
Universidad Autónoma de Nuevo León
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T́ıtulo del estudio: Planeación Dinámica y Monitoreo en Tiempo Real del

Problema de Entrega de Concreto Mezclado.

Número de páginas: 145.

Objetivos y método de estudio: La industria del concreto se ha convertido

en una de las industrias más importantes, ya que el concreto se utiliza para la

construcción de edificios, casas y la construcción de infraestructura pública. Un

problema particular es satisfacer la demanda de los clientes mediante la entrega

de concreto desde plantas con camiones. Para cada cliente, una salida diaria de

camiones es horario. Sin embargo, algunos factores pueden afectar el cronograma

establecido, como que el concreto es perecedero (tiempo de entrega máximo antes

de que se endurezca), que los camiones y / o plantas puedan fallar (paradas de

emergencia o problemas eléctricos), o que los trabajadores no se presenten a los
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horarios de trabajo establecidos. Estos factores generan insatisfacción del cliente

y pérdidas de la empresa. El problema es altamente combinatorio y, por lo tanto,

varios trabajos lo resuelven mediante algoritmos de optimización, pero ninguno logra

capturar todo el proceso.

Por lo tanto, este trabajo busca mantener los horarios establecidos a través

de una herramienta multiplataforma. El núcleo de la herramienta es la dinámica

de los sistemas, como lo ha demostrado, en aplicaciones industriales, tener un buen

rendimiento y reproducir fácilmente las operaciones diarias. El objetivo es mini-

mizar la distancia y el tiempo total de viaje del cliente a la planta, considerando las

caracteŕısticas especiales de los servicios del cliente (es decir, el concreto). La asig-

nación debe reprogramarse, ya que se pueden producir cambios inesperados, como

cancelaciones de servicios, llegadas tard́ıas de clientes o se superan los tiempos de

servicio al cliente.

Contribuciones y conlusiones: El uso de la herramienta está destinado a

mejorar el servicio al cliente y la empresa. Las decisiones de la herramienta incluyen

la igualdad de uso de la planta en la empresa (balance de servicios) teniendo en

cuenta qué servicios deben ser entregados por ciertas plantas y continuar entregando

una planta espećıfica a un cliente que inicia su servicio desde esa planta. Además,

mejorar la asignación de servicios al cliente y camiones. Presentamos los resultados

obtenidos luego de implementar esta herramienta en una empresa concreta real.

Fuimos capaces de mejorar el tiempo de servicio al cliente.

Firma de la asesora:

Dra. Sara Verónica Rodŕıguez Sánchez



Abstract

Jorge Garza Cavazos.

Candidate for obtaining the degree of Doctorate in Engineering with a Major in

Systems Engineering.

Universidad Autónoma de Nuevo León.

Facultad de Ingenieŕıa Mecánica y Eléctrica.

Title of the study: Dynamic Planning and Real-Time Monitoring of Ready-

Mixed Concrete Delivery Problem.

Number of pages: 145.

Objectives and methods: The concrete industry has become one of the most

important industries since the concrete is used for the construction of buildings,

houses, and elaboration of public infrastructure. One particular problem is to sat-

isfy the demand of clients through deliver the concrete from plants with trucks. For

each client, a daily truck departure is schedule. Nevertheless, some factors may af-

fect the established schedule such as the concrete is perishable (maximum delivery

time before it hardens), trucks and/or plants can fail (emergency stops or electrical

problems), or workers may not show up at established work schedules. These factors

generate client dissatisfaction and company losses. The problem is highly combina-
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torial and thus several works solve it by optimization algorithms but none success

to capture the whole process.

Therefore, this work seeks to maintain established schedules through a multi-

platform tool. The core of the tool is systems dynamics as it has proven, in industry

applications, to have good performance and easily to reproduce daily operations.

The objective is to minimize the distance and the total travel time from the client to

the plant considering special characteristics of the client services (i.e, concrete). The

assignment needs to reschedule as unexpected changes may occur such as cancella-

tions of services, late arrivals with customers, or client service times are exceeded.

Contributions and conclusions: The use of the tool is intended to improve

customer service and company. Decisions of the tool include the equality of plant

usage in the company (balance of services) considering which services should be de-

livered by certain plants and continue deliver from a specific plant to a costumer that

initiates its service from that plant. Also, improve allocation of customer services

and trucks. We present the results obtained after implementing this tool in a real

concrete company. We were capable to improve customer service time arrivals.

Signature of the advisor:

Dra. Sara Verónica Rodŕıguez Sánchez



Chapter 1

Introduction

From the last years, production and delivery of ready-mixed concrete has become one

of the most important, demanded, and automated industry. This kind of industry

is characterized by the dynamic and uncertain environment caused by producing

a highly perishable product with a high variability in its demand. The concrete

production planner must be monitoring timeliness and flexibility on ready-mixed

concrete plants and construction sites, in order to design an efficient delivery schedule

considering the acquisition of raw materials, preparation of the mixture, loading

and dispatching the trucks, delivering and unloading concrete into the construction

site, and truck returning to the plant, among others. However, in daily basis, it

is common that incidents occur such as: trucks and plants malfunction, electricity

problems, and/or absenteeism of workers. These incidents imply modifications on

the scheduled truck routes and ready-mixed concrete production. As the day passes,

the modifications of the delivery schedule increases as early delivery are attended

on next hours from its schedule hour. This is called the domino effect and usually

requires additional resources to satisfy the scheduled customer sites according to the

planned demand on the day. These modifications imply a late delivery of concrete

to customers yielding a problem for both, the customer and the company. Focusing

1
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on the customer, a late delivery results in construction delays and interruption of

concrete discharge which lead to structure-building problems, to mention, the cold

joint, also known as cold seam, a weaker concrete than the surrounding concrete,

that is a potential plane of fracture, it requires to replace all the concrete. On the

other hand, focusing on the company, a late delivery results in concrete hardening

inside the trucks. Also, in orders with several deliveries, the delays can cause a

supply disorder, generating truck queues waiting for discharging the concrete in

the construction site, delaying future deliveries, and affecting other customers and

next schedules. These problems result in wasted time that could have been used to

serve another construction generating the increase of general operation costs when

the ready-mixed concrete is not delivered into the agreed schedule. Based on the

presented problematic, general operation of concrete companies seek to increase the

cost effectiveness of trucks, delivery, and plants, since trucks acquisition and the

plants construction is approximately the same, purchasing new trucks becomes not

an option. Therefore, it is important to streamline current resources, meanly plants

and trucks to delivery on time, whenever is possible, to each of the construction

sites.

Most concrete dispatch and planning decisions are complex with many dynamic

variables therefore modifications of the initial schedule constantly happened and

continuously must be planned and re-planned in short periods of time. The efficiency

of the proposed solutions depends highly on the knowledge and skill of the planners

and dispatchers who, with their experience and knowledge, decide among possible

alternatives the efficient use of the company’s critical resources such as plants, trucks,

and vehicles operators. The information to be used by experts is limited since they do

not have the discernability of key points such as the visibility of the demand coverage

and the costs of the different supply options. Two scenarios were distinguished

where the optimization engine’s recommendations are not reasonable for planners
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and dispatchers. In the first scenario, the solution is not understood by the planner.

To solve this problem, the help of the expert in the mathematical model is needed

to support the understanding and conviction towards the planner that it is a viable

and optimal alternative. The problem is generated because the optimization engines

are considered as a black box for the planners and dispatchers and it is not natural

for them to understand the result of all the mathematical calculations and all the

mathematical properties that make up the solution. In the second scenario, it is

detected that the solution delivered by the engine is contradictory to the reasoning

of the planner. To deal with this problem, the planner must convince the expert

that the solution provided by the engine is not feasible for day-to-day operation.

The main reasons for this scenario are: 1) there are business rules and operational

restrictions that have difficulty incorporating a mathematical model; and 2) despite

using high-capacity computing servers, some restrictions are relaxed that are possible

to model mathematically, but which considerably increase the size of the model and

with this the solution time.

This work is based on the case study of an international concrete company of

Mexico which has a complex scheduling problem. The principal issue of the concrete

company is the delivery of concrete on a construction site in a specific time window

and maximizing the use of the available fleet. Some of the difficulties to attend this

issue is that are the trucks are located in farest plants, the workers not arriving on

time (for example, by sleepless of the worker or traffic), a delay in the assign service

to an available truck in plant, large stay time of trucks in plants and/or with clients,

in big buildings, the delay of the starting time due to the different preparations

that require, and clients that have large demand of concrete change unexpected.

The characteristics of the problem include order taking, planning, dispatching, and

delivering the concrete. The entire process had to be analyzed and considered to

preclude any possible backlogs.
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Currently, in the company under study, it is desirable that each truck makes at

least four trips daily, but in practice less than three trips are made. This problem is

caused by accepting few orders and considering only the maximum capacity of each

plant (a no risk point of view), but because the dynamism of day-on-day operations

and the variability in demand, modifications in the planning are presented that

generate, in most cases, idle capacity in the company.

In addition, in every truck is installed a Gps that allows on-line tracking of

the location of the truck. In a specific day, the company delivers around 700 -

1 000 loads using about 20 concrete plants and 200 trucks to complete the task .

Modest five minutes on every load would be saving huge amounts to the company

up to $1 000 000 annual. As the efficiency of the dispatching process depends on

the dispatcher skills. If a effective dispatcher is not present, the impact of the

company efficiency is affected negatively. On the other hand, process that cost and

time-consuming such as plant scheduling, or arrival times for drivers are need to be

addressed in order to maintain efficiency of the company. Therefore, the company

needs a decision-support tool which generate savings in production, schedule, and

dispatch processes. These savings help to reduce stress of dispatchers, schedulers,

and plant managers. Also, the training times is reduced as new dispatchers manage

to understand in a short period of time the whole concrete dispatch problem.

To address the concrete company problem, in this work we employ a dynamic

engine to re-assigning orders from customers, and efficiently adjust the ready-mixed

concrete production and truck dispatching schedules whenever an ready-mixed con-

crete incident occur during the operational day. This resource allocation problem

can be modeled mathematically, however acquiring the optimum solution in such a

complex and large-scale problem is computationally intractable, moreover, the prob-

lem is characterized as a classic non-deterministic polynomial-time hard (NP-hard)
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problem. The proposed solution is validated with actual operating data from the

ready-mixed concrete company under study.

This work begins by reviewing the existing proposed solutions, which use op-

timization engines based on mathematical models, perform acceptably when the

demand for concrete is equal to or less than 85% of the installed capacity, but their

efficiency is markedly decreased when the demand exceeds 85%. In this case, model

recommendations are often unreasonable for operation and therefore are not ac-

cepted by planners. The objective of the research is to understand the causes of

the limitations of the mathematical models and propose alternative solutions that

consider the greatest number of elements in the production and dispatch of con-

crete. To address the company specs, this work employs an engine to re-assigning

the orders, that adjusts e effectively the ready-mixed concrete production and truck

dispatching schedules following ready-mixed concrete incidents. The use and en-

ablement of a support engine for strategic and operational decision-making which

suggests better alternatives in the allocation of critical resources is necessary to aim

lower operational costs and improve client service experience. Theoretically, this

resource allocation problem can be modeled mathematically, however acquiring the

optimum solution in such a complex and large-scale problem is computationally

intractable, moreover, the problem is characterized as a classic non-deterministic

polynomial-time hard (NP-hard) problem. The proposed solution is validated with

actual operating data from the ready-mixed concrete company under study. Also,

the proposed solution assist company dispatchers and operators by giving (1) the

feasibility of accepting additional orders, (2) the arrival times for drivers reporting

to work, (3) the scheduling of all orders, (4) the real-time assignment of drivers to

delivery loads, (5) the dispatching of these drivers to customers and back to plants,

and (6) the scheduling of truck loading at the plants. These determinations are

made by mathematical models incorporating exact optimization techniques.
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1.1 Hypothesis

It is possible to increase the cost effectiveness of ready-mixed concrete operation

using a dynamic planning engine that assigns the orders to its closer plants from

customer construction sites and a visualization tool to monitor the process of ready-

mixed concrete to opportunely respond in daily operations.

1.2 Objective

Find an efficient way of allocate resources at the lowest cost and distance using a

re-assignment tool with real-time monitoring.

1.3 Structure of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents the back-

ground of theoretical concepts used in the elaboration of this thesis: vehicle rout-

ing problem, traveling salesman problem, and ready-mixed concrete, among others.

Also, in Chapter 2 it is described a literature review relative to our problem, includ-

ing different alternatives that use mathematical or theoretical approaches to solve

the ready-mixed concrete delivery problem. Chapter 4 describes dynamic and visual-

ization tools used to improve the actual solution in the company of the ready-mixed

concrete delivery problem, and the algorithm to assign the orders to ready-mixed

concrete plants. Chapter 6 discusses the implementation of the model and the nu-

merical experiments performed. Finally, Chapter 7 concludes the present work and

discusses directions for future work.



Chapter 2

Background

In this chapter, we present the theory to better understand the proposed work that

addresses the ready-mixed concrete delivery problem. This problem is one of the

most famous problems in literature, the vehicle routing, in this approach is only

used to assign trucks to plants or viceversa. Although this problem has been studied

and trying to solve by academics, none find a good solution in a reasonable period

of time for problems with complexity and dynamics, as the ready mixed concrete

delivery problem. Because of that, this work will present a system dynamic model

based on mathematical models, differential equations, and simulation. Specifically,

in this work, we focus on agent based simulation using a software called iThink

from Stella Architech and Isee Systems. This software use block and struc-

ture models to represent the interactions between the objects (plants, trucks, and

customers) involved in the ready-mixed concrete delivery problem. Therefore, the

theory presented include the definition of mathematical models, simulation, differ-

ential equations, vehicle routing problem, centroid, system dynamics, and history

of Isee Systems. The general considerations of the ready-mixed concrete delivery

problem are presented in Chapter 3 and the theory of dynamic programming and

modeling is presented in Chapter 4.

7
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2.1 Mathematical Models

The relationship between variables, parameters, entities are describes using math-

ematics. This description is called a mathematical model that permits to study

behaviors of complex real world systems. There are different classifications of the

models according to their input information, representation, randomness, or appli-

cation [38]:

• The input information can be based on: explanations about causes and natural

mechanisms (heuristic model), or direct observations of an experiment of the

studied phenomena (empiric model).

• The figures, graphics, or descriptions are used to represent the mathematical

model to predict in which direction the system is going. The description in

which a value is decreasing or increasing without any information is called a

qualitative model, or if the change of a value is described with formulas and

mathematical algorithms the description is called quantitative model.

• The randomness in the model can happen if the result is always the same as

the data used has no variations (deterministic), or if the result is unknown and

only the probability of some aspects of the process are known (stochastic).

• Three types of application are simulation that describes measured situations

in a precise or a random way in order to predict what happens in a concrete

situation, optimization to solve a problem by obtaining the exact value that

meets the requirements and structure of the problem, and control to help

to determine new measures, variables or parameters in order to improve the

results of the system.
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The simulation of a process consists in the representation of a process or phenomena

with a logic-mathematical model capturing its particular behavior [57]. It is a useful

tool in the engineering, because of the detailed description that is capable to show

for a process. Some types of simulations can be modeled using discrete events, agents

theory, or differential equations [44, 61, 79]. The follow section continues with the

history, description, and some basic concepts to understand how a simulation is

performed.

