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Chapter 1

Introduction

Abstract

Finite horizon production (FHP) processes are common in manufacturing environments char-

acterized by a high degree of flexibility, production variety, and a limited number of scheduled

inspections. Due to its characteristics, research on statistical tools for monitoring FHP processes

has increased in recent years. Because of the constant changes in the production process, the

distribution of the quality characteristic is often unknown, and online monitoring is needed as

fast as possible, having no time for a Phase I SPC analysis. Celano and Chakraborti Celano and

Chakraborti, 2020 implemented a distribution-free Shewhart-type Mann-Whitney control chart

for monitoring location in FHP processes; where they evaluated the conditional performance

of the control chart selecting the control limits following an ‘exceedance probability criterion’

(EPC), see Jardim et al., 2020, guaranteeing a desired in-control performance of the control

chart in terms of false alarm probability (FAP). In this research, we propose a Shewhart con-

trol chart for monitoring location and scale on an FHP process using a Lepage-type statistic

composed by the combination of the Wilcoxon and Mood statistics. The control limits were

selected under the conditional perspective, taking into account the practitioner to practitioner

variability. We performed a Monte-Carlo simulation study to evaluate the performance of the

proposed chart. Results show that the proposed control chart is effective to detect medium and

larges changes in location or scale, whereas it preserves a desirable in-control performance.

1.0.1 Motivation

Statistical process control (SPC) is the use of statistical tools and procedures that help

practitioners monitor process behavior, discover issues in internal systems, and find solu-

tions for production issues. In SPC, various aspects within a process are monitored and

controlled to maintain full potential during the manufacturing processes. Zhang, 2010

says “ Statistical Process Control (SPC) is a control method for monitoring an industrial

process through the use of a control chart. Much of its power lies in its ability to mon-

itor both the process center and its variation about that center.” (p.41). Kiran, 2017,

wrote about SPC, ”determines the stability and predictability of a process. It can be
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Chapter 1. Introduction

applied to any process where the output of the product conforming to specifications can

be measured.”

In the early 1920s, Walter Shewhart of Bell Laboratories pioneered the concept of

SPC by developing a statistical tool for monitoring a process named control chart. In

1931, Shewhart authored a book entitled Economic Control of Quality of Manufactured

Product which settled the stage for the statistical use within processes to improve product

control. Some years after that, the professional society was formed in 1945 regarding SPC

- The American Society for Quality Control. During this restraint of time, SPC methods

were introduced to the Japanese industry as well.

Control charts are one of the most important statistical tools in the SPC, used to

establish the state of statistic control in either a business or fabrication process. The

primary objective of a control chart is to continuously register data so discrepancies or

anomalous events can be observed within the typical process performance. There are two

different types of process variation: Common cause variation and special cause variation.

• Common Cause Variation : This variation can be considered natural or common

to the process and will nearly always be present. If only this variation is detected

in the process, then this process is considered in control.

• Special Cause Variation: This variation can be explained by an external factor,

increasing the total variation of the process. When special causes are detected, we

say that the process is out of control.

The application of SPC involves two main phases; in Phase I, the process is stabi-

lized, and the special causes of variation are eliminated; when there are no special causes

of variation in the Phase I sample, the sample is In Control (IC). In Phase II, the process

is monitored using statistics of the ongoing samples, which are evaluated according to

the IC sample looking for changes in location or scale. In SPC, the distribution of the

IC variable is often assumed as known. The most popular assumption in the literature

is that the probability distribution under analysis is normal; moreover, the underlying

process is not normal in many applications. As a result, the statistical properties of the

standard control charts can be highly affected. Another relevant assumption is that the

processes run for an infinite time until a change occurs. There are ample justifications for

developing and applying control charts with properties that do not depend on normal-
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Chapter 1. Introduction

ity or any other specific distributional assumption. Distribution-free and non-parametric

control charts are designed to achieve this purpose.

In industry, there exist processes in which the number of scheduled inspections

before it ends should be restricted to a few tens. These processes are known as finite

horizon production processes (FHP). In many industrial fields, the processes should be

frequently reconfigured to respond promptly to the market demand of different products.

They are present in the baby diaper companies, mechanical and electronic industries, food

production of multi-branded products, among others.

There are essential issues that practitioners face when they want to use the SPC tools to

monitor these type of processes, like:

• After each process set-up and restart following a production switch to a new part

code, the current distribution of the quality characteristic is unknown.

• The control chart’s performance should be measured by metrics accounting for the

small number of inspections during the production run.

Recently, Celano and Chakraborti, 2020 implemented a distribution-free Shewhart-

type Mann-Whitney control chart for monitoring finite horizon productions for the un-

known parameter case and with a reference sample scheme. They evaluate the statistical

performance of the control chart, conditional on the selected reference sample. This the-

sis proposes a new control chart for joint monitoring the location and scale of a finite

horizon production using a Lepage-type statistic, evaluating the conditional statistical

performance in a reference sample scheme.

3



Chapter 1. Introduction

1.0.2 Problem statement and context

A new control chart for joint monitoring the location and scale parameters in an FHP

process based on a Lepage-Mood statistic is proposed in this research, with a ”guaranteed

performance.” This investigation was done by looking for control limits that guarantee

the desired performance for a high percentage of the practitioners, named the conditional

scheme. Monte Carlo simulation is used to evaluate the performance of this Lepage-type

control chart. The in-control performance of the proposed chart is compared with the

same chart under the unconditional approach, whereas the out-of-control performance is

evaluated with the proposed control chart and the one using the Lepage statistic formed

by Wilcoxon and Ansari-Bradley statistics.

1.0.3 Research questions

1. Is the proposed control chart based on the Lepage-Mood statistic effective for mon-

itoring the location and scale parameters in a finite horizon production process?.

2. Is the proposed control chart under the conditional perspective a better alternative

in terms of the in-Control performance than the control chart based on the uncon-

ditional perspective?.

3. Is the proposed control chart based on the Lepage-Mood statistic more potent in

terms of Out-of-control performance with the conditional scheme than the alterna-

tive of using the Lepage-Ansari-Bradley statistic?

1.0.4 Hypotheses

1. The proposed control chart based on the Lepage-Mood statistic is effective (consid-

ering effectiveness as showing a low false alarm probability and power for detecting

true alarms).

2. Under the conditional perspective, the proposed control chart is a better alternative

in terms of In-Control performance than the control chart based on the uncondi-

tional perspective.

4



Chapter 1. Introduction

3. The proposed control chart is more potent in terms of Out-of-control performance

with the conditional scheme than using the common Lepage-Ansari-Bradley statis-

tic.

1.0.5 Objectives

The main goal of this research is to propose an effective control chart for joint monitoring

the location and scale parameters in a finite horizon production process when the distri-

butions of the observations are unknown, with guaranteed In-control performance.

The primary objective can be divided into specific targets to address the hypotheses

mentioned in Section 1.4:

1. Look at the effectiveness in terms of a low and controlled false alarm probability of

the control chart through a simulation study to evaluate the statistical performance

of the control chart.

2. Measure the In-control statistical performance (in terms of conditional False Alarm

Probability) of the proposed control chart based on the Lepage-Mood statistic and

compare both the conditional and unconditional perspectives.

3. Measure the Out-of-control statistical performance of the proposed control chart (in

terms of conditional Signal Probability) of the proposed control chart based on the

Lepage-Mood statistic and compare it with the Lepage-Ansari-Bradley statistic.

1.0.6 Scope and Limitations

In this thesis, the scope is to create and evaluate a control chart for finite horizon pro-

duction processes (FHP) that monitors the location and scale parameters of the process.

The study covers the use of the Lepage-Mood statistic used in Tercero-Gómez et al.,

2020 and classical Lepage statistic (only for comparison purposes in the Out-of-control

performance section) for monitoring changes in the location and scale parameters under

a variety of scenarios.

5



Chapter 1. Introduction

The covered scenarios in which the study is limited are:

• Using only two-sample tests, Mood and AB.

• A fix target False Alarm Probability (FAP0) equal to 0.1

• Sample size. Reference sample sizes are 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,

350 and 500 and test sample size can be 5, 10 and 25.

• Distribution. The performance of the control chart is evaluated for two symmetric

distributions, N(0, 1) and t(4) and two asymmetric distributions, Gamma(2, 1) and

Gamma(3, 1).

• Change size. Combinations are considered for changes in location (0, 0.25, 0.5,

0.75, 1, 1.5, 2), scale (0.25, 0.5, 0.66, 1, 1.5, 2, 3) or both of them at the same time

measured in standard deviations.

• The number of replicates using the Monte Carlo simulations is fixed to 10,000.

6



Chapter 2

Background and Literature

Review

2.1 Control Charts

A control chart is a statistical tool used to study how a process changes over time, in

which statistics of the monitored samples are obtained and evaluated in order to deter-

mine if the process is in-control or not. A traditional control chart has a central line for

the statistic monitored, an upper control limit, and a lower control limit. These control

limits are established from historical data, the distribution of the statistic observed, or

assumptions over the data distribution. By comparing recent data to these limits, you

can conclude whether the process variation is consistent (in control) or unreliable (out of

control, affected by special causes of variation).

