two circular packing problems are considered in this work: dense and sparse. In
the first problem, the objective is to find the smallest possible circular container under
distance and balancing conditions for the circular objects. In the second problem, the
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circular container is fixed, and the objective is to locate the circles as distant from one
another as possible, as well as from the boundary of the container.

A mathematical model and sequential/parallel algorithms are presented for the dense
packing problem. Parallel algorithms use computing technology with distributed memory
(clusters). Solution algorithms apply the multistart strategy together with non-smooth
minimization methods to search for the local minimum. The results of computational
experiments for parallel algorithms on cluster SKIT-4 from the V.M. Glushkov Institute of
Cybernetics of the National Academy of Sciences of Ukraine are presented. It is demon-
strated that using the parallel approach can significantly reduce the solution time. The
parallel solution allows finding good local minima for problem instances with several
hundred circles in a reasonable time. The parallel solution also results in an improved
value for the container’s radius compared with the sequential technique.

The mathematical formulation for the sparse circular packing problem was presented.
The corresponding nonlinear optimization problem was solved by the open-source local
solver IPOPT [46], combined with the decomposition algorithm in [47] to cope with large
dimensions. Numerical results are presented for the arrangement of circular containers
obtained by dense packing. The corresponding solutions provide a visually more uniform
distribution of the circles compared with dense packing. Obtaining a sparse layout is
important in many practical applications, e.g., in thermal deburring [39], where it is used
to ensure the uniformity of power and thermal effects in a deburring chamber (container).

Both formulations considered in this work result in large-scale optimization problems.
To use the specific structure of the constraints, special-purpose decomposition/aggregation
techniques [48,49] can be used to either relax the binding constraints or form an approximate
aggregated problem of lower dimension.

An interesting direction for future research is using parallel algorithms for irregular
packing problems with distance and balancing conditions. Some results in this direction are
on the way [50]. Parallel techniques used in this work demonstrate their efficiency for tradi-
tional optimization approaches. We may expect that combining evolution algorithms [33]
with parallel frameworks for packing problems may provide more computational savings.
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Appendix A. Shor’s r(α)-Algorithm

Here, we give a short description of the r(α)-algorithm. This algorithm belongs to the
family of subgradient methods for minimizing non-smooth convex functions known as
Shor’s r-algorithms. These algorithms use the steepest possible descent combined with
space transformation and ensure monotonic (or almost monotonic) objective function
decrees. A space transformation in the direction of the difference of two subsequent
subgradients is used in r-algorithms; this improves the behavior of ravine functions in the
transformed space of the variables.

Let x be an n-vector of variables and f(x) be a convex function. Assuming α > 1, using
the r(α)-algorithm to minimize f(x) is an iterative technique to obtain vectors {xk}∞

k=0 and
matrices {Bk}∞

k=0 such that:

xk+1 = xk − hkBkξk, Bk+1 = BkRβ(τk), k = 0, 1, 2, . . . , (A1)
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where

ξk =
BT

kgf(xk)

‖ BT
kgf(xk) ‖

, hk = argmin
h≥0

f(xk − hBkξk), (A2)

τk =
BT

krk

‖ BT
krk ‖

, rk = gf(xk+1)− gf(xk), β =
1
α
< 1. (A3)

In (A1)–(A3), x0 is an arbitrary starting point, and B0 = In is an identity n× n -matrix
(B0 also can be defined as a diagonal matrix Dn with positive diagonal elements). The
step-size multiplier hk is obtained by minimizing f(x) in the direction of the subgradient
in the transformed space; the coefficient α is used for space dilation, and the operator
Rβ(τ) = In +(β− 1) ·τ ·τT is used for “pressing” subgradients in the normalized direction
τ with a coefficient β = 1

α < 1. Vectors gf(xk) and gf(xk+1) denote subgradients of f(x) at
xk and xk+1. The process in (14)–(16) stops if gf(xk) = 0 and xk is a minimum point of f(x).

This algorithm is implemented as an Octave program ralgb5. This program can find
an approximate value of x∗r , which is a minimizer of the function f(x). Its name indicates
that the recalculation of the matrix B in algorithms (A1)–(A3) needs the 5n2 arithmetical
operation. The program ralgb5 can find more precise approximations x∗r than the existing
program ralgb4, economizing n2 arithmetical operations per iteration. Control parameters
are the same in both programs.

Adaptive step regulation is related to approximately minimizing the objective function
in the subgradient direction and uses h0, q1, nh, and q2 as parameters. Here, h0 is an
initial step-size (this value is updated after the first iteration), q1 is a coefficient of the step
reduction (q1 ≤ 1) if the condition of stopping descent is satisfied in one step and q2 is a
coefficient of the step increasing (q2 ≥ 1). The integer nh denotes the number of steps in a
one-dimensional descent (nh > 1). After nh steps, the step size is q2 times greater.

The choice of the coefficient of space transformation and the parameters of the adaptive
step-size regulation aims to improve the accuracy of minimizing the function along a
direction, with the number of steps along a direction being moderate.

Stopping rules for the r(α)-algorithm are defined by the parameters εx and εg: itera-
tions are terminated at xk+1 if ‖ xk+1 − xk ‖≤ εx (criterion in the space of variables) or if
‖ gf(xk+1) ‖≤ εg (criterion in the objective space, used for smooth functions). For values of
f(x) not bounded below, or for too-small values of the initial step h0, the algorithm may
terminate in an abnormal manner. In the latter case, the initial step-size must be enlarged.

The following parameter values are recommended for minimizing non-smooth func-
tions: α = 2÷ 3, h0 = 1.0, q1 = 1.0, q2 = 1.1÷ 1.2, nh = 2÷ 3. If a priory estimation
of the distance between a starting point x0 and a minimum point x ∗ is available, then a
reasonable choice for the initial step h0 is approximately ‖ x0 − x ∗ ‖.

Basically, the same parameters can be used for minimizing smooth functions. However,
q1 = 0.8÷ 0.95 is recommended. The reason is that the additional size decomposition
provides a more accurate directional minimum of the function; for smooth functions, this
provides a better convergence rate. For these parameters, the number of descents is usually
less than two, and after n steps, the accuracy in terms of the objective is three to five times
better. Choosing εx, εg ∼ 10−6 ÷ 10−5 for the minimization of a convex function gives good
approximations of the optimal objective.

According to numerous tests and applied calculations, for non-smooth functions, we
usually have f(x∗r )−f(x∗)

|f(x∗)|+1 ∼ 10−6 ÷ 10−5 (∼ 10−12 ÷ 10−10 for smooth functions).
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