2.2 Simulation

Simulation is used in many contexts, such as simulation of technology for per-

formance optimization, safety engineering, testing, training, education, and video

games. Often, computer experiments are used to study simulation models. Simula-

tion is also used with scientific modelling of natural systems or human systems to

gain insight into their functioning, [2] as in economics. Simulation can be used to

show the eventual real effects of alternative conditions and courses of action. Simu-

lation is also used when the real system cannot be engaged, because it may not be

accessible, or it may be dangerous or unacceptable to engage, or it is being designed

but not yet built, or it may simply not exist [3].

Key issues in simulation include the acquisition of valid source information

about the relevant selection of key characteristics and behaviours, the use of sim-

plifying approximations and assumptions within the simulation, and fidelity and

validity of the simulation outcomes. There are so many different types of simula-

tion, therefore, we only present those that are for interest to the present work:

• Interactive simulation is a special kind of physical simulation, often referred

to as a human in the loop simulation, in which physical simulations include
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human operators, such as in a flight simulator, sailing simulator, or a driving

simulator.

• Continuous simulation is a simulation where time evolves continuously based

on numerical integration of Differential Equations [5].

• Discrete event simulation is a simulation where time evolves along events that

represent critical moments, while the values of the variables are not relevant

between two of them or result trivial to be computed in case of necessity [6]

• Stochastic simulation is a simulation where some variable or process is reg-

ulated by stochastic factors and estimated based on Monte Carlo techniques

using pseudo-random numbers, so replicated runs from same boundary con-

ditions are expected to produce different results within a specific confidence

band [5]

• Deterministic simulation is a simulation where the variable is regulated by

deterministic algorithms, so replicated runs from same boundary conditions

produce always identical results.

• Hybrid simulation (sometime combined simulation) corresponds to a mix be-

tween continuous and discrete event simulation and results in integrating nu-

merically the differential equations between two sequential events to reduce

the number of discontinuities [7].

To describe the accuracy of a simulation and how closely it imitates the real-life

counterpart it is used the simulation fidelity. This can be broadly classified in three

categories: low, medium, and high. Specific descriptions of fidelity levels are subject

to interpretation but the following generalization can be made:
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• Low: the minimum simulation required for a system to respond to accept

inputs and provide outputs.

• Medium: responds automatically to stimuli, with limited accuracy.

• High: nearly indistinguishable or as close as possible to the real system.

A computer simulation (or sim) is an attempt to model a real-life or hypo-

thetical situation on a computer so that it can be studied to see how the system

works. By changing variables in the simulation, predictions may be made about the

behaviour of the system. It is a tool to virtually investigate the behaviour of the sys-

tem under study [1]. Another important part that is gain insight into the operation

and modeling of many natural systems in physics, chemistry, biology, human sys-

tems, economics, social science, and engineering systems is the computer simulation.

A good example of the usefulness of using computers to simulate can be found in

the field of network traffic simulation. In such simulations, the model behaviour will

change each simulation according to the set of initial parameters assumed for the

environment. Also, in the problems that we try to solve in this work the ready-mixed

concrete delivery problem have this kind of issues.

Traditionally, the formal modeling of systems has been via a mathematical

model, which attempts to find analytical solutions enabling the prediction of the

behaviour of the system from a set of parameters and initial conditions. Computer

simulation is often used as an adjunct to, or substitution for, modeling systems

for which simple closed form analytic solutions are not possible. There are many

different types of computer simulation, the common feature they all share is the

attempt to generate a sample of representative scenarios for a model in which a

complete enumeration of all possible states would be prohibitive or impossible.

Several software packages exist for running computer-based simulation model-
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ing (e.g. Monte Carlo simulation, stochastic modeling, multimethod modeling) that

makes all the modeling almost effortless. We use a new software called iThink from

Stella Architect as it has become one of the most used software for business

modeling due to the ability to capture real-time process. The history and some

characteristics of this software is presented in the following section.

2.3 Vehicle Route Problem

The vehicle routing problems (VRP) have very important applications in the area of

distribution management such as ready-mixed concrete delivery problem. This is an

extension of the traveling salesman problem (TSP) which describes a salesman who

must travel between n cities without care of the order as long as he visits each one

during his trip, and finishes where he was at first. Each city is connected to others,

each of the links between the cities has one or more weights (or the cost) attached.

The salesman wants to keep both the costs, as well as the distance he travels as low

as possible.

In the VRP, a number of capacity-limited vehicles must be scheduled, around

a number of customers. Hence, in addition to the sequencing of the customers to be

visited (the traveling salesman problem) one has to decide which vehicles visit which

customers. Each customer has a known demand (assumed to be of one commodity,

although it is possible, easily to extend to more than one commodity). Hence the

limited vehicle capacities have to be taken into account. In addition, there are often

time window conditions requiring that certain customers can only receive deliveries

between certain times.

The VRP can formally be defined as follows. Let G = (N ,A) be a graph

where V is the vertex set and A is the arc set. One of the vertices represents the
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depot at which a fleet of m identical vehicles of capacity Q is based, and the other

vertices represent customers that need to be serviced. With each customer vertex

vi are associated a demand qi and a service time si. With each arc (vi, vj) of A are

associated a cost cij and a travel time tij [47]. The VRP consists in finding a set of

routes such that:

• Each route begins and ends at the depot;

• Each customer is visited exactly once by exactly one route;

• The total demand of the customers assigned to each route does not exceed Q;

• The total duration of each route (including travel and service times) does not

exceed a specified value L;

• The total cost of the routes is minimized.

A feasible solution for the problem thus consists in a partition of the customers into

m groups, each of total demand no larger than Q, that are sequenced to yield routes

(starting and ending at the depot) of duration no larger than L.

2.3.1 Time Windows

The VRP with time windows (VRPTW) is the extension of the capacitated VRP

in which capacity constraints are imposed and each customer i is associated with

a time interval [ai, bi], called a time window. The service of each customer must

start within the associated time window, and the vehicle must stop at the customer

location for si time instants. Moreover, in case of early arrival at the location of

customer i, the vehicle generally is allowed to wait until time instant ai, that is,
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until the service may start. Normally, the cost and travel-time matrices coincide,

and the time windows are defined by assuming that all vehicles leave the depot at

initial time (time instant 0). Additionally, observe that the time window require-

ments induce an implicit orientation of each route even if the original matrices are

symmetric. Therefore, VRPTW normally is modeled as an asymmetric problem.

VRPTW consists of finding a collection of exactly K simple circuits with minimum

cost, and such that:

• each circuit visits the depot vertex;

• each customer vertex is visited by exactly one circuit;

• the sum of the demands of the vertices visited by a circuit does not exceed the

vehicle capacity, C; and

• for each customer i, the service starts within the time window, [ai, bi], and the

vehicle stops for S time instants.

VRPTW is NP-hard in the strong sense, since it generalizes the capacitated VRP,

arising when ai, = 0, bi = +∞,∀i ∈ V \0.

2.4 Center of Gravity Method

The monitoring tool of the proposed approach uses the center of gravity method to

aggregate the demand of customers in a a map. Therefore it is presented the theory

behind this algorithm.

The center of gravity method, also know as COG method, is a continuous

location method based on the lowest total transportation costs [41]. It is an approach
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that seeks to compute geographic coordinates for a potential single new facility that

will minimize costs. This method involves:

• Determining the volumes by source and destination point.

• Determining the transportation costs based on unit/mi.

• Overlaying a grid to determine the coordinates of and/or destination points

• Finding the weighted center of gravity for the graph.

The facility location is defined by: X̄ =

∑
i ViRiXi∑
i ViRi

; Ȳ =

∑
i ViRiYi∑
i ViRi

where:

Vi = volume flowing from (to) point i.

Ri = transportation rate to ship Vi from (to) point i.

Xi,Yi = coordinate points for point i.

X̄, Ȳ coordinate points for facility to be located.

The COG method does not necessarily give optimal answers, but will give good

answers if there area large numbers of points in the problem (greater than 30) and

the volume for any one point is not a high proportion of the total volume. However,

optimal locations can be found by the exact center of gravity method:

X̄n =

∑
i ViRiXi/di∑
i ViRi/di

, Ȳ n =

∑
i ViRiYi/di∑
i ViRi/di

where

di =
√

(Xi − X̄n)2 + (Yi − Ȳ n)2 and n is the iteration number.

If any company wants to reduce their cost using the COG, it must to follow

this process:
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• Place existing warehouse, fulfillment center, and distribution center locations

in a coordinate grid.

• Place the grid on an ordinary map.

• The relative distances must be noted.

• Calculate the coordinates of the two-dimensional point that meets the distance

and volume criteria.

Benefits of this method:

• Find the fastest route taking into account the traffic or environmental problems

that may exist.

• Reduce the cost and generates profits.

• Help to take decision.

• Improves customer service.

• Delivery of products is just-in-time; the goal of this technique is to reduce or

eliminate the need for inventory.

Disadvantage: The calculations can change from one moment to another due to the

information is in real time and in the case of traffic or environment does not always

behave the same.

2.5 Clustering and Data Compression

When the company knows the behavior of the customers and their demand, it can

be used the concept of clustering. Using clustering permits to group a set of objects
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with similar properties in the same group (cluster) than other objects in other groups

(clusters). The task performed in clustering is commonly used in exploratory data

mining and statistical analysis, also used in many fields such as image analysis,

computer graphics, bioinformatics, among others.

To perform cluster analysis, there are no such a general algorithm, depends

on the structure of the problem analyzed. Various algorithms can achieve the solu-

tion but differ significantly in their notion of which is the cluster and how to find

them. Typical uses of cluster group based on distances between cluster members,

dense areas of data spaces, intervals or particular statistical distributions. These

considerations make clustering a multi-objective optimization problem. To chose

the appropriate clustering algorithm and set the parameters of it, individual data

set and the intended use of results need to be considered. Therefore the task to

select an algorithm is not automatic, an iterative process is needed to discover the

correct algorithm for the problem involving in some cases trial and failure, and the

modification of data and model parameters to achieve desire properties.

2.5.1 Types of Models

As the definition of cluster cannot be precise, many clustering algorithms are been

develop but the general idea is that a group of data objects are needed. The prop-

erties of the data studied can lead to different cluster models and therefore the

understanding of the differences between the various algorithms is the key to select

the model.

Usual cluster models are based on conectivity, centroid, distribution, density,

subspace, group, graph, neural. Despite of the model, cluster can be classified in

hard (each object belongs to a cluster or not) and soft (each object belongs to each
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cluster to a certain degree, for example, a likelihood of belonging to the cluster).

Soft clustering is also called fuzzy clustering. Also, finer distinctions are pos-

sible in clustering: strict partitioning (each object belongs to exactly one cluster),

strict partitioning with outliers (objects can also belong to no cluster, and are con-

sidered outliers), overlapping (objects may belong to more than one cluster; usually

involving hard clusters), hierarchical (objects that belong to a child cluster also be-

long to the parent cluster), and subspace (while an overlapping clustering, within a

uniquely defined subspace, clusters are not expected to overlap).

2.5.2 Algorithms

The categorization of clustering algorithms are based on their cluster model as seen

in the previous section. As mentioned previously, there is no correct way to choose

a cluster algorithm but some experimental or mathematical reasons can be used to

decide which cluster model is preferred over another [46]. In the following paragraphs

we only expose the most used cluster algorithms (there are possible over one hounded

published clustering algorithms), not all provide the model for the clusters an thus

can not easily be categorized.

• Connectivity based clustering, also known as hierarchical clustering, is based

than two or more objects are related to those that are closer than the objects

far away. These kind of algorithms use distance as the connection between

objects and clusters. Therefore, a cluster is defined as the maximum distances

needed to connect parts of the cluster. Using different distance leads form

different clusters, which can be represented using a dendogram (a tree diagram

frequently used to illustrate the arrangement of the clusters produced by hi-

erarchical clustering). The algorithms based on connectivity do not provide a
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single partition of the data set, but instead provide an extensive hierarchy of

clusters that merge with each other at certain distances.

• In centroid-based clustering, clusters are represented by a central vector, which

may not necessarily be a member of the data set. When the number of clusters

is fixed to k, k-means clustering gives a formal definition as an optimization

problem: find the k cluster centers and assign the objects to the nearest cluster

center, such that the squared distances from the cluster are minimized.

• In density-based clustering, clusters are defined as areas of higher density than

the remainder of the data set. Objects in these sparse areas, which are required

to separate clusters, are usually considered to be noise and border points.

The most popular density based clustering method is DBSCAN. In contrast to

many newer methods, it features a well-defined cluster model called ”density-

reachability”. It is based on connecting points within certain distance thresh-

olds. However, it only connects points that satisfy a density criterion, in the

original variant defined as a minimum number of other objects within this

radius. A cluster consists of all density-connected objects (which can form

a cluster of an arbitrary shape, in contrast to many other methods) plus all

objects that are within these objects’ range. Another interesting property of

DBSCAN is that its complexity is fairly low, it requires a linear number of

range queries on the database, and that it will discover essentially the same

results (it is deterministic for core and noise points, but not for border points)

in each run, therefore there is no need to run it multiple times.
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2.5.3 Evaluation and Assessment

Evaluation (also called validation) of clustering results is as difficult as the clustering

itself [39]. Popular approaches involve “internal” evaluation, where the clustering

is summarized to a single quality score, “external” evaluation, where the clustering

is compared to an existing “ground truth” classification, “manual” evaluation by a

human expert, and “indirect” evaluation by evaluating the utility of the clustering

in its intended application [8].

Internal evaluation measures suffer from the problem that they represent func-

tions that themselves can be seen as a clustering objective. For example, one could

cluster the data set by the Silhouette coefficient; except that there is no known effi-

cient algorithm for this. By using such an internal measure for evaluation, we rather

compare the similarity of the optimization problems,[32] and not necessarily how

useful the clustering is.

External evaluation has similar problems: if we have such “ground truth”

labels, then we would not need to cluster; and in practical applications we usually

do not have such labels. On the other hand, the labels only reflect one possible

partitioning of the data set, which does not imply that there does not exist a different,

and maybe even better, clustering.

Neither of these approaches can therefore ultimately judge the actual quality of

a clustering, but this needs human evaluation,[32] which is highly subjective. Nev-

ertheless, such statistics can be quite informative in identifying bad clusterings,[33]

but one should not dismiss subjective human evaluation.[33]
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2.5.3.0 Internal evaluation

When a clustering result is evaluated based on the data that was clustered itself,

this is called internal evaluation. Those that use a gold standard are called external

measures and are discussed in the next section - although when they are symmet-

ric they may also be used as measures between two clusters for internal evaluation.

These methods usually assign the best score to the algorithm that produces clusters

with high similarity within a cluster and low similarity between clusters. One draw-

back of using internal criteria in cluster evaluation is that high scores on an internal

measure do not necessarily result in effective information retrieval applications.[34]

Additionally, this evaluation is biased towards algorithms that use the same cluster

model. For example, k-means clustering naturally optimizes object distances, and a

distance-based internal criterion will likely overrate the resulting clustering.