Traditional control charts are mainly designed to monitor process parameters when

the underlying distribution of the process is known. However, there are a lot of practical

applications where the distribution of the process is unknown, making the distribution-

free control charts a best option for practitioners.

A charting statistic defined by the observed data should be selected. It must contain

as much of the information in the empirical data about the distribution of the quality

characteristic(s) as possible and be susceptible to any shift. The most common control

charts are the Shewhart type control charts, CUSUM type control charts, the exponen-

tially weighted moving average (EWMA) control charts, and the control charts based on

change-point detection (CPD).

The first control chart in the literature was proposed in Shewhart, 1926, and is called

the Shewhart chart. Over the past 80 years, many different versions of the Shewhart chart

7



Chapter 2. Background and Literature Review

have been proposed for different purposes, and they are widely used in practice. But, the

disadvantage of the Shewhart chart is the lack of sensitiveness to detect small to moderate

shifts in the process. As an example of the Shewhart-type control charts, lets explain the

Shewhart X̄ control chart, where we assume that the IC mean µ0 and standard deviation

σ0 of the quality characteristic are both known. Then, at each monitoring time point t

we collect a sample of n observations x1, x2, . . . , xn and compute its average

x̄ =
x1 + x2 + . . .+ xn

n
(2.1)

and we know that, x̄ ∼ N(µ0,
σ0

n
). Thus, when we want to monitor a shift in the mean of

the process, it is natural to consider the following hypothesis testing:

H0 : µ = µ0 vs H1 : µ 6= µ0

where µ denotes the true mean of the process. With this, we generate the upper and

lower control limits for the control chart as

UCL = µ0 + k
σ0√
n

(2.2)

LCL = µ0 − k
σ0√
n

(2.3)

where k is the control limit coefficient, typically SPC practitioners have considered k =

3, so the three-sigma limits are employed. Therefore the interval [UCL,LCL] covers

approximately 99.73% of the population. In practice, the values of µ0 and σ0 are unknown,

and we need to estimate them from a Phase I sample. For more details see Qiu, 2014.

Figure 2.1 shows an example of the implementation of a Shewhart X̄ control chart. The

data used in this example is from table 6E.11 in Montgomery, 2009. The control chart is

constructed for an injection molding process example with 20 samples, each one of size 5.
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Figure 2.1: Shewhart X̄ control chart example for monitoring an injection molding process

Another control chart coomonly used is the Cumulative Sum control chart CUSUM,

proposed in Page, 1954. This control chart is an efficient alternative to overcome the prob-

lem of detecting small to moderate shifts in the process. The statistic used in this control

chart is the cumulative sum of deviations from a target. This control chart requires two

parameters, k the reference value, k is usually set to half the shift to be detected, in sigma

units, and h, the decision limit specified in sigma units. In the typical model for a CUSUM

chart, we assume that the IC distribution of the quality characteristic to be monitored is

N(µ0, σ
2) and we are looking for potential shift in in the mean of the production process.

Assume that X1, X2, . . . are individual observation data obtained online at consecutive

time points from a production process. The observations are independent and identically

distributed (i.i.d.) with a common IC distribution N(µ0, σ
2) before a process mean shift.

With this settings, we considered the charting statistic

Ct =
t

∑

i=1

(Xi − µ0) (2.4)

where C0 = 0. It is obvious that Ct = Ct−1+(Xt−µ0), therefore, Ct is a cumulative sum

of the deviations {Xi − µ0, i = 1, 2, . . . , t}. To detect an upward mean shift the CUSUM

chart is applied with the following statistic

C+
t = max(0, C+

t−1 + (Xt − µ0)− k) (2.5)

9



Chapter 2. Background and Literature Review

with C+
0 = 0. The control chart gives a signal of an upward mean shift when

C+
t > h

where k and h are the allowance and the control limit respectively as we mentioned before.

To detect a downward mean shift in the process, the form of the CUSUM chart would

have the charting statistic

C−

t = min(0, C−

t−1 + (Xt − µ0) + k) (2.6)

where C−

0 = 0. This chart gives a signal of a downward mean shift if

C−

t < −h

Figure 2.2 shows a basic example for a CUSUM control chart simulating a process where

we see 20 observations from N(10, 1) and then we observe ten observations from N(11, 1),

that is a 1σ shift in the mean of the process. We see an increase in the tendency of the

process; the red points indicate the presence of an Out-of-control signal in the twenty-four

and twenty-five observations. Furthermore, in the nineteenth observation, we observe an

upward change point in the process.

Observation

1 3 5 7 9 12 15 18 21 24 27 30

−
4

0
2

4
6

Example of CUSUM chart
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Figure 2.2: Example of a CUSUM chart

Another excellent alternative for Shewhart control charts, to detect small to moder-

ate shifts in the process, is the exponentially weighted moving average (EWMA) control
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Chapter 2. Background and Literature Review

charts. Roberts, 1959 proposed this control chart, that is constructed based on a weighted

average of all observed data available at the current time point. Under normality, if the

in control distribution has a mean of µ and standar deviation of σ, the charting statistic

for the EWMA control chart is: for n ≥ 1

En = λXn + (1− λ)En−1

where E0 = µ0 and λ ∈ (0, 1] is the weighting parameter. The basic control limits for

detect a mean shift are:

UCL = µ0 + L

√

λ

2− λ
(1− (1− λ)2n)σ (2.7)

CL = µ0 (2.8)

LCL = µ0 − L

√

λ

2− λ
(1− (1− λ)2n)σ (2.9)

where L > 0 is a design parameter. Figure 2.2 shows a basic example of the look of an

EWMA control chart with λ = 0.1 and a design parameter L = 2.454. We plot En for a

sample of size 30 where the center dashed line is the target mean µ0 = 10. In observation

eighteen, we see an upward trend in the process, indicating a possible change to the Out-

of-control state because all the following statistics are above the upper control limit. For

more details about these control charts see, Qiu, 2014.

11
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Figure 2.3: Example of an EWMA control chart

2.2 Traditional Approach and PTP variability

Statistical Process Control (SPC) methods are widely used to monitor and improve the

production process and are adopted in many industries. Most SPC methods involve pa-

rameter estimation to design a control chart, such as the mean and standard deviation

of the process. These parameters must be estimated from a Phase I reference sample

collected when the process is presumably in control.

When parameters are estimated, the performance of the control chart is negatively

affected compared with the unrealistic case of known parameters. More precisely, the

most popular performance metric, the ARL0 (the in-control average run length or, in

other words, the average number of samples monitored until the control chart triggers a

false alarm), is significantly affected by the parameter estimation. A review of the effects

12
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of parameter estimation on control chart properties can be seen in Jensen et al., 2006

and Psarakis et al., 2014. Many research works have already documented the impacts of

estimation errors and the urgent need to consider practitioner-to-practitioner variability

(PTP); since different practitioners obtain different samples, their estimations and con-

trol limits will vary, and as a consequence, the control chart performance will be variable.

For a comprehensive discussion about PTP and parameter estimation, see Capizzi and

Masarotto, 2020 and Faria Sobue et al., 2020.

More recently, an alternative point of view has emerged that suggests focusing on

the performance of the control chart given the data from which the parameters are esti-

mated, and the control limits are constructed. This approach is known as the conditional

performance perspective, in which the focus is on the in-control run length distribution

conditioned on a given estimate of the parameters. And consequently on its various

attributes such as its mean, i.e., the conditional in-control average run length (i.e., on

the CARL0 = E(RL0|µ̂, σ̂) distribution). Recently, authors argued that the conditional

perspective is more meaningful in the chart design because it considers the practitioner-

to-practitioner variability (PTP), which is not considered by the traditional unconditional

approach. Figure 2.4 shows a simulation example to see the spread of the empirical dis-

tribution of conditional ARL for a Shewhart X̄ control chart with estimated parameters.

We simulate 1000 reference samples (1000 practitioners) of size ten and monitoring sam-

ples of size 10. As we can see, the desired in-control ARL0 is fixed at 370, but for most

of the cases, more precisely for 60% of the simulated reference samples, the control chart

triggers a false alarm before the desired moment. This performance of the control chart

is inadequate. Thus practitioners cannot be sure about the expected performance when

implementing a control chart to their processes.

13
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Figure 2.4: Conditional ARL simulation example

The conditional perspective argues that the conditional in-control run length distri-

bution and consequently its attributes such as the conditional average run length CARL0

are more meaningful in the context of the chart design with estimated parameters. Rec-

ognizing the fact that the CARL0 is a random variable, one frequently used performance

measure under the conditional perspective has been the so-called exceedance probabil-

ity criterion (EPC), see (Albers and Kallenberg, 2005 and Albers et al., 2005). Under

which the probability that the CARL0 is greater than some desirable nominal value (such

as 370.4) is high. Jardim et al., 2020 evaluated the conditional perspective for a Shewhart

X̄ chart with estimated parameters in which they state the EPC in the following way

P (CARL0 ≥
1

α
) = 1− p

for a small p value (such as 0.05) and α is equal to the nominal false alarm rate. This

ensures, for example, that CARL0 is at least equal to a nominal value such as 370.4, with

a high probability. This assures that for charts constructed under the EPC, unacceptably

low CARL0 values will not be very likely, so that there is no need to worry about a

large number of false alarms. Celano and Chakraborti, 2020 adequate this formulation

for EPC to the FHP processes context, and we use this FHP formulation of the EPC in

this thesis to generate the guaranteed control limits under the conditional perspective for

the proposed control chart.

