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Abstract: In the present work, reduced graphene oxide was obtained by green synthesis, using
extracts of Larrea tridentata (gobernadora) and Capsicum Chinense (habanero). Graphene oxide was
synthesized by the modified Hummers’ method and subsequently reduced using natural extracts to
obtain a stable and environmentally friendly graphene precursor. Consequently, the gobernadora
aqueous extract was found to have a better reducing power than the habanero aqueous extract. This
opportunity for green synthesis allows the application of RGO in photocatalysis for the degradation of
the methylene blue dye. Degradation efficiencies of 60% and 90% were obtained with these materials.

Keywords: eco-friendly reduction; reduced graphene oxide; aqueous extracts; photocatalysis

1. Introduction

Nowadays, as a consequence of industrialization, the world faces problems with air,
soil, and water pollution. This problem is becoming increasingly important despite the
existence of pollutant removal treatments and waste reduction and disposal programs. In
many of these processes, the problem is only partially eliminated, so pollution of rivers
and seas is increasing, and the damage this is causing is of an unimaginable magnitude. In
the last two decades, the organic pollutants discarded by industries have no control, which
has led to water pollution being severely affected. The World Bank estimates that 17–20%
of industrial water pollution comes from textile dyeing. Wastewater from textile industries
is a major problem for conventional treatment plants worldwide. The release of these
wastewaters into natural environments is very problematic for aquatic organisms. The
wastewater generated by the textile industries is known to contain considerable quantities
of non-fixed dyes, especially azo dyes, and a large number of inorganic salts. It has been
estimated that more than 10% of the total dye is used in dyeing processes while the rest is
released to the environment. Therefore, it is necessary to study new processes that allow
the efficient elimination of pollutants, which are affecting the environment so much [1–4].

Several methods are used to treat different dye contamination, such as membrane
processes, ultrafiltration, adsorption, biodegradation by micro-organisms, advanced ox-
idation and photocatalytic degradation [3–5]. Among these methods, the photocatalytic
approach gained great attention among scientists and the industrial sector, due to the
use of solar energy for the removal of dyes. This is due to its promising, effective and
efficient pollutant degradation activity, which is produced by allowing spontaneous and
non-spontaneous reactions to optimize the entire process; it can be implemented with
low-cost catalysis [6]. Many nanomaterials and nanocomposites are being used as catalysts
for the removal of various dyes, such as nanoparticles of ZnO [7], TiO2 [8], copper [9],
nanocomposites TiO2Co3O4 [10], graphene [11–13] and others.
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Graphene, an extremely attractive component, has been particularly chosen in pho-
tocatalysis due to its large specific surface area and an extensive two-dimensional con-
jugation π and π* structure that has excellent electronic conductivity [7–14], is used for
the photodegradation of different dyes which include methylene blue, methyl orange and
rhodamine B [7–14]. However, one of the technical difficulties of this novel material is mass
production. Currently, conventional chemical synthesis methods use toxic compounds
such as hydrazine or sodium borohydride [15] for the production of reduced graphene
oxide (RGO), which causes the accumulation of wastes harmful to the environment and
human health. Therefore, one of the big challenges is the production of RGO from products
with greater environmental compatibility, such as natural agents, plant extracts, glucose,
etc. Few plants are being used as natural reducing agents for the reduction of graphene
oxide [16–20], therefore, it is important to provide new data that allow the use of natural
products to obtain this material.

The present research focuses on the synthesis of reduced graphene oxide using natural
extracts of Larrea Tridentata (gobernadora) and Capsicum Chinense (habanero). The possible
route of chemical reactions in the modified Hummers’ method [21] of graphite oxide and the
physicochemical properties of synthesized RGO are discussed and confirmed by different
characterization techniques. In addition, RGO is used as a photocatalyst material to remove
methylene blue dye in an aqueous solution. The degradation of MB dye developed through
ultraviolet radiation and degradation mechanisms were discussed.

