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ABSTRACT

Publicación No.

Carlos Enrique Alvaro Mendoza, Doctorado en Ingeniería Eléctrica

Universidad Autónoma de Nuevo León, 2023

Advisor professor: Dr. Jesús De León Morales

This thesis proposes two adaptive sensorless controls based on sliding mode approach for in-

terior permanent magnet synchronous motor (IPMSM). The proposed strategies are composed

of an Adaptive High-Order Sliding Mode Observer (AHOSMO) in closed-loop with an Adap-

tive Super-Twisting Control (ASTWC), where the control and observer gains of the proposed

strategy are reparameterized in terms of a single parameter. Then, the main advantage of

this strategy is the adaptive laws are easy to implement, avoiding overestimates of gains that

increases chattering, reducing the time to tune the gains, and reducing the damage of the ac-

tuators. Furthermore, a strategy for angular position estimation error extraction is proposed,

without high frequency signal injection. Then, from this information and using a parameter-

free virtual system, AHOSMO is designed for estimating the angular position and speed in a

wide speed range, where the estimated variables provided by this observer are obtained with

greater precision, despite the variations of the parameters, achieving greater robustness. These

estimated states are used in the proposed robust control to track a desired reference of speed

and direct-axis current. A stability analysis of the closed-loop system is presented, using a

Lyapunov approach. In addition, the proposed strategy is validated through an experimental

and simulation setup in order to show its effectiveness.
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Introduction

In this section there is a brief introduction to electrical machines according to their use. In the

same way, a brief introduction of synchronous and asynchronous motors, their advantages and

disadvantages is made. Also, considering that the speed of the motors can be controlled, the

following are the different types of methods used to control them. Finally, the approach to the

problem of this thesis is presented, as well as the objectives and hypotheses.

State of the art

Electrical machines are designed to transform electrical energy into mechanical energy, mechan-

ical energy into electrical energy or modify the level of the same electrical energy according

to the required use, so that electrical machines can be classified into three groups: Genera-

tors, transformers and motors. Generators transform mechanical energy into electrical energy.

Transformers use electrical energy and have the ability to change the dimension of this energy

and motors are used to transform electrical energy into mechanical energy, in such a way that,

since the electrical machine was invented, they have been used in domestic products, industrial

process, electricity production, robotics, electric vehicles, etc.

Regarding to the motors, these can be mainly classified into two groups: Direct Current

(DC) motors and Alternating Current (AC) motors. DC motors have been traditionally used

for decades in different applications. However, their commutators, brushes, and required main-

tenance are the main disadvantages. On the other hand, AC motors can be classified into

two groups: Asynchronous or induction motors and synchronous motors. The main difference

between these machines is that the rotor speed of the synchronous motor has the same fre-

1



INTRODUCTION 2

quency as the magnetic field, unlike induction motors, where the rotor speed is slower than

the magnetic field generated in the stator, i.e., the speed is asynchronous. The predominant

motor technology for many years has been cage induction motors. Their superior dynamic

behavior coupled with their brushless nature, which allows operation without the presence of

commutators or slip rings, makes them suitable for high performance controlled operation in

electric drive applications. Advances in the area of power electronics and automatic control

technologies have contributed significantly to their establishment as standard motors in electric

drives. However, induction motor technology also has numerous disadvantages, both in con-

struction and in operation. For example, its relatively small air gap length and its inferiority

to synchronous motors in terms of overall efficiency and power factor are the main drawbacks.

Also, induction motors have windings on the rotor, which increases the temperature of the ma-

chine. Nevertheless, a clear indication towards the possible limitation in the use of induction

motors and their eventual replacement has not yet been established [1].

Consequently, permanent magnet synchronous motors (PMSM) have attracted increasing

interest within the scientific community, especially for high power density applications, high-

lighting the need for their investigation. The most important advantages of permanent magnent

synchronous motor lie in the fact that permanent magnets constitute a strong and independent

excitation system, i.e., field current needed for induction machine is not necessary (see Figure

x), and secondary copper loss does not occur, therefore high efficiency can be achieved [2].

This feature allows substantial overloading of the motor while providing higher torque density

values. The fact that no electromagnetic drive system is employed further improves its tran-

sient behaviour, while small size and maintenance are also two significant benefit factors. The

above advantages have led PMSM to be considered a viable and attractive solution for control

drives [3, 4].

Interior permanent magnet synchronous motor (IPMSM) is the most popular in the fields

of electric drive application due to torque capability, power density, simple structure, efficiency

and can operate in high speeds [5]. In variable speed motor drives, conventionally, it is nec-

essary to use an encoder [6] to measure angular position and apply speed controllers [7–10].

However, implementing encoders to control the electric motor requires additional electronics,
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Figure 1: Main differences between an induction motor and a PMSM

preventative maintenance, and additional wiring. For these reasons, this technique has be-

come less attractive due to high cost and lower reliability, encouraging researchers to avoid its

implementation and study the sensorless strategy. Nowadays, sensorless strategy is an indi-

rect technique under development to estimate angular position from measurable currents and

voltages of the IPMSM, increasing robustness and reliability, eliminating wiring, and reducing

signal noise [11–13]. In the literature, various approaches to the sensorless technique have been

addressed. Among sensorless control methods, model-based method and saliency-based method

are the most popular.

Model-based method for sensorless control

According to model-based method, this method is applied in high and medium speed regions;

and rotor position is acquired from the stator voltages and currents without requiring additional

high frequency signal injection. Back-electromotive force (EMF)-based technique [14–17] is

commonly applied in this method. Considering that back-EMF induced in motor is directly



INTRODUCTION 4

proportional to rotor speed, with this information is possible effectively estimate the rotor

position [18]. Several observers based on the dynamical model of the electrical motor have

been used for estimating angular position, for example, Luenberger observer [19, 20], extended

Kalman filter (EKF) [21,22] and sliding mode observer [23,24]. However, being that the model-

based approach has a direct dependency on the dynamical model, parametric uncertainties can

lead to performance degradation of control systems. It is known that parameters vary depending

on operation conditions, e.g., mechanical parameters, viscous coefficient and inertia, could

vary according to the applied load torque, weight, road type and tires quality in automotive

applications; and electrical parameters, inductance and resistance, could vary depending on the

temperature variations or magnetic circuit saturation.

An alternative to overcome this challenge is the development of algorithms for online or of-

fline parameter identification. Among offline algorithms for parameter estimation can be found

the DC Current Decay Test [25, 26] and the AC standstill method [27, 28] to measure induc-

tances. However, there are disadvantages with these strategies due to the fact that it requires

additional equipment and the measurement errors are caused by the estimation at a single op-

erating point. Now, among online parameter estimation techniques, recursive least square is a

technique that uses known variables as currents and voltages to estimate unknown parameters,

for instance, in [29] has been proposed a strategy to identify stator resistance, machine torque

and inductances. Similarly, EKF is an optimal recursive estimator that considers the effects of

the measurement noise, for instance, in [30] has been proposed a permanent magnet flux iden-

tification technique of the IPMSM. Other methods for online parameter estimation are given

in [31–33] in order to constantly update the machine parameters. However, a highly efficient

microprocessor is required to handle the relatively complex procedure.

Another alternative to overcome the challenge of parametric uncertainties is the use of ro-

bust techniques. A technique that has been widely studied in recent decades is sliding modes

proposed by [34]. Its main advantage is its robustness against disturbances and parametric

uncertainties. This technique has found wide application in different areas such as fault re-

construction, condition monitoring and fault detection [35]. Classical sliding mode technique

has been adopted in electrical machines for the angular position estimation, for instance [36].
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However, the main drawback of this strategy is the chattering caused by the switching (dis-

continuity) of the signum function, generating high-frequency oscillation components in the

estimated signal of the sliding mode observer (SMO). Then, low-pass filters are often used,

causing phase delay, such that classical sliding mode is not a good alternative. One option

to reduce the chattering phenomenon is to replaced the signum function by a sigmoid func-

tion [37, 38], showing relatively a good performance. Similarly, the popular super twisting [39]

and high-order sliding mode techniques [40] have achieved a clear improvement in the chattering

reduction as well as good performance and finite-time convergence in presence of disturbances

and uncertainties. In [41], a high order terminal SMO is proposed in order to achieve finite

time convergence of the estimated states and chattering suppression. In [42], a third order

super-twisting extended state observer is designed to improve the estimation of angular posi-

tion, speed and disturbance of IPMSM; achieving a fast convergence. On the other side, in [14],

a super-twisting sliding-mode observer with online stator resistance, position and speed esti-

mation for sensorless control is proposed. However, during observer tuning, choosing constant

gains in the observer sometimes results in an overestimation of gains that causes chattering,

increasing the error in the estimates. Adaptive observers have been proposed in order to avoid

this overestimation and reduce the chattering. For instance, in [43] is addressed an adaptive

super twisting for online tuning according to the perturbation value, such that, angular position

error is reduced in a wide-speed range. In [44], an adaptive super-twisting sliding mode observer

with time-varying gains is introduced, to minimize the chattering and estimate back-EMF that

is required for the angular position estimation. Another strategies are addressed in [45, 46].

However, these approaches need to choose several parameters to tune the system, increasing

the tuning time.

In summary, the main drawback of the model-based methods is the loss of observability at

low speeds due to the fact that there is a direct dependency of the back-EMF with speed rotor,

i.e., the magnitude of the back-EMF decreases proportionally with the speed.



INTRODUCTION 6

Saliency-based method for sensorless control

As previously mentioned, model-based angular position estimation is possible at high and

medium speed. However, it can fail at low and zero speed. Therefore, saliency-based methods

are an alternative to achieve this challenge. In saliency-based methods a sufficient excita-

tion, either by high frequency (HF) voltage or current signal injection or by using pulsewidth-

modulated (PWM) inverter switching, is mandatory in order to maintain a persistent excitation

in the system to extract angular position information and estimate the angular position at low

and zero speed [47–50].

Voltage injection techniques can be classified according to the shape of the test signal: sine or

square wave injection techniques. In addition, one can distinguish between rotating and pulsing

test signal injection. For the HF rotary signal injection scheme, a balanced voltage signal is

injected into the stationary reference frame to form a rotary excitation that is superimposed

on the fundamental excitation. Then, by applying a synchronous reference frame filter, the

negative sequence carrier current containing the position information can be derived and used

to estimate the rotor position. For pulsed signal injection methods, a pulsed HF carrier signal

is injected on the d-axis or q-axis in the estimated synchronous reference frame, such that,

the angular position can be estimated by minimizing the amplitude modulated carrier current

response that is measured along the orthogonal axis to the injection axis [51–55]. However, the

performance of sensorless control with the conventional HF pulsed or rotating sinusoidal signal

is still insufficient for some applications, as the filtering process limits the dynamic bandwidths.

To overcome the limitations of sensorless control with conventional sinusoidal signal injec-

tion, square wave injection in the stationary reference frame or in the estimated rotor reference

frame has been developed. The injection frequency can be increased to the PWM switching

frequency, and thus the filtering process can be eliminated and the dynamic performance can

be improved [56–61].

Nevertheless, in saliency-based methods, additional losses and audible noise are negative

effects caused by injected signal reducing the system performance. Reducing the amplitude

of the signal could be an option to remove the disadvantages. However, this would cause a
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degradation in the estimation of the angular position. Moreover, this technique can present

magnetic saturation at high speed, such that its use is still limited.

Control techniques for speed regulation

Now, regarding speed controls used in electrical machines, several nonlinear control methods

have been applied to enhance the control performance in presence of uncertainties and dis-

turbances, for instance, in [45, 62] were proposed robust backstepping controllers with integral

and sliding mode actions to achieve speed regulation despite uncertainties and disturbances. A

robust control has been proposed in [63], and sliding mode controls in [64–66].

As previously mentioned, sliding mode technique is one of the most studied techniques in

recent years due to robustness against disturbances and uncertainties. Nevertheless, just like

observers, controllers based on sliding mode have chattering problems and overestimation of

gains. Therefore, adaptive laws for sliding mode controllers of the motor have been proposed to

remove these drawbacks [67–69]. Some adaptive laws have also been proposed in a general way

for the sliding mode control. For instance in [70], an adaptive super-twisting control is proposed,

removing the requirement to know the upper bounds of external disturbance and reducing

the chattering phenomenon without affecting the control performance. In [71], the chattering

problem and its relation with the high activity of control action have been studied. In this way,

an adaptive law is developed to get a minimum possible value of control. Another proposal

was introduced in [72], offering continuous control signal, adaptation for dealing with unknown

uncertainty/perturbations, non-overestimation of control gains, and reduced chattering. In [73],

adaptive gains have been proposed for a super-twisting control in order to adapt in such a way

that the gains are as small as possible, and yet large enough to sustain a sliding motion.

Nonetheless, due to large number of control gain parameters, tuning these strategies could be

complex.
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Problem statement

In industrial applications, the control of IPMSM requires the knowledge of the angular position

and speed, which usually is measured by using sensors (encoders). However, as mentioned,

this conventional method has some disadvantages. Then, one solution is to estimate angular

position and speed by using observers based on model. Frequently, the mathematical model

used for control and observer design is given in dq synchronous reference frame [45, 74] or

in a αβ stationary reference frame [75, 76]. However, parametric uncertainties and external

disturbances affect the estimation. Then, one solution to overcome this drawback would be to

design a robust observer to estimate the angular position and speed of the IPMSM, such that

the information from the estimated states can be used in the controller with more precision.

On the other hand, as mentioned in the theoretical framework, the design of observation and

control strategies requires the use of robust techniques in presence of parametric uncertainties

and disturbance. Frequently, the sliding modes approach is the most used technique, since it

satisfies the robustness requirement. However, the design of observation and control strategies

based on sliding mode requires the adjustment of several gains, which results in a greater

tuning effort, and sometimes an overestimation of the gains is obtained, causing chattering in

the system. Therefore, it is necessary to reduce the adjustment time, minimizing the number

of parameters to be adjusted.

In order to overcome these problems, this thesis proposes the following:

Hypothesis:

From measurable currents iα and iβ, which can be obtained from the abc triphasic compo-

nents of the IPMSM, an extraction of the angular position estimation error (θe − θ̂e = eθe) can

be carried out without high-frequency signal injection, defining θe as electrical angular posi-

tion and θ̂e as estimated electrical angular position. The information of eθe can be used by an

observer based on a parameter free virtual system to estimate the angular position and speed

of the IPMSM and overcome the issues caused by the parametric uncertainties present in the

model of the IPMSM. The estimates can be interconnected with a controller to track desired

references of speed and current. Then, considering the robustness of the sliding mode approach
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under parametric uncertainties and disturbances, and its finite time convergence, the sliding

mode technique can be used in the observer and control design of the IPMSM. Moreover, based

on reparameterization properties, it is possible to design a controller and an observer for the

IPMSM, such that the gains are reparameterized in terms of a single parameter, reducing the

tuning time. This facilitates the design of adaptive laws for the observer and control, avoiding

overestimations of gains that can cause an increase of chattering and damage the system.

The main objectives in this work are:

• General objective: Sensorless control design and development for the IPMSM based on

adaptive sliding mode approach with a reduced number of tuning parameters such that

speed and direct axis current−id track desired references in presence of perturbations and

parametric uncertainties, assuming that currents and voltages are the only information

available of the IPMSM.

• Observation objective: Extract the angular error

θe − θ̂e = eθe (0.0.1)

and design an adaptive observer with a reduced number of tuning parameters for estimat-

ing rotor position and speed by using the currents iαβ and a dynamical model without

the machine parameters. After this, carry out a verification in simulations to analyze its

performance. Finally, validate it experimentally.

• Control objective: Design and development of an adaptive control with a reduced num-

ber of tuning parameters to track a desired speed reference Ω∗ and a reference current i∗d
of a IPMSM in presence of parametric uncertainties and bounded disturbances with un-

known boundaries. After this, the adaptive control design must be verified by simulations

in order to analyze its performance. Finally, validate the technique experimentally.

• Sensorless control objective: Interconnect the designed controller and observer to

control the IPMSM without mechanical sensor. This will be verified in simulations and

validated experimentally.
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Assumptions:

• The initial position of the rotor is considered to be known. A result proposed in the

literature is considered for the estimation of the initial condition.

• The currents iα,β are available by measurement.

Contributions in this work

In this work, the main contributions are the following:

• An extraction of the angular error eθe is made, and based on a virtual system without pa-

rameters of the IPMSM, two Adaptive High-Order Sliding Mode Observers (AHOSMOs)

are designed to estimate angular position, speed and acceleration over a wide speed range.

The robustness is improved, overcoming the disadvantages of other methods (model-based

and saliency-based methods) that require knowledge of the machine parameters, use of

filters as well as high-frequency signal injection to estimate angular position.

• Two Adaptive Super-Twisting Controllers (ASTWCs) are designed in order to track a

desired speed reference and a desired d-axis current reference. These controller are inter-

connected with the AHOSMO achieving a sensorless control strategy.

• The gains for both, controllers and observers, are reparameterized in terms of a single

parameter. The main advantage of this strategy is that adaptive laws are easy to im-

plement, which avoids overestimation of gains that increases chattering, reduces time to

adjust gains, and reduces damage to actuators.

• Closed-loop stability analysis under the action of the observer is improved thanks to it is

simpler to analyse and the separation principle holds.

Thesis organization

This manuscript is organized as follows:
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Chapter 1

In chapter 1, an introduction to the PMSM is given. The different configurations for PMSM

according to permanent magnet position is addressed. After that, the Park an Concordia trans-

formation are introduced. From these transformation, the electrical equations of the PMSM can

be used to compute the dynamical model of the IPMSM in a αβ stationary reference frame and

in a dq synchronous reference frame. Moreover, the parameter free virtual system is presented.

The benchmark for the observers and the controllers is addressed, this benchmark will be used

in simulation and experimentation. In addition, a specific benchmark is presented and will be

used to show the performance of the observer in different operation point.

Chapter 2

In chapter 2, a method for the extraction of the angular position estimation error is intro-

duced. This information can be extracted by using α, β currents, i.e., the dynamical model of

the IPMSM is not used. Then, considering the extraction of the angular error and a virtual

system without parameters of the IPMSM, the design of two AHOSMO´s are addressed to

estimate angular position, speed and acceleration. The gains of the observers have been repa-

rameterized in terms of a single parameter facilitating the design of an adaptive law for each

observer. Simulation tests of the proposed observers and a comparative study are carried out.

Chapter 3

In the chapter 3, the design of two Adaptive Super-Twisting Controllers is introduced. These

controllers have been designed considering reparameterized gains in terms of a single parameter.

It has allowed to design an adaptive law for each control, which reduces time to adjust gains

and avoids overestimation of gains that can increase chattering. Moreover, a stability analysis

based on Lyapunov approach is given. After that, the proposed controllers are evaluated under

simulation tests. In addition, a comparative study is carried out considering constant gains and

adaptive gains.

Chapter 4

From the angular position estimation error extraction, the proposed observers in chapter 2

are able to estimate the angular position and speed. These estimates will be interconnected

with the proposed controllers presented in chapter 3. Therefore, in chapter 4 is presented
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the sensorless control scheme. The stability analysis in closed-loop under the estimates of the

observer is introduced. Finally, simulation and experimental tests are carried out in order to

show the performance and effectiveness of the proposed schemes.

Chapter 5

Finally, a general conclusion about the proposed work is addressed. Moreover, some per-

spectives for this work are introduced.
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Chapter 1

Dynamical model of interior permanent

magnet synchronous machine

In this chapter, a summary of the PMSM is addressed. Second, the Concordia and Park

transformations are recalled. From these transformations, the dynamical model of the IPMSM

in a αβ stationary reference frame and a dq synchronous reference frame can be calculated.

Subsequently, a parameter free virtual system is introduced and, finally, the benchmark used

for simulation and experimental tests is addressed.

1.1 Permanent magnet synchronous motor

The PMSM control system has attracted much attention in the field of AC adjustable speed

drives with the rapid development of automatic control technology, power electronics, high-

speed microprocessors, sensors, special converters, and permanent magnetic materials. Until

recently, the widespread use of PMSM was in some cases restrained by relatively high prices for

magnetic materials with high specific magnetic energy values. However, in recent years, prices

for such materials have significantly decreased. This may imply the future growth of PMSM

drive systems in the industry and technology. The reason is their indisputable advantages, such

as a high-efficiency factor, low noise emissions, simple construction, easy maintenance and low

rotor inertia. Then, they are widely used in household appliances, transportation, aviation and

14
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robotics [12, 13,77].

Now, according to the operation and configuration of the PMSM, it has a speed of rotation

directly proportional to the frequency of the alternating current network that feeds it. The

stator has a three-phase wound, represented by the axes a, b and c with 120◦ degree phase

difference between them. The rotor produces a magnetic field with the permanent magnets,

this removes the need for a DC source to generate it. Then, according to the configuration

of permanent magnets in the rotor, there exists a classification of PMSM and this is given as

follows.

a) Surface permanent magnet synchronous motor

In these types of motors, the magnets are placed on the surface of the rotor, as shown in Figure

1.1. The inductances of this type of motor do not depend on the position of the rotor. This

type of motor has d−axis inductance equal to the q−axis inductance, such that the reluctance

torque generated by the motor is zero. In this motor, the magnets are on the surface and

are exposed to a demagnetizing field. Furthermore, the relative permeability of permanent

magnets is similar to that of air, which leads to a low inductance of the machine, since the

effective length of the air gap is large. The air gap reluctance is theoretically constant for

the different positions of the rotor, then, the starting torque of the surface permanent magnet

machine is low. In addition, the magnets are subject to centrifugal forces, which can cause the

magnets in the rotor to detach.

b) Inset permanent-magnet synchronous motor

In this type of motor, the magnets are inserted on the surface of the rotor as shown in Figure

1.2, and d-axis inductance is slightly different from q-axis inductance. The iron parts between

the permanent magnets have interpolar spaces that add saliency. The value of this salience

depends on the height of the magnets relative to the iron and the aperture of the magnets.
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Figure 1.1: PMSM rotor permanent magnets layout: a) Surface permanent magnets.
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Figure 1.2: PMSM rotor permanent magnets layout: b) Inset permanent magnets.

c) Permanent magnet synchronous motor with flux concentration

In this type of motor, the magnets are located inside the rotor as can be seen in Figure 1.3. The

magnets are placed radially into the rotor and buried deep inside the rotor. In this configuration,

the magnets are in the direction of the circumference. The magnetic poles are then formed at

the level of the ferromagnetic parts of the rotor by concentrating the flux coming from the

permanent magnets. One of the main advantages of this type of PMSM is the concentration

of the flux generated by the magnets and a higher inductance is obtained. Just like interior

magnet machines, in this machine, the magnets are also well protected against demagnetization

and mechanical stress. The synchronous reactance on the q axis is greater than on the d axis.
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Figure 1.3: PMSM rotor permanent magnets layout: c) Flux concentrating.

d) Interior permanent-magnet synchronous motor

The IPMSM has the magnets integrated inside the rotor as can be seen in Figure 1.4, to

protect the permanent magnets in deflux mode or in case of short circuit and improve the

mechanical resistance. With interior magnets, the active air gap space is less than that of

the equivalente machine with surface magnets. The dq-axes inductances of the IPMSM are

different, Ld < Lq. Therefore, there is the reluctance torque, and the torque density can be

higher than the equivalent surface permanent magnet machine. Due to that the magnets are

internal and effectively shielded from the armature reaction field, the interior magnet machine

is suitable for applications with constant power over a wide speed range. Moreover, the IPMSM

inductances values change according to the rotor position and create a geometric saliency which

is an important feature for low-speed control.