14
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2.3 Finite Horizon Production Processes

In industry, there exist processes in which the number of scheduled inspections before

it ends should be restricted to a few tens. These processes are known as finite horizon

production processes (FHP). There are many reasons why the SPC researchers have focus

their attention on study this kind of processes; for us, the most important ones are:

• Finite production runs usually start without any knowledge or partial availability

of historical data about the distribution of the quality parameter to be monitored.

• Due to the characteristics of these processes, the non-parametric control charts have

been the most studied type of control charts.

• These kinds of processes are widespread in the industry, and they are present in baby

diaper companies, the automotive sector, job-shop, and a small lot of production.

Statistical process monitoring of these processes presents some important issues for

practitioners:

• There is no clear distinction between the Phase I and Phase II implementation of

the control chart: online monitoring is immediately started on a finite number of

samples I without performing any retrospective study.

• Long run measures of chart performance like the Average Run Length (ARL) are

inappropriate for an FHP process.

2.3.1 Control Charts for FHP processes

Many authors have proposed control charts for monitoring finite horizon productions.

Nevertheless, almost all of them have assumed the known parameter case. Under the

assumption of normal observations, Shewhart-type control charts have been investigated,

see, Celano et al., 2016. Also, CUSUM control schemes for short-run productions have

been proposed, see Nenes and Tagaras, 2010. More recently, Shewhart-type, Student’s

t and F control charts have been discussed, see Celano and Castagliola, 2018b, Celano

et al., 2011, Celano and Castagliola, 2018a. But, these assumptions cannot be made for

these types of processes. To have a robust In-control performance when the distribution

of the quality parameter is unknown, as in FHP processes, implementing distribution-free

control charts may be a better solution for online monitoring.

15
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The application of distribution-free control charts to FHP processes is still very

limited in the SPM literature. Most of them focus on the online monitoring of a specified

location parameter. Some examples of these control charts are the Shewhart and EWMA

sign control charts that have been implemented in the FHP context by considering a

deviation from a specified target value, see Celano and Chakraborti, 2020 and Celano

et al., 2015. References on detail are revised in section 2.3

2.3.2 Measures of Performance for FHP processes

Over the last decade, authors have proposed many different metrics of performance for

FHP. Here, we will consider the most common performance metrics: False Alarm Proba-

bility (FAP) for the In-control state and True Signal Probability by the End of the Run for

the Out-of-control state. In this work, we want to obtain a guaranteed performance of the

control chart, so we are going to use conditional metrics of performance, defined as follows:

During a finite production horizon run with I scheduled inspections, we are inter-

ested in fixing the probability FAP (I) at a small nominal value, denoted as FAP0. The

false alarm probability is a random variable conditional on the reference sample X = x.

We call it the conditional FAP and denoted as CFAP (x|I) for X = x. We have

CFAP (x|I) = 1− (1− α)I (2.10)

(where α is the false alarm rate at each inspection), that is, given the reference sample

X = x, CFAP (x|I) is equal to the probability that the Lepage-Mood control chart

triggers at least one false alarm signal for a process operating in the In-Control state up

to the end of the production run.

When a shift either in location or scale or both simultaneously and the process goes

to an Out-of-control state, practitioners want to have a high true signal probability of

detecting the process change-point as soon as possible. Practitioners are interested in

the probability of a true signal by the end of the run (RSP), as was stated in Celano

and Castagliola, 2018a and Celano and Castagliola, 2018b. The true signal probability

by the end of the run RSP depends on β (probability of a true signal at each scheduled

inspection). Thus, it is a random variable conditional on the reference sample as was

stated in Celano and Chakraborti, 2020. We denote this conditional signal probability as

CRSP (x|c, I) and is computed as:

CRSP (x|c, I) = 1− (1− β)I−c+1 (2.11)
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(where c is the moment when the process goes to the Out-of-control state), that is the

probability that the control chart triggers a true signal by the end of the run.

In this work, as it was considered in Celano and Chakraborti, 2020 we also use the

unconditional values of FAP (I), and RSP (c, I) as metrics for the performance of the

proposed control chart.

In practice, the true distributions of the conditional measures are unobservable.

Therefore, they need to be estimated through a Monte Carlo simulation generating R ref-

erence samples x(r), with r = 1, 2, . . . , R. This simulation allows us the get the empirical

distributions of CFAP (x(r)|I) and CRSP (x(r)|c, I) and their quantiles to be estimated.

Then, the unconditional measures of performance for the In-control analysis can be cal-

culated as:

ÛFAP (I) =
1

R

R
∑

r=1

CFAP (x(r)|I) (2.12)

2.3.3 Lepage-type statistics

In this research we are interested in the detection of shifts in location and scale of a

process. The Lepage test is one of the most popular distribution-free tests for joint

monitoring location and scale in the two-sample problem. The Lepage test was first

introduced by Lepage, 1971, and combines the standardized versions of the Wilcoxon-

Rank sums statistic, as an statistic used in the two sample location test, and the Ansari-

Bradley statistic, as an statistic used in the two sample scale test. Recent work by

Conover et al., 2018 analyzed some other combinations for Lepage-type statistics with

other nonparametric statistics used in tests for scale, including four non-parametric rank

tests: the Ansari-Bradley test, the Mood test, and the Klotz test. Of these four tests,

the Mood test for spread had slightly better average performance than the other three

in terms of power for detecting differences in the spread. Thus, it is reasonable to use

the Mood statistic paired with the Wilcoxon-Rank sums statistic instead of the Ansari-

Bradley statistic in a Lepage-type statistic for detecting changes in location or scale in

a conditional scheme for monitoring finite horizon production processes (FHP). In this

work, we use the squared standardized versions of Wilcoxon-Rank sums statistic and

Mood statistic in our proposed control chart.
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2.4 Literature Review for FHP Processes

Table 2.1: Control Charts for FHP processes
Paper Author(s) Year Application Statistic Type of Chart

Shewhart and EWMA
t control charts

for short production runs

Giovanni Celano,
Philippe Castagliola,

Enrico Trovato,
Sergio Fichera

2010 Yes T - Student’s t distribution
Shewhart and

EWMA

Evaluation of
CUSUM Charts

for Finite-Horizon Processes

George Nenes,
George Tagaras

2010 Yes C - CUSUM statistic CUSUM

The Variable Sampling Interval
control chart

for finite horizon processes

George Nenes,
Philippe Castagliola,
Giovanni Celano,
Sofia Panagiotido

2013 Yes Sample Mean
Variable

Sampling Interval
Shewhart

The performance of the Shewhart
sign control chart

for finite horizon processes

Giovanni Celano,
Philippe Castagliola,
Subha Chakraborti,

George Nenes

2015 Yes Sign Shewhart

Economic and Statistical Design
of Vp Control Charts

for Finite-Horizon Processes

George Nenes,
Philippe Castagliola,
Giovanni Celano

2016 No Sample Mean Shewhart

Joint Shewhart control charts
for location and scale

monitoring in
finite horizon processes

Giovanni Celano,
Philippe Castagliola,
Subha Chakraborti

2016 Yes

Sign,
Wilcoxon Signed-Rank,

Student’s t,
Downton’s estimator,

Average absolute deviation from
median MD,

Sample variance

Shewhart

An EWMA sign control chart
with varying control limits
for finite horizon processes

Giovanni Celano,
Philippe Castagliola

2018 Yes Sign EWMA

A distribution-free Shewhart-type
Mann-Whitney control chart

for monitoring
finite horizon productions

Giovanni Celano,
Subhabrata Chakraborti

2020 Yes Mann-Whitney Shewhart

Online monitoring of processes with finite horizon production is a challenging quality

control issue. Thus, researchers have started to turn their attention to solving the prob-

lems in monitoring a finite horizon production process since this type of process usually

runs without any knowledge or partial availability of historical data about the distribution

of the quality parameter. To that, Nenes and Tagaras, 2010, analyzed and evaluated a

CUSUM control chart for a finite production horizon process, designed for monitoring the

process mean using a parametric approach assuming normality of the underlying process.

They use the sample mean X̄ statistic to compute the CUSUM statistic. Also, they pro-

posed statistical measures of performance for control charts that are appropriate for short

runs.

Celano et al., 2011 implemented a t chart for short-run productions, assuming nor-

mality of the process, but with the advantage that the t statistic does not require the
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estimation of any distribution parameter. Nenes et al., 2014, analyzed the issues involved

related to the implementation of the Variable Sampling Interval (VSI) Shewhart control

chart in a process with a finite production horizon. In this work, they proposed a Markov

chain approach for the exact computation of the statistical performance of VSI con-

trol chart. Celano et al., 2015 evaluated the statistical performance of a non-parametric

Shewhart sign control chart for monitoring the location of a quality characteristic in a

production process with a finite horizon and a small number of inspections scheduled.