Photocatalysis

The photocatalysis has emerged as a strong candidate for practical field applications.
The process relies on the oxidation capacity of the photocatalytic process to break down
resilient pollutants into their corresponding simpler forms. The utilization of the photo-
catalytic degradation of the methylene blue (MB) as the model reaction for estimating the
photocatalytic capabilities of the novel engineered nanomaterials has become a common
practice in recent times. Some of the considerations that have contributed towards the
excessive usage of this reaction include (a) MB is a common carcinogenic pollutant and its
removal from the aqueous medium is highly desirable, (b) MB dye is ultraviolet visible
(UV–Vis) active species and exhibits characteristic peaks in the UV–Vis spectrum, (c) it is
a colored dye and exhibits the blue color in its oxidized state. Therefore, the degradation
of MB in any medium can also be visually observed [22]. The general mechanism of pho-
tocatalytic degradation is illustrated in Figure 1. Photocatalysis starts with the transport
of contaminants from the surroundings to the photocatalyst surface. The dye compounds
are first adsorbed onto the surface on which oxidation–reduction reactions occur. These
redox reactions are forced by photogenerated electrons in the conduction band (CB) and
holes in the valence band (VB). The fragments of dyes are degraded further into reaction
intermediates, including aldehydes, carboxylic species, phenols and amines which are
ultimately converted into H2O, CO2, ammonium ions and sulfate ions [23].
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2. Materials and Methods

The materials used were potassium permanganate, reactive ACS, (≥99.0 Sigma-
Aldrich (St. Louis, MO, USA) (KMnO4), deionized H2O, sulfuric acid (H2SO4) 95–98%, 3%
hydrogen peroxide and graphite powder from Sigma Aldrich.

2.1. Synthesis of Graphene Oxide

The graphite was oxidized by the modified Hummers’ method [21]. A mixture of 3 g
of graphite was prepared with 70 mL of a 0.5 M H2SO4 solution under constant stirring in
a cold bath until a temperature of 0 ◦C was reached. Slowly 9 g of KMnO4 was added, and
minutes later the mixture was removed from the cold bath to immediately incorporate an
oil bath system at 35 ◦C under constant agitation. After 1 h 125 mL of deionized water was
slowly added to the system, causing the temperature to rise, keeping the system at that
temperature for a period of 15 min. Subsequently, 15 mL of 3% hydrogen peroxide was
added to the mixture and heated to 60 ◦C, to reduce the KMnO4 residue, now becoming
a brownish-yellow mixture. Finally, the mixture was filtered and washed with deionized
water repeatedly until reaching a neutral pH. Once the oxide of the reaction was obtained,
the suspension was prepared at a concentration of 12 mg/mL and then it was introduced
in an ultrasound bath for 10 h, to obtain GO exfoliation.

Modified Hummers’ Method

Below is a possible route of chemical reactions in the modified Hummers’ method:
Sulfuric acid is strong enough to produce bisulfate, which reacts with sp2 bonds

present in graphite [24].
2H2SO4 → HSO+

3 + HSO−4 (1)

H2O + H2SO4 ↔ H3 + HSO−4 (2)

Bisulfate intercalates graphite with sulfuric acid. This intercalation is complete in the
presence of an oxidizing agent [25]:

GIC′s : C+
24s·HSO−4 2H2SO4 (3)
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where “GIC” refers to the intercalation of the graphite and “s” is the number of stages.
In the Hummers Method, the functional state of sodium nitrate as an oxidizing agent

to form graphite bisulfate was modified by the following reactions:

5C24s + KMnO4 + 17H2SO4 → Cs
24HSO−4 2H2SO4 + MnSO4 + KHSO4 + 4H2O (4)

The experimental data reported on the above equation for stages (1)–(4) of graphite
bisulfate. They can be lost in the form of gases in the following way [25]:

5C + 4KMnO4 + 8H2SO4 → 5CO2 + 4MnSO4 + 4KHSO4 (5)

Another reaction that takes place with the mixture of sulfuric acid and permanganate at
0 ◦C that does not appear in the formation of the principal gases is in the following equation:

2KMnO4 + 2H2SO4 → Mn2O7 + 2KHSO4 + H2O (6)

In this stage of the reaction, we have the following compounds GIC’s, MnSO4, H2O,
Mn2O7, in addition to concentrate sulfuric acid and permanganate that do not make
room for the formation of GIC. To continue with the oxidation of graphite once the GIC
was obtained the solution’s temperature changes from 0 ◦C to 35 ◦C. The permanganate
behavior in the presence of sulfuric acid in a range of 20–35 ◦C is described in the following
reactions [26–28]. In the Figure 2, shown of the permanganate behavior in the presence of
sulfuric acid:

KMnO4 + H2SO4 → K+ + MnO+
3 + H3O+ + 3HSO−4 (7)

O well
2KMnO4 + 2H2SO4 → Mn2O7 + H2O + 2KHSO4 (8)

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 20 
 

 

GIC’s: C ∙ HSO 2H SO  (3)

where “GIC” refers to the intercalation of the graphite and “s” is the number of stages. 
In the Hummers Method, the functional state of sodium nitrate as an oxidizing agent to 
form graphite bisulfate was modified by the following reactions:  5C KMnO 17H SO  →  C HSO 2H SO MnSO KHSO 4H O (4)

The experimental data reported on the above equation for stages (1)–(4) of graphite 
bisulfate. They can be lost in the form of gases in the following way [25]: 5C 4KMnO 8H SO  → 5CO 4MnSO 4KHSO  (5)

Another reaction that takes place with the mixture of sulfuric acid and permanganate 
at 0 °C that does not appear in the formation of the principal gases is in the following 
equation: 2KMnO 2H SO → Mn O 2KHSO H O (6)

In this stage of the reaction, we have the following compounds GIC’s, MnSO , H O, Mn O , in addition to concentrate sulfuric acid and permanganate that do not make room 
for the formation of GIC. To continue with the oxidation of graphite once the GIC was 
obtained the solution’s temperature changes from 0 °C to 35 °C. The permanganate be-
havior in the presence of sulfuric acid in a range of 20–35 °C is described in the following 
reactions [26–28]. In the Figure 2, shown of the permanganate behavior in the presence of 
sulfuric acid: KMnO  H SO →  K MnO H O 3HSO  (7)

O well 2KMnO  2H SO → Mn O H O 2KHSO  (8)

 
Figure 2. Scheme of the permanganate behavior in the presence of sulfuric acid. MnO  in the presence of air can generate in a reversible equation, returning to Mn O  
in the presence of concentrated sulfuric acid as dictated by the following equation [27]: Mn O H O ↔ 2H 2MnO  (9)

By adding deionized water we believe that in the reaction more MnO  ions are pro-
duced on Mn O  at the same time that an exothermic reaction is generated, due to the ions 
that we have in the solution, activation of permanganate ions as a result, the reaction hap-
pens from a dark color to a brown color as a sign that the graphite is oxidized. 

The solution is maintained at 98 °C for 15 min to continue its oxidation. When added 𝐻 𝑂  reacts with the permanganate ions in the following way:  H O MnO  → Mn O H O (10)

Figure 2. Scheme of the permanganate behavior in the presence of sulfuric acid.

MnO−4 in the presence of air can generate in a reversible equation, returning to Mn2O7
in the presence of concentrated sulfuric acid as dictated by the following equation [27]:

Mn2O7 + H2O ↔ 2H+ + 2MnO−4 (9)

By adding deionized water we believe that in the reaction more MnO−4 ions are
produced on Mn2O7 at the same time that an exothermic reaction is generated, due to the
ions that we have in the solution, activation of permanganate ions as a result, the reaction
happens from a dark color to a brown color as a sign that the graphite is oxidized.

The solution is maintained at 98 ◦C for 15 min to continue its oxidation. When added
H2O2 reacts with the permanganate ions in the following way:

H2O2 + MnO−4 → Mn2+ + O2 + H2O (10)
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Finally, we have a solution for the following ions [27]:

H2O2 + MnO−4 → Mn2+ + O2 + H2O (11)

2.2. GO Reduction

The green synthesis was carried out by preparing graphene oxide solutions exfoliated
with the natural extracts of Larrea Tridentata and Capsicum Chinense at different concentrations.