The work carried out in this document addresses the case of the IPMSM, since its configura-

tion is recommended due to its torque capacity, power density, simple structure, efficiency and

can operate at high speeds. Moreover, considering that the values of the inductances change

according to the position of the rotor and create geometric saliency, this is an important feature

for low-speed operation.
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Figure 1.4: PMSM rotor permanent magnets layout: d) Interior permanent magnets.

1.2 Concordia and Park transformations

Concordia and Park transformations are coordinate changes used to change a balanced three-

phase system to an equivalent system with two orthogonal axes. It can be used to simplify the

study of electric motors.

Concordia transformation

The Concordia transformation is employed to simplify the analysis of three-phase system (a, b, c)

in a coordinates system (α, β) as follows.
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where Qo is given by
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Moreover, this transformation has direct and inverse transform symmetry and can preserve the

active and reactive powers. Since in a balanced system xa + xb + xc = 0 and thus xo = 0, then
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one can also consider the simplified transformation
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which is simply the original Concordia transformation with the 3rd equation excluded, where

Q is expressed as follows
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In Figure 1.5, the representation of the concordia transformation is illustrated, where θe

represents the angular position and xα and xβ components represent the coordinates of the

rotating space vector xR in a fixed reference frame whose α−axis is aligned with phase xa axis.

Park transformation

The Park transformation transforms the components−αβ to reference system−dq, the objective

of this transformation is to convert the variables sinusoidally in time to constant values dq, in

permanent regime.

𝒙𝒃

𝒙𝒄

𝒙𝒂

𝑥𝛽

𝑥𝛼

𝜃𝑒

xRxβ
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Figure 1.5: Concordia transformation
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where T is given by

T =

cos(θe) −sin(θe)

sin(θe) cos(θe)

 = ejθe (1.2.6)

In Figure 1.6, the representation of the Park transformation is illustrated.

1.3 Electrical equations of the Permanent Magnet Syn-

chronous Motor

The three-phase stator voltage equations, represented in the three-phase stationary frame (abc−

axes), can be expressed as follows

vabc = Rsiabc +
dψabc

dt
(1.3.1)

where vabc =
[
va vb vc

]T
represents stator voltages, Rs is stator resistance, iabc =

[
ia ib ic

]T
corresponds the stator currents and ψabc =

[
ψa ψb ψc

]T
are the stator fluxes. Moreover, ψabc
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is defined as follows

ψabc = Lss
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and p represents the number of poles, θ the mechanical angular position, ψr is the permanent-

magnet flux linkage and Lss is expressed as follows

Lss = Lso + Lsv (1.3.4)

where

Lso =


Lso Mso Mso

Mso Lso Mso

Mso Mso Lso

 (1.3.5)

and

Lsv = Lsv


cos (2pθ) cos

(
2pθ − 2π

3

)
cos
(
2pθ + 2π

3

)
cos
(
2pθ − 2π

3

)
cos
(
2pθ + 2π

3

)
cos (2pθ)

cos
(
2pθ + 2π

3

)
cos (2pθ) cos

(
2pθ − 2π

3

)
 (1.3.6)

defining Mso, Lso and Lsv as the mutual and own inductances, respectively; for Mso = −1

2
Lso.

Moreover, Lso and Lsv are positive parameters depending on the machine.

Now, the system (1.3.1) can be written as follow


va

vb

vc

 = Rs


ia

ib

ic

+
d

dt

[Lss]


ia

ib

ic

+


ψaf

ψbf

ψcf


 (1.3.7)

and considering the Concordia transformation (1.2.3), the system (1.3.1) expressed in αβ sta-
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tionary reference frame is the followingvα
vβ

 = Rs

iα
iβ

+
d

dt

ψα

ψβ

 (1.3.8)

1.3.1 Dynamical model of the Interior Permanent Magnet Synchronous

Motor in dq synchronous reference frame

In this section, the dynamical model of the IPMSM is introduced. Then, from the three-phase

stator voltage equations in a three-phase stationary frame (abc− axes) given by

vabc = Rs iabc +
d

dt
{Lss iabc + ψafbfcf} (1.3.9)

the following equation can be written

vabc = Rsiabc +
d

dt
{Lssiabc}+

d

dt
{ψafbfcf} (1.3.10)

where

d

dt
{ψafbfcf} =

d

dt


ψaf

ψbf

ψcf

 = −ψrpΩ


sin (pθ)

sin
(
pθ − 2π

3

)
sin
(
pθ + 2π

3

)
 (1.3.11)

and Ω represents the mechanical speed. Then, replacing (1.3.11) in (1.3.10), the following

equation is obtained
va

vb

vc

 = Rs


ia

ib

ic

+
d

dt

Lss


ia

ib

ic


− ψrpΩ


sin (pθ)

sin
(
pθ − 2π

3

)
sin
(
pθ + 2π

3

)
 (1.3.12)
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Now, taking into account the following transformation

xd
xq

 = TTQT


xa

xb

xc

 (1.3.13)

where x represents a variable (voltage, current or flux). Then, combining (1.3.13) with (1.3.12)

and multiplying the left side of (1.3.13) by QT, the following system is obtained

QTTTQT


va

vb

vc

 =RsQTTTQT


ia

ib

ic

+
d

dt

LssQTTTQT


ia

ib

ic




− ψrpΩQTTTQT


sin (pθ)

sin
(
pθ − 2π

3

)
sin
(
pθ + 2π

3

)


(1.3.14)

such that

QT

vd
vq

 =RsQT

id
iq

+
d

dt

LssQT

id
iq

+QT

 0

ψrpΩ

 (1.3.15)

Consider that QTQ = I2×2 and TTT = I2×2, where I2×2 is a identity. Then, multiplying the

left side of above equation by TTQT , it follows thatvd
vq

 =Rs

id
iq

+ TTQT d

dt

LssQT

id
iq

+

 0

ψrpΩ

 (1.3.16)

and can be rewritten as followsvd
vq

 =Rs

id
iq

+ TT d

dt
{ΓssT}

id
iq

+ TTΓssT
d

dt

id
iq

+

 0

ψrpΩ

 (1.3.17)
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where

Γss = QLssQ =
3

2
Lsv

cos (2pθ) sin (2pθ)

sin (2pθ) −cos (2pθ)

+
3

2
Lso

1 0

0 1

 (1.3.18)

Now, Lso and Lsv are defined as follows

Lso =
Ld + Lq

3
Lsv =

Ld − Lq

3
(1.3.19)

where Ld and Lq are the dq−axes winding inductance. Therefore, Γss given by (1.3.18) can be

expressed by

Γss =
Ld − Lq

2

cos (2pθ) sin (2pθ)

sin (2pθ) −cos (2pθ)

+
Ld + Lq

2

1 0

0 1

 =

 Lα Lαβ

Lαβ Lβ

 (1.3.20)

Then, the solution for T
d

dt
{ΓssT} in (1.3.17) is given by

T
d

dt
{ΓssT} = pΩ

 0 −Lq

Ld 0

 (1.3.21)

and the solution for TTΓssT is given by

TTΓssT =

Ld 0

0 Lq

 (1.3.22)

Therefore, the system (1.3.17) expressed in a dq reference frame is given by

vd
vq

 =Rs

id
iq

+ pΩ

 0 −Lq

Ld 0

id
iq

+

Ld 0

0 Lq

 d

dt

id
iq

+

 0

ψrpΩ

 (1.3.23)

Mechanical equations

The equation for the mechanical model is given by

dθ

dt
= Ω (1.3.24)
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where θ is mechanical angular position and Ω mechanical speed. Moreover, the following

equality is defined as follows

J
dΩ

dt
+ fvΩ = Te − Tl (1.3.25)

where J represents the inertia, fv the viscous friction coefficient, Tl the load torque and Te the

electromagnetic torque. The electromagnetic torque Te is defined as follows

Te = p(ψαiβ − ψβiα) = p(ψdiq − ψqid) (1.3.26)

where the terms ψd and ψq are defined by

ψd = Ldid + ψr, ψq = Lqiq (1.3.27)

Then, the electromagnetic torque can be expressed as follows

Te = p(Ld − Lq)idiq + pψriq (1.3.28)

Therefore, the mechanical system for the IPMSM is given by

dθ

dt
= Ω

dΩ

dt
=
p

J
(Ld − Lq)idiq +

p

J
ψriq −

Tl
J

− fvΩ

J

(1.3.29)

Dynamic model of the Interior Permanent Magnet Synchronous Motor: Electrical

and mechanical equations

The dynamical model of the IPMSM with electrical and mechanical equations is the following

Σelec :


did
dt

= −Rs

Ld

id + pΩ
Lq

Ld

iq +
vd
Ld

diq
dt

= −Rs

Lq

iq − pΩ
Ld

Lq

id +
vq
Lq

− pΩ
ψr

Lq

(1.3.30)
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Σmech :


dθ

dt
= Ω

dΩ

dt
=
p

J
(Ld − Lq) idiq +

p

J
ψriq −

fv
J
Ω− 1

J
Tl

(1.3.31)

1.3.2 Dynamical model of the Interior Permanent Magnet Synchronous

Motor in αβ stationary reference frame

In this section the dynamical model of the IPMSM in a αβ stationary reference frame is

addressed. Then, transforming (1.3.23) into αβ stationary reference frame, the following system

is obtained vα
vβ

 =

R + d
dt
Lα

d
dt
Lαβ

d
dt
Lαβ R + d

dt
Lβ

iα
iβ

+ pΩ

−sin(θe)
cos(θe)

 (1.3.32)

where θe = pθ is the electrical angular position and Lα = Lo+L1cos(2θe), Lβ = Lo−L1cos(2θe),

Lα,β = L1sin(2θe), Lo =
(Ld + Lq)

2
and L1 =

(Ld − Lq)

2
. The system (1.3.32) can be written

in a compact form as follows

vαβ = Aαβ +Bαβ + Cαβ +Dαβ (1.3.33)

where vαβ =
[
vα vβ

]T
, Aαβ = Rs

[
iα iβ

]T

Bαβ =
d

dt

Lo

iα
iβ

 , Cαβ = pΩψr

−sin(θe)
cos(θe)

 , Dαβ =
d

dt

L1

cos(2θe) sin(2θe)

sin(2θe) −cos(2θe)

iα
iβ


The system structure (1.3.33) is not easy for mathematical processing, having functions of rotor

position θe, which makes the equation difficult to solve. An easy way to solve this issue is to

use the estimated position θ̂e instead of θe. This is possible if the amplitude of Dαβ is smaller

enough than Cαβ, i.e., |L1iα,β| << ψr. In fact, the approximation made in (1.3.32) and (1.3.33)

is based on the assumption that this condition is valid. Then, it is true for motors with relatively

small reluctance torque. However, if the motor reluctance torque cannot be neglected, such as

the permanent magnet torque, the sensorless estimation could be unstable. On the other side,

in (1.3.33), the system contains the terms 2θe. The reason why term 2θe appears in (1.3.33) is
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due to that impedance matrix is asymmetric. Therefore, if the impedance matrix is rewritten

symmetrically asvd
vq

 =

Rs + pLd −pΩLq

pΩLq R + pLd

id
iq

+

 0

(Ld − Lq)(pΩid − i̇q) + pΩψr

 (1.3.34)

then, the αβ stationary reference frame can be written as followsvα
vβ

 =

 Rs + pLd pΩ(Ld − Lq)

−pΩ(Ld − Lq) R + pLd

iα
iβ

+ [(Ld − Lq)(pΩid − i̇q) + pΩψr]

−sin(θe)
cos(θe)


(1.3.35)

The system (1.3.35) is a transformation of (1.3.32) without any approximation. It is a general

form of the mathematical model of IPMSM. Moreover, if Ld = Lq, the model of the surface

permanent magnet synchronous motor is obtained and if ψ = 0, it is possible to obtain the

synchronous reluctance motor.

1.4 Parameter free virtual system

In order to analyse the system that will be used for the observer design and considering that

during the machine operation, some machine parameters can change its nominal value, the

uncertain system for system (1.3.31) is given by


θ̇e = pΩ

Ω̇ =
p

J ′ [(Ld +∆Ld)− (Lq +∆Lq)] idiq +
p

J ′ψriq −
(fv +∆fv)

J ′ Ω− 1

J ′Tl

(1.4.1)

where J ′ = (J + ∆J) and θe is the electrical angular position. The uncertain term can be

defined as follows

f1 +∆f1 =
p

J ′ [(Ld +∆Ld)− (Lq +∆Lq)] idiq +
p

J ′ψriq −
(fv +∆fv)

J ′ ω − 1

J ′Tl
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Consequently, the uncertain system is represented in a compact form as followsθ̇e = pΩ

Ω̇ = f1 +∆f1

(1.4.2)

Defining α = f1 + ∆f1 and assuming that ∆f1 is differentiable, the following extended

system is obtained 
θ̇e = pΩ

Ω̇ = α

α̇ = ḟ1 + ˙∆f1 = ρ(t)

(1.4.3)

Finally, we obtain the auxiliary system that will be used in the observer design, which does

not depend on the machine parameters 
θ̇e = ω

ω̇ = α

α̇ = ρ(t)

(1.4.4)

where θe = pθ is the electrical angular position, ω = pΩ is the electrical speed, p the pole pair

number and α is the acceleration, where the time derivative of the acceleration is equal ρ(t),

which is a function containing the nonlinear terms and uncertainties, bounded with unknown

bound. Therefore, from the information of θe and ω, it is possible to compute the mechanical

angular position
(
θ =

θe
p

)
and the mechanical speed

(
Ω =

ω

p

)
.

It is clear that the mechanical sub-system (1.3.31) of the IPMSM does not depend on the

acceleration, however, to estimate the position and the speed, the mechanical sub-system has

been extended including the acceleration in order to improve the estimation of those variables.

In other words, the first two equations of (1.4.4) are enough to have a good estimation with

low transient modes. However, with fast dynamics, speed estimation errors could increase

due to that its derivative is supposed to be equal to zero. To overcome this problem, the

machine acceleration−α is also estimated to achieve a more precise estimation in fast transient



CHAPTER 1. DYNAMICAL MODEL OF INTERIOR PERMANENT MAGNET
SYNCHRONOUS MACHINE 29

modes. Therefore, the virtual system (1.4.4) will be used to estimate angular position, speed

and acceleration by using an extraction of the angular position estimation error eθe that is

presented later.

1.5 Benchmark

In this section, the benchmark for the IPMSM is introduced. Simulation and experimental tests

are going to be evaluated in order to show the performance of the proposed strategies. The

parameters of the IPMSM are presented in Table 1.1. The simulation and experimentation are

Table 1.1: IPMSM nominal parameters

Symbol Parameter Value Unit
Rs Stator resistance 1.4 ohms
J Moment of inertia 7.3e−3 kg.m2

p Number of pole pairs 5
Tl Torque 4 N-m
ψr Permanent-magnet flux linkage 0.18 Wb
Ld d-axis winding inductance 0.0057 H
Lq q-axis winding inductance 0.0099 H
fv Viscous friction coefficient 0.0034 kg-m2/s

carried out at low, medium and high speed of operation. Similarly, a load torque with sudden

changes is considered to show the robustness of the proposal. It can be shown in Figure 1.7.

Time (s)

0 2 4 6 8 10 12 14 16

ra
d

/s

0

20

40

60

80

100

120

140
Speed

Ω

Time (s)

0 2 4 6 8 10 12 14 16

N
.m

0.5

1

1.5

2
Load Torque

Tl



CHAPTER 1. DYNAMICAL MODEL OF INTERIOR PERMANENT MAGNET
SYNCHRONOUS MACHINE 30

Figure 1.7: Load torque and speed profiles used during experimental and simulation tests

As mentioned in the introduction, electrical parameters could vary during the operation

of the motor due to magnetic saturation or temperature variations; mechanical parameters

could vary depending on the load torque, weight and so on. However, during the experimental

tests, it is not possible to have access to the motor parameters to vary their values. Then, the

experimental tests are carried out over a large time interval to see the effect of the parameters

on the estimation based on a virtual system without parameters. In addition, a simulation

test is carried out under resistance, inertia and inductance variations, as shown in Figure 1.8

to show the robustness of the proposed strategy. On the other hand, from simulation, the

Figure 1.8: Parameter variations in simulation tests

performance and effectiveness of the proposed observer based on the extraction of the angular

error eθ during a time interval of 16 s will be shown by using the profiles of Figure 1.9, at high,

low and zero speed, and under different load torque values.

1.5.1 Hardware description

The experimental setup is shown in Figure 1.10 which is composed of an IPMSM rated at 3

kW supplied by a three-phase voltages source inverter. The inverter is powered by 400 V DC

voltage. The pulse width modulation (PWM) technique is generated by a dSPACE DS1103
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Figure 1.9: Load torque and speed profiles considering a low-speed region with a very small
load torque.

PC DC voltage source Inverter

dSPACE

Motor Load

Figure 1.10: Experimental setup

with a switching frequency of 10 kHz. The digital board of dSPACE receives the stator currents

and the dc link voltages data with a 10 kHz frequency and the measured torque data with a 2

kHz frequency. The load torque is generated by a PMSM mechanically coupled with the shaft of

the IPMSM, while the angular position is measured by the encoder. Moreover, a Kalman-filter

applied to the measured position is used to calculate the rotor speed.
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1.6 Conclusion

The basics of permanent magnet synchronous motors, including their main dynamical models,

have been addressed in this chapter. It is well known that this dynamical model depends on

parameters as stator resistance, inductances and so on. Therefore, the use of dynamic models

in the observer design represents a problem, since the motor parameters vary during operation.

For this reason, a parameter-free virtual system has been introduced to avoid the parametric

uncertainties. The virtual system will be used in the observer design in the following chapter,

taking into account the benchmark presented in this chapter.



Chapter 2

New strategy for the rotor position and

speed estimation of Interior Permanent

Magnet Synchronous Motor

In this chapter, a strategy to extract the angular position estimation error of the IPMSM

is addressed. After this, two adaptive observers based on the sliding mode approach will

be introduced. These observers use the information of the angular position estimation error

extraction in order to estimate the angular position, speed and acceleration. Furthermore,

the observer gains are reparameterized based on a single parameter to simplify the tuning

procedure. Some tests are addressed for each observer and a comparative study is carried out.

2.1 Extraction of angular position estimation error

A methodology to extract the angular position estimation error (0.0.1) of IPMSM, from an αβ

stationary reference frame, is addressed. Then, considering that the currents−iαβ are measur-

able and in order to extract eθe , consider Park transformation, such that the currents id and iq

are expressed as

idq = TT (θe) iαβ (2.1.1)

33
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with

idq =

id
iq

 , TT (θe) =

 cos(θe) sin(θe)

−sin(θe) cos(θe)

 , iαβ =

iα
iβ

 , (2.1.2)

where currents idq and angular position θe are not measurable. Therefore, considering that

there exists a control law for current-id and current-id tracks a reference current-i∗d. Then, in

order to extract eθ, the following equation is introduced

Λθ1 = Iqn − Idn + i∗d
√
2 (2.1.3)

and the terms Idn and Iqn are defined as follows,

Idnqn = M(θ̂e + ϕ) T−T (θ) idq (2.1.4)

with Idnqn = [Idn Iqn]T and the transformation matrix M(θ̂e + ϕ) expressed as follows

M(θ̂e + ϕ) =

 cos(θ̂e + ϕ) sin(θ̂e + ϕ)

−sin(θ̂e + ϕ) cos(θ̂e + ϕ)

 , (2.1.5)

defining θ̂e as the estimated angular position and ϕ is an offset angle that must be chosen

appropriately to extract eθe . In addition, notice that (i∗d, iαβ, ϕ) are known values and θ̂ will be

computed by using the observer presented later, then

Λθ1 = Λθ1(θ̂e, iαβ, i
∗
d, ϕ) (2.1.6)

can be computed taking into account that

T−T (θe) idq = iαβ =

iα
iβ

 =

cos(θe)id − sin(θe)iq

sin(θe)id + cos(θe)iq

 (2.1.7)
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Now, from transformation matrix M(θ̂e+ϕ), the currents iαβ can be transformed into alternate

synchronous reference frame. Then, the terms Idn and Iqn are defined as follows

Idn = cos(eθe − ϕ)id − sin(eθe − ϕ)iq, Iqn = sin(eθe − ϕ)id + cos(eθe − ϕ)iq (2.1.8)

where Idn and Iqn depends explicitly on eθe . Nonetheless, extraction of eθe in this structure is

not possible. Therefore, selecting ϕ = π
4
, it is possible to factor and simplify (2.1.8) in terms of

eθe in order to compute (2.1.3), otherwise it is not easy to handle nor extract easily the angular

position error. In consequence, (2.1.3) is expressed in terms of eθe as follows

Λθ1 = iq
√
2 sin(eθe)− id

√
2 cos(eθe) + i∗d

√
2 (2.1.9)

Considering that Λθ1 is calculated by using measurable currents iαβ; and assuming id tracks a

desired reference i∗d. Then, the above equation can be rewritten as follows

Λθ1 = iq
√
2 sin(eθe) + i∗d

√
2 [1− cos(eθe)] (2.1.10)

and using a trigonometric identity, the following equation is obtained

Λθ1 = iq
√
2 sin(eθe) + i∗d

√
2
[
2(sin(

eθe
2
))2
]

(2.1.11)

Therefore, for a small angular error eθe , an approximation for Λθ1 is stated as

Λθ1 ≈ iqeθe
√
2 +

i∗d√
2
e2θe . (2.1.12)

Moreover, consider that quadratic term is smaller than the linear term. Then, Λθ1 is given by

Λθ1 ≈ iqeθe
√
2 (2.1.13)

Notice that (2.1.13) depends of the current iq. It is worth mentioning that the changes in

the current iq are directly proportional to the electromagnetic torque Te [78]. As can be seen
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Figure 2.1: Different scenarios to see the behavior of speed, electromagnetic torque and current-
iq.

in Figure 2.1, different profiles of speed and electromagnetic torque have been plotted and the

behavior of the current iq is shown. Then, from Figure 2.1, current iq can be positive or negative

depending on the electrical machine operation. Then, multiplying sign(iq) in both side of the

equation, it follows that
Λθ1sign(iq) ≈ iqsign(iq)

√
2 (eθe)

≈
√
2 |iq|eθe

(2.1.14)

Taking into account that iqmax > |iq|. Finally, it follows that

Λθ ≈ µ eθe (2.1.15)

with Λθ = Λθ1sign(iq), and µ = iqmax

√
2, where iqmax is the maximum value of iq, according to

the nominal current of the machine.