Therefore, the internal evaluation measures are best suited to get some insight

into situations where one algorithm performs better than another, but this shall not

imply that one algorithm produces more valid results than another.[4] Validity as

measured by such an index depends on the claim that this kind of structure exists

in the data set. An algorithm designed for some kind of models has no chance if the

data set contains a radically different set of models, or if the evaluation measures a

radically different criterion.[4] For example, k-means clustering can only find convex

clusters, and many evaluation indexes assume convex clusters. On a data set with

non-convex clusters neither the use of k-means, nor of an evaluation criterion that

assumes convexity, is sound.

The following methods can be used to assess the quality of clustering algorithms

based on internal criterion:
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• The Davies–Bouldin index can be calculated by the following formula:

DB =
1

n

n∑
i=1

max
j 6=i

(
σi + σj
d(ci, cj)

)
(2.1)

where n is the number of clusters, cx is the centroid of cluster σx is the average

distance of all elements in cluster x to centroid cx, and d(ci, cj) is the distance

between centroids ci and cj. Since algorithms that produce clusters with low

intra-cluster distances (high intra-cluster similarity) and high inter-cluster dis-

tances (low inter-cluster similarity) will have a low Davies–Bouldin index, the

clustering algorithm that produces a collection of clusters with the smallest

Davies–Bouldin index is considered the best algorithm based on this criterion.

• The Dunn index aims to identify dense and well-separated clusters. It is de-

fined as the ratio between the minimal inter-cluster distance to maximal intra-

cluster distance. For each cluster partition, the Dunn index can be calculated

by the following formula:[35]

D =
min1≤i<j≤n d(i, j)

max1≤k≤n d′(k)
(2.2)

where d(i, j) represents the distance between clusters i and j, and d′(k) mea-

sures the intra-cluster distance of cluster k. The inter-cluster distance d(i, j)

between two clusters may be any number of distance measures, such as the

distance between the centroids of the clusters. Similarly, the intra-cluster dis-

tance d′(k) may be measured in a variety ways, such as the maximal distance

between any pair of elements in cluster k. Since internal criterion seek clusters

with high intra-cluster similarity and low inter-cluster similarity, algorithms

that produce clusters with high Dunn index are more desirable.

• The silhouette coefficient contrasts the average distance to elements in the
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same cluster with the average distance to elements in other clusters. Objects

with a high silhouette value are considered well clustered, objects with a low

value may be outliers. This index works well with k-means clustering, and is

also used to determine the optimal number of clusters.

2.6 Isee Systems - STELLA

The isee systems is a leading developer and manufacturer of systems thinking and

dynamic modeling software. Founded in 1985 by renowned systems thinking prac-

titioner Barry Richmond, isee systems has grown to be a thriving company with

substantial global reach in a variety of markets. They continually strive to bring the

best dynamic modeling software to their customers by developing new functional-

ity, implementing customer requests, and consistently pushing the envelope on our

technology.

In 1989, Barry Richmond (and isee systems) was awarded the Jay Wright

Forrester Award by the System Dynamics Society for being the first to introduce

an icon-based model building and simulation tool, Stella. Stella brought com-

puter simulation-based model building to the mass market. In 1990, isee systems

introduced iThink for business simulation. isee systems also created the first Man-

agement Flight Simulator in 1991, pioneered the introduction of the first Learning

Environment in 1995, and delivered the first conversational systems thinking work-

shop in 1999. In 1999, isee systems also introduced isee NetSim, the first system

to deliver management flight simulators on the web. isee NetSim was expanded

to multiplayer in 2002 and completely redesigned to generate Wysiswyg web ap-

plications from Stella and iThink interfaces in 2007. 2007 is also the year isee

systems committed to the draft Xmile standard for model interchange, releasing
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the first Xmile-compatible product in 2012. In 2015, we unveiled the next genera-

tion of dynamic modeling software, Stella Professional, which allows real time

analytics with Stella Live!.

The isee systems dynamic modeling software is a powerful tool that allows

the user to create system diagrams that can be simulated over time. By creating

these diagrams, the ability to understand the behavior of a system and identify

areas for improvement. The ability to simulate over time allows the user to easily

test several hypotheses to avoid unintended consequences and costly trial and error.

With an intuitive user interface and effective analytic our software allows you to

quickly advance your modeling skills. They offer a wide range of services such as

online courses from beginner to advanced, in-person workshops, one-on-one modeling

support, as well as many free webinars and tutorials.

Barry Richmond believed that as a population, their methods of thinking and

communicating were outdated, making it difficult to solve the major issues of the

world. They propose to change the way we think, communicate, and teach as a so-

lution. This new dynamic way of thinking, called Systems Thinking, enables people

to build a better understanding of the world around them, so that they make better

decisions. Isee systems is dedicated to continuing this effort to change the way

we think by bringing systems thinking to the world. They strive to create intuitive,

easy-to-use dynamic modeling software that makes Systems Thinking accessible to

everyone, from beginner to expert. As people continue to use systems thinking

every day, they will be better able to understand dynamic relationships within a

system, think through a problem, and communicate their ideas and solutions more

proficiently.

Systems thinking is a disciplined way of understanding dynamic relationships

that enables you to make better choices and avoid unintended consequences. Through
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systems thinking, a practitioner will have a better understanding of the interdepen-

dent components that create a system and be able to identify the leverage points for

effective intervention.

As they mention, building mental models is something we all do everyday

and our brains are so good at it. Simply put, mental models are abstractions of

reality that we create and simulate to help make meaning out of experiences and

help us come to decisions that inform our actions. While building mental models

about everything, research shows that there is not always good to understand the

implications of the mental models. By building a computer model that matches the

mental model, we are able to run simulations to see what the outcomes would be

over time. In particular, this helps us understand how both feedback and action at

a distance can lead to unexpected results.

Armed with a computer model, we can analyze the behavior of the system

under different scenarios. This helps us understand the most likely paths the system

will take in the future. The proposed model can be use as a decision-support tool,

testing different policies that we believe will ameliorate the problems we are facing,

to find which policies are effective. This kind of model to help the decision making

process is the one we are proposed in terms to determine a variety of solution in the

ready-mixed concrete delivery problem.

2.7 Literature Review

The ready-mixed concrete delivery problem is a complex assignment problem widely

studied. Some studies that provide insight about the concrete delivery process are

Chua and Li [4], Dunlop and Smith [5], Lu et al. [19, 21], Maghrebi et al. [23, 30,

31], Smith [43], Wang et al. [48], Zayed and Halpin [54].
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Several attempts have been made to formulate the mathematical model. One

common approach is to model the problem as a special case of vehicle routing prob-

lem [2, 35], nevertheless there are important differences between that problem and

ready-mixed concrete that must be taken into the account. First, a truck can only

supply concrete to one customer on each trip, whereas in vehicle routing problem a

truck normally can supply more than one customer. Second, the concrete cannot be

hauled for a long time because fresh concrete is a perishable material. Because these

differences, a set of new constraints must be added to the original vehicle routing

problem formulation [1, 6, 10, 13, 27, 28, 35, 40, 51].

Proper dispatch at ready-mixed concrete plants could greatly benefit the plant

and construction sites in terms of both efficiency and effectiveness. However, in

practice, dispatch is often accomplished individually for production and delivery. In

this study, an integrated mode of production and delivery is proposed and discussed

that will lead to lower operation costs for ready-mixed concrete plants. Scheduling

studies for ready-mixed concrete production and delivery have been conducted for

several years. Most of these studies consider some of the restrictions that are in-

volved in real situations, and few have considered the integrated scheduling of both

production and delivery. Compared to these prior studies, this paper, however, fo-

cuses more on the integrated scheduling of production and delivery of pumps and

trucks and considers more practical elements, such as waiting time between vehicles

and construction sites and continuity of work in construction sites, to provide an

effective method for improving efficiency as well as saving costs.

Regardless the techniques solution, we can find in the literature the use of

exact methods such as benders decomposition [25] and column generation [26, 32].

Yan et al. [51] introduced a numerical method for solving the ready-mixed concrete

optimization problem by cutting the solution space and incorporating the branch
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and bound technique and the linear programming method. Yan et al. [53] used

decomposition and relaxation techniques coupled with a mathematical solver. It can

also be found works that combine mathematical formulation with the dependence

on human expertise [10, 14, 24, 34]. Maghrebi, Waller, and Sammut [33] attempt to

solve the ready-mixed concrete delivery problem automatically by anticipate human

decisions through machine learning techniques. The issue in this approach is the

quality of the experts decisions.

Despite significant progress on ready-mixed concrete delivery problem in the

last two decades, the research has indicated the inefficiency of mathematical models

to achive optimallity, mainly because the large number of variables, the uncertain

and dynamic data involved in real situations [24]. Moreover the problem has been

proven to be NP-hard by Asbach, Dorndorf, and Pesch [1], Maghrebi, Sammut, and

Waller [23], Maghrebi, Waller, and Sammut [24], Yan, Lai, and Chen [51], for which

obtaining the exact solution for large scale ready-mixed concrete delivery problem

is computationally intractable with available computing facilities [40, 48, 50, 52].

To overcome this issue, a wide range of heuristic methods have been used

in the literature such as genetic algorithms [9, 10, 19, 24, 29, 36], particle swarm

optimization [15, 20, 49], bee colony optimization [44], tabu search [44], and variable

neighborhood search [1]. Also, Maghrebi et al. [24] presented an evolutionary based

method which can solve the ready-mixed concrete delivery problem without needing

any additional algorithm. They developed a sequential meta-heuristic method which

is ten times faster than their previous method and rather than direct travel costs

can also minimize the number of fleets. Liu et al. [16] introduced an integrated

framework for solving both production and delivery of ready-mixed concrete. Chou

and Ongkowijoyo [3] present a decision aid model for selecting the on-site ready-

mixed concrete type based on a reliability assessment process. Zhang and Zeng
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Table 2.1: Comparison of literature for the ready-mixed concrete delivery problem.
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Present

work
X X X X X X X X

2 016
Maghrebi
et al. [33]

X X - - - - - -

2 016
Ghasri

et al. [11]
X X - - - X - -

2 015
Maghrebi
et al. [32]

X X - - - X - -

2 015
Maghrebi
et al. [30]

X X - - - - - -

2 015
Maghrebi
et al. [31]

X X - - - X - -

2 014
Maghrebi
et al. [26]

X X - - - X - -

2 014
Maghrebi
et al. [29]

X X - - - X - -

2 014
Liu et al.

[16]
- X - - - X - X

2 014
Kinable

et al. [13]
X X - - - X - -

2 014
Hanif and
Holvoet

[12]
X X - - - X - X

2 013
Maghrebi
et al. [24]

X X - - - - - -

2 012
Yan et al.

[53]
X X - - - X - -

2 011
Yan et al.

[52]
X X - - - X - -

2 011
Park et al.

[38]
X X - - - X - -

[55] integrated an intelligent monitoring system with a hybrid heuristic algorithm to

more effectively reschedule ready-mixed concrete delivery problem when customers

demands are assumed to be dynamic.

Different methods have been tried to solve the ready-mixed concrete delivery

problem, regarding of the different studies the practical solutions are null and the

solution continues to be handled by experts. From the scientific point of view, finding

the optimal solution of the ready-mixed concrete delivery problem (i.e., provide the
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feasible solution at the least possible cost) is desirable, but in practice, the main

objective is to efficiently supply all customers whilst the profitability of the company

improves. Usually, there are two parts of interest: the customer service (on-time

delivery) and the assign between plants and customer, but both decisions comes

with the challenge of the number of plant allocation, number of clients, and amount

of available truck, among others.

To our knowledge and based on the literature presented, the only work that

capture the whole process of concrete delivery is the one proposed by Durbin [6].

Therefore, we took some ideas as a basis to construct our solution but instead of using

mathematical models and solved using solvers we use a dynamic tool that capture

in more realistic way the process and add new functionalities to the dispatchers,

planners, and operators. In their work, they embedded its ATP model in trucks

and customer demand based the input in the decision expert. The expert selects

how many trucks each plant needs to attend customer demand to achieve global

feasibility. Our hypothesis is that rely on expert’s decision for this process can

generate a suboptimal capacity of trucks in concrete plants, that is the company

demand is unbalanced in terms of trucks. The combinations of characteristics to one

expert is overpass therefore, companies need more than one expert to attend this

issue. The companies split the demand in counties and each expert is assigned to

one county. Therefore, the ATP is an essential process

We overcome this problem knowing that trucks are the scares resource of any

concrete company and the core of the performance of real time operation is the first

round. Our approach takes advantage of the location of the demand and runs an

algorithm based on a mathematical formulation to detect how many trucks is needed

in each plant. The details of the implementations are presented in the next section.

The desire of the companies is that the ready-mixed concrete delivery process
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becomes automated to control the critical demand for concrete but still a human

resource is needed, due to the complexity of the problem the experts need to consider

a lot of variables in order to achieve good results. Therefore, in this study we

introduce tool to re-assign the whole delivery schedule of a region. Also, the tool

includes real-time monitoring to easily detect when the trucks are delayed or queued

in plants, customer sites, and in their travel. These considerations are needed to

make better decisions in the ready-mixed concrete delivery.



Chapter 3

Problem Description

In this chapter, we explain the process, the complexities, and the irregularities of the

daily ready-mixed concrete delivery problem. Therefore, an introduction to ready-

mixed concrete delivery is leading into a discussion of the main elements, process

description, dynamic environment, real-time issues, overbooking, and data accuracy.

3.1 Main Elements

There are five main elements involved in the ready-mixed concrete delivery problem

concrete, orders, trucks, pumps, and plants. In the following lines it is described an

explanation for each of these elements stressing their characteristics and limitations.

Concrete : The concrete is a perishable product, it needs to be poured in a

continuous way and it only has approximately one and a half hour after preparation,

before its hardens on the truck. The concrete is also characterized by high variability

in its demand caused by errors in the planning of the customers or bad weather,

which causes cancellation of orders.

31
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Orders : When a customer makes an order, the specifications of concrete are

proportioned. Some of them are: quantity, strength, viscosity, or combinations of

materials. If the amount of concrete requested by a single customer exceeds the

capacity of a single truck, multiple deliveries are required, these are called services.

Services for the same customer cannot overlap in time and have to take a maximum

time lag into consideration; the time between two consecutive services is limited to

guarantee proper bonding between the two layers of concrete. Deliveries may not

be preempted or split among multiple customers. The time required to perform a

delivery is truck dependent. Sometimes, the customer needs an addition amount of

concrete to its initial amount this impact the original schedule of the plant as extra

request of concrete from the customer requires to send one or more trucks. These

characteristics affect the decision of the order of service for each plant. Not all the

plants have the same technology to perform specific mixtures or the materials needed

for a particular order. Another consideration, is that the plant that makes the first

load to a construction site must supply the entire order to maintain consistency i.e.,

architectural reasons and concrete properties. These orders are called single-source

orders.