They showed through several types of distributions of observations and different numbers

of scheduled inspections the advantages of using this control chart instead of the ordinary

normal theory-based Shewhart Student’s t control chart. Finally, the paper of Nenes et

al., 2017 presents an economic and statistical design of a fully adaptive Shewhart control

chart. They propose a novel way to optimize the economic performance of the monitor-

ing operation and develop a Markov chain model to compute the statistical measures of

performance of the control chart.

Celano et al., 2016 compared the performance of several control charts jointly mon-

itoring location and scale for observations with a location-scale distribution in a finite

horizon process where a limited number of inspections is scheduled. For a set of symmetric

distributions, their results show that the joint control charts implementing a signed-rank

SR statistic and either the Downton’s D estimator or the average absolute deviation MD

from median generally perform the best. However, the approach of Celano et al., 2016 is

developed for the case of known location and scale parameters. It does not consider a refer-

ence sample scheme, which is the main difference with this thesis. Celano and Castagliola,

2018a, implemented an EWMA control chart based on the sign statistic for monitoring

the location of a quality parameter in a finite production horizon process. They computed

the statistical measures of performance using a non-homogeneous Markov chain model.

They presented an example that shows the advantages of implementing the proposed con-

trol chart to monitor a critical quality parameter in a bottling process. Recently, Celano

and Chakraborti, 2020 implemented a Shewhart type Mann-Whitney control chart for

finite production horizon processes through the Mann- Whitney statistic and a reference

sample scheme. In this work, they compared the conditional performance of the control

chart versus a general control chart with unconditional performance.

In recent years, the Lepage statistic has increasingly been applied in univariate non-

parametric control charts, see, for example, Tercero-Gómez et al., 2020, and Mukherjee

and Chakraborti, 2012. Tercero-Gómez et al., 2020 showed that the control chart based

on a Lepage-type statistic using the Mood statistic outperformed the control chart based
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on a Lepage-type statistic but using the Ansari-Bradley statistic instead (Chowdhury

et al., 2015). Table 2.1 resumes the literature review on FHP processes considering the

type of statistic, the measures of performance, and the type of control chart. We want to

contribute to the literature applying the Tercero-Gómez et al., 2020 methodology with a

reference sample scheme as suggested by Celano and Chakraborti, 2020 in an FHP process

for joint monitoring of location and scale.
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Methodology

In this chapter, we describe our proposed control chart for monitoring changes in location

and scale in FPH processes. The statistics used for this control chart and the one used

to compare its performance are presented in Sections 3.1 and 3.2. In Section 3.3 we de-

scribe the implementation of this control chart; whereas Section 3.4 describes the process

to obtain the control limits satisfying conditional and unconditional schemes. Finally,

Section 3.5 presents the design of the experimentation used to evaluate the out-of-control

performance.

3.1 Lepage-Mood statistic

Tercero-Gómez et al., 2020, implement a Lepage CUSUM control chart for monitoring

the location and scale changes when no assumption of the distribution is known. The

Lepage-Mood is constructed as follows: Let Xj, j = 1, . . . ,m be a sample of independent

identically distributed in-control observations obtained from a reference sample and Yi i =

1, . . . , n be a sample of independent identically distributed observations to be evaluated

as a monitored sample. The Lepage-Mood statistic, LM is created from the sum of the

Mood and the Wilcoxon-Rank Sums statistics described as follows:

Mood statistic : M =
m
∑

j=1

(

r(Xj)−
N + 1

2

)2

(3.1)

(where r(X) is the rank of the X observation in the combined sample, m is the reference

sample size, n is the test sample size, and N = m + n.) and the Wilcoxon-Rank Sums

statistic (Tercero-Gómez et al., 2020):

WRSst =
T1 − µ1

σ1

(3.2)
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where

T1 =
m
∑

i=1

r(X1i) (3.3)

µ1 = m · N + 1

2
(3.4)

σ1 =

√

m · n · (N + 1)

12
(3.5)

Figure 3.1 shows an example to see that the WRS increases when we have a mean

shift. We simulate ten test samples of size ten from a N(0, 1) distribution and ten test

samples of size ten from a N(1, 1) distribution and compute the WRS for these test

samples with a reference sample of size 30 from the N(0, 1) distribution. As we can see,

the WRS statistic is a reasonable choice to detect location shifts in the process.
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Figure 3.1: WRS statistic

We obtain the standardized version of the Mood statistic by subtracting its mean

and dividing by its standard deviation to obtain

Mst =
M − µM

σM

(3.6)
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where

µM = m · N
2 − 1

12
(3.7)

and

σ2
M =

m · n · (N + 1) · (N2 − 4)

180
. (3.8)

Figure 3.2 illustrates how the Mood increases when we have a scale shift. We

simulate ten test samples of size ten from a N(0, 1) distribution and ten test samples of

size ten from a N(0, 1) distribution and compute the Mood for these test samples with

a reference sample of size 30 from the N(0, 2) distribution. As we can see, the Mood

statistic is a reasonable choice to detect scale shifts in the process.
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Figure 3.2: Mood statistic

These two statistics are combined to calculate the Lepage-Mood statistic as

LM = WRS2
st +M2

st. (3.9)

Tercero-Gómez et al., 2020 show that with this statistic, the control chart has an

outstanding performance in terms of the power of detection changes in both the location

and scale parameters. Figure 3.3 shows how the Lepage-Mood statistic change when we

have both location and scale shifts making the combination of WRS and Mood statistic

an excellent alternative to detect both location and scale shifts in the process.
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Figure 3.3: Lepage-Mood statistic

When there are ties in the data, Hollander et al., 2013 explains that there is no

change in the equations for the expected value of the statistics, but for the variance, the

equations are a little different, and need to be modified by the ones in, page 118 Hollander

et al., 2013.

3.2 Lepage-Ansari-Bradley statistic

This subsection describes the Lepage statistic that we use to compare our proposed con-

trol chart in the Out-of-control performance study. In the same manner, as in the above

subsection, the Lepage-Ansari-Bradley statistic, LAB is created from the sum of the stan-

dardized versions of the WRS(explained in 3.1) and the AB statistics as

LAB = WRS2
st + AB2

st (3.10)

where

ABst =
T2 − µ2

σ2

, (3.11)
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with

T2 =
m
∑

j=1

|r(Xj)−
N + 1

2
|, (3.12)

µ2 =

{

m(N+2)
4

, if N is even
m(N+1)2

4N
, if N is odd

(3.13)

σ2 =

{

mn(N2
−4)

48(N−1)
, if N is even

mn(N+1)(N2+3)
48N2 , if N is odd

(3.14)

Figure 3.4 illustrates, as in the Mood statistic example, how the Ansari-Bradley

statistic increases when we have a scale shift in the process, so the Ansari-Bradley statistic

is another alternative to detect scale shifts in the process.
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Figure 3.4: Ansari-Bradley statistic

Figure 3.5 shows an example of how the Lepage-Ansari-Bradley statistic increases

when we have both a location and scale shifts in the process. Thus, it is natural to

compare the performance of the control chart based on the Lepage-Mood statistic with

the Lepage-Ansari-Bradley statistic.
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Figure 3.5: Lepage-Ansari-Bradley statistic

3.3 Implementation of the Shewhart Lepage

control chart in an FHP process

We consider that a lot of L parts should be produced by H hours. A finite number of

inspections are scheduled during the production run. Statistical process monitoring is

performed using a Shewhart Lepage-Mood control chart on a continuous quality charac-

teristic to check if its location and scale are in control during the production run. Online

monitoring is started by collecting a reference sample X = (X1, X2, . . . , Xm) of m i.i.d

observations from some unknown continuous cumulative distribution function F . At each

scheduled inspection i, a test sample Yi = (Yi,1, Yi,2, . . . , Yi,n), for i = 1, . . . , I is collected

every h = H
I
hours from an unknown continuous distribution Gi.

Then, at each scheduled inspection, compute the corresponding Lepage-Mood statis-

tic:

Li
M(X, Y ) = WRS2

st(X, Y ) +M2
st(X, Y ) (3.15)
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A signal is presented when Li
M ≥ Lm,n, where the control limit Lm,n is defined to obtain a

desired performance, as is seen in next subsection. Also, we can compute the Li
AB statistic

in the same manner as Li
M statistic only changing Mst statistic for ABst statistic.

To measure the performance of our proposed control chart, we need to compute the

α and β probabilities to obtain the conditional False Alarm (CFAP) Probability and the

conditional True Signal Probability by the end of the Run (CRSP).

Given the reference sample X = x collected to run the proposed Lepage-Mood control

chart, the false alarm rate at each inspection i, for i = 1, . . . , I is:

α =
Nδ

N · I

where Nδ =
∑N

k=1

∑I

i=1 ℓ(L
i
M > Lm,n) (where ℓ(·) is an indicator function) is the number

of signals in the Monte Carlo simulation study, N is the total replicates of the simulation

and I is the number of scheduled inspections. A signal is triggered when Li
M > Lm,n for

a given reference sample X = x and I test samples xn. This false alarm rate (FAR) is a

random variable conditional on the reference sample X = x, as it was stated in Celano

and Chakraborti, 2020. Then, we compute the CFAP as in 2.10.