Nevertheless, iq is not available for measurement. Then, in (2.1.15), iq will be replaced by the

estimated current îq. In fact, îq is obtained from the transformation of the measured currents

iα and iβ from the stator reference frame to synchronous reference frame as shown by these
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equations îd
îq

 = TT (θ̂e)

iα
iβ

 (2.1.16)

where TT (θ̂e) =

 cos(θ̂e) sin(θ̂e)

−sin(θ̂e) cos(θ̂e)

 and since θ̂e will be calculated by the proposed observer,

then,

îq = −sin(θ̂e)iα + cos(θ̂e)iβ (2.1.17)

The initial rotor position information is needed for practical implementation to obtain îq. This

problem is addressed in the literature by several research works [79–81] and is supposed to

be solved. In the experimental implementation, the rotor is moved very slightly by applying

short voltage in order to detect the initial rotor position information. Once this information is

obtained, the current îq could be calculated using equation (2.1.17). Based on the calculated

îq, the rotor position estimation error could be extracted by

eθe ≈
Λθ

µ
=

Λθ1sign(̂iq)

µ
(2.1.18)

where Λθ1 is computed from (2.1.3). In the sequel, (2.1.18) will be used in the observer for

estimating the angular position, speed and acceleration.
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2.2 Observer design based on a sliding modes approach:

Proposal 1

In this section, an observer is designed by using the sliding mode approach. Consider the

following class of nonlinear system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = ρ(t)

y = x1

(2.2.1)

where x1, x2 and x3 are the states, ρ(t) is an unknown and bounded term and y ∈ ℜ the output

of the system.

Assumption 2.1. The term ρ(t) is bounded and unknown, i.e., |ρ(t)| ≤ ϱ1 for ϱ1 > 0.

Now, an observer based on sliding mode for the system (2.2.1) is expressed as follows

˙̂x1 = x̂2 +K1,1|e1|
2
3 sign(e1)

˙̂x2 = x̂3 +K2,1|e1|
1
3 sign(e1)

˙̂x3 = K3,1sign(e1)

ŷ = x̂1

(2.2.2)

where x̂1, x̂2 and x̂3 are the estimated states and ŷ is the estimated output. Moreover, the

gains for the observer are reparameterized based on a single parameter Lo as follows

K1,1 = 3L
5
3
o , K2,1 = 2L

10
3
o , K3,1 =

(
4

9

)
L5
o (2.2.3)

where Lo > 0 is a constant positive parameter. However, if Lo is too large, it could cause

an overestimation and increase the chattering amplitude, causing damage to the actuator.

Currently, the design of an adaptive law for the gains is the best alternative to mitigate this
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problem.

2.2.1 Adaptive observer design

Now, an adaptive observer will be designed for the system (2.2.1). Then, the following observer

˙̂x1 = x̂2 + K̃1,1|e1|
2
3 sign(e1)

˙̂x2 = x̂3 + K̃2,1|e1|
1
3 sign(e1)

˙̂x3 = K̃3,1sign(e1)

ŷ = x̂1

(2.2.4)

is an AHOSMO-1 and its gains are defined as follows

K̃1,1 = 3L
5
3
o (t), K̃2,1 = 2L

10
3
o (t), K̃3,1 =

(
4

9

)
L5
o(t) (2.2.5)

where Lo(t) > 0 is an adaptive parameter that will be introduced later.

Remark 2.1: The demonstration to calculate the proposed gains has been introduced in

Appendix A (see A.1.1).

Taking into account the observer (2.2.4), an analysis of convergence will be introduced and

an adaptive law for Lo(t) will be designed. Then, defining the following estimation errors

e1 = x1 − x̂1

e2 = x2 − x̂2

e3 = x3 − x̂3

(2.2.6)

the following dynamics can be calculated

ė1 = e2 − 3L
5
3
o (t)|e1|

2
3 sign(e1)

ė2 = e3 − 2L
10
3
o (t)|e1|

1
3 sign(e1)

ė3 = ρ(t)−
(
2

3

)2

L5
o(t)sign(e1)

(2.2.7)
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Now, taking into account the dynamics of the estimation errors, the following change of variable

is established as follows

ζ1 =
e1

L2
o(t)

, ζ2 =
e2

L2
o(t)

, ζ3 =
e3

L2
o(t)

(2.2.8)

and taking the first derivative in time, the dynamical system in terms of the new variables is

given by

ζ̇1 = −3Lo(t)|ζ1|
2
3 sign(ζ1) + ζ2 − 2ζ1

L̇o(t)

Lo(t)

ζ̇2 = −2L2
o(t)|ζ1|

1
3 sign(ζ1) + ζ3 − 2ζ2

L̇o(t)

Lo(t)

ζ̇3 = −
(
2

3

)2

L3
o(t)sign(ζ1) +

ρ(t)

L2
o(t)

− 2ζ3
L̇o(t)

Lo(t)

(2.2.9)

On the other side, the following new change of variable is introduced

ξ1 = |ζ1|
2
3 sign(ζ1), ξ2 =

ζ2
Lo(t)

, ξ3 =
3ζ3|ζ1|

1
3

2L2
o(t)

(2.2.10)

and the dynamical system can be expressed by using the new variables as follows

ξ̇1 =
2Lo(t)

3|ζ1|
1
3

[−3ξ1 + ξ2]−
4L̇o(t)

3Lo(t)
ξ1

ξ̇2 =
2Lo(t)

3|ζ1|
1
3

[−3ξ1 + ξ3]−
3L̇o(t)

Lo(t)
ξ2

ξ̇3 =
2Lo(t)

3|ζ1|
1
3

[
−ξ1 +

(
3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+
ξ3

2|ζ1|
2
3

(−3ξ1 + ξ2)

]
− 14L̇o(t)

3Lo(t)
ξ3

(2.2.11)

The resulting system (2.2.11) can be expressed in the following compact form

ξ̇ = αo

[(
Ao − P−1

o CT
o Co

)
ξ + Φo

]
−Noξ

L̇o(t)

Lo(t)
(2.2.12)
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where αo =
2Lo(t)

3|ζ1|
1
3

and

ξ =


ξ1

ξ2

ξ3

 , Ao =


0 1 0

0 0 1

0 0 0

 , Co =
[
1 0 0

]
, Po =


1 −1 1

−1 2 −3

1 −3 6

 ,

No =


4

3
0 0

0 3 0

0 0
14

3

 , Φo =


0

0(
3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+
ξ3

2|ζ1|
2
3

(−3ξ1 + ξ2)

 .
Assumption 2.2. The terms in vector Φo are locally Lipschitz with respect to ξ [82], i.e.,

||Φo|| ≤ ℏ||ξ||, for ℏ > 0.

Moreover, Po is a symmetric positive-definite matrix, whose solution is given by

Po + AT
o Po + PoAo − CT

o Co = 0

Theorem 2.1. Consider the dynamic system (2.2.1) and the Assumptions 2.1 and 2.2 are

satisfied. Furthermore,

L̇o(t) =

[
k

1
2
o
|e1|

2
3

L
1
3
o (t)

− γ
1
2
o L

2
o(t)

]
(2.2.13)

is an adaptive law-1 of Lo(t), for γo > 0 and ko > 0 chosen appropriately, where ko > γo > 0.

Then, the system (2.2.4) is an Adaptive High Order Sliding Mode Observer (AHOSMO-1) for

the dynamic system (2.2.1) such that estimation errors ei, for i = 1, 2, 3; converge to zero in

finite time.

Proof

A Lyapunov candidate function is considered as follows

V(ξ,Lo(t)) = V(ξ) + V(Lo(t)) (2.2.14)
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defining V(ξ) = ξTPoξ and V(Lo(t)) =
γo
2
Lo(t)

2. Then, considering the Lyapunov candidate

function, it is possible to take its first derivative in time and replace the suitable expressions,

it follows that

V̇(ξ,Lo) =αoξ
T
[
AT

o Po + PoAo

]
ξ − 2αoξ

TCT
o Coξ −

L̇o(t)

Lo(t)
ξT [PoNo +NoPo] ξ

+ γoL̇o(t)Lo(t) + 2αoξ
TPoΦo

(2.2.15)

Taking into account that AT
o Po+PoAo = −Po+C

T
o Co. Then, equation (2.2.15) can be rewritten

as follows

V̇(ξ,Lo(t)) = −αoξ
TPoξ − αoξ

TCT
o Coξ −

L̇o(t)

Lo(t)
ξT [PoNo +NoPo] ξ + γoL̇o(t)Lo(t) + 2αoξ

TPoΦo

(2.2.16)

Now, taking into account that PoNo + NoPo = Ro, and defining Ro as a symmetric positive-

definite matrix. Then, ξTRoξ ≥ λmin(Ro)

λmax(Po)
V(ξ) = koV(ξ), where λmin(Ro) and λmax(Po) are the

minimum and maximum singular values of Ro and Po, respectively. Moreover, −αoξ
TCT

o Coξ <

0, for Lo(t) > 0. Then,

V̇(ξ,Lo(t)) ≤ −αoV(ξ) −
L̇o(t)

Lo(t)

[
koV(ξ) − γoL

2
o(t)
]
+ 2αoξ

TPoΦo (2.2.17)

Considering that

[
koV(ξ) − γoL

2
o(t)
]
=
[
k

1
2
o V

1
2

(ξ) + γ
1
2
o Lo(t)

] [
k

1
2
o V

1
2

(ξ) − γ
1
2
o Lo(t)

]
and f(V(ξ),Lo(t)) =

[
k

1
2
o V

1
2

(ξ) + γ
1
2
o Lo(t)

]
> 0. Then, equation (2.2.17) is written as

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))
L̇o(t)

Lo(t)

[
k

1
2
o V

1
2

(ξ) − γ
1
2
o Lo(t)

]
+ 2αoξ

TPoΦo (2.2.18)

On the other side, using the following inequalities

|ζ1|
4
3 = |ξ1|2 ≤ ||ξ||2 (2.2.19)
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and

λmin(Po)||ξ||2 ≤ V(ξ) ≤ λmax(Po)||ξ||2 (2.2.20)

where λmin(Po) and λmax(Po) are the minimum and maximum singular values of Po. Then, the

following inequality is satisfied

|ζ1|
2
3 ≤ ||ξ|| ≤

(
V(ξ)

λmin(Po)

) 1
2

(2.2.21)

Therefore, from above inequality, it follows that

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))
L̇o(t)

Lo(t)

[
k

1
2
o
|e1|

2
3

L
4
3
o (t)

− γ
1
2
o Lo(t)

]
+ 2αoξ

TPoΦo (2.2.22)

Choosing an adaptive law as follows L̇o(t) =

[
k

1
2
o
|e1|

2
3

L
4
3
o (t)

− γ
1
2
o Lo(t)

]
Lo(t). Then,

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))

[
k

1
2
o
|e1|

2
3

L
4
3
o (t)

− γ
1
2
o Lo(t)

]2
+ 2αoξ

TPoΦo (2.2.23)

Assuming that e1 tend to zero faster than Lo(t). Equation (2.2.23) is given by

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))

[
γoL

2
o(t)
]
+ 2αoξ

TPoΦo (2.2.24)

From Assumption 2.2, taking the norm to the nonlinear term 2αoξ
TPoΦo and the inequality

(2.2.20), then, it follows that

V̇(ξ,Lo(t)) ≤ −2Lo(t)

3|ζ1|
1
3

[1− σo]V(ξ) − f(V(ξ),Lo(t))

[
γoL

2
o(t)
]

(2.2.25)

where σo =
2||Po||ℏ
λmin(Po)

. Furthermore, from |ζ1|
2
3 = |ξ1| ≤ |ξ1|2 ≤ ||ξ||2, the following inequality

is satisfied,

|ζ1|
1
3 ≤ ||ξ|| ≤

(
V(ξ)

λmin(Po)

) 1
2

(2.2.26)
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Then,

V̇(ξ,Lo(t)) ≤ −Lo(t)ΓoV
1
2

(ξ) − f(V(ξ),Lo(t))

[
γoL

2
o(t)
]

(2.2.27)

where Γo =
2 [1− σo]λ

1
2
min(Po)

3
. Rewritten (2.2.27) as follows

V̇(ξ,Lo(t)) ≤ −Lo(t)
√
2γ

1
2
o

[
Γo

√
2γ

1
2
o

V
1
2

(ξ) + f(V(ξ),Lo)
γ

1
2
o√
2
Lo(t)

]
(2.2.28)

and defining η0 = Lo(t)
√
2γ

1
2
o and φ = min

[
Γo

√
2γ

1
2
o

, f(V(ξ),Lo(t))

]
. It follows that

V̇(ξ,Lo(t)) ≤ −η

[
V

1
2

(ξ) +
γ

1
2
o√
2
Lo(t)

]
(2.2.29)

where η = η0φ. On the other hand, considering that Jensen´s inequality [83] is expressed as

follows

[|a|q + |b|q]
1
q ≤ |a|+ |b| (2.2.30)

and defining a = V
1
2

(ξ), b = V
1
2

(Lo(t))
and q = 2. Then, the following inequality is satisfied

[
|V

1
2

(ξ)|
2 + |V

1
2

(Lo(t))
|2
] 1

2 ≤ |V
1
2

(ξ)|+ | γ
1
2
o√
2
Lo(t)| (2.2.31)

and

V
1
2

(ξ,Lo(t))
≤ V

1
2

(ξ) +
γ

1
2
o√
2
Lo(t). (2.2.32)

Finally, the Lyapunov dynamic equation is satisfied as follows

V̇(ξ,Lo(t)) ≤ −ηV
1
2

(ξ,Lo(t))
(2.2.33)

As mentioned before, V̇(ξ,Lo(t)) is a Lyapunov function, with Lo(t) sufficiently large, satisfying

η > 0. Then, V̇(ξ,Lo(t)) is negative definite and can guarantee the convergence of the observer

in finite time. On the other side, taking into account the equation v̇ = −ηv 1
2 , whose solution
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is defined by v(t) = (v(0)
1
2 − 1

2
ηt)2. Then, the comparison principle can be applied in order

to estimate the convergence time T1. Therefore, V(ξ,Lo(t)) < v(t) when V(ξ(0)),Lo(0)) < v(0), then

ξ has a finite-time convergence in an estimated time defined by T1 =
2V

1
2

(ξ(0)),Lo(0))

η
for Lo(t)

sufficiently large. Thus, V(ξ,Lo(t)) tends to zero in finite-time, which involves that the estimation

errors ei, for i = 1, 2, 3; tend to zero in finite time.

Remark 2.2. As can be seen, the system (2.2.12) has a singularity when e1 = 0.

The singularity arise due to the change of variable ξ1 = |ζ1|
2
3 sign(ζ1), ξ2 =

ζ2
Lo(t)

, ξ3 =

3ζ3|ζ1|
1
3

2L2
o(t)

; converting system (2.2.7) into system (2.2.12), whose domain is defined as follows

D = {(ξ1, ξ2, ξ3) ∈ ℜ3| ξ1 ̸= 0} . Nonetheless, considering convergence analysis, the singularity

does not appear when the system is expressed in terms of the original coordinates [84,85].

2.2.2 Adaptive observer design for the IPMSM

Consider the adaptive law-1 in Theorem 2.1 and the virtual system (1.4.4), then, an adaptive

observer based on the virtual system (1.4.4) is designed as follows

˙̂
θe = ω̂ + K̃1,1|eθe|

2
3 sign(eθe)

˙̂ω = α̂ + K̃2,1|eθe|
1
3 sign(eθe)

˙̂α = K̃3,1sign(eθe)

(2.2.34)

where θ̂e, ω̂ and α̂ are the estimation of electrical angular position, electrical speed and ac-

celeration, respectively. However, θe is not measured directly, such that, the observer (2.2.34)

cannot be implemented. Therefore, considering the methodology to extract eθe introduced in

section 2.1, then, Λθ can be expressed in terms of the estimation error eθe as Λθ = µeθe , with

µ > 0. Thus, eθe = θe − θ̂e can be replaced by θe − θ̂e =
Λθ

µ
into the observer (2.2.34), i.e., the



CHAPTER 2. NEW STRATEGY FOR THE ROTOR POSITION AND SPEED
ESTIMATION OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 46

AHOSMO-1 for the IPMSM is given by

˙̂
θe = ω̂ + K̃1,1|

Λθ

µ
|
2
3 sign(

Λθ

µ
)

˙̂ω = α̂ + K̃2,1|
Λθ

µ
|
1
3 sign(

Λθ

µ
)

˙̂α = K̃3,1sign(
Λθ

µ
)

(2.2.35)

Then, the observer (2.2.35) is used to estimate the angular position, speed and acceleration. As

previously mentioned, θ̂ =
θ̂e
p

is the estimated mechanical angular position and Ω̂ =
ω̂

p
is the

mechanical speed. In Figure 2.2, a scheme of the proposed AHOSMO-1 (2.2.35) is introduced.

In addittion, in Figure 2.3 a flowchart is presented in order to show the interconnection among

cos( ෠𝜃𝑒 +
𝜋

4
)
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Λ𝜃

𝜇

𝐿𝑜(𝑡)

෠𝜃𝑒

Figure 2.2: Scheme of the proposed AHOSMO-1.

the extraction of the angular error and the adaptive observer in the system.

2.2.3 Simulation results

In this section, a simulation result is presented to show the AHOSMO-1 performance in open-

loop. Simulation test has been carried out in Matlab-Simulink environment, using a sampling
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Figure 2.3: Flowchart for the proposed strategy.

time of 1×10−3 with a fixed-step ode4 solver. Moreover, the test has been made by considering

the profiles and parametric uncertainties given by Figure 1.7 and Figure 1.8, respectively. The

parameters of the adaptive observer are given in Table 2.1. In Figure 2.4, the estimation of the

Table 2.1: Parameters for AHOSMO-1

Values
Lo(0) γ0 ko
1.5 0.003 120

angular position is given. It is possible to see that observer has a good performance during the

estimation.

In Figure 2.5 the speed estimation and its estimation error are shown. The speed estimation

error shows that the observer is not affected by parametric uncertainties. Moreover, thanks to

the estimation of the acceleration [see Figure 2.6-a)], a minimum error can be seen during

speed profile change. This error is caused by the fast dynamic in the speed, for this reason, the
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Figure 2.4: AHOSMO-1. Rotor angular position estimation and its estimation error

acceleration estimation has been included to compensate those errors in fast transient modes,

minimizing the estimation error.

Figure 2.5: AHOSMO-1. Rotor speed estimation and speed estimation error

On the other hand, in Figure 2.6-b), the behaviour of adaptive law for the observer is shown,

which takes values in order to achieve a good estimation of the observer avoiding overestimation

of gain. Therefore, in this open-loop test for the first adaptive observer, good results have been

obtained by simulation.
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Figure 2.6: AHOSMO-1. Estimation of acceleration (a) and behaviour of the adaptive law (b)

2.3 Observer design based on a sliding modes approach:

Proposal 2

In this section, a second observer is designed for a class of nonlinear system given by (2.2.1).

Then, an observer for the system (2.2.1) is expressed as follows

˙̂x12 = x̂2 +K1,2|e12|
2
3 sign(e12)

˙̂x22 = x̂3 +K2,2|e12|
1
3 sign(e12)

˙̂x32 = K3,2sign(e12)

ŷ = x̂12

(2.3.1)

where x̂12 , x̂22 and x̂32 represent the estimated states and ŷ is the estimated output. Moreover,

the gains for the observer are reparameterized in terms of Lo2 as follows

K1,2 = 3Lo2 K2,2 = 2L2
o2

K3,2 =

(
2

3

)2

L3
o2

(2.3.2)

where Lo2 > 0 is a constant positive parameter. However, if Lo2 is too large, it could cause

an overestimation and increase the chattering amplitude, causing damage to the actuator. For
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this reason, in the next section, an adaptive law for the gains will be designed.

2.3.1 Adaptive observer design

Now, a second adaptive observer is proposed for the system (2.2.1). The main difference with

respect to the first adaptive observer (AHOSMO-1) is the reduction of the change of coordinates

during the proof, which helps to simplify the calculations during the analysis, obtaining a new

adaptive law for the observer with a new gain reparameterization.

Consider the following system

˙̂x12 = x̂2 + K̃1,2|e12|
2
3 sign(e12)

˙̂x22 = x̂3 + K̃2,2|e12|
1
3 sign(e12)

˙̂x32 = K̃3,2sign(e12)

ŷ = x̂12

(2.3.3)

which is an AHOSMO-2 and its reparameterized gains in terms of a single parameter are defined

by

K̃1,2 = 3Lo2(t) K̃2,2 = 2L2
o2
(t) K̃3,2 =

(
2

3

)2

L3
o2
(t) (2.3.4)

where Lo2(t) is an adaptive parameter that will be introduced later.