Trucks : Ready-mixed concrete production requires delivery by trucks to each

construction site, with planned delivery routes. In addition, to delivering the con-

crete, trucks need to perform a continuous agitation of the mixture during the deliv-

ery to avoid hardness and be able to pouring at the construction sites. Good planning

of these processes can enhance quality control and increase production efficiency of

the concrete. Trucks represent a limiting factor because there is a maximum num-

ber of trucks available at each plant, with also, a maximum capacity. The capacity

of each truck is specified in eight cubic meters of concrete but for safety reasons,

only seven cubic meters are loaded. Usually, as an order requires more than one
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service, a sequential arrival of trucks at customer sites is needed an may. Typically,

the frequency of arrival is requested by the customer. Trucks are tied together with

drivers, therefore the delivery of concrete to a customer is delayed until a truck and

a driver are available. Drivers also have restrictions, these are on their working day,

such as a maximum daily hours worked and the minimum amount of hours between

working days.

Pumps : Some orders require pumps assist concrete unloading and casting work.

The pumps should arrive at the construction site no later than the first truck and

may not depart until the site order is completely satisfied. After finishing the task

of one site, a pump may leave for the next construction site without returning to

the plant but must return to the plant after all tasks are accomplished for the day.

Plants : The plant has a maximum production and truck-load capacity per hour.

The plant can only produce one load per time. Usually, the loading time is between

ten and twenty minutes, depending on the plant machinery and technology. The

concrete costs change for each plant, since there are different materials, suppliers

(production cost), and different locations from customers (traveling cost).

Once each of the main elements is described we proceed to explain the stages

for the ready-mixed concrete delivery process. These stages are offer enable, order

taking, order scheduling, dispatching, and delivering. To illustrate all the stages a

diagram is presented in Figure Figure 3.1.

Offer Enable: For an operational day, the company offers a number of available

slots for customers to meet its delivery requirements. There are limitations that

depend on the available resources (plants, trucks, and personal) to offer these slots,

and are considered in this stage.
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Order taking : In the company under study, the dispatch of concrete is based

on orders from customers which may have more than one construction sites to be

attended. Therefore, the company take orders from customers through a Service

Call Center. The days in advance for a customer to make an order depend if the

customer has a priority according to its historical data. The days in advance to take

an order variate from seven to one day. When an order is received, each customer

indicates the quantity and specific features of concrete. One order may result in

more than one service. If the quantity of concrete ordered overpass the capacity of

a truck (7 m3), the order splits into several services in order to fulfill the amount

required for the customer. According to these specifications, the production planners

and managers have to decide if a new order is accepted or not. If the order is not

accepted, the company offers an alternative hour or day to satisfy the customer

preference whenever it is possible. Once orders are confirmed and scheduled, the

next step (order scheduling) begins. This stage happen on daily operations.

Order Scheduling : Before the operation starts, each ready-mixed concrete

plant prepares the production facilities (mixing raw materials) and the vehicle de-

liveries (trucks, pumps, and drivers) according to the schedule. An illustation of the

step is shown in Figure 3.2.

Dispatching : In order to explain the ready-mix concrete delivery, the process

is separated in three time windows called rounds. The first round begins at 8:00

aṁ(̇begin of the operation) and ends at 11:00 aṁ(̇return of first delivery trucks to

plants). The second round begins at 11:00 aṁȧnd ends at 2:00 pṁṪhe third round

begins at 2:00 pṁȧnd ends at 5:00 pṁȮther considerations are that the available

trucks in a plant are idle until an order (or service) is assigned to them. The dis-

patchers decide the assignments of plants and trucks to attend customers according
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to the schedule to arrive on time. Daily operations of dispatchers become difficult as

they need to select from several alternatives to continuously supply concrete to each

of the customers scheduled. The considerations to assign can be categorized into

three types: order specifications, truck cycle time, and plant limitations. Within the

specifications of the orders are: quantity (cubic meters), technical characteristics of

the concrete, first service scheduling hour, and frequency (time window between each

service from an order as requested by customers). The fulfillment of the frequency

is key to a continuous delivery (download and unload) that guarantees the quality

of the construction project. The route of the trucks is defined by the distance be-

tween plant and customers, the drivers availability, and the cycle time. The cycle

time includes the time of customers preparation, the construction-site preparation,

the concrete unloading, the trucks cleaning, and the traveling time to return to the

plant. Regarding the limitations of the plant, it is known which type of concrete is

produced in each plant and the maximum capacity of concrete production per hour.

Based on these considerations, the dispatcher has the challenge to assign trucks to

each customer in order to deliver (next step) on time. The challenge increases dra-

matically as several active ready-mixed concrete plants on different locations are

able to supply each customer, a considerable number of customers need to be attend

at the same time, and there are several trucks to select and send to the loading area

in each of the plants. The role of the dispatchers becomes crucial to the company

since the day-on-day schedule of the ready-mixed concrete delivery problem depends

on them. After the dispatchers assign a truck for a service, fresh concrete with the

characteristics requested is loaded into a truck. Then, the truck moves below the

discharge area of a loader at the plant. During this process, the loader perform a

well mixture of the concrete ingredients to drop the fresh concrete into the truck.

Next, the driver washes the truck and inspects if the material is located properly

inside the body of the truck, if there is any residual the driver push it into the body
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of the truck with a stream of water. After that, the driver checks the quality of the

material and removes any concrete left in the exterior of the truck for safety reasons.

Finally, the truck is ready to deliver concrete to the customer.

Delivering : After the driver leaves the plant, the driver starts traveling to its

assigned construction site. When the driver arrives, assuming that the customer is

ready for receiving the concrete, the truck is positioned in the pouring (also called

unloading and placing) location. Later on, the truck unload concrete until there is no

concrete left. Then, the driver moves from the pouring location and wash the truck

to remove any residue that may solidify into the truck. Once the delivery of concrete

is done, the driver returns to a plant (not necessarily the same as the starting plant)

in order to be available to a new assignment or quit its labor day.

3.2 Dynamic Environment

There are many aspects (or events) that cause dynamism and uncertainty in the

concrete industry. The ones that we consider the most relevant are enlisted next as

customer-created problems, operating cost, traveling time, and breakdowns.

Customer-created problems: There are customer-created problems that in-

crease the cost of delivering concrete and impact the efficiency of the delivery process,

therefore the customer has greater influence over the ready-mixed concrete supply

process, even greater than the supplier [42]. The main common customer problems

are: preparation, incorrect order, delays, and cancellations. The customers may not

be prepared when the truck arrives to unload the concrete. These scenarios result in

truck usage delay, affecting next deliveries, or may stop the dispatching of additional

services for that customer until the preparation is corrected. Nevertheless, some cus-
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tomers are very optimistic about their ability to unload trucks but as the company

have their historical behaviours, with high probability the time extends more that

expected. Also, the customers seldom knows the exact amount of concrete needed

for a specific order. Underestimating as little as one cubic meter could require an

additional trip from either a truck already assigned to a customer site or another

available truck. For this reason, it is often the case that the truck or trucks that are

sent to deliver the additional concrete are diverted from delivering to another cus-

tomer. The more that the customer underestimates, the greater the impact on the

ability of servicing on time other customers. Conversely, if a customer overestimates

the amount of concrete and abruptly decreases the ordered amount after delivery

has started, the company may be left with idle trucks or may be left with trucks at

the wrong plants to quickly assign to other jobs. Another issue to consider is when

the customer delays or cancels an order right before trucks were assigned according

to scheduled and it starts to travel from the plant to the customer.

Operating Costs: Increases in costs occur due to keep drivers and trucks out for

a longer period of time than necessary. The inability of the company to use trucks

from other near customer sites when there is a delay of current assigned customers

results in an increasing cost to not use with efficiency the available resources. These

costs and the ones from the cost to attend the issues mention previously have a

significant impact on the profitability of the company. Therefore, the ability to

assess the current states of all deliveries, to determine if the delivery is on-schedule

or delayed, and to respond appropriately can provide significant cost savings to the

company. Moreover, when delivery of concrete is smooth, contractors in construction

sites does not worry about trucks idling on site waiting to unload the concrete.

Therefore, ready-mixed concrete dispatchers has the challenge to deliver concrete in

a timely and cost-effective manner.
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Traveling time: Other important factor that affect the dynamics in this indus-

try is the traveling time from a plant to a customer site and viceversa. On daily

operation, differs on the zones where the construction site as the traffic variates ac-

cording to the hour and the weekly day. Thus, the coordination of the entire fleet

at scheduled time, on a specific day, become difficult to ensure the on-time concrete

delivery for each of the customer sites.

Weather: Weather impact directly on the concrete delivery process. The ex-

pected travel-time increases when inclement weather occurs causing delays in ar-

rivals on construction sites. Additionally, concrete need certain weather conditions

to be delivered, being nearly impossible to deliver when appear heavy rain or cold

temperatures.

Breakdowns: Another factor is the breakdown of either trucks or plants. The

breakdown of an empty truck can result in delivery delays until the truck is brought

back into service, or until the driver is placed into a backup truck. The breakdown

of a loaded truck has additional cost associated with material replacement; late

delivery to the customer and removal of hardened product from the drum of the

truck. The breakdown of a plant can create a significant disruption in the delivery

plan for the entire company. When this occurs, the company is mainly interested

in system recovery and places priority on continuing any customer delivery that is

currently in progress.

3.3 Real-time Issues

Ready-mixed concrete delivery performance is also heavily influenced by factors that

are under the company’s control. One of the most complex issues encountered in



Chapter 3. Problem Description 39

this research deals with the effects of real-time implications on the mathematical

solutions that are generated.

The most significant issue is the determination of proper reaction to events

that have not occurred as anticipated. When this transpires, there is often a domino

effect on the schedule. For example, the decision to direct trucks from a later job to

finish a current job causes problems for the later job, which create further delays.

Both loads in progress and loads scheduled to occur later are impacted.

A second problem is that the data changes significantly while the solution

is being calculated. For example, in the time interval between the data snapshot

and schedule completion, a truck is placed in “shop” status (meaning that it needs

some mechanical adjustments and is unavailable for an unknown amount of time).

The schedule likely made use of this truck, and until the problem is re-solved, the

schedule will be inaccurate. As a result, the solution generated is out-dated before it

can be used. Hitting this moving target is challenging, but the process is addressed

in creative ways as described in the following chapters.

An example of some real-issues is illustrated in Figure 3.3. In this example

four Jobsites have real-time issues that permit the customer to add new valume of

concrete (Jobsite 1), delay their stablished delivery schedules (Jobsite 2 and 3), or

cancel all their services (Jobsite 4). Only one service in one Jobsite arrive on time

in this example (second service of Jobsite 3).

3.4 Overbooking

In the same way as other different enterprises, the concrete business works with

overbooking. This is done in light of historical rates of cancellations and postpones
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that happen each day. At the point when client postponements or retracts are

lower than anticipated, overbooking makes uncommon dispatching difficulties. At

the point when this happens, the activity plans can be one of the accompanying

other options

1. The first option accessible is deferring the beginning season of the conveyance,

called slipping the request. The measure of the postponement is reliant upon

truck accessibility, the particular subtleties of the request (a more huge effect

is produced by deferring a huge request), and the significance of the client.

Slipping the request is particularly valuable if there is just a brief deficit in

trucks that can be made up later in the day when request decreases.

2. A second option is to build the between appearance pace of the trucks, called

stretching the request. This spreads out the conveyance throughout a more

extended timeframe. The effect of this is that less trucks are utilized at any

one point on schedule to meet the conveyance prerequisites of a client, yet the

trucks are being used for a more drawn out timeframe. The result is called

squeezing the balloon (on the grounds that the truck utilization related with the

request is packed in one time period and extends in some other time period).

Extending orders is valuable if there is a reliable deficiency (a consequence of

overbooking) for the duration of the day.

3. A third option is to acquire trucks from another organization. Related organi-

zations regularly work in a similar geographic region. If so, the organizations

may share trucks to aid conveyance prerequisites. This choice can address

either a transient lack of trucks or a predictable deficiency of trucks.

4. At the point when any remaining options have been endeavored and the solid

organization actually experiences issues meeting conveyance necessities, the
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last option is to advise the client and drop the request. This is just done if all

else fails.

A few clients perceive the test in conveying concrete. Therefore, on a few

positions these clients not just give a mentioned conveyance time, they likewise

give the most recent time that the client will acknowledge conveyance, a drop-

dead time.

The initial two choices are executed on the fly by the dispatchers. Getting trucks is

an alternative that isn’t accessible to all organizations and obviously, it’s anything

but an industry standard. The last option is to drop a request, in spite of the fact

that it’s anything but a favored alternative for evident reasons.

3.5 Accuracy of Data

One of the significant reasons that this decision-support system has been effectively

actualized is that the organization has planned an information base framework and

has the two GPS gear and on-board sensors to catch a large part of the required infor-

mation. Nonetheless, perceive that the caught information ordinarily has mistakes,

because of elements like the accompanying:

• The sensor on board the vehicle doesn’t work as expected and the situation

with the truck is accounted for mistakenly.

• The Gps receiver, or specialized gadget in the vehicle doesn’t work as expected,

bringing about off base information transmission or an absence of information

inside and out.
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• The client site has no a decent gathering, bringing about a postponement in

information transmission.

• The driver doesn’t react to a movement order and in this manner reports to

some unacceptable plant.

• The driver dumps a segment of the heap, at that point moves the truck (setting

the truck in an ”end-pour” state) to another area and keeps on pouring cement.

The best method to react to wrong information is to connect with the dis-

patchers in the issue. The dispatchers track the trucks and orders by means of a

graphical User Interface. At the point when they notice an expected issue, they

speak with the drivers by radio and decide whether there is a conveyance or an in-

formation issue. On the off chance that there is a conveyance issue, the dispatcher

can defer the remainder of the conveyances to this client. In the event that there is

an information issue, the dispatcher physically refreshes the information inside the

data set. Whenever the solver is run, the more precise information will be utilized.
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Chapter 4

Methodology

This chapter begins with a discussion on data collection/storage issues and travel

time data. This is followed by a discussion of the truck-based dispatching elements of

the decision-support tool: the order entry planner and arrival time planner. Both of

these modules are used in planning activities at least one day in advance. The

chapter concludes with a discussion of the demand dispatching elements of the

decision-support tool: the next day planner, the real-time planner, and the real-

time dispatcher. These modules are used for real-time operational dispatching and

re-scheduling. Included in these discussions are references to the many adaptations

that are required to implement a decision-support tool in a dynamic environment

with real-time requirements.

4.1 System Dynamics

The behavior of a system arises from its structure, that structure consists of the

feedback loops, stocks and flows, and nonlinearities created by the interaction of the

physical and institutional structure of the system with the decision-making processes

of the agents acting within it [45].

46
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4.1.1 Fundamental Modes of Dynamic Behavior

Change takes many forms, and the variety of dynamics around us is astounding. The

most fundamental modes of behavior are exponential growth, goal seeking, and oscil-

lation. Each of these is generated by a simple feedback structure: growth arises from

positive feedback, goal seeking arises from negative feedback, and oscillation arises

from negative feedback with time delays in the loop. Other common modes of be-

havior, including S-shaped growth, S-shaped growth with overshoot and oscillation,

and overshoot and collapse, arise from nonlinear interactions of the fundamental

feedback structures.