2.2.1. Description of Plant Phytochemicals

Larrea Tridentata is a perennial shrub from the Chihuahua, Sonora and Mohave deserts
of North America. The main compounds of Larrea tridentata reported in the literature are
phenolic lignans, followed by saponins, flavonoids, amino acids and minerals. The most
important compound is found in the resin of cells near the upper and lower epidermal
layers of the leaves and stems is nordihydroguaiaretic acid (NDGA), one of the better-
known antioxidants. Chemically it has been described as beta, gammadimthyl alpha, delta-
bis(3,4-dihydroxyphenyl) butane. It has been determined that this acid has antioxidant,
anti-inflammatory, cytotoxic, antimicrobial and enzyme inhibitor properties (Figure 3a) [28].
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On the other hand, the Capsicum Chinense (habanero pepper) is an herbaceous plant
with a high source of phytochemicals or bioactive compounds that have shown benefits to
human health. The main compounds of Capsicum Chinense are phenolic compounds, cap-
saicinoids, flavonoids, vitamin C, carotenoids and tocopherols. The capsaicinoids present
in the chili fruits of the genus Capsicum Chinense have various functional properties such
as: antioxidant, anti-inflammatory, antimicrobial and antitumor capacity, among others.
Additionally, natural capsaicin with a high level of purity is of great economic importance
and appreciated in the pharmaceutical, food and chemical industries (Figure 3b) [29].

2.2.2. Preparation of the Extracts

To prepare the gobernadora extract, 30 g of Larrea’s Tridentata dry powder was mixed
with 100 mL of deionized water at 70 ◦C for 30 min and a pH value of 5 ± 0.15. The extract
obtained was filtered with a 110 mm filter diameter glass microfiber and then centrifuged
at 3400 rpm for 15 min. The habanero extract was made in a similar procedure. The
aqueous extracts of gobernadora and habanero were prepared at different concentrations
of 5%, 10%, and 20% (% v/v) natural extract—deionized water. The behavior of the extract
concentration and it is reducing power in graphene oxide was analyzed.

2.2.3. Reduction of Graphene Oxide

Once the aqueous extracts were prepared, the graphene oxide solutions were exfoliated
and mixtures of the aqueous extract solutions with GO were prepared in a ratio of 4:1 (%
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v/v). Subsequently, the solutions were heated at 80 ◦C for 12 h under constant agitation in
a reflux system. After 2 h of heating, the color began to gradually change from brown to
black, indicating the start of graphene oxide reduction. After the reduction was complete,
the color turned dark black and this indicated the reduction of graphene oxide and the
formation of reduced graphene oxide (RGO). To complete the green synthesis, the mixtures
were centrifuged and washed with deionized water several times and finally dried at 60 ◦C
for further characterization.

2.3. Photocatalytic Degradation Studies

For the photocatalytic degradation study, dye selected was methylene blue (MB). UV
light (365 nm) irradiation was applied to find out a suitable as well as effective way to
eliminate the maximum percentage of dye. For photodegradation, the dye solution was
prepared in deionized water at the concentration of 10 mg/L. Further, 20 mg/L of RGO
is added to the prepared dye solution. After, these mixtures were subject to low shaking
for 20 h under dark conditions for the adsorption and desorption of dye molecules onto
the surface of RGO. At the end of the dark exposure period, each mixture was subjected
to UV–Vis spectrophotometer analysis and the initial concentration (C0) of the solutions
was noted before photodegradation. Dye degradation was carried out sequentially by
individual dye solutions of MB.

The photodegradation solution was retrieved at regular intervals for the continuous
monitoring of the degradation study. The obtained solutions are centrifuged to separate
catalysis from the solution and used for UV–Vis Spectrophotometer analysis and noted as
Ct (concentration of dye at specific irradiation/exposure time). Dye degradation could be
calculated from the absorbance values using the following formula [30–33];

Percentage of degradation % = (C0 − Ct/C0) × 100

2.4. Characterizations

The XRD technique allows monitoring the oxidation process of graphite. The diffrac-
tion patterns of the GO and RGO were performed in a Miniflex II model, Rigaku brand
diffractometer (λ = 1.5418), the measurements of the samples were made in a 2Θ range
of 5 to 70◦. To determine the reduction of graphene oxide the following techniques were
used: UV–Vis, FT-IR and Raman. The interaction of the samples with the electromagnetic
radiation was determined by UV–V is spectroscopy with a Perkin Elmer spectrophotometer,
scanning wavelengths from 248 to 400 nm, the measurements were made in quartz cells of a
1 cm optical path over aqueous suspensions of graphene The presence of the characteristic
bonds as well as the loss of oxygenated groups was determined by means of the FT-IR spec-
tra of the samples with a Perkin Elmer Paragon 1000 spectrometer, the measurements were
made in the spectral range between the wave numbers 500 and 4000 cm−1. To determine
each of the carbon members, Raman spectroscopy using the LabRam VIS-633 equipment
was used. The measurements were made in the spectral range between the wave numbers
1000 and 3500 cm−1. Finally, the morphology of our material was determined using a
transmission electron microscope with a filament of lanthanum hexaboride at a scale of 100
and 200 nm.