Remark 2.3: The demonstration to compute the proposed gains has been introduced in

Appendix A (See A.1.2).

Now, an analysis of convergence for the observer (2.3.3) and an adaptive law for the parameter

Lo2(t) are introduced. Then, consider the following estimation errors

e12 = x1 − x̂12 , e22 = x2 − x̂22 , e32 = x3 − x̂32 (2.3.5)
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and their dynamics as follows

ė12 = e22 − 3Lo2(t)|e12|
2
3 sign(e12)

ė22 = e32 − 2L2
o2
(t)|e12|

1
3 sign(e12)

ė32 = ρ(t)−
(
2

3

)2

L3
o2
(t)sign(e12)

(2.3.6)

Now, a change of variable is introduced as follows

ξ12 =
|e12|

2
3 sign(e12)

Lo2(t)
ξ22 =

e22
L2
o2
(t)

ξ32 =
3e32|e12|

1
3

2L3
o2
(t)

(2.3.7)

Then, it follows that the dynamical system can be expressed by using the new variables. There-

fore, the following system can be obtained

ξ̇12 =
2Lo2(t)

3|e12|
1
3

[−3ξ12 + ξ22 ]−
L̇o2(t)

Lo2(t)
ξ12

ξ̇22 =
2Lo2(t)

3|e12|
1
3

[−3ξ12 + ξ32 ]−
2L̇o2(t)

Lo2(t)
ξ22

ξ̇32 =
2Lo2(t)

3|e12|
1
3

[
−ξ12 +

(
3

2

)2 |e12|
2
3ρ(t)

L4
o2
(t)

+
Lo2(t)ξ32

2|e12|
2
3

[−3ξ12 + ξ22 ]

]
− 3L̇o2(t)

Lo2(t)
ξ32

(2.3.8)

and can be simplified as follows

ξ̇o2 = αo2

[(
Ao − P−1

o CT
o Co

)
ξo2 + Φo2

]
−Do2ξo2

L̇o2(t)

Lo2(t)
(2.3.9)

defining αo2 =
2Lo2(t)

3|e12|
1
3

and the following terms as follows

ξo2 =


ξ12

ξ22

ξ32

 , Ao =


0 1 0

0 0 1

0 0 0

 , Co =
[
1 0 0

]
, Po =


1 −1 1

−1 2 −3

1 −3 6

 , (2.3.10)
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Do2 =


1 0 0

0 2 0

0 0 3

 , Φo2 =


0

0(
3

2

)2 |e12|
2
3ρ(t)

L4
o2
(t)

+
Lo2(t)ξ32

2|e12|
2
3

[−3ξ12 + ξ22 ]

 . (2.3.11)

Assumption 2.3. The term in the vector Φo2 is locally Lipschitz with respect to ξo2 [82], i.e.,

||Φo2|| ≤ ℏ2||ξo2 ||, for ℏ2 > 0.

Moreover, Po is a symmetric positive-definite matrix, whose solution is given by

Po + AT
o Po + PoAo − CT

o Co = 0 (2.3.12)

Theorem 2.2. Consider the dynamic system (2.2.1) and the Assumptions 2.1 and 2.3 are

satisfied. Furthermore,

L̇o2(t) =
[
k

1
2
o2|e12|

2
3 − γ

1
2
o2L

2
o2
(t)
]

(2.3.13)

is an adaptive law-2 of Lo2(t), for γo2 > 0 and ko2 > 0 chosen appropriately, where ko2 > γo2 >

0. Then, the system (2.3.3) is an Adaptive High-Order Sliding Mode Observer (AHOSMO-2)

for the dynamic system (2.2.1) such that estimation errors ei2, for i = 1, 2, 3; converge to zero

in finite time.

Proof

A Lyapunov candidate function is considered as follows

V(ξo2 ,Lo2 (t))
= V(ξo2 ) + V(Lo2 (t))

(2.3.14)

defining V(ξo2 ) = ξTo2Poξo2 and V(Lo2 (t))
=
γo2
2
L2
o2
(t). Then, considering the Lyapunov candidate

function, it is possible to take its first derivative in time and replace the suitable expressions,

it follows that

V̇(ξo2 ,Lo2 (t))
=αo2ξ

T
o2

[
AT

o Po + PoAo

]
ξo2 − 2αo2ξ

T
o2
CT

o Coξo2

− 2
L̇o2(t)

Lo2(t)
ξTo2PoDo2ξo2 + γo2L̇o2(t)Lo2(t) + 2αo2ξ

T
o2
PoΦo2

(2.3.15)
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Taking into account that AT
o Po+PoAo = −Po+C

T
o Co. Then, equation (2.3.15) can be rewritten

as follows

V̇(ξo2 ,Lo2 (t))
=− αo2ξ

T
o2
Poξo2 − αo2ξ

T
o2
CT

o Coξo2 − 2
L̇o2(t)

Lo2(t)
ξTo2PoDo2ξo2

+ γo2L̇o2(t)Lo2(t) + 2αo2ξ
T
o2
PoΦo2

(2.3.16)

On the other hand, using the following inequalities

|e12 |
4
3

L2
o2
(t)

= |ξ12|2 ≤ ||ξo2||2 (2.3.17)

and

λmin(Po)||ξo2||2 ≤ V(ξo2 ) ≤ λmax(Po)||ξo2||2 (2.3.18)

where λmin(Po) and λmax(Po) are the minimum and maximum singular values of Po. Moreover,

λmin(PoDo2)||ξo2||2 ≤ ξTo2PoDo2ξo2 ≤ λmax(PoDo2)||ξo2||2 (2.3.19)

where λmin(PoDo2) and λmax(PoDo2) are the minimum and maximum singular values of PoDo2 .

Then,

V̇(ξo2 ,Lo2 (t))
≤− αo2ξ

T
o2
Poξo2 − αo2ξ

T
o2
CT

o Coξo2 − 2λmin(PoDo2)||ξo2||2
L̇o2(t)

Lo2(t)

+ γo2L̇o2(t)Lo2(t) + 2αξTo2PoΦo2

(2.3.20)

In this way,

V̇(ξo2 ,Lo2 (t))
≤− αo2ξ

T
o2
Poξo2 − αo2ξ

T
o2
CT

o Coξo2 − ko2||ξo2||2
L̇o2(t)

Lo2(t)

+ γo2L̇o2(t)Lo2(t) + 2αo2ξ
T
o2
PoΦo2

(2.3.21)



CHAPTER 2. NEW STRATEGY FOR THE ROTOR POSITION AND SPEED
ESTIMATION OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 54

where ko2 = 2λmin(PoDo2) > 0. The above equation can be established as follows

V̇(ξo2 ,Lo2 (t))
≤− αo2ξ

T
o2
Poξo2 − αo2ξ

T
o2
CT

o Coξo2 + 2αo2ξ
T
o2
PoΦo2

− L̇o2(t)

Lo2(t)

[
ko2||ξo2||2 − γo2L

2
o2
(t)
] (2.3.22)

Now, the last term of the above equation can be expressed as follows

L̇o2(t)

Lo2(t)

[
ko2||ξo2||2 − γo2L

2
o2
(t)
]
=
L̇o2(t)

Lo2(t)

[
k

1
2
o2||ξo2||+ γ

1
2
o2Lo2(t)

] [
k

1
2
o2||ξo2|| − γ

1
2
o2Lo2(t)

]
(2.3.23)

and f(ξo2 ,Lo2 (t))
=
[
k

1
2
o2||ξo2||+ γ

1
2
o2Lo2(t)

]
> 0. Then,

V̇(ξo2 ,Lo2 (t))
≤− αo2ξ

T
o2
Poξo2 − αo2ξ

T
o2
CT

o Coξo2 + 2αo2ξ
T
o2
PoΦo2

− f(ξo2 ,Lo2 (t))
L̇o2(t)

Lo2(t)

[
k

1
2
o2||ξo2 || − γ

1
2
o2Lo2(t)

] (2.3.24)

From inequalities (2.3.17) and (2.3.18), the following inequality is satisfied

|e12|
2
3

Lo2(t)
≤ ||ξo2 || ≤

(
V(ξo2 )

λmin(Po)

) 1
2

(2.3.25)

Then, from (2.3.25), it follows that

V̇(ξo2 ,Lo2 (t))
≤− αo2V(ξo2 ) − αo2ξ

T
o2
CT

o Coξo2 + 2αo2ξ
T
o2
PoΦo2

− f(ξo2 ,Lo2 (t))
L̇o2

Lo2(t)

[
k

1
2
o2

|e12|
2
3

Lo2(t)
− γ

1
2
o2Lo2(t)

]
(2.3.26)

Choosing an adaptive law as follows

L̇o2(t) =

[
k

1
2
o2

|e12|
2
3

Lo2(t)
− γ

1
2
o2Lo2(t)

]
Lo2(t) (2.3.27)
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Then,

V̇(ξo2 ,Lo2 (t))
≤ −αo2V(ξo2 ) − αo2ξ

T
o2
CT

o Coξo2 − f(ξo2 ,Lo2 (t))

[
k

1
2
|e12|

2
3

Lo2(t)
− γ

1
2
o2Lo2(t)

]2
+ 2αo2ξ

T
o2
PoΦo2

(2.3.28)

and assuming that e12 tend to zero faster than Lo2(t), and −αo2ξ
T
o2
CT

o Coξo2 < 0, for Lo2(t) > 0.

Equation (2.3.28) is given by

V̇(ξo2 ,Lo2 (t))
≤ −αo2V(ξo2 ) − f(ξo2 ,Lo2 (t))

[
γo2L

2
o2
(t)
]
+ 2αo2ξ

T
o2
PoΦo2 (2.3.29)

Taking the norm to the nonlinear term 2αo2ξ
T
o2
PoΦo2 and from Assumption 2.3, then (2.3.29)

is given by

V̇(ξo2 ,Lo2 (t))
≤ −αo2V(ξo2 ) + 2αo2||ξo2||2||Po||ℏ2 − f(ξo2 ,Lo2 (t))

[
γo2L

2
o2
(t)
]

(2.3.30)

Now, from inequality (2.3.18). Then, it follows that

V̇(ξo2 ,Lo2 (t))
≤ −2Lo2(t)

3|e12|
1
3

[1− σo2 ]V(ξo2 ) − f(ξo2 ,Lo2 (t))

[
γo2L

2
o2
(t)
]

(2.3.31)

where σo2 =
2||Po||ℏ2
λmax(Po2)

. Furthermore, from
|e12 |

2
3

Lo2(t)
= |ξ12| ≤ |ξ12|2 ≤ ||ξo2||2, the following

inequality is satisfied
|e12|

1
3

L
1
2
o2(t)

≤ ||ξo2 || ≤
(

V(ξo2 )

λmin(Po)

) 1
2

(2.3.32)

and considering that (2.3.31) can be written as follows

V̇(ξo2 ,Lo2 (t))
≤ − 2Lo2(t)

3|e12 |
1
3L

1
2
o2

(t)

L
1
2
o2

(t)

[1− σo2 ]V(ξo2 ) − f(ξo2 ,Lo2 (t))

[
γo2L

2
o2
(t)
]

(2.3.33)

Then,

V̇(ξo2 ,Lo2 (t))
≤ −L

1
2
o2(t)Γo2V

1
2

(ξo2 )
− f(ξo2 ,Lo2 (t))

[
γo2L

2
o2
(t)
]

(2.3.34)
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where Γo2 =
2 [1− σo2 ]λ

1
2
min(Po)

3
. Rewritten (2.3.34) as follows

V̇(ξo2 ,Lo2 (t))
≤ −Lo2(t)

√
2γ

1
2
o2

[
Γo2

√
2γ

1
2
o2L

1
2
o2(t)

V
1
2

(ξo2 )
+ f(ξo2 ,Lo2 (t))

γ
1
2
o2√
2
Lo2(t)

]
(2.3.35)

and defining η02 = Lo2(t)
√
2γ

1
2
o2 and φo2 = min

(
Γo2

√
2γ

1
2
o2L

1
2
o2(t)

, f(ξo2 ,Lo2 (t))

)
. We can write the

following equation

V̇(ξo2 ,Lo2 (t))
≤ −η̃

[
V

1
2

(ξo2 )
+
γ

1
2
o2√
2
Lo2(t)

]
(2.3.36)

where η̃ = η02φo2 . On the other hand, considering that Jensen´s inequality [83] is expressed as

follows

[|ao2|q + |bo2|q]
1
q ≤ |ao2|+ |bo2| (2.3.37)

and defining ao2 = V
1
2

(ξo2 )
, bo2 = V

1
2

(Lo2 (t))
and q = 2. Then, the following inequality is satisfied

[
|V

1
2

(ξo2 )
|2 + |V

1
2

(Lo2 (t))
|2
] 1

2 ≤ |V
1
2

(ξo2 )
|+ |γ

1
2
o2√
2
Lo2(t)| (2.3.38)

such that

V
1
2

(ξo2 ,Lo2 (t))
≤ V

1
2

(ξo2 )
+
γ

1
2
o2√
2
Lo2(t) (2.3.39)

Finally, the Lyapunov dynamic equation is satisfied as follows

V̇(ξo2 ,Lo2 (t))
≤ −η̃V

1
2

(ξo2 ,Lo2 (t))
(2.3.40)

As mentioned before, V̇(ξo2 ,Lo2 (t))
is a Lyapunov function, with Lo2(t) sufficiently large, satisfying

η̃ > 0. Then, V̇(ξo2 ,Lo2 (t))
is negative definite and can guarantee the convergence of the observer

in finite time. On the other side, taking into account the equation v̇ = −η̃v 1
2 , whose solution

is defined by v(t) = (v(0)
1
2 − 1

2
η̃t)2. Then, the comparison principle can be applied in order to

estimate the convergence time T12 . Therefore, V(ξo2 ,Lo2 )
< v(t) when V(ξo2 (0)),Lo2 (0))

< v(0), then



CHAPTER 2. NEW STRATEGY FOR THE ROTOR POSITION AND SPEED
ESTIMATION OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 57

ξo2 has a finite-time convergence in an estimated time defined by

T12 =
2V

1
2

(ξo2 (0)),Lo2 (0))

η̃

for Lo2(t) sufficiently large. Thus, V(ξo2 ,Lo2 (t))
tends to zero in finite-time, which involves that

the estimation errors ei2 , for i = 1, 2, 3; tend to zero in finite time.

Remark 2.4. As we can see, the system (2.3.9) has a singularity when e1 = 0. The singularity

arise due to the change of variable

ξ12 =
|e12|

2
3 sign(e12)

Lo2(t)
, ξ22 =

e22
L2
o2
(t)
, ξ32 =

3e32|e12 |
1
3

2L3
o2
(t)

converting system (2.3.6) into system (2.3.9), whose domain is defined as follows

D∈ =
{
(ξ12 , ξ22 , ξ32) ∈ ℜ3| ξ12 ̸= 0

}
.

Nonetheless, considering convergence analysis, the singularity does not appear when the system

is expressed in terms of the original coordinates (see for more details [84,85]).

2.3.2 Adaptive observer design for the IPMSM

Consider the adaptive law-2 in Theorem 2.2 and the virtual system (1.4.4), then, an AHOSMO-2

for the virtual system (1.4.4) is designed as follows

˙̂
θe = ω̂ + K̃1,2|eθe|

2
3 sign(eθe)

˙̂ω = α̂ + K̃2,2|eθe|
1
3 sign(eθe)

˙̂α = K̃3,2sign(eθe)

(2.3.41)

where θ̂e, ω̂ and α̂ are the estimation of electrical angular position, electrical speed and ac-

celeration, respectively. However, θe is not measured directly, such that, the observer (2.3.41)

cannot be implemented. Therefore, considering the methodology to extract eθe introduced in
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section 2.1, then, Λθ can be expressed in terms of the estimation error eθe as Λθ = µeθe , with

µ > 0. Thus, eθe = θe − θ̂e can be replaced by θe − θ̂e =
Λθ

µ
into the observer (2.3.41), i.e., the

AHOSMO-2 for the IPMSM is given by

˙̂
θe = ω̂ + K̃1,2|

Λθ

µ
|
2
3 sign(

Λθ

µ
)

˙̂ω = α̂ + K̃2,2|
Λθ

µ
|
1
3 sign(

Λθ

µ
)

˙̂α = K̃3,2sign(
Λθ

µ
)

(2.3.42)

Then, the observer (2.3.42) is used to estimate the angular position, speed and acceleration. In

Figure 2.7, a scheme of the proposed adaptive observer-2 is introduced. Moreover, in Figure

2.3, a flowchart has been presented to show the interconnection among the extraction of the

angular error and the adaptive observer. As previously mentioned, θ̂ =
θ̂e
p

is the estimated

mechanical angular position and Ω̂ =
ω̂

p
is the estimated mechanical speed.

cos( ෠𝜃𝑒 +
𝜋

4
)

𝑖𝛼

𝑖𝛽 ො𝛼
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+
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-
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)
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Figure 2.7: Scheme of the proposed AHOSMO-2.
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2.3.3 Simulation results

Considering the second adaptive observer introduced in this section. Simulation results in

open-loop are going to be introduced to estimate angular position, speed and acceleration. As

previously mentioned, simulation test has been carried out in Matlab-Simulink environment,

using a sampling time of 1 × 10−3 with a fixed-step ode4 solver. The profiles in Figure 1.7

and the parameter variations in Figure 1.8 have been used. Moreover, the parameters of the

adaptive observer are given in Table 2.2.

Table 2.2: Parameters for the AHOSMO-2

Values
Lo2(0) γo2 ko2

8 0.0001 80

Figure 2.8: AHOSMO-2. Rotor angular position estimation and its angular error

In Figure 2.8, angular position estimation and its estimation error are illustrated, showing

good effectiveness during the estimation despite parametric uncertainties. In Figure 2.9, speed

estimation and its speed estimation error show that the strategy based on the virtual system

without parameters has a good performance. Moreover, it is compensated with the estimation

of the acceleration to avoid large estimation errors in the speed and angular position, see Figure
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Figure 2.9: AHOSMO-2. Rotor speed estimation and speed estimation error

2.10-a). In addition, in Figure 2.10-b), the adaptive parameter Lo(t) is introduced, showing the

profile it takes to achieve the correct estimation of the estimates.

Figure 2.10: AHOSMO-2. Estimation of the acceleration (a) and behaviour of the adaptive
law (b)
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2.4 Comparative study

In this section, from simulations, a comparative study is presented. The comparative study is

carried out by considering the following strategies: an observer based on back-electromotive

force, an observer based on mechanical system by using first-order sliding modes and an observer

based on high frequency signal injection. The simulation test under parameter variations (see

Figure 1.8) and disturbance is carried out. First, an observer based on back-electromotive

Figure 2.11: Simulation test: Observer based on back-electromotive force

force is introduced in Figure 2.11 for estimating angular position and speed. In this class of

observers, the use of low pass filter generates a phase-delay in the estimation of the angular

position, and the parameter variations causes an error increment. After that, an observer based

on mechanical system by using first-order sliding modes is shown in Figure 2.12, estimating

speed, angular position and load torque. The chattering effect can be seen in the angular

error and the speed estimation error. Moreover, the effect of parameter variations causes an

error increase in the estimation of the load torque. Another strategy often used in sensorless

methods is the observer based on high frequency signal injection, which considers an extraction

of angular error from high frequency signal injection. In Figure 2.13, this strategy is introduced

in order to estimate angular position and speed. Then, from the errors in speed and angular

position, it is possible to see the performance of this strategy under the variation of parameters.
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Figure 2.12: Simulation test: Observer based on mechanical system by using first-order sliding
modes

Figure 2.13: Simulation test: Observer based on high frequency signal injection

A disadvantage of this strategy is the sensitivity to variations in inductance.

A performance index, Integral Absolute Error (IAE), is computed in order to show numeri-

cally the performance of each observer for the angular position estimation error and the speed

estimation error as can be illustrated in Figure 2.14 and Figure 2.15 , respectively.

The proposed observers (AHOSMO-1, AHOSMO-2) based on virtual system achieve a bet-

ter performance compared with the other strategies. The improvement can be shown from
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Figure 2.14: Performance index for the angular position estimation error
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Figure 2.15: Performance index for speed estimation error

the performance index, validating the effectiveness of the proposed observers. Therefore, the

extraction of the angular error eθe introduced in section 2.1 has been achieved successfully.

In addition, a simulation test to show the convergence of the observer has been carried out,

as can be seen in Figure 2.16. The initial conditions for the estimated speed and estimated

angular position are Ω̂(0) = 20 rad/s and θ̂(0) = 5.5 rad, respectively. We can see as the
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convergence is ensured such that convergence of the observer is achieved in finite time.

Figure 2.16: Simulation test: Initial condition for the speed (Top) and initial condition for the
angular position (Bottom)

On the other hand, this work proposes adaptive observers. Therefore, two simulation tests

have been carried out to show the advantages of using adaptive gain instead of constant gains.

These demo tests have been applied in AHOSMO-1 taking into account that gains K1,1, K2,1

and K3,1 are a function of the parameter Lo. Then, in Figure 2.17, a test is introduced by

considering constant gains, i.e., Lo is constant. During this test, the gain Lo has taken 3 values;

4, 6 and 8, respectively. It is possible to see that estimation of speed, angular position and

acceleration has a good performance when Lo = 4, avoiding the increase of chattering. However,

at 5 seconds when Lo = 6, it is possible to see the increase of chattering in the estimation errors

and estimated acceleration. Similarly occurs when Lo = 8 at 10 seconds. It is due to a gain

overestimation, causing chattering in the estimations. Then, in order to avoid this issue, the

use of adaptive gain have been an alternative, as shown in Figure 2.18, where is possible to

illustrate how the gain Lo(t) is adapted and finds the best value, avoiding an overestimation of

gain, reducing chattering in the estimate and achieving a good estimation. Therefore, it has

been shown that an adaptive gain can improve the result obtained by constant gains.