For the Out-of-control analysis, we need to compute the probability β, then, given

the reference sample X = x collected to run the proposed Lepage-type control chart, the

probability β of a true signal at each scheduled inspection is given by

β = PG(L
i
M > Lm,n) (3.16)

where PG(L
i
M > Lm,n) is estimated using Monte Carlo simulation using the control limits

obtained in the in-control analysis. To get the Out-of-control performance, we perform

a simulation over shift sizes in both location and scale, δ, τ respectively, and when the

process change-point c occurs before the scheduled end of the production run. Then, we

compute the CRSP as in 2.11.

3.4 In-control performance

The choice of the control limit Lm,n is related to the empirical distribution of CFAP (x|I).
Under the conditional perspective, the control limit is selected following an exceedance

probability criterion, see Jardim et al., 2020, guaranteeing that

Pr(CFAP (x(r)|I) ≥ FAP0) = 1− q

100
(3.17)
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that is, ĈFAP q(I) = FAP0, where ĈFAP q(I) is the qth quantile of the empirical distri-

bution of CFAP (x(r)|I). Here, we assume q

100
= 0.95, that is ĈFAP 95(I) = FAP0. This

means that, given the reference sample X = x, the selected control limit guarantee that

FAP (I) ≤ FAP0 with a probability p = 0.95.

Under the unconditional scheme, the control limit Lm,n is selected to meet the

following constraint:

ÛFAP (I) =
1

R

R
∑

r=1

CFAP (x(r)|I) = FAP0 (3.18)

The method for finding the control limit Lm,n is based on the classical bisection

method stopping the search when (3.17) and (3.18) are met for the conditional and un-

conditional schemes respectively.

Once the control limit Lm,n is selected, we estimate the standard deviation ̂SDFAP (I),

the 50th, 75th and 95th quantiles, denoted by CFAP50(I), CFAP75(I) and CFAP95(I)

from the empirical distribution of CFAP (x(r)|I).

SDFAP =

√

∑R

r=1 [CFAP (x(r)|I)− UFAP (I)]
2

R− 1
(3.19)

where R is the number of simulated reference samples and

UFAP (I) =
1

R

R
∑

r=1

CFAP (x(r)|I). (3.20)

3.5 Out-of-control analysis

We evaluate the Out-of-control performance of the proposed Shewhart Lepage-type con-

trol chart in three cases: (i) when only mean changes, (ii) when only standard deviation

changes, and (iii) when both mean and standard deviation changes. For the R = 1000

simulated reference samples, we obtain the empirical distribution of CRSP (x(r)|c, I),
r = 1, . . . , R with different shift sizes δ and τ for the process location and scale re-

spectively. After this, we use the distribution of CRSP (x(r)|c, I) to get measures about

the conditional Out-of-control performance based on its quantiles. As in Celano and

Chakraborti, 2020 we consider two process change point scenarios: when an assignable
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cause occurs before the first scheduled inspection (c = 1) and when the assignable cause

occurs after one half the production (c = I
2
+ 1). For a lot size of L = 1000, we plotted

the trend of the median RSP50(c, I) vs δ and τ . The measure RSP50(c, I) is considered

to evaluate the Out-of-control performance of the Shewhart Lepage-type control chart

for 50% of the simulated reference samples. We use a FAP0 = 0.1 and I = 10 sched-

uled inspections. With this settings, the parts available for two consecutive inspection

are Lh = 100 and we consider a reference sample size of m = 30 and m = 70 to create

our plots. The control limits with the LAB statistic were calibrated with the conditional

scheme and only for the proposed Out-of-control scenarios, so the results are comparable.

In the next section, the performance analysis of the proposed control chart is pre-

sented. For the In-control analysis, we present tables with the control limits for the

conditional and unconditional schemes using the Lepage-Mood statistic. For the Out-of-

control analysis, we present a performance comparison between our proposed control chart

with the Lepage-Mood statistic and the alternative of using the Lepage-Ansari-Bradley

statistic.
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Results and Discussion

In this chapter, we perform a Monte Carlo simulation study to evaluate the performance

of the proposed control chart. We described the considered scenarios for both the IC and

OOC analysis in section 4.1. In subsection 4.2.1, we present the IC results for various

scenarios with different reference sample sizes and test sample sizes. Finally, in subsection

4.2.2, we expose several plots to illustrate the OOC performance of the control chart under

different sample sizes and distributions.

4.1 Simulation Design

In this section, we evaluate the statistical performance of the proposed Shewhart Lepage-

type control chart for different FHP scenarios. We consider several scenarios formed by

the next parameters for the In-control analysis:

• lot size of L = {1000, 10000} parts to be produced

• Target false alarm probability FAP0 = 0.1

• Number of scheduled inspections I = {10, 20, 50}

• Reference sample size m = {20, 30, 40, 50, . . . ,min(0.9× L
I
, 500)}

• Test sample size n = {5, 10, 25}

• Number of simulated reference samples R = 1000

In the Out-of-control analysis, we also consider observations from the following four

distributions:

• Symmetric. Standard Normal, N(0, 1) and Student’s t, t(4)

• Asymmetric. Gamma(2, 1) and Gamma(3, 1)
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4.2 Results

4.2.1 In-Control Results

In this section, we compare the conditional statistical performance of our proposed control

chart with the common unconditional scheme to see the advantages of considering the

“exceedance probability criterion” in the practitioner-to-practitioner variability.

Table 4.1: Control limits under the conditional perspective for the proposed Lepage-type
control chart with FAP0 = 0.1, lot size = 1000 parts, CFAP95 = 0.1

I m n Lm,n SDFAP CFAP50 CFAP75

10 20 5 11.4625 0.0431 0.0056 0.0196
10 10.75 0.0567 0.0032 0.0140

30 5 11.75 0.0404 0.0105 0.0286
10 11.25 0.0519 0.0052 0.0202

40 5 11.9 0.0392 0.0141 0.0307
10 11.8125 0.0459 0.0064 0.0186

50 5 11.925 0.0324 0.0174 0.0380
10 11.7 0.0381 0.0102 0.0279

60 5 11.5005 0.0340 0.0249 0.0474
10 11.3 0.0410 0.0163 0.0374

70 5 11.75 0.0345 0.0254 0.0473
10 11.6875 0.0423 0.0158 0.0364

80 5 11.6 0.0294 0.0294 0.0486
10 11.6 0.0333 0.0194 0.0383

90 5 11.45 0.0299 0.0317 0.0506
10 11.45 0.0346 0.0207 0.0399

20 20 5 12.7310 0.0499 0.0041 0.0201
10 12.05 0.0566 0.0017 0.0082

30 5 13.25 0.0485 0.0092 0.0268
10 12.625 0.0608 0.0040 0.0165

40 5 13.25 0.0402 0.0143 0.0327
10 12.75 0.0522 0.0071 0.0227
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Table 4.2: Control limits under the unconditional perspective for the proposed Lepage-
type control chart with FAP0 = 0.1, lot size = 1000 parts, UFAP = 0.1

I m n Lm,n SDFAP CFAP75 CFAP95

10 20 5 8 0.1266 0.1443 0.3931
10 7.95 0.1280 0.1097 0.3804

30 5 8.625 0.1075 0.1254 0.3131
10 8.25 0.1276 0.1128 0.3407

40 5 8.75 0.0962 0.1420 0.3016
10 8.5 0.1130 0.1272 0.3338

50 5 8.9 0.0843 0.1298 0.2697
10 8.45 0.1057 0.1299 0.3189

60 5 9.05 0.0769 0.1316 0.2580
10 8.85 0.0947 0.1184 0.2958

70 5 9.2 0.0657 0.1246 0.2195
10 8.7 0.0864 0.1290 0.2677

80 5 9.05 0.0657 0.1289 0.2284
10 8.8 0.0812 0.1225 0.2541

90 5 9.15 0.0599 0.1282 0.2128
10 8.9 0.0749 0.1263 0.2497

20 20 5 9.5 0.1397 0.1167 0.3819
10 8.925 0.1567 0.0994 0.4242

30 5 10.15 0.1187 0.1349 0.3215
10 9.625 0.1389 0.1153 0.3562

40 5 10.35 0.1048 0.1259 0.3067
10 9.6 0.1367 0.1280 0.3989
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Table 4.3: Control limits under the conditional perspective for the proposed Lepage-type
control chart with FAP0 = 0.1, lot size = 10000 parts, CFAP95 = 0.1

I m n Lm,n SDFAP CFAP50 CFAP75

20 30 5 13.25 0.0416 0.0084 0.0252
10 12.75 0.0516 0.0031 0.0143
25 12.3 0.0645 0.0027 0.0112

50 5 13.52 0.0351 0.0157 0.0338
10 13.21 0.0401 0.0078 0.0248
25 12.52 0.0517 0.0055 0.0186

100 5 13.28 0.0313 0.0306 0.0521
10 13.22 0.0355 0.0198 0.0423
25 13.04 0.0425 0.0101 0.0271

150 5 12.81 0.0270 0.0427 0.0621
10 12.75 0.0307 0.0316 0.0534
25 12.59 0.0376 0.0185 0.0399