4.1.2 Exponential Growth

Exponential growth arises from positive (self-reinforcing) feedback. The larger the

quantity, the greater its net increase, further augmenting the quantity and leading

to ever-faster growth. Pure exponential growth has the remarkable property that

the doubling time is constant: the state of the system doubles in a fixed period

of time, no matter how large. It takes the same length of time to grow from one

unit to two as it does to grow from one million to two million. This property is a

direct consequence of positive feedback: the net increase rate depends on the size

of the state of the system. Positive feedback need not always generate growth. It

can also create self-reinforcing decline. By other hand, linear growth is actually

quite rare. Linear growth requires that there be no feedback from the state of the

system to the net increase rate, because the net increase remains constant even as

the state of the system changes. What appears to be linear growth is often actually

exponential, but viewed over a time horizon too short to observe the acceleration.

Growth is never perfectly smooth (due to variations in the fractional growth rates,
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cycles, and perturbations), but in each case exponential growth is the dominant

mode of behavior.

Process Point: When a Rate Is Not a Rate In dynamic modeling, the term

“rate” generally refers to the absolute rate of change in a quantity. The population

growth example above states, “the larger the population, the greater the birth rate.”

The term “birth rate” here refers to the number of people born per time period.

Often, however, the term “rate” is used as shorthand for the fractional rate of

change of a variable. Similarly, we commonly speak of the interest rate or the

unemployment rate. The word “rate” in these cases actually means “ratio”: the

interest rate is the ratio of the interest payments you must make each period to

the principal outstanding; the unemployment rate is the ratio of the number of

unemployed workers to the labor force.

4.1.3 Goal Seeking

Positive feedback loops generate growth, amplify deviations, and reinforce change.

Negative loops seek balance, equilibrium, and stasis. Negative feedback loops act to

bring the state of the system in line with a goal or desired state. They counteract

any disturbances that move the state of the system away from the goal. If there

is a discrepancy between the desired and actual state, corrective action is initiated

to bring the state of the system back in line with the goal. Every negative loop

includes a process to compare the desired and actual conditions and take corrective

action. Sometimes the desired state of the system and corrective action are explicit

and under the control of a decision maker. Sometimes the goal is implicit and not

under conscious control, or under the control of human agency at all. In most

cases, the rate at which the state of the system approaches its goal diminishes as the
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discrepancy falls. We do not often observe a constant rate of approach that suddenly

stops just as the goal is reached. The gradual approach arises because large gaps

between desired and actual states tend to generate large responses, while small gaps

tend to elicit small responses. When the relationship between the size of the gap

and the corrective action is linear, the rate of adjustment is exactly proportional to

the size of the gap and the resulting goal-seeking behavior is exponential decay. As

the gap falls, so too does the adjustment rate. And just as exponential growth is

characterized by its doubling time, pure exponential decay is characterized by its

halflife-the time it takes for half the remaining gap to be eliminated.

4.1.4 Oscillation

Oscillation is the third fundamental mode of behavior observed in dynamic systems.

Like goal-seeking behavior, oscillations are caused by negative feedback loops. The

state of the system is compared to its goal, and corrective actions are taken to elim-

inate any discrepancies. In an oscillatory system, the state of the system constantly

overshoots its goal or equilibrium state, reverses, then undershoots, and so on. The

overshooting arises from the presence of significant time delays in the negative loop.

The time delays cause corrective actions to continue even after the state of the sys-

tem reaches its goal, forcing the system to adjust too much, and triggering a new

correction in the opposite direction.

4.2 Dynamic Planning Model

In this section, we detail, as far the confidentiality permits, the main concepts re-

garding the implementation of each of the research tools. For each tool, the relevant
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concepts, considerations, and necessary parameters will be detailed. For the dy-

namic planning tool, input variables, process rules, and characteristics are specified.

For the monitoring tool in real time, the features and considerations are presented.

Based on the problem description in Chapter 3, the elements and principal

characteristics are presented in the diagram of Figure 4.1. There are two main parts

in this diagram, the productivity (profits) and the compliance (customer satisfac-

tion). This two parts are related to two relevant variables of the company: profits

and quantity of orders. The relationship is that higher the productivity, higher the

profits and lower compliance, lower the quantity of orders to be served.

If we focus in productivity, there is an offer enable that assign a quantity of

orders. This orders are reflected if there is a decreasing value in the optimal origin.

To decrease optimal origin also affects negatively to productivity and decrease the

number of resources available. When this occurs, trucks need to be removed and

some plants need to be closed as there is no longer profitable to the company business.

Also, this generates a cycle where there is less offer enable and therefore less quantity

of orders by the costumers. But since there are fewer orders, now the optimal origin

may be satisfying increasing the company productivity and increasing the resources,

yielding more offer enable. It looks like a system balanced by supply and demand.

If we focus in the compliance, the system is stagnant (regulated) as higher

quantity of orders decreases the optimal origin making the compliance to be reduced.

Fewer quantity of orders permits to perform a better truck assignment what increases

compliance and therefore, higher quantity of orders. This higher quantity of orders

difficult the balance of trucks, therefore the compliance decreases and the orders

are reduced. As the orders are reduced, now the balance of trucks is better, that

increase the compliance and generate much more quantity of orders, this starts the

cycle again.
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Figure 4.1: Diagram of causality for ready-mixed concrete delivery problem.

The dynamic model result counteracts the fact that greater quantity of orders

impacts in a better optimal origin, therefore the productivity increases, and needing

more trucks and more orders (supply). This permits the system to enter into a

virtuous cycle. Nevertheless, before cancellations come into play, the system is in

perfect balance. However when cancellations appear, the truck balance decreases,

which lowers productivity and causes everything to decrease (bottom part in the

diagram). Also, cancellations increase the offer enable yielding more quantity of

orders to serve. Another variable that affects is the additional volume requested by

the customers, this decrease offer enable, and as we explain previously affects the

productivity. These two external interaction of the process affect the removal of

trucks or the surplus of trucks at each plant.

Considering the diagram, the dynamic model is presented. The model for deci-

sion support has been developed using Stela Architect through Isee PLayer,

allowing to incorporate in detail the systems dynamics model.

Consistency on what is modeled and simulated against reality was checked
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based on years of experience of people and literature reviews. Robustness on how

model structures were implemented to produce expected behaviors was exhaustively

reviewed equation by equation in order to check the best way to implement modeled

processes. Implemented structures produce general behaviors that can be customized

based on data files from Ginco to consider the different characteristics:

• Standardized logic-discrete structures were incorporated after a process of en-

quiry, discovery, and standardization of structures.

• Redundancies, obsolete structures, and structures without value for current

usage were eliminated (reference to enquiry system).

• Sectors (i-Think feature to run isolated model fragments for testing) were

assigned to every function of the model. Firstly, functions were identified,

explicitly defined, and corresponding input and output variable were explicitly

declared. So the model can be understood by functions and tested by sectors.

• Rename of the 95% of the variables was carried out to enable the communi-

cation of the knowledge about the process by looking at the graphical model

itself.

• Balance between computational efficiency and communication efficacy of the

graphical model is a main characteristic of the current of Simul v2 c©.

There are four objectives to achieve: (1) to anticipate potential operational

breaks, (2) to identify the best plant to deliver each service, (3) to enable a plan-

ner/dispatcher to undertake corrective actions in order to ensure the timely fulfill-

ment of orders, and to transfer knowledge gathered by years on the concrete order

fulfillment process by trucks. The main stakeholders are the dispatchers, the plan-

ners [18], and the designers of i-Think-based simulators.
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Spatial distribution of sectors based on the three scenarios already imple-

mented: (a) Simulated, (b) Scheduled, and (c) Real, along with three data com-

putation processes: (a) data reading/conditioning, (b) data processing, and (c) data

writing to Interface Human-Machine (IHM) was established and assigned to quad-

rants. SIMUL V2 c© original spatial distribution is shown in Figure 4.2. Functions

are implemented by the different structures of Stocks (Accumulators or Registers)

and Flows (Entering-Leaving data enablers). SIMUL V2 c© design logic is based on

years of experience in the concrete order fulfillment process. In order to describe

the design logic and structures of every function, a spatial redistribution is carried

out and the result is shown in Figure 4.3. Then every Quadrant is named by its

corresponding matrix coordinate, as it shown in Figure 4.4. We proceed to describe

each quadrant and its functionality.

Quadrant [1,1] Establish a simulation (“should be”) loading minute based on

verified conditions of execution and to generate synchronization signals for parallel

processing on order information. The corresponding diagram is presented in Fig-

ure 4.5. Also, synchronize the truck transit time of each plant’s services with the

information of loading minute and volume through the simulation time. The corre-

sponding diagram is presented in Figure 4.6.

Quadrant[2,1] Synchronize the cubic meter values of each service to its loading

and transit times. The corresponding diagram is presented in Figure 4.7. Also,

synchronize the scheduled loading minute with the actual loading time. The corre-

sponding diagram is presented in Figure 4.8.

Quadrant [3,1] Establish the theoretical-one loading minute that is based on

none consideration of execution conditions, and to count the number of services
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Figure 4.2: Current spatial distribution.

scheduled from the transactional database in a day. Execution conditions of free

loading area and truck availability are ignored. The corresponding diagram is pre-

sented in Figure 4.9. Also, establish the theoretical-two loading minute that is based

on the free loading area condition. The condition of truck availability is ignored.

The corresponding diagram is presented in Figure 4.10.

Quadrant [4,1] Synchronize the actual loading minute with the simulation time,

and to count the number of services fulfilled in a day. The corresponding diagram

is presented in Figure 4.11.
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Figure 4.3: Current spatial distribution on Figure 4.2 to be referred by quadrants.

Quadrant [1,2] Estimate the following indicators for truck allocation perfor-

mance by simulation: minutes of trucks’ stay at plant, minutes without trucks in

each plant, and required trucks per hour. The corresponding diagram is presented

in Figure 4.12.

Quadrant [2,2] Compute the average cycle time at each plant by simulation.

The corresponding diagram is presented in Figure 4.13. Also, index each service

by simulation according to a input file. The corresponding diagram is presented in

Figure 4.14.
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Figure 4.4: Spatial distribution organized by quadrants.

Figure 4.5: Loading minute for Simulation Process.

Quadrant [3,2] Establish the actual truck arrival time. The corresponding dia-

gram is presented in Figure 4.15.
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Figure 4.6: Transit time for Simulation Process.

Figure 4.7: Cubic meters (m3) for Simulation Process.

Figure 4.8: Scheduled loading minute for comparison against real.

Quadrant: [4,2] Register the delay in minutes between the actual loading time

and the programmed loading time and establish the greatest delay hourly. The
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Figure 4.9: Loading minute for Scheduled Process.

Figure 4.10: Loading minute for Scheduled Process and Loading Area.

corresponding diagram is presented in Figure 4.16.

Quadrant [1,3] Establish the amount of services delayed per hour by simulation.

The corresponding diagram is presented in Figure 4.17.

Quadrant [2,3] Establish the greatest delay per hour per plant by simulation.

The corresponding diagram is presented in Figure 4.18.
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Figure 4.11: Loading minute for Real Process.

Figure 4.12: Truck allocation performance for Simulation Process.

Quadrant [3,3] Register the minimum amount of trucks available per plant in

the course of each hour by simulation.
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Figure 4.13: Average cycle time for Simulation Process.

Figure 4.14: Delivery index for Simulation Process.

Quadrant [4,3] Estimate trucks actual stay at plant, the minimum number of

trucks required in each plant, and minutes of plant without trucks. The correspond-
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Figure 4.15: Real truck arrival minute.

ing diagram is presented in Figure 4.20.

Quadrant [1,4] Count and register the amount of services per hour by simula-

tion. The corresponding diagram is presented in Figure 4.21.

Quadrant [2,4] Calculate the percentage of scheduled services loaded on time,

trips per truck, m3 per truck, and total m3 produced by plant under the simulation

process. The corresponding diagram is presented in Figure 4.22.

Quadrant [3,4] Establish the total programmed theoretical amount of services

demanded per hour. The corresponding diagram is presented in Figure 4.23. Also,

establish the amount of actual loaded services per hour. The corresponding diagram

is presented in Figure 4.24.

Quadrant [4,4] Calculate the percentage of actual services loaded on time. The

corresponding diagram is presented in Figure 4.25.
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Figure 4.16: Time delay for Real Process.

4.3 Monitoring Tool

This section describe the integration of the dynamic model into a decision sup-

port system that permits to monitor the dynamics of the problem. The monitoring

tool has been developed using JavaScript, HTML5, and mapExperience plus.

Clustering and centroid algorithms are incorporated to observe customer demand by

volume, quantity of orders; and a minimum cost algorithm to know the number of
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Figure 4.17: Delayed trucks for Simulation Process.

trucks that can be assigned.

The tool can be use to known the status of the trucks (stay in plant, towards

the client, available, or idle time), as well as the status of an order (cancellation,

start later or change frequency). As a visual aid, a color code is chosen to easily

known the status of the truck, green: on the way to work, blue: on the floor with less

than forty minutes, and red: standing for more than forty minutes inside a plant.

With this color code it is easy to detect if the truck is in plant or if it has a longer

cycle time than usual. To locate each truck, a Gps is installed (it can have errors

of up to 200 meters) to obtain the speed.

The visualization allows to know the lack and the excess of trucks using the

distance and the time of the origin plants. Our hypothesis is that an adequate
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Figure 4.18: Time delay for Simulation Process.

allocation of the trucks is perform badly to support some client, the truck will be

late with the client causing the dissatisfaction of the client. As an example, if the

original plan was to arrive at 3:00 p.m. with the client, by not making an adequate

allocation of the trucks and by delays of the plant where he must serve ends up

arriving an hour later at 4:00 p.m. To perform the clustering, the assumptions made

are based on the distance and time of the plants, in addition, the Google API is used

to obtain the amount of time on the journey to reach a customer.

The tool serves as visual support to the decision maker (for this particular
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Figure 4.19: Minimum number of trucks for Simulation Process.

case would be the dispatchers, responsible for the allocation of trucks to orders) and

allows the user to distinguish in which places are available trucks and in what places

trucks are needed to attend in time and form to as many customers as possible

during the day. By having a broad overview of what happens on a day-to-day basis,

you can have a better management of the operation as well as the number of trucks

that are missing and also allows you to know the number of operators required on a

particular day.

To visualize the demand of the clients by volume or services in a round, a cen-

troid algorithm is used that allows grouping according to the ranges of the quantity

to be visualized. With this it is possible to detect which plant has greater impor-
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Figure 4.20: Truck waiting minute at plant for Real Process.

tance, that is, the plant whose region has the highest concentration of demand. We

know how many trucks are present so as not to pile up trucks and be able to make

a decision instead of sending more units to the work. You know how many trucks

are on the job.

Our interest is to cover the customer demand, keeping that in mind the tool

can concentrate the areas where idle trucks exists in order to help the dispatcher in

which number of trucks are available to cover that areas where other customers may

not be served due to the lack of trucks. The core of the algorithm is based on the

time cycle between plants and customers and allows to know the number of trucks,

per round, that the company need to support the areas where customers may not be

serve. An example of the required trucks for four job sites and two plant is presented
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Figure 4.21: Demand for Simulation Process.