In addition, the proposed adaptive laws, for the parameters Lo(t) and Lo2(t) of the observers

AHOSMO-1 and AHOSMO-2, have been numerically evaluated at 5 seconds, as can be show
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Figure 2.17: AHOSMO-1. State estimation using different constant gains

Figure 2.18: AHOSMO-1. State estimation using adaptive gains

in Table 2.3. The final value of each gain at 5 seconds can show that both adaptive laws have

a similar behavior with respect to the energy used. However, the gains in terms of Lo2(t) has

slightly higher values, such that it could be concluded that the adaptive law Lo(t) is more

conservative.
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Table 2.3: Value for the gains of both adaptive observers at 5 seconds

AHOSMO-1
Lo(5) K̃1,1 K̃2,1 K̃3,1

4.14 32.07 228.5 542.9
AHOSMO-2

Lo2(5) K̃1,2 K̃2,2 K̃3,2

11.53 34.58 265.8 680.9

2.5 Proposed observer analysis

The performance of the proposed observer based on the extraction of eθe is evaluated in a

simulation and experimental test considering the profiles of Figure 1.9. A low-speed and zero

region is taken into account due to that in this region most of the observers present observability

problems. It is well known that IPMSM is not observable when the angular speed is equal to

zero. However, in the proposed strategy, the angular position estimation error eθe extracted

depends on the dynamics of the current−iq directly. Therefore, the observability is ensured for

a current−iq different to zero, i.e., iq ̸= 0, such that this condition is satisfied when the load

torque or the speed are different to zero. In this way, the load torque profile considered in the

validation has values equals to zero and different to zero with small values.

A simulation test is introduced in Figure 2.19 and an experimental test is introduced in

Figure 2.20. Then, from Figure 2.19 and Figure 2.20, it is shown that at the beginning,

the speed is 0 rad/s with a load torque going from 0.05 N.m to 1 N.m. Then, the observer

converges to real angular position and speed. After that, from 1.5 s to 4s the load torque is

0 N.m and the speed is still 0 rad/s until 3 s. Therefore, from 1.5 s, the observer diverges,

since, there exists a loss of observability when both speed and load torque are zero, since at

that moment the electric machine is standstill and there is not a persistent current−iq in Λθ.

However, from 3 s the speed increase until 2.5 rad/s, such that, the current−iq is different to

0, then the observer tends towards real speed and angular position. Therefore, from 3.5 s is

possible to see the convergence in the angular position. Then, the speed stays at low-speed (2.5

rad/s) for 2 s with a load torque different to 0 N.m, such that, a good estimation is achieved
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Figure 2.19: Simulation test: Convergence of proposed adaptive observer and behaviour of
current iq, applying different profiles of small load Torque and low-speed.

Figure 2.20: Experimental test: Convergence of proposed adaptive observer and behaviour of
current iq, applying different profiles of small load Torque and low-speed.

for the observer. After that, the speed increases until 30 rad/s and stays there for 3 s, and the

load torque tends to 0 N.m and stays there from 8.5 s to 11 s, such that, the observer achieves

a very accurate estimate. Finally, the speed decreases until 2 rad/s and from 13 s until 16 s,

the speed continues to decrease until it reaches 0 rad/s with a small load torque of 0.05 N.m.

From this test, it can be concluded that the observability depends on iq directly, which must
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be different from zero (iq ̸= 0) to ensure the observability. As shown in the Figure 2.19 and

Figure 2.20, iq = 0 when both load torque and speed are 0, otherwise, iq ̸= 0.

2.6 Conclusion

The extraction of the angular position estimation error has been the main challenge in this work

in order to apply a sensorless technique. In this chapter, the angular error eθ was extracted

successfully. Considering that measurable currents iαβ can be taken from the abc triphasic

components of the IPMSM, this information has been considered and represented by using the

Park transformation. Moreover, taking into account some ideas of the saliency method-based,

one equation was defined without considering the high-frequency signal injection characteristic.

Then, after some calculations, one approximation of the angular error was obtained. It is

worth mentioning that the extraction of the angular position error does not require the use of

additional elements like filters and high-frequency signal injection.

A sensorless scheme requires information on the angular position and speed. Then, the

extracted angular error has been a key piece to design two adaptable observers based on a

virtual system without machine parameters to estimate angular position and speed. These

adaptive observer have been designed by considering reparameterized gains, i.e., all gains are

in terms of a single parameter to reduce the tuning time and facilitate the design of adaptive

laws for the observers. Simulation tests were introduced as well as a comparative study. The

effectiveness and performance of the adaptive observers based on the extraction of the angular

error has been illustrated.



Chapter 3

Controller design for the Interior

Permanent Magnet Synchronous motor

In this chapter, two adaptive controllers are designed. The gains of these controllers are based

on a single parameter to reduce the tuning time. The controllers will be applied to track a

reference of direct-axis current and speed. Some tests for the adaptive controllers are addressed

and a comparative study is introduced.

3.1 Control design based on Super-Twisting approach:

Proposal-1

Consider the class of nonlinear system given by

χ̇1 = χ2

χ̇2 = f(χ) + g(χ)u+ δ(t)

y = Cχ

(3.1.1)

where χ = [χ1 χ2]
T is a state vector, for χ ∈ ℜ2; u ∈ ℜ is the input, f(χ) and g(χ) are

nonlinear terms, y ∈ ℜ is the output of the system, δ(t) is a time-varying external disturbance

and C = [1 0].

69
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Assumption 3.1. The nonlinear terms f(χ) and g(χ) are globally Lipschitz with respect to

χ [86].

Now, a sliding surface S is defined as follows

S = ϑ11e1χ + e2χ (3.1.2)

where e1χ = χ1 − χref is a tracking error, e2χ = χ̇1 − χ̇ref and ϑ11 > 0; whose dynamic is given

by

Ṡ = ϑ11e2χ + f(χ) + g(χ)u+ δ(t)− χ̈ref (3.1.3)

A control input is chosen as follows

u =
1

g(χ)

[
−ϑ11e2χ − f(χ) + χ̈ref + Vst

]
, (3.1.4)

with

Vst = −Kc1|S|
1
2 sign(s)−

∫
Kc2sign(S)dt (3.1.5)

where Kc1 = 2L2
c and Kc2 =

L4
c

2
are reparameterized based on a single parameter Lc, such that

Lc > 0 is a constant positive parameter. Then, equation (3.1.4) is a super twisting control for

the system (3.1.1). However, tuning with constant gains sometimes causes gain overestimation.

Therefore, in the next section, an adaptive control will be presented to avoid this problem.

3.1.1 Adaptive super-twisting control design

Consider the following control

u =
1

g(χ)

[
−ϑ11e2χ − f(χ) + χ̈ref + Vst

]
, (3.1.6)

with

Vst = −K̃c1|S|
1
2 sign(s)−

∫ t

0

K̃c2sign(S)dτ (3.1.7)



CHAPTER 3. CONTROLLER DESIGN FOR THE INTERIOR PERMANENT MAGNET
SYNCHRONOUS MOTOR 71

which is an Adaptive Super-Twisting Control (ASTWC-1) for the system (3.1.1) and their

reparameterized gains, in terms of a single parameter, are defined by

K̃c1 = 2L2
c(t) K̃c2 =

L4
c(t)

2
(3.1.8)

where Lc(t) is an adaptive parameter that will be introduced later.

Remark 3.1. A demonstration to compute the proposed gains has been introduced in Ap-

pendix A (See A.2.1).

A stability analysis and the adaptive law design for the parameter Lc(t) will be introduced

in the sequel.

Consider that the dynamic of the sliding surface (3.1.3) in closed-loop with the control

(3.1.6) is given by

Ṡ = −K̃c1|S|
1
2 sign(S)−

∫ t

0

K̃c2sign(S)dτ + δ(t) (3.1.9)

where (3.1.9) can be expressed as follows

Ṡ = −K̃c1|S|1/2sign(S) + ν + δ(t)

ν̇ = −K̃c2sign(S)

(3.1.10)

then, sliding variable S and its time derivative Ṡ converge to 0 in finite time.

Assumption 3.2. δ(t) and its time derivative δ̇(t) are bounded for unknown positive constants,

i.e., |δ(t)| < δM , |δ̇(t)| ≤ ∆M ; with δM ,∆M > 0, ∀t ≥ 0 [87].

Now, introducing the following change of variable: Υ1 = S and Υ2 = ν + δ(t). System

(3.1.10) is expressed as

ΣSTW :

Υ̇1 = −K̃c1|Υ1|1/2sign(Υ1) + Υ2,

Υ̇2 = −K̃c2sign(Υ1) + d(t)

(3.1.11)



CHAPTER 3. CONTROLLER DESIGN FOR THE INTERIOR PERMANENT MAGNET
SYNCHRONOUS MOTOR 72

with d(t) = δ̇(t). Consider the following change of coordinates

z1 =
Υ1

L2
c(t)

z2 =
Υ2

L2
c(t)

(3.1.12)

and its first derivative in time as follows

ż1 = −2Lc(t)|z1|
1
2 sign(z1) + z2 −

2z1L̇c(t)

Lc(t)

ż2 = −L
2
c(t)

2
sign(z1) +

d(t)

L2
c(t)

− 2z2L̇c(t)

Lc(t)

(3.1.13)

After that, a new change of variable is given by

£1 = |z1|
1
2 sign(z1) £2 =

z2
Lc(t)

(3.1.14)

then the dynamics, in terms of these new variables, are given by

£̇1 =
Lc(t)

2|z1|
1
2

[−2£1 +£2]−£1
L̇c(t)

Lc(t)

£̇2 =
Lc(t)

2|z1|
1
2

[
−£1 +

2|z1|
1
2d(t)

L4
c(t)

]
− 3£2

L̇c(t)

Lc(t)

(3.1.15)

The system (3.1.15) can be expressed in compact form as follows

£̇ = αc

[(
Ac − P−1

c CT
c Cc

)
£+ Φc

]
−Nc£

L̇c(t)

Lc(t)
(3.1.16)

with αc =
Lc(t)

2|z1|
1
2

, and

£ =
[
£1 £2

]T
, Cc =

[
1 0

]
,

Ac =

0 1

0 0

 , Nc =

1 0

0 3

 , Φc =

 0

2|z1|
1
2

L4
c(t)

(d(t))

 Pc =

 1 −1

−1 2

 ,
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where Pc is a symmetric positive-definite matrix, solution of the following equation

Pc + AT
c Pc + PcAc − CT

c Cc = 0 (3.1.17)

Assumption 3.3. The terms in Φc are uniformly bounded with respect to u and locally Lipschitz

with respect to £, i.e., ||Φc|| ≤ ℘||£||, for ℘ > 0.

Theorem 3.1. Consider the system (3.1.11) and the Assumption 3.1, 3.2 and 3.3 are fulfilled.

Furthermore,

L̇c(t) = k
1
2
c |S|

1
2 − γ

1
2
c L

2
c(t) (3.1.18)

is an adaptive law-1 for Lc(t), with kc > 0 and γc > 0 chosen appropriately, where kc > γc > 0.

Then, the trajectories of ΣSTW converge towards a vicinity of the origin in finite time.

Proof

Consider a Lyapunov candidate function as follows

V(£,Lc(t)) = V(£) + V(Lc(t)) (3.1.19)

with V(£) = £TPc£ and V(Lc(t)) =
γc
2
L2
c(t), for γc > 0. Then, taking its first derivative in time

and replacing the suitable expressions, it follows that

V̇(£,Lc(t)) =αc£
T
[
AT

c Pc + PcAc

]
£− 2αc£

TCTC£− L̇c(t)

Lc(t)
£T [PcNc +NcPc]£

+ γcL̇c(t)Lc(t) + 2αc£
TPcΦc

(3.1.20)

From AT
c Pc + PcAc = −Pc + CT

c Cc, it follows that above equation can be expressed as follows

V̇(£,Lc(t)) =− αc£
TPc£− αc£

TCT
c Cc£− L̇c(t)

Lc(t)
£T [PcNc +NcPc]£

+ γcL̇c(t)Lc(t) + 2αc£
TPcΦc

(3.1.21)

Now, considering that PcNc + NcPc = Rc and defining Rc as a symmetric positive-definite

matrix. Then, £TRc£ ≥ λmin(Rc)

λmax(Pc)
V(£) = kcV(£), where λmin(Rc) and λmax(Pc) are mini-
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mum and maximum singular values of Rc and Pc, respectively; moreover, considering that

−αc£
TCT

c Cc£ < 0; for Lc(t) > 0. Then,

V̇(£,Lc(t)) ≤ −αcV(£) −
L̇c(t)

Lc(t)

[
kcV(£) − γcL

2
c(t)
]
+ 2αc£

TPcΦc (3.1.22)

Now, from (3.1.22), the term

[
kcV(£) − γcL

2
c(t)
]
=
[
k

1
2
c V

1
2

(£) + γ
1
2
c Lc(t)

] [
k

1
2
c V

1
2

(£) − γ
1
2
c Lc(t)

]
and defining f(V(£),Lc(t)) =

[
k

1
2
c V

1
2

(£) + γ
1
2
c Lc(t)

]
> 0. It follows that

V̇(£,Lc(t)) ≤ −αcV(£) − f(V(£),Lc(t))
L̇c(t)

Lc(t)

[
k

1
2
c V

1
2

(£) − γ
1
2
c Lc(t)

]
+ 2αc£

TPcΦc (3.1.23)

Consider that the following inequalities are satisfied,

|z1| = |£1|2 ≤ ||£||2 (3.1.24)

and

λmin(Pc)||£||2 ≤ V(ξ) ≤ λmax(Pc)||£||2 (3.1.25)

where λmin(Pc) and λmax(Pc) are the minimum and maximum singular values of Pc. Then, it

follows that the following inequality hold,

|z1|
1
2 ≤ ||£|| ≤

(
V(£)

λmin(Pc)

) 1
2

(3.1.26)

for z1 =
Υ1

L2
c(t)

=
S

L2
c(t)

. Now, taking into account the above inequality, equation (3.1.23) can

be expressed as

V̇(£,Lc(t)) ≤− αcV(£) − f(V(£),Lc(t))
L̇c

Lc(t)

[
k

1
2
c

(
|S|
L2
c(t)

) 1
2

− γ
1
2
c Lc(t)

]
+ 2αc£

TPcΦc (3.1.27)
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Therefore, an adaptive law can be chosen as follows,

L̇c(t) =

[
k

1
2
c

(
|S|
L2
c(t)

) 1
2

− γ
1
2
c Lc(t)

]
Lc(t) (3.1.28)

Then, it follows that

V̇(£,Lc(t)) ≤− αcV(£) − f(V(£),Lc(t))

[
k

1
2
c

(
|S|
L2
c(t)

) 1
2

− γ
1
2
c Lc(t)

]2
+ 2αc£

TPcΦc (3.1.29)

Assuming that S tends to zero faster than Lc(t). Then, (3.1.29) is given by

V̇(£,Lc(t)) ≤ −αcV(£) − f(V(£),Lc(t))γcL
2
c(t) + 2αc£

TPcΦc (3.1.30)

Moreover, from Assumption 3.3 and taking into account the norm for the term 2αc£
TPcΦc, it

follows that

V̇(£,Lc(t)) ≤ −αcV(£) + 2αc℘||£||2||Pc|| − f(V(£),Lc(t))γcL
2
c(t) (3.1.31)

and considering the inequality (3.1.25), it is obtained the following

V̇(£,Lc(t)) ≤ − Lc(t)

2|z1|
1
2

[1− σc]V(£) − f(V(£),Lc(t))γcL
2
c(t) (3.1.32)

with σc =
2℘||Pc||
λmin(Pc)

. Moreover, taking into account (3.1.26), the above equation can be ex-

pressed as follows

V̇(£,Lc(t)) ≤ −Lc(t)ΓcV
1
2

(£) − f(V(£),Lc(t))γcL
2
c(t) (3.1.33)

with Γc =
[1− σc]λ

1
2
min(Pc)

2
. Now, equation (3.1.33) will be factored as follows

V̇(£,Lc(t)) ≤ −Lc(t)
√
2γ

1
2
c

[
Γc

√
2γ

1
2
c

V
1
2

(£) + f(V(£),Lc(t))
γ

1
2
c√
2
Lc(t)

]
(3.1.34)

Thus, selecting η1 =
[
Lc(t)

√
2γ

1
2
c

]
and φc = min

[
Γc

√
2γ

1
2
c

, f(V(£),Lc(t))

]
, it is possible to



CHAPTER 3. CONTROLLER DESIGN FOR THE INTERIOR PERMANENT MAGNET
SYNCHRONOUS MOTOR 76

express the following equation

V̇(£,Lc(t)) ≤ −η2

[
V

1
2

(£) +
γ

1
2
c√
2
Lc(t)

]
(3.1.35)

with η2 = η1φc. Then, from Jensen´s inequality [83],

[|ac|m + |bc|m]
1
m ≤ |ac|+ |bc|, (3.1.36)

defining ac = V
1
2

(£), bc = V
1
2

(Lc)
and m = 2. Thus, the following inequality can be established

[
|V

1
2

(£)|
2 + |V

1
2

(Lc(t))
|2
] 1

2 ≤ |V
1
2

(£)|+
γ

1
2
c√
2
|Lc(t)| (3.1.37)

In this way

V
1
2

(£,Lc(t))
≤ |V

1
2

(£)|+
γ

1
2
c√
2
|Lc(t)| (3.1.38)

Therefore, the dynamic of Lyapunov function can be expressed as

V̇(£,Lc(t)) ≤ −η2V
1
2

(£,Lc(t))
. (3.1.39)

Then, from the Lyapunov function, V̇(£,Lc(t)) is negative definite and ensures convergence in

finite-time, for Lc(t) sufficiently large, satisfying η2 > 0. Moreover, the comparison princi-

ple is taken into account to estimate the convergence time. Thus, considering the equation

v̇ = −η2v
1
2 and its solution defined as v(t) = (v(0)

1
2 − 1

2
η2t)

2. Then, V(£,Lc(t)) < v(t) when

V(£(0),Lc(0)) < v(0), such that, £ has a convergence in finite-time in an estimated time given by

T2 =
2V

1
2

(£(0),Lc(0))

η2
. Therefore, £ tends to zero as well as S tends to zero in finite-time.

In this section, an ASTWC-1 has been presented. The gains have been reparameterized in

order to reduce the tuning time, avoid the overestimation of gains during the tuning and the

chattering in the control input. This adaptive controller will be applied in the IPMSM.
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3.1.2 Control design for IPMSM

The design of controllers for the speed and the direct-axis current are presented by considering

the adaptive law-1 given by Theorem 3.1.

Control loop for speed−Ω

Consider a sliding surface given by

SΩ = ϑ12e1Ω + e2Ω (3.1.40)

where e1Ω = Ω−Ω∗ is speed tracking error, e2Ω = Ω̇− Ω̇∗ and ϑ12 > 0. Therefore, the dynamic

of the sliding surface SΩ is given by

ṠΩ = ϑ12e2Ω + a1b1 + a2b2 + a3b2 − b3 + b4 − Ω̈∗ + vqc1 (3.1.41)

where a1 =
p(Ld − Lq)iq

J
, a2 =

p(Ld − Lq)id
J

, a3 =
pψr

J
, b1 =

vd
Ld

−Rsid
Ld

+
LqpΩiq
Ld

, b2 = −Rsiq
Lq

−

LdpΩid
Lq

− ψrpΩ

Lq

, b3 =
fv
J

[
p(Ld − Lq)idiq

J
+
pψriq
J

− fvΩ

J

]
, b4 =

fvTl
J2

and c1 =
p(Ld − Lq)id

JLq

+

pψr

JLq

. Then, the control input vq is given by

vq =
1

c1

[
−ϑ12e2Ω − a1b1 − a2b2 − a3b2 + b3 + Ω̈∗ + Vst−Ω

]
(3.1.42)

with

Vst−Ω = −K̃c1Ω|SΩ|
1
2 sign(SΩ)−

∫ t

0

K̃c2Ωsign(SΩ)dτ (3.1.43)

where K̃c1Ω = 2L2
cΩ
(t), K̃c2Ω =

L4
cΩ
(t)

2
and according to Theorem 3.1, LcΩ(t) is an adaptive

parameter given by

L̇cΩ(t) = k
1
2
cΩ|SΩ|

1
2 − γ

1
2
cΩL

2
cΩ
(t) (3.1.44)

with kcΩ > γcΩ > 0. Therefore, 3.1.42 is an ASTWC-1 for the speed of the IPMSM.
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Control loop for current−id

A sliding surface is given by

Sid = ϑ13eid +

∫ t

0

eiddτ (3.1.45)

where eid = id− i∗d is a current tracking error and ϑ13 > 0. Moreover, the dynamic of the sliding

surface Sid is given by

Ṡid = −ϑ13Rsid
Ld

+
ϑ13pΩLqiq

Ld

+
ϑ13vd
Ld

− ϑ13i̇
∗
d + eid (3.1.46)

Then, the control input vd can be chosen as follows

vd =
Ld

ϑ13

(
ϑ13Rsid
Ld

− ϑ13pΩLqiq
Ld

+ ϑ13i̇
∗
d − eid + Vst−id

)
(3.1.47)

with

Vst−id = −K̃c1id
|Sid|

1
2 sign(Sid)−

∫ t

0

K̃c2id
sign(Sid)dτ (3.1.48)

where K̃c1id
= 2L2

cid
(t) and K̃c2id

=
L4
cid
(t)

2
and according to Theorem 3.1, Lcid

(t) is an adaptive

parameter given by

L̇cid
(t) = k

1
2
cid
|Sid |

1
2 − γ

1
2
cid
L2
cid
(t) (3.1.49)

with kcid > γcid > 0. Therefore, 3.1.47 is an ASTWC-1 for the current−id of the IPMSM.

3.1.3 Simulation results

Consider the adaptive law-1 established by Theorem 3.1 and the system (1.3.30)-(1.3.31) in

closed-loop with the controllers given by (3.1.42) and (3.1.47). Then, simulation result are

introduced in this section in order to show the performance of the system under the action of

adaptive controllers. The parameters of the adaptive control are given in Table 3.1.
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Table 3.1: Parameters for the ASTWCs-1

Values
LcΩ(0) ϑ12 γcΩ kcΩ Lcid

(0) ϑ13 γcid kcid
20 400 0.05 90 20 200 0.1 1

Figure 3.1: ASTWC-1. Behaviour of adaptive law for the speed and current-id controllers

Figure 3.2: ASTWC-1. Speed tracking and speed tracking error

The profile given by the Figure 1.7 and the parameter variation given by Figure 1.8 are

considered in this test. In the first instance, it is possible to see the behavior of the adaptive

gains in Figure 3.1, Lid(t) and LΩ(t), respectively. Then, considering this adaptive laws, the
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Figure 3.3: ASTWC-1. Behaviour of the currents idq

speed (see Figure 3.2) has been controlled. The tracking error can show a minimum error under

the action of the load torque and parameters variations. In fact, in Figure 3.1, it is possible

to see the reaction of the adaptive parameter in the controller when the load torque changes

its value, so that the adaptive gains adjust their values in order to reject system disturbances.