200 5 12.67 0.0257 0.0467 0.0651
10 12.595 0.0297 0.0361 0.0569
25 12.64 0.0345 0.0222 0.0422

350 5 12.314 0.0226 0.0575 0.0731
10 12.24 0.0266 0.0473 0.0659
25 12.216 0.0331 0.0341 0.0545
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Table 4.4: Control Limits under the unconditional perspective for the proposed Lepage-
type control chart with FAP0 = 0.1, lot size = 10000 parts, UFAP = 0.1

I m n Lm,n SDFAP CFAP75 CFAP95

10 30 5 8.63 0.1075 0.1254 0.3131
10 8.25 0.1276 0.1128 0.3407
25 8.45 0.1580 0.0979 0.4318

50 5 8.9 0.0843 0.1298 0.2697
10 8.45 0.1057 0.1299 0.3189
25 8.76 0.1371 0.1262 0.3992

100 5 9.34 0.0547 0.1214 0.2074
10 8.96 0.0698 0.1267 0.2451
25 8.8 0.0880 0.1211 0.2870

150 5 9.325 0.0460 0.1200 0.1794
10 8.85 0.0625 0.1309 0.2235
25 8.885 0.0778 0.1161 0.2525

200 5 9.27 0.0408 0.1211 0.1778
10 9.11 0.0511 0.1179 0.1949
25 9.005 0.0658 0.1145 0.2351

350 5 9.325 0.0295 0.1132 0.1535
10 8.95 0.0392 0.1250 0.1795
25 9.03 0.0456 0.1170 0.1935

500 5 9.16 0.0262 0.1211 0.1513
10 9.06 0.0315 0.1153 0.1539
25 8.95 0.0375 0.1178 0.1731
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Table 4.5: Control limits under the conditional perspective for the proposed Lepage-type
control chart with FAP0 = 0.1, lot size = 10000 parts, CFAP95 = 0.1

I m n Lm,n SDFAP CFAP50 CFAP75

10 30 5 11.75 0.0404 0.0105 0.0286
10 11.25 0.0519 0.0052 0.0202
25 11.25 0.0553 0.0035 0.0144

50 5 11.925 0.0324 0.0174 0.0380
10 11.7 0.0381 0.0102 0.0279
25 11.5 0.0554 0.0057 0.0183

100 5 11.4 0.0284 0.0336 0.0528
10 11.45 0.0325 0.0229 0.0436
25 11.35 0.0387 0.0135 0.0308

150 5 11 0.0260 0.0437 0.0643
10 10.95 0.0291 0.0330 0.0538
25 11 0.0336 0.0226 0.0426

200 5 10.9 0.0248 0.0453 0.0634
10 10.88 0.0290 0.0356 0.0552
25 10.8 0.0366 0.0254 0.0468

350 5 10.5 0.0213 0.0612 0.0759
10 10.4 0.0252 0.0510 0.0664
25 10.75 0.0282 0.0362 0.0538

500 5 10.5 0.0177 0.0619 0.0742
10 10.3 0.0205 0.0522 0.0664
25 10.25 0.0241 0.0436 0.0607
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Table 4.6: Control Limits under the unconditional perspective for the proposed Lepage-
type control chart with FAP0 = 0.1, lot size = 10000 parts, UFAP = 0.1

I m n Lm,n SDFAP CFAP75 CFAP95

20 30 5 10.18 0.1215 0.1266 0.3833
10 9.67 0.1458 0.1068 0.4260
25 9.765 0.1686 0.0908 0.4896

50 5 10.55 0.1017 0.1348 0.3190
10 10.075 0.1291 0.1282 0.3732
25 9.888 0.1522 0.1074 0.4338

100 5 10.75 0.0661 0.1343 0.2331
10 10.35 0.0852 0.1313 0.2700
25 10.18 0.1054 0.1099 0.3161

150 5 10.8 0.0535 0.1331 0.2097
10 10.43 0.0691 0.1312 0.2407
25 10.25 0.0873 0.1158 0.2728

200 5 10.95 0.0428 0.1213 0.1790
10 10.34 0.0590 0.1340 0.2171
25 10.13 0.0742 0.1248 0.2694

350 5 11.07 0.0333 0.1184 0.1627
10 10.64 0.0440 0.1255 0.1879
25 10.42 0.0562 0.1209 0.2173

Table 4.7: Control limits under the conditional perspective for the proposed Lepage-type
control chart with FAP0 = 0.1, lot size = 10000 parts, CFAP95 = 0.1

I m n Lm,n SDFAP CFAP50 CFAP75

50 30 5 15.06 0.0436 0.0058 0.0205
10 14.125 0.0575 0.0025 0.0139
25 13.44 0.0662 0.0021 0.0122

50 5 15.75 0.0398 0.0130 0.0310
10 15.25 0.0514 0.0067 0.0216
25 14.45 0.0666 0.0032 0.0111

100 5 15.491 0.0336 0.0269 0.0470
10 15.37 0.0380 0.0169 0.0359
25 14.74 0.0519 0.0084 0.0214

150 5 15.45 0.0302 0.0333 0.0537
10 15.35 0.0360 0.0246 0.0447
25 15.2 0.0470 0.0114 0.0280
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Table 4.8: Control Limits under the unconditional perspective for the proposed Lepage-
type control chart with FAP0 = 0.1, lot size = 10000 parts, UFAP = 0.1

I m n Lm,n SDFAP CFAP75 CFAP95

50 30 5 12 0.1385 0.1270 0.4247
10 11.25 0.1645 0.0989 0.4741
25 11.15 0.1805 0.0841 0.5323

50 5 12.75 0.1120 0.1273 0.3445
10 12 0.1444 0.1214 0.4116
25 11.4 0.1691 0.1007 0.4705

100 5 13 0.0735 0.1333 0.2469
10 12.4 0.0973 0.1337 0.3027
25 11.9 0.1223 0.1070 0.3469

150 5 13.2 0.0578 0.1259 0.2126
10 12.55 0.0788 0.1336 0.2579
25 12.1 0.1033 0.1160 0.3011

Tables 4.2, 4.4, 4.6 and 4.8 containing the control limits Lm,n under the uncondi-

tional perspective, also they show the standard deviation, the 75th and 95th quantiles of

the empirical distribution of the CFAP (x(r)|c, I) denoted by SDFAP ,CFAP75,CFAP95

respectively. Tables 4.1, 4.3, 4.5 and 4.7 present the same information under the condi-

tional scheme.

In table 4.2 we can see that for I = 10 inspections, the 95th quantile is around

0.21 and 0.39, i.e., for the 95% of the practitioners we have an unconditional false alarm

between 0.21 and 0.39, even that the average false alarm is 0.1. When I = 20, we this

quantile is always bigger than 0.32, which is a worse performance for the 95% of the

practitioners. Similar results in the 95th quantile are found in tables 4.4, 4.6 and 4.8.

For table 4.4 we see that when m ≥ 200 the value of the 75th quantile is near to 0.1,

that means that the control chart under the unconditional scheme leads to a FAP > 0.1

for the 25% of the simulated reference samples. In tables 4.6 and 4.8 where we have

I = 20 and I = 50 inspections respectively, the values in the 75th quantile are similar.

In addition, in table 4.4 we see that the SDFAP values increase when the test sample

size n increases, and the variability among the scenarios decreases when the reference

sample size increases. Also, when the number of scheduled inspections increases, the

values of SDFAP increase too. The behavior of SDFAP is the same for tables 4.2, 4.6

and 4.8. Finally, in table 4.4 the values of the 95th quantile increases when n increases

and decreases when m increases, the same happens in tables 4.2, 4.6 and 4.8. This result

was first stated in Celano and Chakraborti, 2020.
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Table 4.1 presents the control limits for the control chart under the conditional

scheme with I = 10 and I = 20 scheduled inspections. As we expected, the control limits

are wider than the ones under the unconditional scheme. We can see from tables 4.3 and

4.7 that when we increase the number of scheduled inspections, say, for instance, from ten

to twenty, the control limits become wider, and the same happens from twenty to fifty

inspections. These control limits guarantee that the Pr(CFAP (x(r)|c, I) ≥ 0.1) = 0.05,

i.e., for the 95% of the practitioners we have a FAP < 0.1, so with this scheme we ensure a

desired performance for practitioners. Now, in table 4.1 the SDFAP values also increase

when n increases and decrease when m increases. As we expected, this variability is much

smaller than that presented in the unconditional scheme. For tables 4.3, 4.5 and 4.7 the

SDFAP values behave in the same manner.