Figure 4.22: Productivity for Simulation Process.
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Figure 4.23: Demand for Scheduled Process.

in Figure 4.26.

Also, the algorithm consider the percentage of usage of each plant, an estimate

of customers serve in the round and which will be attended in next rounds, and the

delivery times in the day in order to minimize surpluses and deficits. It is based

on the centroid, to distribute truck demand, customer demand translated into the

trucks they need. Naturally, the demand is greater than the one that can be met,

but since there is a possibility that a customer cancels, or moving the order to

another time, it is considered within the scope of attention. An example of how it

is visualized to the dispatches is shown in Figure 4.27.

A sequence of illustrative examples is considered to show the benefits of the dy-

namic model. In the first example (see Figure 4.28 to 4.31), there are two customers

with one service each one, Jobsite 1 and Jobsite 2, respectively. The resources of the
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Figure 4.24: Demand for Real Process.

company are two plants, Plant 1 and Plant 2. There is one slot available on Plant

1 and eight slots in Plant 2 (see Figure 4.28). The traveling time from Plant 1 to

Jobsite 1 is 15 min and from Plant 2 to Jobsite 1 is 25 min. The traveling time from

Plant 1 to Jobsite 2 is 5 min and from Plant 2 to Jobsite 1 is 30 min. The Jobsite

1 make the first call, he request a service and the service agent assign the Plant 1

to serve him as is the closest plant to Jobsite 1, this removes the available slots on

Plant 1 (see Figure 4.29). Later, Jobsite 2 call for a service (see Figure 4.30). The

closest plant is Plant 1 but as there is no slots available, the Plant 2 is assignment

to serve her (see Figure 4.31). The total traveling time is 45 min.

Now consider another example (see Figures from 4.32 to 4.35), there are two

customers, one with two services and the other with ten services, Jobsite 3 and

Jobsite 4, respectively. The resources of the company are two plants, Plant 3 and

Plant 4. There is ten slots available on each plant (see Figure 4.32). The traveling

time from Plant 3 to Jobsite 3 is 5 min and from Plant 4 is 15 min. The traveling
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Figure 4.25: Fulfilled delivery percentage for Real Process.

time from Plant 3 to Jobsite 4 is 7 min and from Plant 2 is 20 min. The Jobsite 3

make the first call, he request two service and Plant 3 is assigned to him as is the

closest plant to Jobsite 3, leaving it to eight available slots (see Figure 4.33). Later,

Jobsite 4 call for for a delivery of ten services (see Figure 4.34). The closest plant is

Plant 3 but she needs ten slots available and Plan 3 only have eight slots, therefore,

the Plant 4 is assignment to serve her (see Figure 4.35). The total traveling time is

210 min.

In both examples, if we execute the dynamic model, the result is optimized to

reallocate each serves to the closest plant. In the first example there is a decrease of

15 min from the initial assignment and in the second example there is a reduction
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of 100 min as shown in Figure 4.36.

Now, another example with more customers and more plants. The example

is illustrated from Figure 4.37 to 4.40. In this example there are three plants and

sixteen customers assigned (see Figure 4.37). The plants of the left have not available

slots and the plant on the right have five slots available. If a new customer arrive

close to those plants without available slots, as shown in Figure 4.38, the customer

is assigned to the plant with available slots (see Figure 4.39). This assignment

generates monetary losses as the travel time is bigger than expected. To solve this,

the model is executed and reassign the new customer to the closest plant and one of

the customer of this plant, considering the traveling time, is assigned to the plant

with available slots (see Figure 4.40).
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Figure 4.28: The illustration represent how the plants are occupied before an order
arrives. Only two plants and two customers are considered.

Figure 4.29: The illustration represent the moment after an order arrive. In this
case the order of the Jobsite 1 is assigned to Plant 1, the closest plant.

Figure 4.30: The illustration represent the moment after a second order arrive (Job-
site 2). The order is not assigned to any plant.
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Figure 4.31: The illustration represent the moment after a second order arrive. The
order of the Jobsite 2 is assigned to Plant 2.

Figure 4.32: The illustration represent how the plants are occupied before an order
arrives. Only two plants and two customers are considered. Both plants are with all
its slots available.

Figure 4.33: The illustration represent the moment after an order arrive. In this
case, the two orders of the service from Jobsite 3 are assigned to Plant 3.
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Figure 4.34: The illustration represent the moment after a second service arrive
(Jobsite 4). The service with 10 services is not assigned to any plant.

Figure 4.35: The illustration represent the moment after a second order arrive. The
order with 10 service of the Jobsite 4 is assigned to Plant 4 as it is the plant with
10 available slots.
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Figure 4.36: Illustration of the optimization performed by the engine. For each
scenario, all orders are assigned to the closest plants yielding a reduction of the total
traveled distance.
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Chapter 5

Computational Experiments

The company need fast methods to obtain good scenarios that can help the deci-

sion maker in every day dispaching and planning. Real-time responsiveness is more

important than exact optimization in a less timely fashion. Therefore, a decision-

support engine is proposed to help the decision maker in day-on-day operations. If

desired, the decision maker may then utilize knowledge that is not known to the

engine to improve the schedule. The engine can be set up as a loop where the

decision maker works iteratively with the solver to generate an ever-improving solu-

tion. This chapter begins with a description of the characteristics and core tools of

the proposed engine.Then a description of the case under study which include some

components that are used to propose the solution using the decision-support engine

with a dynamic system tool and a visualization tool.

5.1 Decision Support Engine

The main core of the engine is a system dynamic tool based on i Think application

to support operational planning and optimization of resource allocation in the ready-

mix concrete order fulfillment process. Up today, trucks are the specific resources to

82
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Figure 5.1: Diagram of the implementation the dynamic tool in the order taking
and fulfillment process.

be re-assigned based on the customer’s needs in an hourly basis using this dynamic

tool. The features that include the engine are delivery planning, monitoring of load

compliance, dynamic evaluation of truck optimal origin, assessment of startup com-

pliance, monitoring of plants, and geographical visibility of plant allocation. Import

and export data instructions are not part of this work, since they are explained in the

user manual documented by Lozano [18], and Human Machine Interface variables

by Navarro et al. [37]. The proposed dynamic tool can be divided into two parts,

first an order allocation for each plant and then the on-time balance of trucks in all

the company. Therefore, the tool allows to have control of each of the plants based

on the filling capacity of each plant and the distances to customers. The diagram of

how this engine contibute to the operation process is presented in Figure 5.1.

An example to illustrate how the engine works is presented thorough Figures

5.2 to 5.4. In this example, the delivery to be loaded at minute 440 is synchronized

with its corresponding transit time (30 minutes). All of this happens for all the

plants at the same time (see Figure 5.2). Three conditions need to be meet to move

a loading minute to the loading stock, and at the same time, a truck is moved to the
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Figure 5.2: Illustration of the i Think tool to load in minute 440.

loading area (see Figure 5.3). The first condition is that the loading point is free.

The second is that there is an available truck at the plant. The third one is that

the simulation minute needs to be equal or greater than the loading minute. The

attributes of every delivery (i.e. scheduling loading time, transit time and m3) move

simultaneously through the model (see Figure 5.4).

The objective of the order allocation is to obtain the loading schedule of each

plant to efficiently attend every client in a day. As the clients usually request more

than one service, we consider a discretization of the whole day in minutes to reduce

the scale of the problem. The output of the engine is an ordered sequence of minutes

for the scheduled loading time in each plant to attend on time at each customer.

To overcome this problem, a stock and flows model is used with a ordered queue.

The order in the queue of each service depends on its scheduled loading time. The

loading minute is establish based on verified conditions of execution and to generate
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Figure 5.3: Conditions to meet for move a truck to the loading area.

Figure 5.4: Example of the attributes of every delivery.
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Figure 5.5: Time comparison of three stages of the implementation of order allocation
engine.

synchronization signals for parallel processing on order information. To estimate the

theoretical-loading time of each service it is considered, depending on the customer,

the loading time and the travel time1 from each plant to the customer service. The

travel time is synchronized with the truck for each plant’s services with the informa-

tion of loading minute and volume through the simulation time. The cubic meter

values are also synchronized to its loading and travel times. The scheduled loading

minute is synchronized with the actual loading time. To establish the theoretical-one

loading minute that is based on none consideration of execution conditions, and to

count the number of services scheduled from the transactional database in a day.

Execution conditions of free loading area and truck availability are ignored. The

reduction in time for implement the order allocation in the company is shown in

Figure 5.5.

The on-time balance of trucks considers the amount of trucks necessary to load

each service is considered as it is the limiting resource. It is considered the time of

attention and cycle of each plant, a procedure to know how many trucks have been

1The travel time is estimated using Google Api’s.



Chapter 5. Computational Experiments 87

assigned and how many are missing according to the demand of customers. During

each round, the process begins by reviewing the trucks assigned to each of the

plants according to the demand of the customers. The following indicators for truck

allocation performance by simulation are considered minutes of trucks’ stay at plant,

minutes without trucks in each plant, and required trucks per hour. Average cycle

time are computed at each plant by average times obtained by Google Maps. An

example of how to calculate the cycle time is presented in Figure 5.6. The time delay

for the real process is obtained to register the delay in minutes between the actual

loading time and the programmed loading time and to establish the greatest delay

hourly. The delayed trucks in the simulation process are account to establish the

amount of services delayed per hour by simulation. Also, it is register the minimum

amount of trucks available per plant in the course of each hour by simulation. The

truck waiting minute at plant for the Real Process is estimated from trucks actual

stay at plant, the minimum number of trucks required in each plant, and minutes

of plant without trucks. To establish the actual loading minute that is based on

the free loading area condition. The condition of truck availability is ignored. The

actual loading minute is considered then to count the number of services fulfilled in

a day. The reduction in time for implement the order allocation in the company is

shown in Figure 5.7.

5.2 Machine Learning Techniques

As mentioned by [22], Machine Learning Techniques are intended to look for an

alternative to doing what is already done by experts in RMC dispatching rooms.

To implement this idea, we consider a wide range as suggested by [22] of supervised

machine learning techniques. The training data includes how the expert decide which

clients is attended by which plant in the ready-mixed concrete delivery problemon
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Figure 5.6: Example to calculate the cycle time.

Figure 5.7: Time comparison of three stages of the implementation of balance truck
allocation engine.

day-on-day operations. In operation, the experts decision are account by interpreting

all the relevant information of customers, plants, traffic, and availability of resources

(vehicle fleet, capacities), among others attributes. The company policy that experts

follow is that their need supply of all customers with the available resources and keep

all the customers pleased. In particular, the dataset shows the experts decisions in

several circumstances, low demand, medium demand, and high demand. Therefore,

it is expected that Machine Learning techniques will match the experts decisions.
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The dataset includes a total of 127 days from real day-on-day operations of

four months, from August to November. From these days, a total of 302 559 jobsites

are considered. The parameters of each of the jobsites used to construct the training

and test datasets are the following, based on [22]:

• Day of delivery in the week (Monday, Tuesday, . . . , Sunday).

• Volume of delivery (m3).

• Expected arrival time at customer (hh:mm).

• Longitude of customer.

• Latitude of customer.

• Total number of received orders in day.

The model used for each of the techniques is y = f(x), where y represents the experts

decisions about a selected plant for each delivery to a jobsite, f is the Machine

learning technique (Classifier), and x are the input parameters for each jobsite.

Each of the Machine Learning approaches try to classify objects that belong

into a dataset into categories based on attributes on the objects. To adapt this

concept to the ready-mixed concrete delivery problem, the categories are represented

as the plants and the objects to be classified as the customers/jobsites. Therefore,

the classification problem becomes an allocation problem, because it is desired to

know the assignments of the plant to attend to each customer according to their

attributes.
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5.3 Case study: Ready-Mixed Concrete

Delivery Problem

Effective production scheduling and efficient truck dispatching are significant issues

for a carrier’s ready-mixed concrete plant and construction site management. Also,

the carrier need to address both timeliness and flexibility, while at the same time

satisfying construction site operating constraints. As it is mention in previous chap-

ters, in the concrete industry, the delivery problem has a dynamic environment and

involves constant changes, mainly in the dispatch of services causing a mismatch of

what planned delivery times and most of the time generates customer dissatisfaction

and money losses in the company.

The company needs to generate quick and alternative plan solutions to act

before any variation of the establish schedule occur due to one (or more) of the

possible causes presented previously. These solutions robust as the decision makers,

with their expertise, are able to find the best solution that this improves the current

schedule, in terms of diminishing the global cost and trying to deliver on time each

service. This include a no interruption of delivery of trucks to a client, or at least

maximize the number of customers to attend. In addition, since the problem persist

during the day, it must be executed several times to react on time. Therefore, this

work focuses on solving the concrete delivery problem of a local concrete company.

The company has 22 plants to serve a total of 1 000 customers a day. The amount

summation of orders for these customers yields a total of 4 000 m3 a day. In Table

5.1 are shown the most important, by experts opinion, parameters to consider in

the ready-mixed concrete delivery problem. The company practices overbooking

to protect itself from those customers who cancel a large volume of concrete. Even

with all these resources, the company is unable to meet the demand on a regular day.
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At the present time, production and dispatching scheduling work is done manually

based on the decision-makers’s experience, a method which is neither effective nor

efficient. Therefore, a tool is needed to control and visualize what is happening so

that they can not attend to all the clients as they should.

Table 5.1: Most relevant parameters of the some ful-day analysis.

day
Number of Number of Number of Types of Total volume

plants clients services concrete (m3)
1 21 66 111 68 1250.3
2 21 68 108 75 1563.3
3 22 75 104 80 1481.3
4 20 70 105 71 1554.3
5 22 65 96 69 1436.3
6 21 56 81 61 940.7
7 22 78 110 75 1027.0
8 21 76 115 79 1216.2
9 21 65 95 67 1304.1

The term first-round has taken on significance to both the concrete company

and their customers. The schedule of the dispatchers are more accurate at the be-

ginning of the day, before the dynamic environment begin to impacts their plan.

Hence, customers who are typically on-schedule are more likely to place orders dur-

ing first-round and are more likely to be accepted (due to the fact that customer

service representatives take into account historical behavior when accepting orders).

Likewise, dispatchers take great pains to ensure that drivers arrive at first-round

customer sites on time. As a rule-of-thumb, the dispatchers consider the end of the

first-round to occur at 9:00 a.m.

Due to the complexity of the problem, it was decided to study it by components

which involve strategic, operational and real-time decisions, similar to that studied

by Lourenço et al. [17] and Durbin [7]. These components are: the order entry plan-

ner, the arrival time planner, the next day planner, the real-time planner, and the

real-time dispatcher. The following sections describe these individual components,
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as well as the utility of these components to the customer service representatives

and dispatchers of the company.

Order Entry Planner The order entry planner is the first stage. It focuses

on customer service. An order is taken from each client and according to the load

availability of the plants it is decided if the order can be taken or it is sought to

agree a schedule that is beneficial to the client and the company. Customers can

order with a maximum of three days in advance, orders with less than two days are

rarely occurred by clients with special requirements but in the majority of the cases

are not accepted.