Moreover, in Figure 3.3, the currents idq are introduced. The current−id tracks a reference

current equal to zero and the current−iq takes different values according to the speed and load

torque. A good performance of ASTWCs-1 can be seen in this simulation test.

In Chapter 4, the ASTWCs-1 of the IPMSM will be interconnected with the AHOSMO-1

presented in Chapter 2. From this, the sensorless scheme for the IPMSM will be introduced.

3.2 Control design based on Super-Twisting approach:

Proposal-2

In this section, a second adaptive control is designed for the system given by (3.1.1).

Consider that in [88], an adaptive super- twisting control was proposed with reparameterized

gains, taking into account the following structure:
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A sliding surface S2 was defined by

S2 = ϑ21e1χ + e2χ (3.2.1)

where e1χ = χ1 −χref is a tracking error, e2χ = χ̇1 − χ̇ref and ϑ21 > 0; whose dynamic is given

by

Ṡ2 = ϑ21e2χ + f(χ) + g(χ)u+ δ(t)− χ̈ref (3.2.2)

Then, a control input was chosen as follows

u =
1

g(χ)

(
−ϑ21e2χ − f(χ) + χ̈ref −KG1|S2|

1
2 sign(S2)−

∫ t

0

KG2sign(S2)dτ

)
, (3.2.3)

where KG1 = 2LG(t) and KG2 =
L2
G(t)

2
have been reparameterized based on a single parameter

LG(t) > 0. Then, for the above controller, the following adaptive law was proposed

L̇G(t) =

− kG√
2
|LG(t)− LGref

|+ LG(t)

2
|S2|

1
2

(LG(t)− LGref
) +

2

LG(t)2

(
|S2|

1
2 +

1

LG(t)

∫ t

0
L2
G(τ)sign(S2)dτ

)(
−
∫ t

0

L2
G(τ)

2
sign(S2)dτ

)
(3.2.4)

for LGref
, kG > 0. In this section, an adaptive law will be designed by using the same repa-

rameterized gains. However, the proposed adaptive law in this work has been simplified. Next,

an adaptive law will be designed.

3.2.1 Adaptive super-twisting control design

Based on [88], in this section the design of one adaptive super-twisting control is introduced

in order to simplify the adaptive law given by (3.2.4), which helps to simplify the calculations

during the stability analysis.

Then, the following equation

u =
1

g(χ)

(
−ϑ21e2χ − f(χ) + χ̈ref + Vst

)
, (3.2.5)
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with

Vst = −K̃c3|S2|
1
2 sign(S2)−

∫ t

0

K̃c4sign(S2)dτ (3.2.6)

is an Adaptive Super-Twisting Control (ASTWC-2) for the system (3.1.1) and the reparame-

terized gains, in terms of a single parameter, are given by

K̃c3 = 2Lc2(t) K̃c4 =
L2
c2
(t)

2
(3.2.7)

where Lc2(t) > 0 is an adaptive parameter.

Remark 3.2. A demonstration to calculate the proposed gains has been introduced in the

Appendix A (See A.2.2).

A stability analysis and an adaptive law for the parameter Lc2(t) will be presented in the

sequel. Consider that the dynamic of the sliding surface (3.2.2) in closed-loop with the control

(3.2.5) is given by

Ṡ2 = −K̃c3|S2|
1
2 sign(S2)−

∫ t

0

K̃c4sign(S2)dτ + δ(t) (3.2.8)

where the super-twisting (STW) control (3.2.8) can be expressed as follows

Ṡ2 = −K̃c3|S2|
1
2 sign(S2) + ν2 + δ(t)

ν̇2 = −K̃c4sign(S2)

(3.2.9)

Assumption 3.4. The disturbance δ(t) and its time derivative δ̇(t) are bounded for unknown

positive constants δM , ∆M , respectively, i.e., |δ(t)| < δM , |δ̇(t)| ≤ ∆M ; ∀t ≥ 0 [87].

Now, introducing the following change of variable z12 = S2 and z22 = ν2 + δ(t). Then,

system (3.2.9) is rewritten as

ΣSTW2 :


ż12 = −2Lc2(t)|z12|

1
2 sign(z12) + z22

ż22 = −
L2
c2
(t)

2
sign(z12) + d(t)

(3.2.10)
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with d(t) = δ̇(t). Consider the following change of variable

£12 =
|z12 |

1
2 sign(z12)

Lc2(t)
£22 =

z22
L2
c2
(t)

(3.2.11)

then the dynamics, in terms of these new variables, are given by

£̇12 =
Lc2(t)

2|z12 |
1
2

[−2£12 +£22 ]−£12

L̇c2(t)

Lc2(t)

£̇22 =
Lc2(t)

2|z12 |
1
2

[
−£12 +

2|z12 |
1
2d(t)

L3
c2
(t)

]
− 2£22

L̇c2(t)

Lc2(t)

(3.2.12)

To make some calculations easier, system (3.2.12) can be expressed in compact form as follows

£̇c2 = αc2

[(
Ac − P−1

c CT
c Cc

)
£c2 + Φc2

]
−Dc2£c2

L̇c2(t)

Lc2(t)
(3.2.13)

with αc2 =
Lc2(t)

2|z12|
1
2

and £c2 =
[
£12 £22

]T
, Cc =

[
1 0

]T

Ac =

0 1

0 0

 Pc =

 1 −1

−1 2

 Dc2 =

1 0

0 2

 Φc2 =

 0

2|z12|
1
2

L3
c2
(t)

[d(t)]

 (3.2.14)

Furthermore, Pc is a symmetric positive-definite matrix, solution of the following algebraic

Lyapunov equation

Pc + AT
c Pc + PcAc − CT

c Cc = 0 (3.2.15)

Assumption 3.5. The terms in the vector Φc2 are uniformly bounded with respect to u and

locally Lipschitz with respect to £c2, i.e., ||Φc2|| ≤ ℘2||£c2||, for ℘2 > 0.

Theorem 3.2. Consider the system (3.2.10) and the Assumption 3.1, 3.4 and 3.5 are fulfilled.

Furthermore,

L̇c2(t) = k
1
2
c2|S2|

1
2 − γ

1
2
c2L

2
c2
(t) (3.2.16)

is an adaptive law-2 for Lc2(t), with kc2 > 0 and γc2 > 0 chosen appropriately, where kc2 >

γc2 > 0. Then, the trajectories of ΣSTW2 converge towards a vicinity of the origin in finite time.
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Proof

A Lyapunov candidate function is introduced as follows

V(£c2 ,Lc2 (t))
= V(£c2 )

+ V(Lc2 (t))
(3.2.17)

with V(£c2 )
= £T

c2
Pc£c2 and V(Lc2 (t))

=
γc2
2
L2
c2
(t), for γc2 > 0. Then, taking first time derivative

of (3.2.17) and replacing the suitable expressions, it follows that

V̇(£c2 ,Lc2 (t))
=αc2£

T
c2

[
AT

c2
Pc + PcAc2

]
£c2 − 2αc2£

T
c2
CT

c Cc£c2

− 2
L̇c2(t)

Lc2(t)
£T

c2
PcDc2£c2 + γc2L̇c2(t)Lc2(t) + 2αc2£

T
c2
PcΦc2

(3.2.18)

From AT
c Pc +PcAc = −Pc +CT

c Cc, it follows that equation (3.2.18) can be rewritten as follows

V̇(£c2 ,Lc2 (t))
=− αc2£

T
c2
Pc£c2 − αc2£

T
c2
CT

c Cc£c2 − 2
L̇c2(t)

Lc2(t)
£T

c2
PcDc2£c2

+ γc2L̇c2(t)Lc2(t) + 2αc2£
T
c2
PcΦc2

(3.2.19)

Now, consider that the following inequalities are satisfied

|z12 |
L2
c2
(t)

= |£12|2 ≤ ||£c2||2 (3.2.20)

and

λmin(Pc)||£c2||2 ≤ V(£c2 )
≤ λmax(Pc)||£c2||2 (3.2.21)

where λmin(Pc) and λmax(Pc) are the minimum and maximum singular values of Pc. Moreover,

λmin(PcDc2)||£c2 ||2 ≤ £T
c2
PcDc2£c2 ≤ λmax(PcDc2)||£c2 ||2 (3.2.22)

where λmin(PcDc2) and λmax(PcDc2) are the minimum and maximum singular values of PcDc2 .
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Then,

V̇(£c2 ,Lc2 (t))
≤− αc2£

T
c2
Pc£c2 − αc2£

T
c2
CT

c Cc£c2 − 2λmin(PcDc2)||£c2||2
L̇c2(t)

Lc2(t)

+ γc2L̇c2(t)Lc2(t) + 2αc2£
T
c2
PcΦc2

(3.2.23)

such that,

V̇(£c2 ,Lc2 (t))
≤ −αc2V(£c2 )

− αc2£
T
c2
CT

c Cc£c2 −
L̇c2(t)

Lc2(t)

[
kc2||£c2||2 − γc2L

2
c2
(t)
]
+ 2αc2£

T
c2
PcΦc2

(3.2.24)

where kc2 = 2λmin(PcDc2) > 0. Now, from (3.2.24), the term

[
kc2||£c2||2 − γc2L

2
c2
(t)
]
=
[
k

1
2
c2||£c2||+ γ

1
2
c2Lc2(t)

] [
k

1
2
c2||£c2|| − γ

1
2
c2Lc2(t)

]
Moreover, since f(£c2 ,Lc2 (t))

=
[
k

1
2
c2 ||£c2||+ γ

1
2
c2Lc2(t)

]
> 0. Then, equation (3.2.24) can be

expressed as follows

V̇(£c2 ,Lc2 (t))
≤− αc2V(£c2 )

− αc2£
T
c2
CT

c Cc£c2 + 2αc2£
T
c2
PcΦc2

− f(£c2 ,Lc2 (t))
L̇c2(t)

Lc2(t)

[
k

1
2
c2||£c2|| − γ

1
2
c2Lc2(t)

] (3.2.25)

Now, considering the inequalities (3.2.20) and (3.2.21), it follows that the following inequalities

hold

|£12| ≤ ||£c2|| ≤
(

V(£c2 )

λmin(Pc)

) 1
2

(3.2.26)

for |£12| =
|z12|

1
2

Lc2(t)
=

|S2|
1
2

Lc2(t)
. Therefore, taking into account the inequality given by (3.2.26),

equation (3.2.25) can be expressed as

V̇(£c2 ,Lc2 (t))
≤− αc2V(£c2 )

− αc2£
T
c2
CT

c Cc£c2 + 2αc2£
T
c2
PcΦc2

− f(£c2 ,Lc2 (t))
L̇c2(t)

Lc2(t)

[
k

1
2
c2

(
|S2|

1
2

Lc2(t)

)
− γ

1
2
c2Lc2(t)

]
(3.2.27)
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Then, choosing an adaptive law as follows

L̇c2(t) =

[
k

1
2
c2

(
|S2|

1
2

Lc2(t)

)
− γ

1
2
c2Lc2(t)

]
Lc2(t) (3.2.28)

the following expression is obtained

V̇(£c2 ,Lc2 (t))
≤− αc2V(£c2 )

− αc2£
T
c2
CT

c Cc£c2 + 2αc2£
T
c2
PcΦc2

− f(£c2 ,Lc2 (t))

[
k

1
2
c2

(
|S2|

1
2

Lc2(t)

)
− γ

1
2
c2Lc2(t)

]2 (3.2.29)

Assuming that S2 tends to zero faster than Lc2(t) and −αc2£
T
c2
CT

c Cc£c2 < 0; for Lc2(t) > 0.

Then, (3.2.29) is given by

V̇(£c2 ,Lc2 (t))
≤ −αc2V(£c2 )

− f(£c2 ,Lc2 (t))
γc2L

2
c2
(t) + 2αc2£

T
c2
PcΦc2 (3.2.30)

Moreover, taking into account the norm for the term 2αc2£
T
c2
PcΦc2 and Assumption 3.5, it

follows that

V̇(£c2 ,Lc2 (t))
≤ −αc2V(£c2 )

+ 2αc2℘2||£c2||2||Pc|| − f(£c2 ,Lc2 (t))
γc2L

2
c2
(t) (3.2.31)

Now, consider the inequality (3.2.21), then,

V̇(£c2 ,Lc2 (t))
≤ − Lc2(t)

2|z12|
1
2

[1− σc2 ]V(£c2 )
− f(£c2 ,Lc2 (t))

γc2L
2
c2
(t) (3.2.32)

with σc2 =
2℘2||Pc||
λmax(Pc)

. The above equation can be written as

V̇(£c2 ,Lc2 (t))
≤ − Lc2(t)

2|z12 |
1
2Lc2 (t)

Lc2 (t)

[1− σc2 ]V(£c2 )
− f(£c2 ,Lc2 (t))

γc2L
2
c2
(t) (3.2.33)
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Therefore, from (3.2.26), the above equation can be expressed as follows

V̇(£c2 ,Lc2 (t))
≤ −Γc2V

1
2

(£c2 )
− f(£c2 ,Lc2 (t))

γc2L
2
c2
(t) (3.2.34)

with Γc2 =
[1− σc2 ]λ

1
2
min(Pc)

2
. Now, equation (3.2.34) will be factorized

V̇(£c2 ,Lc2 (t))
≤ −Lc2(t)

√
2γ

1
2
c2

[
Γc2

Lc2(t)
√
2γ

1
2
c2

V
1
2

(£c2 )
+ f(£c2 ,Lc2 (t))

γ
1
2
c2√
2
Lc2(t)

]
(3.2.35)

Thus, selecting η12 =
[
Lc2(t)

√
2γ

1
2
c2

]
and φc2 = min

(
Γc2

Lc2(t)
√
2γ

1
2
c2

, f(£c2 ,Lc2 (t))

)
, it is possi-

ble to express the following equation

V̇(£c2 ,Lc2 (t))
≤ −η22

[
V

1
2

(£c2 )
+
γ

1
2
c2√
2
Lc2(t)

]
(3.2.36)

with η22 = η12φc2 .

On the other side, Jensen´s inequality [83] is given by

[|ac2|m + |bc2 |m]
1
m ≤ |ac2|+ |bc2 | (3.2.37)

defining ac2 = V
1
2

(£c2 )
, bc2 = V

1
2

(Lc2 (t))
andm = 2. Thus, the following inequality can be established

[
|V

1
2

(£c2 )
|2 + |V

1
2

(Lc2 (t))
|2
] 1

2 ≤ |V
1
2

(£c2 )
|+ γ

1
2
c2√
2
|Lc2(t)| (3.2.38)

and

V
1
2

(£c2 ,Lc2 (t))
≤ |V

1
2

(£c2 )
|+ γ

1
2
c2√
2
|Lc2(t)| (3.2.39)

Finally, the dynamic of Lyapunov function can be expressed as follows

V̇(£c2 ,Lc2 (t))
≤ −η22V

1
2

(£c2 ,Lc2 (t))
(3.2.40)
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Then, from the Lyapunov function, V̇(£c2 ,Lc2 (t))
is negative definite and ensures convergence in

finite-time, for Lc2(t) sufficiently large, satisfying η22 > 0. Moreover, the comparison principle

is taken into account to estimate the convergence time. Thus, considering the equation v̇ =

−η22v
1
2 and its solution defined as v(t) = (v(0)

1
2 − 1

2
η22t)

2. Then, V(£c2 ,Lc2 (t))
< v(t) when

V(£c2 (0),Lc2 (0))
< v(0), such that, £c2 has a convergence in finite-time in an estimated time given

by T22 =
2V

1
2

(£c2 (0),Lc2 (0))

η22
. Therefore, £ tends to zero as well as S2 tends to zero in finite-time.

In this section, an ASTWC-2 has been presented. The gains have been reparameterized

in order to reduce the tuning time, avoid the overestimation of gains during the tuning and

the chattering in the control input. In addition, compared to the previous adaptive controller

(ASTWC-1), the number of coordinate changes has been reduced in this new design in order

to reduce calculations during the proof. The ASTWC-2 will be applied in the IPMSM and a

comparative study will be presented later.

3.2.2 Control design for IPMSM

In this section, the design of controllers for the speed and the direct-axis current are presented

by considering the adaptive law-2 given by Theorem 3.2.

Control loop for Ω

Consider a sliding surface given by

SΩ2 = ϑ22e1Ω + e2Ω (3.2.41)

where e1Ω = Ω−Ω∗ is speed tracking error, e2Ω = Ω̇− Ω̇∗ and ϑ22 > 0. Therefore, the dynamic

of the sliding surface SΩ is given by

ṠΩ2 = ϑ22e2Ω + a1b1 + a2b2 + a3b2 − b3 + b4 − Ω̈∗ + vqc1 (3.2.42)
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where a1 =
p(Ld − Lq)iq

J
, a2 =

p(Ld − Lq)id
J

, a3 =
pψr

J
, b1 =

vd
Ld

− Rsid
Ld

+
LqpΩiq
Ld

, b2 =

−Rsiq
Lq

− LdpΩid
Lq

− ψrpΩ

Lq

, b3 =
fv
J

(
p(Ld − Lq)idiq

J
+
pψriq
J

− fvΩ

J
− Tl
J

)
, b4 =

fvTl
J2

and c1 =

p(Ld − Lq)id
JLq

+
pψr

JLq

.

Then, the control input vq is given by

vq =
1

c1

(
−ϑ22e2Ω − a1b1 − a2b2 − a3b2 + b3 + Ω̈∗ + Vst−Ω2

)
(3.2.43)

with

Vst−Ω2 = −K̃c3Ω|SΩ2|
1
2 sign(SΩ2)−

∫ t

0

K̃c4Ωsign(SΩ2)dτ (3.2.44)

where K̃c3Ω = 2LcΩ2
(t), K̃c4Ω =

L2
cΩ2

(t)

2
and according to Theorem 3.2, LcΩ2

(t) is an adaptive

parameter given by

L̇cΩ2
(t) = k

1
2
cΩ2

|SΩ|
1
2 − γ

1
2
cΩ2
L2
cΩ2

(t) (3.2.45)

with kcΩ2
> γcΩ2

> 0. Therefore, 3.2.43 is an ASTWC-2 for the speed of the IPMSM.

Control loop for id

Now, a sliding surface is introduced

Sid2
= ϑ23eid +

∫ t

0

eiddτ (3.2.46)

where eid = id− i∗d is a current tracking error and ϑ23 > 0. Moreover, the dynamic of the sliding

surface Sid is given by

Ṡid2
= −ϑ23Rsid

Ld

+
ϑ23pΩLqiq

Ld

+
ϑ23vd
Ld

− ϑ23i̇
∗
d + eid (3.2.47)

Then, the control input vd can be chosen as follows

vd =
Ld

ϑ23

(
ϑ23Rsid
Ld

− ϑ23pΩLqiq
Ld

+ ϑ23i̇
∗
d − eid + Vst−id2

)
(3.2.48)
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with

Vst−id2
= −K̃c3id

|Sid2
|
1
2 sign(Sid2

)−
∫ t

0

K̃c4id
sign(Sid2

)dτ (3.2.49)

where K̃c3id
= 2Lcid2

(t) , K̃c4id
=
L2
cid2

(t)

2
and according to Theorem 3.2, Lcid2

(t) is an adaptive

parameter given by

L̇cid2
(t) = k

1
2
cid2

|Sid2
|
1
2 − γ

1
2
cid2

L2
cid2

(t) (3.2.50)

with kcid2 > γcid2
> 0. Therefore, 3.2.48 is an ASTWC-2 for the current−id of the IPMSM.

3.2.3 Simulation results

Consider the adaptive law established by Theorem 3.2 and the system (1.3.30)-(1.3.31) in

closed-loop with the controllers given by (3.2.43) and (3.2.48). Then, similarly to the previous

adaptive law introduced in section 3.1.1, simulation results are illustrated in this section in order

to show the performance of the system in closed-loop under the action of adaptive controllers.

The parameters of the adaptive controllers (ASTWCs-2) are given in Table 3.2. In Figure 3.4,

Table 3.2: Parameters for ASTWCs-2

Values
LcΩ2

(0) ϑ22 γcΩ2
kcΩ2

Lcid2
(0) ϑ23 γcid2

kcid2
100 400 0.001 300 500 200 0.06 100

the adaptive gains for the controllers (3.2.43) and (3.2.48) are shown, respectively. Moreover,

considering the adaptive gain for the speed controller, in Figure 3.5 is illustrated the speed

tracking and its tracking error. Then, according to the adaptive parameter LΩ2(t), the tracking

error is minimized when there are changes in the load torque, such that, it is possible to see

the value increase in adaptive gain in order to reduce the error.
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Figure 3.4: ASTWC-2. Behaviour of adaptive law for the speed and current-id controllers

Figure 3.6: ASTWC-2. Behaviour of the currents−idq
On the other hand, the currents−idq are introduced in Figure 3.6. The behaviour of the

adaptive parameter Lid2
(t) for the current−id control can be seen in Figure 3.4, obtaining

a good performance for a current−id reference equal to zero. Therefore, we can say that the

controllers based on adaptive gains have had a satisfactory result in the presence of disturbances

and parametric uncertainties. In addition, an evaluation of the proposed adaptive laws is given.

The adaptive parameters LcΩ(t), Lcid
(t), whose solution is given by Theorem 3.1, are evaluated

at a specific time (5s). Similarly, the adaptive parameters LcΩ2
(t), Lcid2

(t), whose solution is

given by Theorem 3.2, are evaluated at a specific time (5s), as can be seen in Table 3.3. The
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Figure 3.5: ASTWC-2. Speed tracking and speed tracking error

final value in each gain can show that the adaptive parameter (LcΩ2) is more conservative for the

speed controller. However, for the current controller, both strategies have achieved to adjust

the gains with similar values. Therefore, it is possible to say that the adaptive law given by

Theorem 3.1 provides more energy in the presence of disturbances (Load torque).