Figure 4.1 shows the effect of the reference sample and test sample size on the

probability Pr(CFAP (x(r)|I) > FAP0) with the unconditional control limits. We get,

0.25 ≤ Pr(CFAP (x(r)|I) > FAP0) ≤ 0.40. As reference sample size m increases, this

probability tends to higher values, conversely, when the test sample size n increases. In

all cases, this probability is at an unacceptable level. This contrast with the conditional

scheme where the same probability Pr(CFAP (x(r)|I) > FAP0) is equal, in this case,

to 0.05. We can do this thanks to the “exceedance probability criterion” that allows us

to fix the value of this probability as small as we want. Finally, we see that using the

conditional scheme leads us to a guaranteed In-control performance of the control chart,

having a low and controlled false alarm probability among all case scenarios. Contrary

to the unconditional scheme, we have an increased number of false alarms because this

scheme averages over the estimated parameters’ distribution and does not represent the

control chart’s actual performance for any specific reference sample. For this reason,

consider the distributions of the conditional measures of performance and their quantiles

may be preferred by practitioners, see Jardim et al., 2020.
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Figure 4.1: Pr(CFAP (x(r)|I) > FAP0) vs m, for L = 1000, with the control limits
selection based on unconditional FAP
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4.2.2 Out-of-control Results

There is not an existent nonparametric control chart for changes in location and scale

in FPH processes under the conditional perspective, hence, we use the Lepage-Ansari-

Bradley statistic as this competitor to compare and measure the detection ability of true

signals for the proposed control chart.

For the Out-of-control performance, we perform Monte Carlo simulations for several

scenarios created with the combination of the next parameters:

• False Alarm Probability FAP0 = 0.1.

• Number of scheduled inspections I = 10.

• Reference sample size m = {30, 70}.

• Test sample size n = {10, 25}.

• Number of simulated reference samples R = 1000.

• Location shift δ = {0, 0.25, 0.5, 0.75, 1, 1.5, 2} measured in standard deviations.

• Scale shift τ = {0.25, 0.5, 1.5−1, 1, 1.5, 2, 3}measured as the ratio of deviationsvalidar

As we mentioned in section 3.4.1, we consider independent observations with the fol-

lowing distributions: standard normal, Student’s with four degrees of freedom, Gamma(2,1)

and Gamma(3,1) distributions.

When Only Mean Changes

Figure 4.2 shows on the y-axis the median of the empirical distribution of CRSP (x(r)|c, I)
denoted by RSP50(c, I) and in the x -axis the location shift size δ for the N(0, 1) distri-

bution. In the four cases, we see that the Lepage-Mood(LM) statistic outperformed the

alternative of using the Lepage-Ansari-Bradley(LAB) statistic in all scenarios. We can

observe this by noting that the RSP50(c, I) values are higher for all considered shift sizes

when considering the control chart based on the LM statistic. Now, for m = 70, and

the change point condition (i), i.e., when a location shift occurs before the first scheduled

inspection, we have a RSP50(c, I) ≥ 0.99 when δ ≥ 1.0 for standard normal observations

using the LM statistic. For the second condition, i.e., when the shift occurs after the I
2

scheduled inspection, the control chart’s performance still at a good level, for instance,
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RSP50(c, I) ≥ 0.82 for δ ≥ 1.0. Figure 4.3 presents observations having a t(4) distri-

bution, the statistical performance is very similar, for instance, RSP50(c, I) ≥ 0.99 for

δ ≥ 1.0 with c = 1 and m = 70. For the LAB statistic, this happens only in changes of size

greater than 1.5, so it is clear that the LM statistic shows a better performance than the

LAB statistic. Figures 4.4 and 4.5 presents the OOC performance of the proposed control

chart for observations having asymmetrical distributions Gamma(2, 1) and Gamma(3, 1),

respectively. In these scenarios, for both the LM statistic and LAB statistic, the control

chart is less sensitive; only when we consider a test sample size, of n = 25 we have a robust

OOC performance, for example, RSP50(c, I) ≥ 0.99 for δ ≥ 0.75 with the Gamma(2, 1)

distribution using the LM statistic. For the Gamma(3, 1) distribution the results are sim-

ilar. But, in all cases, the control chart with the LM statistic has a better performance

than the LAB statistic. These results agreed with the work of Tercero-Gómez et al.,

2020 where they showed that the Lepage-Mood statistic is a better alternative for most

cases than the Lepage-Ansari-Bradley statistic for monitoring both the location and scale

parameters of the process.

When Only Standard Deviation Changes

Now, figure 4.6 presents the Out-of-control performance of the proposed control chart for

different shift sizes in scale and observations from the N(0, 1) distribution. For condition

i), and m = 70, we have an acceptable performance only when we consider a test sample

size of n = 25; in this case, we see a RSP50 ≥ 0.95 for τ ≤ 0.5 in both the alternatives

(LM and LAB statistics). For τ ≥ 1.5, we have a RSP50 ≥ 0.85 in this case for the

control chart based on LM statistic, and this shows that the LM statistic has a better

performance than using the LAB statistic instead. Only when n = 10, the LAB statistic

has a better performance than the LM statistic when τ ≤ 1.5−1, but this performance is

not good. For condition ii) when the shift occurs after the middle of the production run,

i.e., c = 6, the performance is similar; for τ ≥ 2.0 and n = 25, we see a RSP50 ≥ 0.90 for

the LM statistic. In this case, the control chart with LM statistic has a better performance

than the LAB statistic. Figure 4.6 shows the performance for observations coming from

a Student’s t(4) distribution, where we can see a pretty similar performance; again, the

LM statistic presents, in general, a better performance than the LAB statistic. Only

when n = 25, we obtain an acceptable performance in both the alternatives, for example,

RSP50 ≥ 0.99 when τ ≤ 0.5 and for τ ≥ 2, we have a RSP50 ≥ 0.8 for LM statistic and

condition i). When we consider condition ii), the performance remains at a reasonable

level, when τ ≤ 0.5, the RSP50 ≥ 0.95 for both the alternatives and when τ ≥ 2,

we obtain a RSP50 ≥ 0.8 for LM statistic that is a better performance than the LAB
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statistic. Figures 4.8 and 4.9 presents the Out-of-control performance for observations

coming from the asymmetrical distributions, Gamma(2, 1) and Gamma(3, 1). The LM

statistic shows a better performance than the LAB statistic for most cases, but only when

n = 25, that performance is robust, having a RSP50 ≥ 0.99 for τ ≤ 0.5 and RSP50 ≥ 0.95

when τ ≥ 2 for observations with a Gamma(2, 1) distribution and condition i). Finally,

when we consider observations from the Gamma(3, 1) distribution, the performance is

similar, for τ ≥ 2, we have a RSP50 ≥ 0.9 using the LM statistic and a test sample

size of 25 and condition i), for condition ii), the performance is also acceptable for both

distributions having a RSP50 ≥ 0.85 for τ ≥ 2. Finally, for shift sizes τ ≤ 1.5−1 the

LAB statistic performs better than the LM statistic, but this performance is not robust

in these cases. For n = 25, the OOC performance of the control chart is robust for both

the alternatives and over these scenarios the LM statistic presents better performance

than the LAB statistic.

When both mean and Standard deviation Changes

We considered the following scale and location shift sizes for each considered distribution

in subsection 4.2.2 to generate our plot for this subsection:

• Scale shift size τ = {0.5, 1.5−1, 1.5}

• Location shift size δ = {0, 0.25, 0.5, 0.75, 1, 1.5, 2}

Figure 4.10 shows the trend of RSP50(c, I)-(y-axis) over the location shift size δ-

(x -axis) for N(0, 1) distribution and τ = 0.5. Considering the LM statistic we have an

acceptable performance of the control chart, for example, when m = 30 we obtain a

RSP50(c, I) ≥ 0.85 for δ ≥ 1.0 and condition i); when m = 70, the RSP50(c, I) ≥ 0.99 for

δ ≥ 1.0 and condition i), for condition ii) we have RSP50(c, I) ≥ 0.95 for δ ≥ 1.0. As we

can see in the values of RSP50(c, I) the LM statistic outperformed the LAB statistic for

these scenarios. In figure 4.11 where τ = 1.5−1 we obtain an acceptable performance only

for m = 70 and condition i) with the LM statistic, where wwe have an RSP50(c, I) ≥ 0.99

for δ ≥ 1.0. Similar results are found in figure 4.12 where τ = 1.5.

Figures 4.13, 4.14 and 4.15 illustrate the behavior of RSP50(c, I) for Student’s t(4)

distribution. In figure 4.13 where τ = 0.5, we have an acceptable performance in all

cases considering the LM statistic; for example, for condition i) and m = 30, we obtain an

RSP50(c, I) ≥ 0.99 for δ ≥ 1.0 and form = 70 we have an RSP50(c, I) ≥ 0.90 for δ ≥ 0.75.

We obtain similar values of RSP50(c, I) when considering condition ii). Only for m = 30

the LM statistic shows a better performance than the LAB statistic, in the rest of the cases
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the peformance is quite similar. Analogous results for LM and LAB statistics are found

in figure 4.14. In figure 4.15 the difference between the LM and LAB statistic is more

remarkable, for example, considering condition ii) and m = 70, the RSP50(c, I) ≥ 0.63

for δ ≥ 1.0 with LAB statistic, conversely, RSP50(c, I) ≥ 0.97 for δ ≥ 1.0 for LM statistic

with the same settings. The control chart presents a robust performance with the LM

statistic for condition i) and m = 70 having an RSP50(c, I) ≥ 0.95 for δ ≥ 0.75.