3. Results

In this work, six samples of a colloidal suspension of graphene oxide (GO) were
reduced with different natural aqueous extracts (habanero and gobernadora). Table 1
shows the identification labels for each of the samples.
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Table 1. Identification labels for each sample of reduced graphene oxide.

Concentrations of the
Natural Extract

Extract 1
(Capsicum Chinense)

Extract 2
(Larrea Tridentata)

0% GO GO
5% HAB1 GOB1
10% HAB2 GOB2
20% HAB3 GOB3

3.1. UV–VIS Spectroscopy

UV–VIS allowed the determination of whether suspensions contained transient prod-
ucts of GO and if it had been partially reduced (RGO) as the natural extract concentrations
increased. In this technique only five samples were analyzed: (a) GO, (b) HAB1, (c) HAB2
(d) HAB3, (c) GOB1, (f) GOB2 and (g) GOB3.

During the oxidation of graphite, oxygen adheres to the graphene layers, thus increas-
ing the polarity of the layers which in turn increases its solubility in water. This results
in a change in the color of the solution from yellow to brown. depending on the GO
concentration, the brown color can be of different intensities. The GO that is formed has
an absorption maximum at 225 nm for a well-oxidized material [34]. TheUV–Vis spectra
of GO and RGO are given in Figures 4 and 5. This revealed that their optical properties
were substantially different. The absorption bands were centered 248 nm from GO to
260 nm from RGO due to the increase in RGO conjugation presumably due to the π and π*
transition of the C=C bonds. In samples (d) and (g) (Figures 4 and 5 respectly) a greater
shift towards the visible region was observed, assuming that the greater the movement of
the absorption spectrum towards the visible region, the better the reduction. This is due to
natural reducing agents in plants. Therefore, it can be said that Larrea Tridentata extract is a
better candidate as a GO-reducing agent compared to Capsicum Chinense extract [35–38].
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3.2. Infrared Spectroscopy with Fourier Transform

The reduction of the GO leads to the loss of oxygenated functional groups, so it was
decided to apply FT-IR spectroscopy to verify if there are differences between the amount
and type of functional groups in the samples. The analyzed FT-IR spectra are presented in
Figures 6 and 7: (a) GO, (b) HAB1, (c) HAB2, (d) HAB3, (e) GOB1, (f) GOB2 and (g) GOB3.
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Of all the FT-IR transmittance spectra of the samples analyzed, peaks attributed to the
oxidation of graphite and graphene oxide can be observed (See Figures 6 and 7). Oxidized
graphite was characterized by an intense peak that occurs between 3100–3700 cm−1 and
was attributed to the C-OH stretch bands of the hydroxyl group. The second peak of
less intensity was located at approximately 1620 cm−1 and was attributed to the skeletal
vibration C=C. A third peak was located at approximately 1050 cm−1 and was attributed to
the C-O alkoxy stretching vibration. Finally, a peak of very low intensity of approximately
1730 cm−1 was attributed to the vibration of the carbonyl group C=O [37–39]. The next
group of peaks contained peaks observed in the graphene oxide spectra. The most intense
peak was approximately 995 cm−1 and was attributed to the stretching vibration of the
epoxy group C–O–C [40]. The next peak was found at approximately 1590 cm−1 and was
attributed to the skeletal vibration C=C of the graphene planes [41,42]. A third peak with
reduced intensity compared to that of graphite oxide at approximately 3400 cm−1, was
attributed to the stretching vibrations C–OH of a hydroxyl group [43–45]. The intensity of
this peak was closely related to the oxygen content in the samples tested after reduction
with natural extracts. These results, again suggest that as the concentration of natural
extracts increased, the GO lost oxygen groups, which led to an increase in sp2 carbon
bonds, as seen by the increase in the band at 1620 cm−1, corresponding to the C=C links. In
addition, in all the samples a two-diminution of intensity was observed in the peaks of the
functional groups C–O–C and C–OH [17,18,20,37–39] (See functional groups in Table 2).
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Table 2. Characteristic FTIR absorption bands of oxidized graphite and reduced graphene
oxide (RGO).