Arrival Time Planner The arrival time planner is the second phase. This

phase focuses on determining the arrival of the next day’s operators according to

the demand planning for that day and takes into account the number of services that

will be available during the first hours of the day, the load capacity of the plant and

the frequency of customer service, as well as the return times to the plant of each

truck. It is assumed that all orders of the following day have been accepted and do

not undergo any change.

Next Day Planner The purpose of the next day planner is to generate the

best concrete delivery plan according to the volume of the orders of each client,

the limitations of overbooking, the load capacity of the plant and the distances to

customers of each plant. Make three plants: one, two and three days. For the

next day the plan is generated at the end of the day, this in order to capture any

changes that could have had some order from customers. First, the demand planning

department is responsible for generating a concrete delivery plan for one, two, and

three days.
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Real-time Planner The real-time planner have direct collaboration with order

entry planner since they have to see what spaces are available during the following

days to be able to accept an order. Customer services normally exceed the capacity

of a truck. Therefore, the service is splited into the number of orders required to

fulfill that service. The company has at this moment a person being next day planner

and real-time planner at the same time.

Real-time Dispatcher The real-time dispatcher consists in assigning the trucks

to the construction sites complying with the delivery plan made the previous day.

It is required to continually update the schedule for orders currently in progress

as well as for orders that are within the local time-horizon under consideration

(typically 2 hours). The real-time dispatcher does this on a continuous basis due

to unpredictable schedule changes that occur throughout the day, hence it needs

tools that allow monitoring the location of the trucks throughout the travel and

thus be able to detect easily if they comply with the established and otherwise

react efficiently. Next, the dispatch department is responsible for manually planning

and scheduling concrete deliveries, these includes assigning the trucks to the works

in addition to monitoring the positions of the trucks. Finally, the renegotiation

department, which is recent, negotiates the schedule of services with those clients to

which it is not possible to meet with the established delivery schedule.

In the next chapters, results and discussions on different analysis, experiments

are presented to validate how the use of the engine can help the dispatchers and

planners to increase its effectiveness.
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Results

In this chapter, it is presented the optimization analysis of the schedule in the deci-

sion support engine used to help planners and dispatchers in a dynamic environment

is presented. The characteristics of different instances, by days, such as running-time,

size, among others are addressed. As mention in previous chapters, on day-to-day

operations, dispatchers require good and credible recommendations of the schedule

but it is no necessary to give an optimal solution due to problem size. Nevertheless,

a fine tuning, using experts opinions, was performed to better match the business

plans of the concrete company. The dispatchers does not measure run-time or can

recognize divergence of optimality. Therefore, as the engine results are in reason-

able short time and yields similar results to the expected,, the dispatchers support

and accept the engine as a day-on-day tool. This acceptance permits to shift from

truck-based dispatching to a more efficient scheme, the demand-based dispatch. In

the following sections, a summary of the metrics is presented.

94
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6.1 Scope and Limitation of the Analysis

The analysis focuses on two components the next-day plan (NDP) and the real-time

dispatch (RTD). The planner runs the NDP in a batch mode, at the end of the day,

to generates a schedule plan for the next day. It is considering the overbooking. The

dispatcher runs the RTD in real-time every round, that is three times a day. The

engine solves a time-window horizon of the in progress orders and all orders that will

begin within the next round. A typical day includes 300-400 deliveries utilizing a

fleet of 80-120 trucks loading concrete from 20-21 plants. Other parameters setting

are listed in Table 5.1. For every day, the parameters considered are the number

of plants (capacity), the total number of clients, the number of services, how many

types of concrete are produced, and the total volume of concrete in cubic meters

(m3). In Table 5.1 are presented only those parameters with higher impact to the

company, according to experts opinion. As the optimality is not considered by the

planners and dispatchers, the engine performs an heuristic procedure returning the

best solution founded by the analysis of different scenarios. The time to return

a complete optimization of the entire schedule is in reasonable time (less than 20

seconds), permitting to the dispatcher analyze the results with sufficient time before

the concrete is shipped.

6.2 Analysis of Schedules

To further understand the results of the NDP and RTD, the evaluation of the sched-

ule is required. As mentions before, the schedule analysis of NDP begins in the

previous day and the RTD begins by evaluating first round assignments. The anal-

ysis of schedule is performed by round, and whole day, depending if it is the planner
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or the dispatcher who is performing the analysis. The planner makes the analysis of

the whole day and the dispatcher makes the analysis every round.

The performance measures to consider are compliance and the cost of opera-

tion. Compliance refers to arriving at the delivery time agreed with the customer;

arriving with a difference of thirty minutes (positive or negative) of the planned

delivery time is considered that the schedule has been fulfilled, on the contrary to

overcome the difference of thirty minutes is considered a breach in the agreed deliv-

ery schedule. The cost of operation includes the costs of using trucks (approximately

seven Mexican pesos per kilometer).

One of the desired variables to control is the usage of a truck, the longer the

better. For example, if a truck is assigned trips from a different plant than the

optimal, the truck will make fewer trips by spending more time on journeys and

will visit fewer customers during the work day of the operator. In the company it

is known that a truck must make at least four trips in a day to be profitable. By

improving the allocation of trucks that are in origins that are not optimal, each truck

that improves its origin will have more time available to serve a customer and may

arrive on time with more probability than not being assigned to its optimum plant.

Two main limitations are those that prevent adjusting to the schedule agreed

with the client: the trucks and the load capacity of the plant. If there are no trucks

available at the loading time to attend a customer, it will not be possible to arrive

on time with the customer due to the lack of trucks. On the other hand, if you

have trucks in the plant but the loading places are occupied it will not be possible

to carry out the load generating a delay in the order which prevents arriving at the

agreed time with the client.



Chapter 6. Results 97

6.2.1 Next Day Plan

As seen in Table 6.1, the NDP can review the solution in less than an average of

20 seconds to evaluate the next day. The engine considers real (truck capacity)

and phantom trucks (theoretical trucks) to deal with overbooking and cancellations.

Through experimentation with parameters, the assignment of how many trucks are

needed to the first round for next-day scheduling was determined. In addition, it

has a subsequent analysis of the evaluation of the planned assignment against the

one that actually occurred. We select the instance with greater number of services

to illustrate the analysis of schedule. The analysis is performed for each loading

hour, from 8:00 a.m. to 18:00 p.m. The ten hours where the plants have consistent

demand. It is considered the schedule of the previous day of the established loading

hour, the schedule at the established loading hour, and the schedule one hour after

the established loading hour. To exemplify the problem of schedules in the United

Kingdom of one of the countries where the company is present. This country is

selected due to the information availability, but the problem and characteristics are

encountered in other countries where the company have plants. In the example, the

names of the plants are the same used by the company but the presented values have

been modified multiplying by a factor. The data is taken from a real-operation day.

Figure 6.1 shows an increasing filling pattern for order taking as services arrive

to the whole company reaching the available limit one day before the operation.

Normally two days before there is no space and there are availability problems. Due

to the natural variability of the process, on an operational day cancellations and

changes in schedules are likely to occur. Therefore, in a global perspective, the

company always be at 80 % of its maximum capacity. Analyzing this information

and taking it as a reference for operation leads us to misleading conclusions since

the level of aggregations is global and there are no considerations for plant level.
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Figure 6.1: Global fulfilment.

The overbook that a particular day in a company level is up to 10% but searching

at the plant level it can be over 90% or even 100%. When a desegregation is made

at the plant and hour level, we can no longer see this same stable behavior as in

the company level. This has worried planners and dispatchers since they use the

pre-existing tools and do not rely on it.

In the Figures 6.2 and 6.3, it is analyzed for each hour of the operating day.

And each of the lines indicates previous days of order taking. In these figures we
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Figure 6.2: Global fulfilment by hour n = {0, 1, 2, 3} previous days.

can see which are the hours of greatest demand. In the morning there is a greater

number of orders in the afternoon it becomes more stable and at night the number

of services begins to fall. This is natural process behavior for a company level.

To analyze different plants, we will only take two types as reference. A plant

with higher demand (volume) and a plant with a low volume of services. In the

plant with the largest volume (see Figures 6.4 and 6.5), the behavior is similar to

that observed when we do the analysis at a total level. This is because plants with

higher volume have very stable elements due to the amount of services that are

assigned to them. There is little or no variation that allows deviation from the

data. On the other hand, when observing a plant with little volume (see Figures

6.6, and 6.7, 6.8), we begin to see differences and variations that are due to poor

decisions in ordering. There is no consistency in the filling, although the expected

growth is observed, it has variations that are not natural to the process and taking

order-taking practices as a reference generates a distrust of operators.

Due to the problems presented, which the planners and dispatchers have been
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aware of since before the use of the tool, it is proposed to have information on how

the status of each plant is several days before the execution in order to realign and

readjust all the variation. natural process.

6.2.2 Real Time Dispatch

The dispatcher generates the results by round. Therefore, the dispatcher focuses on

loading all orders that are in progress and begin to prepare for those orders that

comes in the next hour. The orders that the dispatcher needs to be review, in the

busiest time of the day, can be up to 50 orders in progress with another 10 to 20

that start in a time window of the next hour or two. Every time the engine runs,

the size of the problem is reduced as many orders finished from past deliveries, that

is because there is no need to reassign those orders.

The results, for a sample of the whole days analyzed, is presented in Table 6.1.

In Table 6.1 are shown the most important variables to track by the dispatchers.

The engine gives to the dispatcher the numbers of services that needs to be change,

the traveled distances as it is schedules and the traveled distance by using the op-

timization, and the cycle time reduced. In the days analyzed, an average 11% of

services needs to be change by the optimization. In average, these results represent

a saving in 9.5% in travel distance resulting into reducing by at least 2 minutes the

cycle time of trucks. Therefore, from the point of view of the the dispatchers these

savings are used to help and improve its decision making. The dispatcher can select

from different alternatives depending on what is happening in the day as the engine

did not consider external environment as weather or traffic.

As illustration purposes, we present only the analysis of the day with most

services, that is the 8-th day. In this specific day, there are 15 changes proposed by
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Table 6.1: Results of the optimization on the schedules for the selected days.

day
Number of services Travel distance Traveled distance Savings

with change original (km) improved (km) improve (%)
1 8 4090 3836 6.21%
2 6 3795 3543 6.64%
3 12 4103 3961 3.46%
4 15 4723 4082 13.57%
5 10 3349 3184 4.93%
6 10 3938 2830 28.14%
7 13 3319 3098 6.66%
8 15 3620 3307 8.65%
9 15 3802 3507 7.76%

the engine. As illustration, in Figure 6.9 show the view that the dispatcher sees in

the interface. In the interface, a table is shown for each order. In the table, all orders

that needs to make changes are considered, the original assigned plant, the optimal

plant assignments plant, what product it is considered, how many cubic meters are

in the order, by how many trucks needs to be delivered, the benefit (in minutes) of

the change, some actions to perform (view on the map, accept or reject), and the

status of the change. The green filled cell represent those orders that reduces the

expected traveling time and the red filled cells represent those that increases the

traveling time. These increasing in traveling time by changing an order to other

plant is necessary because, if we consider all changes, there are more benefits and

therefore the traveling time is reduced. In this day, by performing all changes a

reduction of 8.65% of traveling distance is obtained.

6.3 Engine Plant Analysis

The following are the four charts that explain the performance of the relevant vari-

ables for each plant.
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Services Loaded per hour graph Figure 6.10 represent the number of services

per hour. It consists of four variables:

1. Demand: Demand of services that have to be load. Is located in Quadrant

[3,4].

2. Simulation: Are the simulated number of services loaded. Is located in Quad-

rant [1,1].

3. Real: Real number of services loaded. For actual or past scenarios. Is located

in Quadrant [1,4].

4. Capacity: Is the plant capacity of services per hour. Is located in Quadrant

[4,3].

In Figure 6.10, the upper right side shows the hour of the simulation. The user

can change it to look forward.

Trucks per hour graph Figure 6.11 shows every minute the number of trucks

in the plant. It consists of two variables:

1. Trucks at Plant SP: Are the simulated number of trucks in the plant. Is

located in Quadrant [1,2].

2. Real truck at plant: Are the real number of trucks in the plant. For actual

or past scenarios. Is located in Quadrant [4,3].

Fulfillment and accumulated delay graph Figure 6.12 shows the value

per hour of the services loaded and the accumulated delay. It consists of three

variables.
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1. Fulfilled SP: Percentage of fulfilled services loaded.

2. Fulfilled RP: Percentage of the real fulfilled services loaded, for actual or

past scenarios.

3. Delay by SP Plant: The accumulated delay in minutes of the load.

Average waiting graph Figure 6.13 shows the stay in minutes of the trucks in

plant, or the minutes they wait to be loaded. It consists in two variables:

1. Waiting minute SP: Is the simulated stay in minutes of the trucks in plant.

Is located in Quadrant [1,2].

2. Real waiting min: Is the real stay in minutes of the trucks in plant, for the

actual and past scenarios. Is located in Quadrant [4,3].

In Figure 6.13, if the value of stay is high the plant has an over load of the

trucks, or low demand of services. If the stay value is low the plant has little o no

trucks to fulfill the demand.

6.4 Comparison with Machine Learning

Classifiers

This section, first shows the performance in a real dataset from the company under

study of different Machine-Learning techniques. Then it shows the performance

comparison of the proposed approach using system dynamics with different Machine

Learning approaches. The Machine Learning approaches are selected as [22] shows

that automating RMCDP by Machine Learning techniques showing good accuracy
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compared with expert decisions. It is used a data set with real day-on-day operations.

To compare with our system dynamic approach we select four classifiers: Random

Forest, Decision Tree, k-mean Neighbors, and Linear Discriminant Analysis. To

measure the performance of the Machine Learning approaches, we select the accuracy

of the results from real data, overbooking of plants, and travel time from plant to

jobsites.

6.4.1 Machine Learning Performance for Real Dataset

The results for each of the Machine Learning approaches are presented according by

using different percentages of services of the total. Those percentage of services of

the total (302,559 services) are: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,

100%. As an example of how it is calculated, the analysis of 10% of 302,559 services

available correspond to the 30,255 services are considered as the dataset. If the

resulting number of services in the dataset is a fraction is rounded down. For each

percentage, the training data is selected as the 70% of the services. The remaining

30% is used for testing. The measure selected to compare is the percentage of

correct assignments of services to plants according to what happened in the testing

process. This is considers as we want to obtain how good is the model using unknown

information.

From Figures 6.14 to 6.16 it is shown the results of accuracy for each of the four

machine learning approaches in the different segmentation of the data is presented.

Figures 6.17 to 6.19, the results of overbooking1 for each of the four machine

learning approaches in the different segmentation of the data is presented.