Figures 4.16, 4.17 and 4.18 show the trend of RSP50(c, I) for observations coming

from the Gamma(2, 1) distribution. In figure 4.16 where τ = 0.5 we obtain a robust

performance for both the alternatives LM and LAB statistic having an RSP50(c, I) ≥ 0.99

for δ ≥ 0.5 considering both conditions i) and ii) and a test sample size n = 25. When we

consider n = 10, we have an acceptable performance only for the LM statistic showing an

RSP50(c, I) ≥ 0.99 for δ ≥ 1.0 in both conditions i) and ii). Similar results are found in

figure 4.17. In figure 4.18 for tau = 1.5 the control chart is less sensitive, only for n = 25

we have a robust performance for both the alternatives LM and LAB statistic with an

RSP50(c, I) ≥ 0.99 for δ ≥ 0.5.

Figures 4.19, 4.20 and 4.21 present the results for the Gamma(3, 1) distribution.

In figures 4.19 and 4.20 where τ = 0.5 and τ = 1.5−1 respectively, we have a robust

performance when n = 25 having an RSP50(c, I) ≥ 0.99 for δ ≥ 0.5 with both the

alternatives LM and LAB statistics and both conditions i) and ii). For n = 10 the LM

statistic shows a better performance than the LAB statistic and it shows an acceptable

performance having an RSP50(c, I) ≥ 0.99 for δ ≥ 1.0 in both conditions i and ii). Finally,

in figure 4.21 the control chart is less sensitive, only when we consider n = 25 we obtain

a robust performance of the control chart with an RSP50(c, I) ≥ 0.99 for δ ≥ 0.5 for

both conditions i) and ii). In general, we see that the control chart needs a reference

sample size of at least m = 70 and a test sample size of n = 25 to show a robust OOC

performance.

43



Chapter 4. Results and Discussion

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

δ
R

S
P

5
0
(c

,I
)

m=30(LAB)

m=30(LM)

c=1, N(0,1) 

(a)

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

δ

R
S

P
5

0
(c

,I
)

m=30(LAB)

m=30(LM)

c=6, N(0,1) 

(b)

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

δ

R
S

P
5

0
(c

,I
)

m=70(LAB)

m=70(LM)

c=1, N(0,1) 

(c)

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

δ

R
S

P
5

0
(c

,I
)

m=70(LAB)

m=70(LM)

c=6, N(0,1) 

(d)

Figure 4.2: N(0, 1). Out-of-control performance for shifts in location. Lot dimension
L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {30, 70}, test
sample size n = 10, c = {1, 6}.
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Figure 4.3: t(4). Out-of-control performance for shifts in location. Lot dimension L =
1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {30, 70}, test sample
size n = 10, c = {1, 6}.
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Figure 4.4: Gamma(2, 1). Out-of-control performance for shifts in location. Lot dimen-
sion L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {70}, test
sample size n = {10, 25}, c = {1, 6}.
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Figure 4.5: Gamma(3, 1). Out-of-control performance for shifts in location. Lot dimen-
sion L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {70}, test
sample size n = {10, 25}, c = {1, 6}.
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Figure 4.6: N(0, 1). Out-of-control performance for shifts in scale. Lot dimension L =
1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {70}, test sample size
n = {10, 25}, c = {1, 6}.
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Figure 4.7: t(4). Out-of-control performance for shifts in scale. Lot dimension L = 1000,
FAP0 = 0.1, I = 10 inspections, reference sample size m = {70}, test sample size
n = {10, 25}, c = {1, 6}.
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Figure 4.8: Gamma(2, 1). Out-of-control performance for shifts in scale. Lot dimension
L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {70}, test sample
size n = {10, 25}, c = {1, 6}.

50



Chapter 4. Results and Discussion

0.00

0.25

0.50

0.75

1.00

0.25 0.66 1.00 1.50 2.00 3.00
τ

R
S

P
5

0
(c

,I
)

n=10

m=70(LAB)

m=70(LM)

c=1, Gamma(3,1) 

(a)

0.00

0.25

0.50

0.75

1.00

0.25 0.66 1.00 1.50 2.00 3.00
τ

R
S

P
5

0
(c

,I
)

n=10

m=70(LAB)

m=70(LM)

c=6, Gamma(3,1) 

(b)

0.00

0.25

0.50

0.75

1.00

0.25 0.66 1.00 1.50 2.00 3.00
τ

R
S

P
5

0
(c

,I
)

n=25

m=70(LAB)

m=70(LM)

c=1, Gamma(3,1) 

(c)

0.00

0.25

0.50

0.75

1.00

0.25 0.66 1.00 1.50 2.00 3.00
τ

R
S

P
5

0
(c

,I
)

n=25

m=70(LAB)

m=70(LM)

c=6, Gamma(3,1) 

(d)

Figure 4.9: Gamma(3, 1). Out-of-control performance for shifts in scale. Lot dimension
L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {70}, test sample
size n = {10, 25}, c = {1, 6}.
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Figure 4.10: N(0, 1), τ = 0.5. Out-of-control performance for shifts in location and
scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size
m = {30, 70}, test sample size n = {10}, c = {1, 6}.
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Figure 4.11: N(0, 1), τ = 1.5−1. Out-of-control performance for shifts in location and
scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size
m = {30, 70}, test sample size n = {10}, c = {1, 6}.
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Figure 4.12: N(0, 1), τ = 1.5. Out-of-control performance for shifts in location and
scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size
m = {30, 70}, test sample size n = {10}, c = {1, 6}.
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Figure 4.13: t(4), τ = 0.5. Out-of-control performance for shifts in location and scale. Lot
dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {30, 70},
test sample size n = {10}, c = {1, 6}.
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Figure 4.14: t(4), τ = 1.5−1. Out-of-control performance for shifts in location and scale.
Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m =
{30, 70}, test sample size n = {10}, c = {1, 6}.
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Figure 4.15: t(4), τ = 1.5. Out-of-control performance for shifts in location and scale. Lot
dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size m = {30, 70},
test sample size n = {10}, c = {1, 6}.
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Figure 4.16: Gamma(2, 1), τ = 0.5. Out-of-control performance for shifts in location and
scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size
m = {70}, test sample size n = {10, 25}, c = {1, 6}.
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Figure 4.17: Gamma(2, 1), τ = 1.5−1. Out-of-control performance for shifts in location
and scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample
size m = {70}, test sample size n = {10, 25}, c = {1, 6}.
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Figure 4.18: Gamma(2, 1), τ = 1.5. Out-of-control performance for shifts in location and
scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size
m = {70}, test sample size n = {10, 25}, c = {1, 6}.
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Figure 4.19: Gamma(3, 1), τ = 0.5. Out-of-control performance for shifts in location and
scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size
m = {70}, test sample size n = {10, 25}, c = {1, 6}.
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Figure 4.20: Gamma(3, 1), τ = 1.5−1. Out-of-control performance for shifts in location
and scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample
size m = {70}, test sample size n = {10, 25}, c = {1, 6}.
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Figure 4.21: Gamma(3, 1), τ = 1.5. Out-of-control performance for shifts in location and
scale. Lot dimension L = 1000, FAP0 = 0.1, I = 10 inspections, reference sample size
m = {70}, test sample size n = {10, 25}, c = {1, 6}.
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5.1 Conclusions

In this study, a Shewhart-type control chart for joint monitoring of location and scale

parameters for finite horizon production processes based on the Lepage-Mood(LM) statis-

tic was proposed, taking into account the practitioner-to-practitioner variability. Online

monitoring of Finite Horizon Production (FHP) processes is a challenging task for practi-

tioners and there is a need for developing statistical tools for online monitoring of this kind

of processes. We evaluated the conditional performance of our proposed control chart to

generate guaranteed control limits that lead us to the desired performance of the control

chart in the In-control state of the process. With these control limits, the practitioners

know the probability of having a false alarm larger than a predefined target. By this

reason the proposed control chart with the conditional scheme is a better alternative than

the common unconditional scheme for the In-control analysis in terms of a guaranteed

performance of the control chart.

The simulations results shows that even the control limits are wider, the control chart

shows a good power to detect medium or large changes in the process. Small changes are

not easily detected by this control chart, which is a common result for Shewhart control

charts. The comparison of the proposed control chart with Lepage-Mood statistic versus

the use of the classical Lepage statistic (with Ansary-Bradley statistic) shows a better

performance for detecting changes in our proposed control chart. These results agree the

reported in Tercero-Gómez et al., 2020 for infinite processes.

5.2 Future Work

In this work, we proposed a nonparametric control chart for univariate finite horizon

production processes(FHP). However, there is the need to develop a control chart for

the multivariate case of finite-horizon production processes, as was mentioned in Celano
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and Chakraborti, 2020. Nonparametric statistics can be used combined with distances

measures to convert multivariate observations in univariate statistics, as it was done in

Mukherjee and Marozzi, 2020.

Also, in order to detect small changes combined with the conditional scheme, we

can analyze other control charts, like EWMA or CUSUM, see Celano et al., 2015 and

Nenes and Tagaras, 2010. Also, implementing a Markov-Chain approach could improve

the performance of a control chart for FHP processes. On the other hand, an economic

design of a control chart for an FHP process, see Nenes et al., 2017, where the conditional

performance is evaluated, might be an interesting topic of research to assess the economic

implications of this conditional approach.
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