In Chapter 4, the ASTWCs-2 of the IPMSM will be interconnected with the AHOSMO-2

presented in Chapter 2. From this, the sensorless scheme for the IPMSM will be introduced.

Table 3.3: Value for the gains of both adaptive controllers at 5 seconds

ASTWCs-1
LcΩ(5) K̃c1Ω K̃c2Ω Lcid

(5) K̃c1id
K̃c2id

24.9 1248 1.9 e5 2.07 8.57 9.19
ASTWCs-2

LcΩ2
(5) K̃c3Ω K̃c4Ω Lcid2

(5) K̃c3id
K̃c4id

285.4 570.7 4.07e4 4.3 8.61 9.27

3.3 Comparative study

In this section, two comparative studies are addressed. First, considering constant gains, the

proposed controllers based on reparameterized gains are compared with two similar strategies of
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the literature. After that, the proposed adaptive controllers are compared with three adaptive

strategies of the literature. The performance of each strategy will be shown by considering

simulation tests.

3.3.1 Comparative study with constant gains

In this work has been proposed two strategies with parameterized gains in order to tune the

gains in an easier way, i.e., the gains are based on a single parameter. Then, a comparative

study will be carried out by considering only constant gains, i.e., the proposed adaptive laws are

not considered. Therefore, considering that (∗ = Ω, id), the gains for the proposal 1 are given

by Kc1∗ = 2L2
c∗, Kc2∗ =

L4
c∗
2

where Lc∗ is positive constant. Similarly, the gains for the proposal

2 are given by Kc3∗ = 2Lc∗2 , Kc4∗ =
L2
c∗2
2

where Lc∗2 is positive constant. Then, considering

the proposed strategies in this work, two similar strategies have been taken from the literature

to compare the performance of each of them.

Levant [89] Super-twisting strategy was proposed in [39]. However, in [39], the super-

twisting control has two gains, which results complex to tune, causing overestimation of gains.

For this reason, in [89] was proposed an alternative to tune the gains as follows

σL = −k1L|s|1/2sign(s) + νL

ν̇L = −k2Lsign(s)
(3.3.1)

where s is the sliding surface, k1L = 1.5L
1/2
L and k2L = 1.1LL where LL is the parameter to be

tuned.

Moreno [84] A second alternative to tune the gains of the super twisting was proposed

in [84]. In this strategy the super twisting is given by

σM = −k1M |s|1/2sign(s) + νM

ν̇M = −k2Msign(s)
(3.3.2)
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and its gains are defined by

k1M = µM

√
2γM

(1− βM)αM

√
LM k2M =

(βM + 1)

(1− βM)
LM

where µM , αM , βM and γM are positive constants, such that 0 < βM < 1 and γM > 1, satisfying

the following inequality

µM − 2

γM
αM > α2

M − βM(1 + µM)αM +
1

4
(1 + µM)2 (3.3.3)

Now, the comparative study will be introduced by considering the best values of each

strategy in order to make a fair comparison.

In this way, the parameter value Lc∗ in the proposal-1 is given by Lc∗ = 16 and the parameter

value Lc∗2 in the proposal-2 is given by Lc∗2 = 254.

Now, considering the strategy (3.3.1) and applying the strategy in the speed and current

controller, a value of LL = 30000 is chosen.

On the other hand, in (3.3.2), the chosen values are the following: µM = 3.5, αM = 2.8,

βM = 0.8, γM = 12 and LM = 600. Similar values are applied in the speed and current

controller.

Figure 3.7: Speed tracking. Comparative study among Levant strategy and proposed strategies
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Figure 3.8: Speed tracking. Comparative study among Moreno strategy and proposed strategies

Then, taking into account the information for each strategy, a comparison for the speed

tracking is illustrated. In Figure 3.7, the proposed strategies are compared with (3.3.1) and in

Figure 3.8, the proposed strategies are compared with (3.3.2). Then, it is possible to show that

the adjustment of gains of (3.3.1) is not enough to attenuate the disturbance, it can be seen

at 4 s (see Figure 3.7). In Figure 3.8 is possible to illustrate a similar behaviour among the

strategies. On the other side, the currents idq are illustrated in Figure 3.9 and Figure 3.10.

Figure 3.9: Currents−idq. Comparative study among Levant strategy and proposed strategies
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Figure 3.10: Currents−idq. Comparative study among Moreno strategy and proposed strategies

According to comparison, strategy (3.3.1) presents more chattering in the current−id, while the

strategy (3.3.2) has a similar behaviour with the proposed strategies.

Similarly, in Figure 3.11 and Figure 3.12, the voltages−dq are introduced. A behaviour

with more chattering in the signal can be seen for the strategy (3.3.1)(See Figure 3.11). On the

other side, considering the strategy (3.3.2), in Figure 3.12 can be seen a similar performance

of the voltages with proposed strategies. In addition, a performance index (Integral Absolute

Figure 3.11: Voltages−vdq. Comparative study among Levant strategy and proposed strategies
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Figure 3.12: Voltages−vdq. Comparative study among Moreno strategy and proposed strategies

Value-IAE) is considered. In Figure 3.13, it is possible to show that the strategy (3.3.2) and the

proposed strategies have a similar performance, except (3.3.1). Finally, we can conclude that in
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Figure 3.13: Performance index: Comparative study using constant gains

(3.3.1), the value for LL needs to be very large, which turns out to be somewhat complex to find

a more precise value. Moreover, the main disadvantage in (3.3.2) is that it is necessary to find

and adjust different parameters for satisfying the inequality and after that, gain adjustment
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can be done. However, the proposed strategies in this work only needs to adjust one parameter

satisfying the tracking with a good performance, which has allowed the design of the proposed

adaptive laws for the controller in sections 3.1.1 and 3.2.1.

It is worth mentioning that the choice of constant gains could generate an overestimation of

the gains and cause chattering in the signals. A simulation test is shown in Figure 3.14, where

the proposed strategy given in section 3.1.1 (Proposal 1) has been considered using constant

gains. The parameter value Lc∗ can be seen with different values, 10 at the beginning, 40 at 4.5

seconds and 70 at 10 seconds, respectively. In the beginning, the gain is small and the tracking

is achieved with less precision, after that, at 4.5 seconds, the gains are increased achieving a

correct estimation. However, at 10 seconds, it is possible to illustrate the chattering effect for

a value of Lc∗ = 70. Similarly, this can be illustrated by the voltages and currents.

Figure 3.14: Proposal 1. Performance using different constant gain values

For this reason, the design of adaptive laws is necessary to avoid this issue. In Figure 3.15,

the action of the adaptive parameters, LcΩ and Lcid
, are shown such that the gains are adjusted

according to the need of the controller to achieve the minimum error, avoiding overestimation

of gains and chattering in the signals.
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Figure 3.15: Proposal 1 (ASTWC-1). Performance using adaptive gains

3.3.2 Comparative study with adaptive strategies

The adaptive laws introduced in Theorem 3.1 and Theorem 3.2 are compared with three pro-

posed strategies in the literature.

The term Vst−∗ for ∗ = Ω, id will be defined for each controller.

Firstly, an Adaptive Sliding mode Control (ASMC) has been introduced in [90], with the

control input Vst−∗ given by

Vst−∗ = −K∗(t)sign(S∗) (3.3.4)

where K∗(t) is an adaptive law defined by

K̇∗(t)

K̄∗|S∗|sign(|S∗| − ϵ∗) if K∗ > µ∗

µ∗ if K∗ ≤ µ∗

(3.3.5)

where K∗(0) > 0, K̄∗ > 0, µ∗ > 0 and ϵ∗ = 2K∗(t)Te with Te is the sampling time.

Secondly, an Adaptive Super twisting (ASTW) was introduced in [91], where the control

input Vst−∗ is given by

Vst−∗ = −α∗(t)|S∗|
1
2 sign(S∗)−

∫ t

0

β∗(t)

2
sign(S∗)dτ (3.3.6)
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with α∗(t) and β∗(t) defined by

α̇∗(t) =

ϖ
√

γ∗
2
sign(|S∗| − µ∗) if α∗ > 0

0 if α∗ = 0

(3.3.7)

β∗(t) = 2ϵ∗α∗

where ϖ, γ∗, µ∗ and ϵ∗ are positive constants.

The third adaptive law was introduced in [88] and a simplified adaptive super twisting

(SAST) was proposed, with the control input Vst−∗ given by

Vst−∗ = −KG1∗|S∗|
1
2 sign(S∗)−

∫ t

0

KG2∗sign(S∗)dt (3.3.8)

where KG1∗ = 2LG∗(t) and KG2∗ =
LG∗(t)

2

2
and LG∗(t) > 0 is an adaptive parameter, solution

of

L̇G∗(t) =

−kG∗√
2
|LG∗(t)− Lref |+ LG∗(t)

2
|S∗|

1
2(

LG∗(t)− Lref ) +
2

LG∗(t)2
(|S∗|

1
2 + 1

LG∗(t)

∫
L2
G∗(τ)sign(S∗)dτ

)(
−
∫ L2

G∗(τ)

2
sign(S∗)dτ

)
(3.3.9)

for Lref > 0 and kG∗ > 0.

The ASMC, ASTW and SAST are compared with the proposal 1 (ASTWC-1) given by

Theorem 3.1 and the proposal 2 (ASTWC-2) given by Theorem 3.2 under the same conditions

in order to evaluate the performance of each adaptive control in terms of tracking error and

tuning process (number of parameters).

A simulation test has been carried out in Matlab-Simulink environment, using a sampling

time of 1 × 10−3 with a fixed-step ode4 solver. The profile for the speed and the disturbance

(Load Torque) are given in Figure 1.7 and the parameters used in the adaptive strategies have

been chosen in order to get the best results.

ASMC: K̄id = 20, µid = 0.5, K̄Ω = 20, µΩ = 0.5 Te = 1× 10−3.

ASTW: ω̄id = 5, γid = 2, µid = 0.1, ϵid = 2, ω̄Ω = 5, γΩ = 2, µΩ = 0.1, ϵΩ = 2.
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Figure 3.16: Control performance using ASMC strategy

Figure 3.17: Control performance using ASTW strategy

SAST: kGid = 15, kGΩ = 10, Lref = 0.1.

ASTWC-1: kcid = 1, γcid = 0.1, kcΩ = 90, γcΩ = 0.05.

ASTWC-2: kcid2 = 100, γcid2 = 0.06, kcΩ2
= 200, γcΩ2

= 0.001.

In Figure 3.16, ASMC is addressed. An increase in the chattering can be seen in the voltages.

It has been improved in the ASTW (See Figure 3.17). However, to get good results, it is

necessary to adjust different parameters in the adaptive law. Then, in order to reduce the
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Figure 3.18: Control performance using SAST strategy

Figure 3.19: Control performance using proposed ASTWC-1 strategy

number of parameters for tuning the adaptive controller, a SAST is illustrated in Figure 3.18

achieving good results in the tracking errors. However, the structure of the adaptive law is

complex. Therefore, considering a reparameterization of gains, similarly to SAST, in this work

an effort has been made to simplify adaptive law, achieving better results, as shown in Figure

3.19 and Figure 3.20, ASTWC-1 and ASTWC-2, respectively. The tracking errors has been

greatly decreased as well as the time of convergence. Moreover, the adaptive laws only need two
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Figure 3.20: Control performance using proposed ASTWC-2 strategy
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Figure 3.21: Performance index: Comparative study using adaptive gains

parameters to be adjusted, similarly as the SAST. Nevertheless, the structure is less complex.

In order to compare the strategies, a performance index, Integral Absolute Error (IAE), is

considered. From Figure 3.21, it can be concluded that the two proposed strategies (ASTWC-1,

ASTWC-2) can guarantee a high level of accuracy in the tracking error. Moreover, from the

Figures 3.16-3.20, a reduced level of chattering can be illustrated in all strategies, except for
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ASMC.

3.4 Conclusion

In this chapter, two adaptive controllers based on super-twisting approach have been introduced.

The gains of the controllers have been reparameterized in terms of a single parameter to reduce

the tuning time. From reparameterized gains, an adaptive law was designed for each controller

in order to avoid overestimation of gains and the classical chattering. Simulation tests have

been carried out in closed-loop. Some tests were performed to justify the use of adaptive laws.

Moreover, considering constant and adaptive gains, a comparative study was carried out taking

into account some results from the literature, to show the performance of each of them with

respect to the proposed strategies, so that the proposed strategies can show a reduction in

tuning time with good performance, effectiveness and a less complex structure.



Chapter 4

Sensorless control of the Interior

Permanent Synchronous Motor

In this Chapter, two sensorless control schemes for the IPMSM are introduced, i.e., the proposed

observers are interconnected with the proposed controllers in closed-loop. First, the stability

analysis for the first scheme is addressed, interconnecting in closed-loop the adaptive observer

given in section 2.2.1 (AHOSMO-1) with the adaptive control given in section 3.1.1 (ASTWC-1).

Simulation and experimental results are introduced for this strategy. After that, the adaptive

observer given in section 2.3.1 (AHOSMO-2) is interconnected in closed-loop with the adaptive

control given in section 3.2.1 (ASTWC-2). A stability analysis is introduced and simulation

and experimental results are illustrated for this strategy.

4.1 Closed-loop analysis: Scheme 1

Consider the proposed control in section 3.1.1 (ASTWC-1) using the estimates provided by the

proposed observer in section 2.2.1 (AHOSMO-1). Then, the stability analysis of the system in

closed-loop with the control-observer scheme is established as follows

105
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Theorem 4.1. Consider the dynamical model of the IPMSM (1.3.30)-(1.3.31) in closed-loop

with the controllers (3.1.42) and (3.1.47) using the estimates provided by the observer (2.2.35).

Then, tracking errors e1Ω and e1id ; and estimation error eθe converge to zero in finite time.

Proof: Since the control input vq(x̂) depends on estimates Ω̂, îd and îq; and taking into

account the sliding surface given by (3.1.41), then the dynamic of the sliding surface is given

by

ṠΩ = ϑ12e2Ω + a1b1 + a2b2 + a3b2 − b3 + b4 − Ω̈∗ + c1vq(x̂). (4.1.1)

Now, adding and subtracting the term c1vq(x) in the sliding surface, it follows that

ṠΩ = ϑ12e2Ω + a1b1 + a2b2 + a3b2 − b3 + b4 − Ω̈∗ + c1vq(x) + c1[vq(x̂)− vq(x)] (4.1.2)

Notice that the term c1[vq(x̂) − vq(x)] is Lipschitz, i. e., there exists a positive constant µ11

such that ||c1[vq(x̂) − vq(x)]|| ≤ µ11||x̂ − x||. Then, applying the control input vq(x) given by

(3.1.42) into (4.1.2), the dynamic of the sliding surface is given by

ṠΩ = −2L2
cΩ
(t)|SΩ|

1
2 sign(SΩ)−

∫ t

0

L4
cΩ
(t)

2
sign(SΩ)dτ + c1[vq(x̂)− vq(x)] + δΩ(t) (4.1.3)

for δΩ(t) = b4 =
fvTl
J2

. The dynamic of SΩ can be expressed as follows


ṠΩ = −2L2

cΩ
(t)|SΩ|1/2sign(SΩ) + νΩ + δΩ(t) + c1[vq(x̂)− vq(x)]

ν̇Ω = −
L4
cΩ
(t)

2
sign(SΩ)

(4.1.4)

Now, defining the following change of coordinates Υ1Ω = SΩ and Υ2Ω = νΩ + δΩ(t). It follows

that
Υ̇1Ω = −2L2

cΩ
(t)|Υ1Ω|1/2sign(Υ1Ω) + Υ2Ω + c1[vq(x̂)− vq(x)]

Υ̇2Ω = −
L4
cΩ
(t)

2
sign(Υ1Ω) + dΩ(t)

(4.1.5)

with dΩ(t) = δ̇Ω(t). To analyze the stability of the system (4.1.5), consider the following change

of coordinates as follows



CHAPTER 4. SENSORLESS CONTROL OF THE INTERIOR PERMANENT
SYNCHRONOUS MOTOR 107

z1Ω =
Υ1Ω

L2
cΩ
(t)

z2Ω =
Υ2Ω

L2
cΩ
(t)
. (4.1.6)

whose dynamics are given by

ż1Ω = −2LcΩ(t)|z1Ω|
1
2 sign(z1Ω) + z2Ω +

c1[vq(x̂)− vq(x)]

L2
cΩ
(t)

− 2z1ΩL̇cΩ(t)

LcΩ(t)

ż2Ω = −
L2
cΩ
(t)

2
sign(z1Ω) +

dΩ(t)

L2
cΩ
(t)

− 2z2ΩL̇cΩ(t)

LcΩ(t)

(4.1.7)

After that, in order to represent the system in a simple form, a new change of variable is

introduced as follows

£1Ω = |z1Ω|
1
2 sign(z1Ω) £2Ω =

z2Ω
LcΩ(t)

(4.1.8)

then, the dynamical behavior, in the new coordinates, is given by

£̇1Ω =
LcΩ(t)

2|z1Ω|
1
2

[
−2£1Ω +£2Ω +

c1[vq(x̂)− vq(x)]

L3
cΩ
(t)

]
−£1Ω

L̇cΩ(t)

LcΩ(t)

£̇2Ω =
LcΩ(t)

2|z1Ω|
1
2

[
−£1Ω +

2|z1Ω|
1
2dΩ(t)

L4
cΩ
(t)

]
− 3£2Ω

L̇cΩ(t)

LcΩ(t)

(4.1.9)

which can be represented in a compact form as follows

£̇Ω = αΩ

[(
AΩ − P−1

Ω CT
ΩCΩ

)
£Ω + ΦΩ

]
−NΩ£Ω

L̇cΩ(t)

LcΩ(t)
(4.1.10)

with αΩ =
LcΩ(t)

2|z1Ω|
1
2

, £Ω =
[
£1Ω £2Ω

]T
, CΩ =

[
1 0

]
,

AΩ =

0 1

0 0

 , PΩ =

 1 −1

−1 2

 , NΩ =

1 0

0 3

 , ΦΩ =


c1[vq(x̂)− vq(x)]

L3
cΩ
(t)

2|z1Ω|
1
2

L4
cΩ
(t)

[dΩ(t)]

 ,
where, from Assumption 3.3, the nonlinear term ΦΩ satisfies the following inequality, ||ΦΩ|| ≤

ς11||£Ω|| for ς11 > 0.
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Following the same steps of the previous analysis, consider the control input vd expressed in

terms of the estimates as follows

vd(x̂) =
Ld

ϑ13

(
ϑ13Rsîd
Ld

− ϑ13pΩ̂Lq îq
Ld

+ ϑ13i̇
∗
d − eid

−2L2
cid
(t)|Sid|

1
2 sign(Sid)−

∫ t

0

L4
cid
(t)

2
sign(Sid)dτ

) (4.1.11)

Then, from the sliding surface (3.1.46) and the control input (4.1.11) depending on the estimated

states, the dynamic of the sliding surface is given by

Ṡid = −ϑ13Rsid
Ld

+
ϑ13pΩLqiq

Ld

+
ϑ13

Ld

vd(x̂)− ϑ13i̇
∗
d + eid + δid(t) (4.1.12)

where δid(t) represents the uncertain/disturbance term.

Adding and subtracting the term
ϑ13

Ld

vd(x) in (4.1.12), it follows that

Ṡid = −ϑ13Rsid
Ld

+
ϑ13pΩLqiq

Ld

+
ϑ13

Ld

vd(x)− ϑ13i̇
∗
d + eid +

ϑ13

Ld

[vd(x̂)− vd(x)] + δid(t) (4.1.13)

where the term
ϑ13

Ld

[vd(x̂) − vd(x)] is Lipschitz, i.e., there exist a positive constant µ12 such

that ||ϑ13

Ld

[vd(x̂) − vd(x)]|| ≤ µ12||x̂ − x||. Moreover, applying the control input vd(x) given by

(3.1.47) into the above system, the dynamic of the sliding surface is given by

Ṡid = −2L2
cid
(t)|Sid |

1
2 sign(Sid)−

∫ t

0

L4
cid
(t)

2
sign(Sid)dτ +

ϑ2

Ld

[vd(x̂)− vd(x)] + δid(t) (4.1.14)

which can be represented as follows


Ṡid = −2L2

cid
(t)|Sid |1/2sign(Sid) + νid + δid(t) +

ϑ2

Ld
[vd(x̂)− vd(x)]

ν̇id = −
L4
cid
(t)

2
sign(Sid)

(4.1.15)

Now, defining Υ1id
= Sid and Υ2id

= νid + δid(t). The system Ṡid can be expressed as follows
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Υ̇1id
= −2L2

cid
(t)|Υ1id

|1/2sign(Υ1id
) + Υ2id

+
ϑ2

Ld

[vd(x̂)− vd(x)]

Υ̇2id
= −

L4
cid
(t)

2
sign(Υ1id

) + did(t)

(4.1.16)

with did(t) = δ̇id(t). Then, from (4.1.16), consider the following change of coordinates,

z1id =
Υ1id

L2
cid
(t)

and z2id =
Υ2id

L2
cid
(t)

, whose dynamics are given by

ż1id = −2Lcid
(t)|z1id |

1
2 sign(z1id ) + z2id +

ϑ13

Ld
[vd(x̂)− vd(x)]

L2
cid
(t)

−
2z1id L̇cid

Lcid
(t)

ż2id = −
L2
cid
(t)

2
sign(z1id ) +

did(t)

L2
cid
(t)

−
2z2id L̇cid

(t)

Lcid
(t)

(4.1.17)

After that, a new change of variable is introduced as

£1id
= |z1id |

1
2 sign(z1id ) £2id

=
z2id

Lcid
(t)

(4.1.18)

whose dynamics are given by

£̇1id
=

Lcid
(t)

2|z1id |
1
2

[
−2£1id

+£2id
+

ϑ13

Ld
[vd(x̂)− vd(x)]

L3
cid
(t)

]
−£1id

L̇cid
(t)

Lcid
(t)

£̇2id
=

Lcid
(t)

2|z1id |
1
2

[
−£1id

+
2|z1id |

1
2did(t)

L4
cid
(t)

]
− 3£2id

L̇cid
(t)

Lcid
(t)

(4.1.19)

Then, system (4.1.19) can be rewritten in a compact form as follows

£̇id = αid

[(
Aid − P−1

id
CT

id
Cid

)
£id + Φid

]
−Nid£id

L̇cid
(t)

Lcid
(t)

(4.1.20)

with αid =
Lcid

(t)

2|z1id |
1
2

, £id =
[
£1id

£2id

]T
, Cid =

[
1 0

]
,
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Aid =

0 1

0 0

 , Pid =

 1 −1

−1 2

 , Nid =

1 0

0 3

 , Φid =


ϑ13

Ld
[vd(x̂)− vd(x)]

L3
cid
(t)

2|z1id |
1
2

L4
cid
(t)

[did(t)]

 .