Wavelength (cm−1) Functional Group Oxidized
Graphite RGO

3100–3700 (Hydroxil group) C–OH Yes Yes

1730 (Ester, aldehyde and carboxil
acid groups) C=O Yes No

1620 (Alkene group) C=C Yes No
1590 (Alkene group) C=C No Yes
1050 (Alcoxy group) C–O Yes No
995 (Epoxy group) C–O–C No Yes

3.3. Raman Spectroscopy

Raman spectroscopy is considered a popular technique for characterizing the struc-
tural and electronic properties of graphene, including disordered and defective structures,
defective density and doping levels. Raman spectroscopy is very sensitive to structure
for the characterization of carbon-based materials, especially C=C double bonds that lead
to high-Raman intensities. The Raman spectrum of graphene is generally characterized
by two main characteristics: the G-peak, which arises from the first-order dispersion of
the E2g phonon from sp2 carbon atoms (generally observed ~1575 cm−1) and the D-peak
(~1355 cm−1) arising from the mode of respiration of photons of the K symmetry point
A1g [37,38,43].

Our results (Figure 8) show that the G-band and the D-band of the GO and the
RGO appeared in a range of 1585–1590 cm−1 while the D-band appeared in the range of
1342–1350 cm−1. Interestingly, the Raman spectrum of GO after reduction with natural
extracts had higher intensities than GO, these high intensities could indicate the intro-
duction of sp3 defects after functionalization and incomplete recovery of the graphene
structure. The variation of the relative intensities of the G-band and the D-band in the GO
Raman spectra during the reduction generally reveals the state change of the electronic
conjugation. In this work an increase in the number of sp2 domains was indicated after GO
reduction [17,20,44] (See Table 3).
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On the other hand, it is well known that the Raman dispersion of two phonons (2D)
of graphene-based materials is a valuable band for differentiating monolayer graphene
from double layer or multilayer graphene, since it is highly perceptive to the stacking of
graphene layers. Usually, a Lorentzian peak is observed for the 2D band of the monolayer
graphene sheets at 2697 cm−1, while this peak widens and moves to a larger wave number
in the case of multilayer graphene. In this investigation, 2D widened bands were also
observed at approximately 2700 cm−1 for both the GO and the RGO. This indicates that
the GO and RGO samples had a multilayer structure. It is also clarified that after the
reduction of GO, the 2D band moved towards a higher value that suggests the stacking of
the graphene layers. Since GO has different types of functional groups that can prevent
the stacking of graphene layers, but after reduction due to the decrease of such functional
groups, some graphene layers are stacked, and form multilayer RGO [18,46]. Figure 5
shows: (a) GO (unreduced), (b) HAB3 RGO-Capsicum 20% and (c) GOB3 RGO-Larrea 20%.

Table 3. Raman characteristic parameters of graphite, graphene oxide (GO) and reduced graphene
oxide (RGO) samples.

Raman ID/IG LD=
√

C(λ)
(ID/IG)

References

Graphite 0.19 23.169 [47–49]
GO 0.99 10.150 [47–50]

RGO-HAB3 0.987 10.166 This work
RGO-GOB3 0.983 10.186 This work

Table 3 shows the relationship between the intensities of the two peaks (ID/IG) and will
be used to compare the way in which the structural disorder grows in the graphitic network.
The locations of both D- and G-bands and the ratio between their intensities are consistent
with the characteristic values reported elsewhere. When pristine graphite was oxidized to
GrO, the ID/IG ratio of the resulting material significantly increased indicating a higher
level of structural disorder and a larger number of defects in the graphene layers due to the
oxidation process. After sonication to obtain GO, ID/IG relationship in the resulting material
slightly increased, indicating that the exfoliation process also incorporated further defects

into the structure. Logically, the distance between defects (determined as LD =
√

C(λ)
(ID/IG)

being C(k) = 102 nm2) decreased from graphite to both GrO and GO [47–51].