1The capacity for each plant does not need to exceed.
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As a recapitulation of previous figures, Table 6.2 shows the results for all the

scenarios considering each segmentation of days, percentage of data, and Machine

Learning approach. Two metrics have been selected for assessing the performance

of the selected algorithms. From a general perspective, we select the accuracy to be

more the more important feature when a comparison between two algorithms as it

expose the ability for each approach to identify the correct assignment (correct class),

which is the main objective of the classifier. In terms of accuracy, for percentages

of data from 20% to 100%, the Random Forest approach achieve always the best

results, follow by Decision Tree, Linear Discriminant Analysis, and last k-nearest

neighbor. When the percentage of data is 10%, the best performance is achieved by

the Decision Tree approach. The of most of the algorithms are similar For each of

the scenarios, the overbooking rates are quite similar. There is no difference which

of one is selected, the overbooking remains in similar values of mean and standard

deviation. We suspect that the instances where algorithms are slightly different may

be due to randomness concerns. Moreover, the approach that outperform, by far, is

the Random Forest. This results is the same as the one obtained by Maghrebi [22].

As it can be seen from Table 6.2 and Figure 6.14 to 6.19 , the best result is

obtained with the Random Forest approach. Therefore, for next comparison only

this approach is considered. From Figure 6.20, the performance of Random Forest

approach is shown. The highlights is that by using a greater amount of information

(100% of the data) good allocations are obtained, about 75% correct, from customers

to plants. In addition, the variation of the average is ± 25%, which indicates that

although on average it performs well on most occasions, it does not exceed 50% of

correct assignments, which is the same as throwing a coin. A special care must be

taken with this result, since assignments are only being made according to what

happened in the day-to-day operation without considering the behaviors of previous

days. Some of the issues that may not be considered are that some customers cancel
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their orders at least one day before and customers increase the volume of the order

during the same day.

Figure 6.20 show the performance of the random forest approach by segmenting

the information from Monday to Wednesday, Thursday to Friday, and from Monday

to Friday, respectively. In Figure 6.20, it is observed that the segments from Monday

to Wednesday and Thursday to Friday, have similar behavior, about 50% of correct

assignments, with a variation of ±50%. This indicates that there are cases in which

no plant is assigned correctly according to the experiences from experts. The best

performance is achieved by considering every day from Monday to Friday, reaching a

correct allocation of 60%. In terms of variation of the accuracy, the segmentation of

days from Monday to Wednesday are higher than any other scenario. Our hypothesis

for this event is attributed to the fact that in these days the demand have lower

compared with Thursdays or Fridays, and the algorithm does not known how to

appropriate allocations when the demand is higher as it is not considered in the

training phase of the model. On the other hand, from Thursday to Friday, as the

demand is in its higher values, the correct allocation is not good enough when is

coupled to the days with lower demand.

In previous figures, only is shown the performance in term of accuracy for the

whole company, but if we focus only the plant with the greatest amount of services

(historically the plant with higher demand), the variation of the correct assignments

increases considerably when using different percentage of data. In Figure 6.21 it

is shown the results for this specific plant. According to the results, it would not

be recommended to use all the available information (100% of the data) since it

has a worse performance (65% of correct assignments) unlike using 90% of the data

where up to 80% can be obtained of correct assignments. In both cases the variation

has great magnitude, which does not give sufficient confidence to make customer
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assignments to plants on operational days.

The results in terms of overbooking, for the Random Forest approach are pre-

sented in Figure 6.22. The behavior of overbooking, in most of the cases, remains

at 0%. A result that mislead, because on an operation day, the plants never over-

pass their capacity, always stay with the exact capacity or less. We consider that

this result is due to the fact that in the analysis only operational data is consider,

not previous days when there is an overpass on the plant capacity. For further ex-

perimentation, we consider that the combination of data for operational days and

assignments of previous days could improve the results.

Also, in Figure 6.22, the worst performance is found when the analysis is

performed from Thursday to Friday, where the plants remain at 50% capacity. This

results affect the company objectives, as the plants remains with many free spaces

that would have served more customers.

The analysis of the Central plant, the plant with greatest amount of services,

in terms of the overbooking is shown in Figure 6.23. Figure 6.23 shows this result,

and it is observed that the overbooking, on average, is maintained in 0%, that is, the

capacity of the plant is respected. Nevertheless, there are scenarios, as the variation

is high enough, that obtain a 150% of its capacity and even scenarios where it stays

at 50% of its capacity. Both scenarios are not acceptable for the company, overpass

the capacity of the plant yield poor customer services as the company does not have

the resources to attend all customers. On the other hand, less capacity leaves fewer

customers to attend than the capacity on the company.

Finally, one of the most interesting of the achieved results is related to the

computing time. This result shows that all of the selected algorithms can solve

plant allocation for around 800 customers in less than a second. In the case of using
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learning algorithms in which the relearning process is being done with a new instance,

the computing time also is very small. As mentioned by Maghrebi [22] the ability

of machine learning provides us with an opportunity to move toward automation

in RMCDP especially when the systems changed and re-allocation must be done.

In our case, the results form the machine learning approach can match experts’

decisions with an accuracy of around 70%, instead of the 85% of the obtained by

Maghrebi [22]. The issue may be due to the problem includes more trucks, more

plants, and more customers. Also, human errors in the assignment produce bad

classifications. Another possibility is that under some circumstances the experts

are free to choose a depot from a list of available depots, and their decisions are

mostly arbitrary. This means that whatever choice they perform is considered an

acceptable decision. Further experimentation is needed to investigate the feasibility

of missclassified instances by using simultaneously optimization algorithms.

In the overall discussion and according to the results shown in this chapter, as

the dynamic environment of the elements that need to be considered on the operation

day and previous days, it is not recommended to use machine learning algorithms to

perform an assignment of the clients to the plants. Not enough percentage is reached

to rely on the random forest algorithm when is used in this kind of problem.

For improvements in the percentages of correct assignments of customers to

plants, some tool or model that allows to perform an optimization of the resources

available the organization is needed. Another improvement of the results may be

due to the inclusion of an algorithm to prioritized customers, not only considering

the attributes of greater impact, also considering the availability of trucks to assign

in a specific time of the day.
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6.4.2 Machine Learning versus System Dynamic

Approach

Both approaches have small execution time, less than 5 seconds. This characteristic

is one of the most desirable as the need to re-run the optimization in the day.

Therefore, both approaches are good enough to day-on-day operations.

Friendly interface, easy to use and integrated to SAP. The machine learning

approach rely on decision experts to prioritize services based on historical data. In

the literature reviewed says that at mini mun, for better accuracy, articles show a

total of 4 months is required. On the other hand, our system dynamics approach

does not rely on the decision of experts, instead uses all the rules that expert consider

to take priorities on the orders, trucks, and plants to improve performance. Also,

there is no need historical data.

The machine learning approach decrease its performances as the problem in-

creases. Therefore, only small problem sizes, 4 plants with 40 trucks and a maximum

200 services are solved with acceptable results. Our system dynamics approach has

solve grater sizes of the problem. Problems of 20 plants with 130 trucks and around

700 services have been solved.

In terms of priorities, the machine learning approach assign plants to services

consider few attributes: day of the week, volume, location. On the other hand, our

approach considers all the available information of the client, work, traffic, location,

type of cement, type of customer, volume, frequency of service, delivery hours, plant

departure hours, and others.

In machine learning approach, 63% of solutions are according to the expert, but

on the days considered there are few cancellations and the amount of services is less
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than 162, approximately 4 times the number of trucks. Around 37% of the results are

found to have missclassified solutions appears by differing from the solution proposed

by the expert. For these missclassified solutions, about 65% are not feasible.

The machine learning approach does not contain optimization of resources,

does not verify plant capacity, if the plants have a similar amount of assigned ser-

vices (plant balancing). It has not been implemented in an operational situation

in a real company. It is mentioned that the integration of optimization models is

needed to improve results. Our approach have the possibility of reallocating plants

to customers automatically at any time of the day. In addition to assigning trucks to

plants, and customers, considering special characteristics of the concrete. Real-time

visualization of the plants (capacities, amount of services assigned, type of services,

etc.), trucks (load that carries, to which service is directed, time of departure from

the plant, estimated time of arrival to service, etc.) , services (following scheduled

services, volume, type of cement, customer, type of customer) and traffic (use of

maps for visualization). Optimization of resources by balancing services at plants

and optimizing the use of trucks to improve delivery times (customer satisfaction).

Use of simulation, optimization and dynamics of systems (discrete and continuous

events solved by simultaneous deferential equations) to find solutions that meet the

requirements of the company and the customer.

Table 6.3 resume the comparison between the machine learning approach and

our approach.
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Figure 6.3: Global fulfilment by each hour in previous days.
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Figure 6.4: Plant (high volume) fulfilment by in previous days.
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Figure 6.6: Plant fulfilment by hour in previous days.
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Figure 6.9: Optimization detail view in the engine interface to selected changes in
orders. The presented information is for the day with more services.
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Figure 6.10: Services loaded per hour.

Figure 6.11: Truck at plant.
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Figure 6.12: Fulfilled Services in a day.

Figure 6.13: Average waiting.
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Chapter 7

Conclusions

Most concrete dispatch and planning decisions are complex with many dynamic

variables therefore modifications of the initial schedule constantly happened and

continuously must be planned and re-planned in short periods of time. The efficiency

of the proposed solutions depends highly on the knowledge and skill of the planners

and dispatchers who, with their experience and knowledge, decide among possible

alternatives the efficient use of the company’s critical resources such as plants, trucks

and vehicles operators. The information to be used by experts is limited since they do

not have the discernability of key points such as the visibility of the demand coverage

and the costs of the different supply options. The use and enablement of a support

tool for strategic and operational decision-making which suggests better alternatives

in the allocation of critical resources is necessary to aim lower operational costs and

improve client service experience.

In the concrete industry, additions of concrete are as common as cancellations

and are equally unpredictable. This provokes in the concrete industry, that sched-

ules needs to re-generated every five minutes due to the magnitude of the changes.

Another unique dimension to this problem is the extreme perishability of the prod-

uct. Most perishable items have a shelf life measured in days, whereas concrete has

132
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a shelf life of 2-3 hours. Also, concrete customer’s ability to forecast their immediate

needs is far less predictable than may be encountered in other industries.

Considering the previous characteristics of the problem, a decision support

system is proposed to solve a real-time scheduling problem with perishable products

in a time-dependent under a dynamic environment. On a good day, around 90%

of the orders change and traffic is fairly predictable. On a bad day, 100% of the

orders change, equipment breakdowns occur, and traffic patterns are significantly

beyond the expected range. Therefore, system dynamics is a powerful tool to analyze

and solve problems with nature dynamic. The development and implementation

of this tool has allowed to solve problems of large size in the industrial area of

concrete. With the integration of a set of tools, from the graphical interface such

as optimization, heuristic and simulation models, as well as the participation of

multidisciplinary groups have favored the abstraction of the system in something

that can be treated in a better way.

7.1 Contributions

The investigation begins by observing that the existing proposed solutions, which

use optimization engines based on mathematical models, perform acceptably when

the demand for concrete is equal to or less than 85% of the installed capacity, but

their efficiency is markedly decreased when the demand exceeds 85%. In this case,

model recommendations are often unreasonable for operation and therefore are not

accepted by planners. The objective of the research is to understand the causes of

the limitations of the mathematical models and propose alternative solutions that

consider the greatest number of elements in the production and dispatch of concrete.

Therefore, the use of the tool is intended to improve customer service and company.
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Decisions of the tool include the equality of plant usage in the company (balance

of services) considering which services should be delivered by certain plants and

continue deliver from a specific plant to a costumer that initiates its service from

that plant. Also, improve allocation of customer services and trucks. In addition we

present the most important contributions of the thesis:

• An original decision support engine for attend the ready-mixed concrete deliv-

ery problem was proposed.

• To our knowledge, the presented engine implemented via i-Think is the best

technological platform for operational planning under the complexity of the

ready mix concrete fulfillment conditions.

• The engine include an optimization of truck balance an truck location in order

to fulfill the demand of an international concrete company.

• The engine is consistent and robust in day-on-day operations as the users in

the local region and internationally

• The engine provide hourly basis ahead visibility to the dispatchers by using

the design concepts, engineering knowledge, and visual aid to represent the

operative reality of the ready-mix concrete in order.

• Reduction of the truck cycle time in an average of 5 minutes. This can saves

up to 750 000 in annual savings as mentioned in Durbin [7].

• Gives a best practice to the concrete company. This is mentioned by directors

of the concrete company as they are sufficiently convinced of the importance

of this research and its application throughout the concrete industry.
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7.2 Discussion

The use of the proposed engine is intended to improve customer service and the

company. Engine decisions include equal use of the plant in the company (balance

of services) taking into account account what services must be delivered by certain

plants and continue delivering a specific plant to a client that starts its service from

that plant. Also, improve the allocation of customer services and trucks. Finally,

we were able to improve customer service time.

Transition from truck-based dispatching to demand dispatching can have a

significant impact on the efficiency of companies in the concrete industry. This

transition will not be successfully achieved without the support of the dispatchers.

By introducing penalties and bonuses into the model, dispatchers have the ability

to fine-tune the recommendations generated by the decision-support tool to more

closely mimic their own actions. This has created an environment where trucks are

dispatched in an intelligent, responsive fashion that results in a complex, intertwined

movement of the trucks throughout the day.

The opinion rendered by the dispatchers is one of the most significant assess-

ments of this decision-support engine. The dispatchers express interest on whats

behind the tools they are using. This triggered discussions with the dispatchers to

understand some relevant information of the engine. Also, this permit to us the

continuous improve of the engine so it can be customized to more closely model how

they would dispatch. The more the model is used, the more information we learn to

understand the behaviour of decision making of the dispatchers. The explanation of

alternative strategies to the dispatchers has also improved. The dispatchers struggle

at the beginning to understand the recommendations suggested by the tool but as

they understand the recommendation, the engine is more likely to be accepted by
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the dispatchers and the company. As the dispatchers trust the model more, they

allow it to help them during challenging times of the day. The more the dispatchers

trust the recommendation, the more willing they are to allow more complex changes

(e.g., dispatching trucks from farther plants) in their normal day.

Our solution has been proven in operation satisfactorily in the last two years

and has two main elements that allow efficient decision support. The first element is

that instead of using an optimization engine based on exact mathematical models,

it is proposed to use a simulation optimization engine based on agents which allows

in a natural way to incorporate practically any business rule and operational restric-

tions, having the answer in few seconds. The second element is to have a platform

equivalent to an ecosystem that allows real-time business input data to be assem-

bled in seconds. The tool allows planners and dispatchers to validate the input and

establish the real time operational constrains via graphic and geographic visualiza-

tion to the different optimization engines and likewise present the suggestions of the

model graphically and geographically generating the confidence necessary to approve

and capitalize on the suggested benefits. Other important factor to considered is

the maintenance cost for the agent base simulation, in terms of hardware capacity,

represents at least 1/3 of the operational cost.

7.3 Future Work

Due to the immense successes of the project, development of the decision-support

engine described in this document will continue. The international concrete com-

pany, with its parent company in Mexico, is interested into deploy this application

throughout the corporation worldwide. We initially propose that each region of the

expiation have its own access to the engine as the characteristics of each region
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variate and changes to the engine need to be performed.

Additionally, there are some areas of research that will be pursued in the future:

• Ensure the consistency across the whole engine from visualization and opti-

mization.

• Deal with real-time issues associated with cyclical re-solving.

• Evaluating alternatives for joint operation when sister companies overlap geo-

graphically.

• Change the model to allow different types of trucks to be considered.
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