3.4. X-ray Diffraction (XRD)

The XRD technique allows for controlling the oxidation process of graphite. Figure 6
shows the powder XRD diffraction patterns of the analyzed samples: the analyzed FT-
IR spectra are presented in Figure 9: (a) GO, (b) HAB3 RGO-Capsicum 20%, (c) GOB3
RGO-Larrea 20%.

The data reported in the literature show that graphite has a reflection peak at approx-
imately 2θ = 26◦, which corresponds to a spacing d of 0.335. Upon oxidizing graphite,
the reflection peak (002) changes to the angle 2θ = 10◦ (space d = 0.906). This increase
in the d-space is largely due to the intercalation of water molecules and the formation of
functional oxygen-containing groups in the graphite layers [38,51,52]. Our GO and RGO
samples have a centered peak at 2 θ = 26.52◦. Corresponding to a spacing d = 0.36 nm
that may be due to multilayer graphene [53]. It is also evident that this peak attenuated its
intensity considerably in samples (b) and (c), this decrease in intensity is associated with
the reduction in GO. The absence of the 2θ = 10◦ peak indicates that the oxygen-containing
group of the GO has been removed efficiently. Furthermore, in the three samples, a less
intense peak was observed at 2θ = 54◦ which was attributed to the plane (004) [17–20,47,53].
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3.5. Transmission Electron Microscopy (TEM)

This characterization technique was used to observe the morphology and size of layers
of graphene or graphene oxide, as well as their sizes and imperfections. The samples were
prepared by dispersion in alcohol and then sonicated for 10 h. A drop of the suspension
was deposited on to a copper grid to analyze it. Figure 10 shows the trans-mission electron
microscopy (TEM) of the RGO sample with natural extracts of gobernadora 20%. In
Figure 10a shown the graphene sheets at magnification of 100 nm and Figure 10b shown
the graphene sheets at magnification of 200 nm. Both the TEM pictures showed good
disaggregation of a few layers of RGO samples and the sizes of the sheets in microns.

3.6. Methylene Blue (MB) Degradation

Methylene blue (MB), also called methylthionine chloride, is an organic dye with
the molecular formulation C16H18N3Cl1S1 and a molecular weight of 319.85 g/mol. Its
maximum absorbance is at 663 nm [54]. The absorbance analysis of the samples after
exposure to UV light was performed in the range of 460–750 nm as shown in Figure 11.

The degradation efficiency (%) was calculated from the absorbance values obtained
for the initial dye concentration (Co) with the absorbance values obtained at specific time
intervals (Ct) (Figure 12).

The first step of the photocatalysis is the activation of the photocatalyst by the re-
construction of the photocatalyst surface via electromagnetic radiation illumination. The
electromagnetic radiations interact with the surface plasmons of the photocatalyst and
excite the electrons into the higher states. Upon the excitation of the negatively charged
electron (e−), the positively charged hole (h+) is created in its place. These e−/h+ pairs
are responsible for the photocatalytic capability of the photocatalyst. These generated
e−/h+ can undergo recombination reactions via relaxation processes which lead to the
deactivation of the photocatalyst [55–57].
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Figure 12. Degradation of dye (a) RGO with gobernadora extract and (b) RGO with habanero extract.

From the sample of RGO with gobernadora extract (Figure 11a), it is very clear that
within a short time (20 min), absorbance decreased with the increasing time duration.
Visually, the loss of color of the MB was also observed, as seen in Figure 11a. On the
other hand, in the RGO sample with habanero extract, a loss in absorbance values ~0.45
was observed after leaving the sample in complete darkness under agitation (absorption–
desorption), when exposing the sample to UV light we believe that they generate certain
recombination reactions, due to the effect of relaxation processes, for which increases and
decreases in absorbance were observed as time progressed. (Figure 11b). These dissipation
reactions can be prevented if oxidizing agents are incorporated which allow the reduction
of the electron-hole pair to promote photocatalytic reaction. [58]. Visually, it was seen that
there was no color decrease with increasing time as shown in Figure 12b. Here, a different
absorption–desorption process at the RGO-modified surfaces was perhaps obtained, such
as can be seen in Figure 11b, demonstrating an increase and decrease in the percentage
of MB.

The efficiency of photocatalytic degradation of MB with a photocatalyst was calculated
from absorbance values and is presented in Figure 13. It was observed that the RGO sample
with gobernadora extract showed 89.8% (in 120 min) degradation, and the RGO sample
with habanero extract showed 60.3% (120 min) degradation.
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The previously studied reduced graphene was compared with other studies on the
removal of MB dye from similar light sources (Table 4). Numerous researchers have evalu-
ated GO and RGO using photocatalytic materials known as composites for photocatalyst
enhancement. For example, Patidar et. Alabama, 2018, carried out RGO with CdSe and
obtained only 56–63% MB degradation efficiency after 240 min of UV illumination. Many
other GO and RGO nanocomposite materials showed more than 90% degradation efficiency
with 120–180 min of exposure time. In the present study, RGO–GOB3 showed considerable
photocatalytic activity within 20 to 60 min of exposure. We suggest that the full degradation
performance can be obtained if the exposure time is longer.

Table 4. Comparison of photocatalysts with their photocatalytic performance against MB dye removal
under similar light sources.

Catalyst % of Degradation Time (min) Reference

CdSe–RGO 56% 210 [59]
RGO–HAB3 60.3% 120 This work

GO–Clay
nanocomposite 87% 30 [60]

RGO–NiFe 88.7% 300 [61]
RGO–GOB3 89.8% 120 This work
RGO–ZnO 91% 60 [62]
BaTiO3–GO 95% 180 [63]

Graphene–Ag
nanocomposite 96% 120 [64]

MnFe2O4–RGO 97% 60 [65]
RGO–Fe3O4/TiO2 99% 55 [66]

4. Discussion

Based on these results, we obtained that the concentrations of the extract directly
affect the reduction of our material, so we conclude that the higher the concentration of
the natural extract (20% v/v), the better the reduction of GO. Using Raman spectroscopy,
we noticed that both GO and RGO obtained had a multilayer structure, possibly due to
the lack of exfoliation time in the ultrasound period before and after the graphene oxide
reduction. Prior to characterization by TEM microscopy, RGO was exfoliated for 10 h and
monolayers were obtained. The TEM images reaffirmed the multilayer structure in RGO
samples prepared by our eco-friendly route of synthesis.

Both extracts functioned as GO-reducing agents. However, due to the results obtained
from the UV–Vis, FT-IR and XRD characterizations, we concluded that the Larrea Tridentata
extract was the best reducing agent due to its high content of chlorogenic acid, caffeic acid,
p-coumaric acid, and ferulic acid [67], favoring the reduction and structural arrangement
of the hydroxyl groups of GO compared to those of habanero extract (phenolic compounds,
capsaicinoids, and ascorbic acid).

On the other hand, according to characterizations by UV–VIS spectrophotometer
analysis, it is assumed that the GO reduced by Larrea Tridentata extract is an optimal
photocatalyst for MB dye degradation with a % degradation efficiency of 90%.

5. Conclusions

Reduced graphene oxide (RGO) was obtained through an eco-friendly synthesis
applying a green chemistry methodology and using natural extracts of Larrea Tridentata
(gobernadora) and Capsicum Chinense (habanero). We believe that the reduction is largely
due to natural-reducing agents such as ascorbic acid, carotenes, polyphenols and capsicum
contained in plants. In addition, we can also say that the Larrea Tridentata extract acts
as the best GO reducer, according to the results obtained from the FT-IR, UV–Vis and
XRD characterization techniques. On the other hand, it was possible to verify that the
RGO reduced with natural extracts can act as a photocatalyst for the degradation of
MB dye [68–71].
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The use of eco-friendly reducing agents to synthesize graphene garners great interest
thanks to the great potential of applications that they can have. It is considered as one
of the most versatile methods. These kinds of reagents are shown to be an alternative to
inorganic compounds, such as hydrazine or other non-biocompatible or toxics reducing
agents, as well as with better catalytic properties compared to other organic reducers, such
as glucose. They are also safe to handle and the reaction co-products are biocompatible.
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