From Assumption 3.3, the term Φid is Lipschitz, i.e. there exists ς12 > 0, such that ||Φid|| ≤

ς12||£id || .

Then, considering the adaptive observer-1 given in section 2.2.1 and the adaptive control-1

given in section 3.1.1, the dynamics in closed-loop, controller-observer, are established as follows

ξ̇ = αo

[(
Ao − P−1

o CT
o Co

)
ξ + Φo

]
−Noξ

L̇o(t)

Lo(t)

£̇Ω = αΩ

[(
AΩ − P−1

Ω CT
ΩCΩ

)
£Ω + ΦΩ

]
−NΩ£Ω

L̇cΩ(t)

LcΩ(t)

£̇id = αid

[(
Aid − P−1

id
CT

id
Cid

)
£id + Φid

]
−Nid£id

L̇cid
(t)

Lcid
(t)

(4.1.21)

If ∀t > T1, such that ξ tend to zero, then, ei tend to zero. Therefore, from Theorem 2.1,

the observer converges in finite time to zero, it follows that the terms c1[vq(x̂) − vq(x)] and
ϑ13

Ld

[vd(x̂)− vd(x)] contained in ΦΩ and Φid , respectively; tend to zero in finite time. Therefore,

the system given by (3.1.16) is obtained. Finally, from the same procedure given in the proof

of the Theorem 3.1, the stability of the closed-loop system is proved.

4.2 Simulation and experimental results: Scheme 1

In this section, simulation and experimental results have been evaluated in order to show

the performance of the proposed strategy. The adaptive observer introduced in section 2.2.1

and the adaptive control introduced in section 3.1.1 have been interconnected to illustrate

the performance of the control in closed-loop under the action of the observer estimates, i.e.,

controller+observer (ASTWC-1 + AHOSMO-1). A scheme of the proposed sensorless control-1

is shown in Figure 4.1.
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Figure 4.1: Proposed sensorless control: Scheme-1.

4.2.1 Simulation tests

A simulation test has been carried out in Matlab-Simulink environment, using a sampling time

of 1×10−3 with a fixed-step ode4 solver. White noise was added in the measurable currents−iαβ
with a power noise of 1×10−7 in order to illustrate a realistic situation. The parameter variation

given in Figure 1.8 and the profile given in Figure 1.7 are considered.

Figure 4.2: Simulation test: Behaviour of the adaptive gains, observer and control
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From simulations, the behaviour of adaptive law Lo for the observer; and the adaptive laws

LcΩ and Lcid
for the speed and current−id controllers, respectively, are shown in Figure 4.2. The

adaptive laws have been implemented by considering the parameters of the Table 4.1. Then,

Table 4.1: Parameters for the sensorless control-1 in simulation test.

AHOSMO-1
γ0 ko

0.01 90

ASTWC-1
ϑ12 γcΩ kcΩ ϑ13 γcid kcid
400 0.1 3 200 0.002 0.8

in Figure 4.3, the speed estimation and its estimation error are plotted. Small overshoots can

be seen under the load torque variations. However, the performance of the adaptive observer is

good under these variations. On the other hand, the estimated angular position compared with

Figure 4.3: Simulation test: Speed estimation and estimation error

the real angular position is plotted in Figure 4.4. It is easy to see that the angular position

error converges to zero ensuring observability for a wide speed range, i.e., high, medium and

close to zero. In Figure 4.5, the estimation of acceleration is plotted and an estimation with

noise can be seen due to the application of the additive noise in the currents−iαβ.

Now, taking into account the estimates of the observer, the controllers of speed and current−id
are applied in the IPMSM. Therefore, IPMSM has been controlled and rotor speed tracking is
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Figure 4.4: Simulation test: Angular position estimation and angular position error

Figure 4.5: Simulation test: Estimation of acceleration

plotted in Figure 4.6 showing a tracking with good performance. Similarly, in Figure 4.7, the

current-id tracks the desired reference i∗d = 0 and the current iq takes different values according

to the speed and load torque profiles. Then, from these figures, the effectiveness of the pro-

posed scheme based on sliding mode is shown by simulations under parameter and load torque

variations. Finally, from simulations can be shown that the angular position estimation error

eθe has been extracted successfully showing good performance in closed loop.
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Figure 4.6: Simulation test: Speed tracking and tracking error

Figure 4.7: Simulation test: Behaviour of the currents−idq

4.2.2 Experimental test

The proposed strategy is implemented taking into account the profiles defined in Figure 1.7.

Moreover, as previously mentioned, during the experiments an encoder is used to measure

the real angular position. Then, considering measured position, a Kalman-filter is applied in

order to calculate the rotor speed. Therefore, from this information, it is possible to know if the

proposed observer does a correct estimation and the controller a correct reference tracking. Now,



CHAPTER 4. SENSORLESS CONTROL OF THE INTERIOR PERMANENT
SYNCHRONOUS MOTOR 115

Table 4.2: Parameters for the sensorless control-1 in experimental test.

AHOSMO-1
γ0 ko

0.07 35

ASTWC-1
ϑ12 γcΩ kcΩ ϑ13 γcid kcid
180 0.0003 0.1 20 0.0009 0.2

considering the proposed adaptive observer; the speed, angular position and acceleration are

going to be estimated to control the speed and current−id of IPMSM using adaptive controllers.

A comparison is carried out with the same proposed strategy using constant gains in order

to see the improvement with the implementation of adaptive gains. It is worth mentioning that

during the experiments with constant gains, the constant gains have been chosen in order to

avoid damaging the hardware.

Experimental validation has been carried out considering the following parameters: for the

case with constant gains, the observer is implemented with Lo = 4.5; ϑ12 = 180 and LcΩ = 35

in the speed controller; ϑ13 = 20 and Lcid
= 20 in the current−id controller. On the other hand,

the adaptive observer and adaptive control parameters are given in Table 4.2.

The behaviour of the adaptive laws for the observer and controllers are illustrated in Figure

4.8. Then, the speed and the angular position have been estimated using constant gain and

Figure 4.8: Experimental test. Adaptive laws: Control (Lcid
(t), LcΩ(t)) and observer (Lo(t)).

adaptive gain as can be shown in Figure 4.9 and Figure 4.10, respectively. At first glance, it is
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Figure 4.9: Experimental test: Speed estimation and estimation error.

not possible to see the improvement in detail through speed estimation error and angular error.

However, in Figure 4.11, in order to show numerically the improvement, a performance index is

computed: Integral Absolute Error (IAE). Therefore, it possible to see that proposed adaptive

observer improves the estimation adjusting the gains in order to obtain a minimum error. On

the other side, the estimation of the acceleration is shown in Figure 4.12 using constant gains

and adaptive gains. Then, the estimation with adaptive gains has an improvement avoiding

overestimation with large gains and reducing the chattering.

Now, the estimates of the observer have been used in the controllers to control the machine in

closed-loop. In Figure 4.13, the speed tracking and its tracking error are shown. A comparative

study using constant gains and adaptive gains is given. It is clear that an improvement can be

seen numerically in Figure 4.11 using the adaptive gains in the scheme. On the other hand,
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Figure 4.10: Experimental test: Angular position estimation and estimation error.

the currents−idq are plotted in Figure 4.14 and the control inputs−vdq using adaptive laws are

presented in Figure 4.15. Then, the closed-loop in IPMSM is achieved successfully.

Therefore, as can be seen the proposed strategy only requires the current−iαβ signals for

extracting the angular position estimation error eθe , directly, without any additional information

or elements, then, eθe can be used in the observer based on the virtual system to estimate

angular position, speed and acceleration, such that the proposed strategy has been validated

experimentally, with good effectiveness at low, medium and high speed in closed loop.

As can be seen in simulation, the tracking errors and estimation errors show the effect of

adding white noise. It is clear that the chattering has been attenuated. However, the effects

of white noise are present in the signals. On the other hand, during the experimental test,

these errors are more important compared to those obtained in the simulation. It is well-known

that in the experiments the effect caused by external disturbances (e.g. inverter) and the noise
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Figure 4.11: Performance index for the estimation and tracking of states during experiments

Figure 4.12: Experimental test: Estimation of the acceleration.

appears in the measured signals. However, the proposed strategy works well and attenuate the

effects of chattering, uncertain parameters and unmodeled dynamics.
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Figure 4.13: Experimental test: Speed tracking and tracking error

4.3 Closed-loop analysis: Scheme 2

Consider the proposed control given in the section 3.2.1 (ASTWC-2) using the estimates pro-

vided by the proposed observer given in section 2.3.1 (AHOSMO-2). Then, the stability analysis

of the system in closed-loop, control-observer scheme, is established as follows

Theorem 4.2. Consider the dynamical model of the IPMSM (1.3.30)-(1.3.31) in closed-loop

with the controllers (3.2.43)-(3.2.48) using the estimates provided by the observer (2.3.42).

Then, tracking errors e1ω and e1id ; and estimation error eθe converge to zero in finite time.

Proof: Since the control input vq(x̂) depends on estimates Ω̂, îd and îq; and taking into

account the sliding surface given by (3.2.42), then the dynamic of the sliding surface is given

as follows

ṠΩ2 = ϑ22e2Ω + a1b1 + a2b2 + a3b2 − b3 + b4 − Ω̈∗ + c1vq(x̂) (4.3.1)
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Figure 4.14: Experimental test: Profiles of the currents−idq

Now, adding and subtracting the term c1vq(x) in the sliding surface, it follows that

ṠΩ2 = ϑ22e2Ω + a1b1 + a2b2 + a3b2 − b3 + b4 − Ω̈∗ + c1vq(x) + c1[vq(x̂)− vq(x)] (4.3.2)

Notice that the term c1[vq(x̂)− vq(x)] is Lipschitz, i.e., there exists a positive constant µ21 such

that ||c1[vq(x̂)− vq(x)]|| ≤ µ21||x̂− x||.

Applying the control input vq(x) given by (3.2.43) into the above system, the dynamic of

the sliding surface is given by

˙SΩ2 = −2LcΩ2
(t)|SΩ2|

1
2 sign(SΩ2)−

∫ t

0

L2
cΩ2

(t)

2
sign(SΩ2)dτ + c1[vq(x̂)− vq(x)] + δΩ(t) (4.3.3)

for δΩ(t) = b4 =
fvTl
J2

.
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Figure 4.15: Experimental test: Profiles of the voltages−vdq with adaptive laws.

Then, the dynamic of SΩ2 can be expressed as follows


ṠΩ2 = −2LcΩ2

(t)|SΩ2|
1
2 sign(SΩ2) + νΩ2 + δΩ(t) + c1[vq(x̂)− vq(x)]

ν̇Ω2 = −
L2
cΩ2

(t)

2
sign(SΩ2)

(4.3.4)

Now, defining the following change of coordinates z1Ω2
= SΩ2 and z2Ω2

= νΩ2 + δΩ(t). The

system (4.3.4) is given by

ż1Ω2
= −2LcΩ2

(t)|z1Ω2
|
1
2 sign(z1Ω2

) + z2Ω2
+ c1[vq(x̂)− vq(x)]

ż2Ω2
= −

L2
cΩ2

(t)

2
sign(z1Ω2

) + dΩ(t)

(4.3.5)

with dΩ(t) = δ̇Ω(t). Now, a change of variable is introduced

£1Ω2
=

|z1Ω2
| 12 sign(z1Ω2

)

LcΩ2
(t)

£2Ω2
=

z2Ω2

L2
cΩ2

(t)
(4.3.6)
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then, the dynamical behavior of system (4.3.6), in the new coordinates, is given by

£̇1Ω2
=

LcΩ2
(t)

2|z1Ω2
| 12

[
−2£1Ω2

+£2Ω2
+
c1[vq(x̂)− vq(x)]

L2
cΩ2

(t)

]
−£1Ω2

L̇cΩ2
(t)

LcΩ2
(t)

£̇2Ω2
=

LcΩ2
(t)

2|z1Ω2
| 12

[
−£1Ω2

+
2|z1Ω2

| 12dΩ(t)
L3
cΩ2

(t)

]
− 2£2Ω2

L̇cΩ2
(t)

LcΩ2
(t)

(4.3.7)

which can be represented in a compact form as follows

£̇Ω2 = αΩ2

[(
AΩ2 − P−1

Ω2
CT

Ω2
CΩ2

)
£Ω2 + ΦΩ2

]
−DΩ2£Ω2

L̇cΩ2
(t)

LcΩ2
(t)

(4.3.8)

with αΩ2 =
LcΩ2

(t)

2|z1Ω2
| 12

and

£Ω2 =

£1Ω2

£2Ω2

 AΩ2 =

0 1

0 0

 CΩ2 =
[
1 0

]
(4.3.9)

PΩ2 =

 1 −1

−1 2

 DΩ2 =

1 0

0 2

 ΦΩ2 =


c1[vq(x̂)− vq(x)]

L2
cΩ2

(t)

2|z1Ω2
| 12

L3
cΩ2

(t)
[dΩ(t)]

 (4.3.10)

From Assumption 3.5, the nonlinear term ΦΩ2 satisfies the following inequality, ||ΦΩ2 || ≤

ς21||£Ω2|| for ς21 > 0.

Following the same steps of the previous analysis, consider the control input vd, expressed in

terms of the estimates as follows

vd(x̂) =
Ld

ϑ23

(
ϑ23Rsîd
Ld

− ϑ23pΩ̂Lq îq
Ld

+ ϑ23i̇
∗
d − eid

−2Lcid2
(t)|Sid2

|
1
2 sign(Sid2

)−
∫ t

0

L2
cid2

(t)

2
sign(Sid2

)dτ

) (4.3.11)

Then, from sliding surface (3.2.47) and the control input (4.3.11) depending on the estimated
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states, the dynamic of the sliding surface is given by

Ṡid2
= −ϑ23Rsid

Ld

+
ϑ23pΩLqiq

Ld

+
ϑ23

Ld

vd(x̂)− ϑ23i̇
∗
d + eid + δid(t) (4.3.12)

where δid(t) represents the uncertain/disturbance term.

Adding and subtracting the term
ϑ23

Ld

vd(x) in (4.3.12), it follows that

Ṡid2
= −ϑ23Rsid

Ld

+
ϑ23pΩLqiq

Ld

+
ϑ23

Ld

vd(x)− ϑ23i̇
∗
d + eid +

ϑ23

Ld

[vd(x̂)− vd(x)] + δid(t) (4.3.13)

where the term
ϑ23

Ld

[vd(x̂)−vd(x)] is Lipschitz, i.e., there exist a positive constant µ22 such that

||ϑ23

Ld

[vd(x̂)− vd(x)]|| ≤ µ22||x̂− x||.

Moreover, applying the control input vd(x) given by (3.2.48) into the above system, the dynamic

of the sliding surface is given by

˙Sid2
= −2Lcid2

(t)|Sid2
|
1
2 sign(Sid2

)−
∫ t

0

L2
cid2

(t)

2
sign(Sid2

)dτ+
ϑ23

Ld

[vd(x̂)−vd(x)]+δid(t) (4.3.14)

which can be represented as follows
Ṡid2

= −2Lcid2
(t)|Sid2

| 12 sign(Sid2
) + νid2 + δid(t) +

ϑ23

Ld

[vd(x̂)− vd(x)]

ν̇id2 = −
L2
cid2

(t)

2
sign(Sid2

)

(4.3.15)

Now, defining z1id2 = Sid2
and z2id2 = νid2 + δid(t). The system Ṡid2

can be expressed as follows

ż1id2
= −2Lcid2

(t)|z1id2 |
1
2 sign(z1id2

) + z2id2
+
ϑ23

Ld

[vd(x̂)− vd(x)]

ż2id2
= −

L2
cid2

(t)

2
sign(z1id2

) + did(t)

(4.3.16)
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with did(t) = δ̇id(t). Now, a new change of variable is introduced

£1id2
=

|z1id2 |
1
2 sign(z1id2

)

Lcid2
(t)

£2id2
=

z2id2
L2
cid2

(t)
(4.3.17)

whose dynamics are given by

£̇1id2
=

Lcid2
(t)

2|z1id2 |
1
2

[
−2£1id2

+£2id2
+

ϑ23

Ld
[vd(x̂)− vd(x)]

L2
cid2

(t)

]
−£1id2

L̇cid2
(t)

Lcid2
(t)

£̇2id2
=

Lcid2
(t)

2|z1id2 |
1
2

−£1id2
+

2|z1id2 |
1
2did(t)

L3
cid2

(t)

− 2£2id2

L̇cid2
(t)

Lcid2
(t)

(4.3.18)

Then, system (4.3.18) can be rewritten in a compact form as follows

£̇id2
= αid2

[(
Aid2

− P−1
id2
CT

id2
Cid2

)
£id2

+ Φid2

]
−Did2

£id2

L̇cid2
(t)

Lcid2
(t)

(4.3.19)

with αid2
=

Lcid2
(t)

2|z1id2 |
1
2

and

£id2
=

£1id2

£2id2

 Aid2
=

0 1

0 0

 Cid2
=
[
1 0

]
(4.3.20)

Pid2
=

 1 −1

−1 2

 Did2
=

1 0

0 2

 Φid2
=


ϑ23

Ld
[vd(x̂)− vd(x)]

L2
cid2

(t)

2|z1id2 |
1
2

L3
cid2

(t)
[did(t)]

 (4.3.21)

From Assumption 3.5, the term Φid2
is Lipschitz, i.e. there exists ς22 > 0, such that ||Φid2

|| ≤

ς22||£id2
||.

Then, considering the adaptive observer given in section 2.3.1 and the adaptive control given
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in section 3.2.1, the dynamics in closed-loop, controller-observer, are established as follows

ξ̇o2 = αo2

[(
Ao2 − P−1

o2
CT

o2
Co2

)
ξo2 + Φo2

]
−Do2ξo2

L̇o2(t)

Lo2(t)

£̇Ω2 = αΩ2

[(
AΩ2 − P−1

Ω2
CT

Ω2
CΩ2

)
£Ω2 + ΦΩ2

]
−DΩ2£Ω2

L̇cΩ2
(t)

LcΩ2
(t)

£̇id2
= αid

[(
Aid2

− P−1
id2
CT

id2
Cid2

)
£id2

+ Φid2

]
−Did2

£id2

L̇cid2
(t)

Lcid2
(t)

(4.3.22)

If ∀t > T12 , such that ξo2 tend to zero, then, ei2 tend to zero. Therefore, from Theorem

2.2, the observer converges in finite time to zero, it follows that the terms c1[vq(x̂)− vq(x)] and
ϑ23

Ld

[vd(x̂)−vd(x)] contained in ΦΩ2 and Φid2
, respectively; tend to zero in finite time. Therefore,

the system given by (3.2.13) is obtained. Finally, from the same procedure given in the proof

of the Theorem 3.2, the stability of the closed-loop system is proved.

4.4 Simulation and experimental results: Scheme 2

In this section, simulation and experimental results have been evaluated in order to show

the performance of the proposed strategy. The adaptive observer introduced in section 2.3.1

(AHOSMO-2) and the adaptive control introduced in section 3.2.1 (ASTWC-2) have been

interconnected to illustrate the performance of the control in closed-loop under the action of

the observer estimates, i.e., controller+observer (ASTWC-2 + AHOSMO-2). A scheme of the

proposed sensorless control strategy-2 is shown in Figure 4.16.

4.4.1 Simulation test

A simulation test is carried out in Matlab-Simulink environment, using a sampling time of

1× 10−3 with a fixed-step ode4 solver. White noise was added in the measurable currents−iαβ
with a power noise of 1×10−7 in order to illustrate a realistic situation. Moreover, the adaptive

laws have been implemented by considering the parameters of the Table 4.3. The behaviour of

adaptive law Lo2(t) for the observer; and the adaptive laws LcΩ2
(t) and Lcid2

(t) for speed and

current−id controllers are shown in the Figure 4.17, respectively.
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Figure 4.16: Proposed sensorless control: Scheme-2.

Table 4.3: Parameters for the sensorless control-2 in simulation test

AHOSMO-2
γo2 ko2

0.016 200

ASTWCs-2
ϑ22 γcΩ2

kcΩ2
ϑ23 γcid2

kcid2
400 0.008 120 200 0.0011 120

Figure 4.17: Simulation test: Behaviour of adaptive gains for the observer (Lo2(t)) and con-
trollers (LΩ2(t), Lid2

(t))
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Considering the adaptive laws, in Figure 4.18, the speed estimation and its estimation error

are introduced, showing a minimum error. In Figure 4.19, the angular position estimation and

Figure 4.18: Simulation test: Speed estimation and estimation error

its angular position estimation error are plotted. As can be seen, the estimation is ensured

over a wide speed range in presence of parametric uncertainties (see Figure 1.8). Moreover, in

Figure 4.19: Simulation test: Angular position estimation and angular position error

Figure 4.20, acceleration has been estimated in order to compensate the fast dynamics in the

system and reduce the estimation error in the speed and angular position.

Information from observer estimates has been interconnected with the controllers in closed-

loop, as can be seen in the scheme 4.16. Then, in Figure 4.21, speed tracking and its tracking

error are illustrated with a good performance.
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Figure 4.20: Simulation test: Estimation of acceleration

Figure 4.21: Simulation test: Speed tracking and tracking error

Moreover, the currents−idq are plotted in Figure 4.22. Therefore, from the illustrations,

it is possible to see that the behaviour of the adaptive laws with the system in closed loop

(controller+observer) have a good performance. Moreover, the extraction of eθe introduced in

section 2.1 has been achieved successfully.

4.4.2 Experimental test

One experimental test is addressed to see in real time the performance of the strategy. The

proposed strategy is implemented taking into account the profiles defined in Figure 1.7. More-

over, as previously mentioned, a sensor (encoder) has been used to measure the real angular

position in the experiments. From this information, a Kalman-filter is applied to calculate the
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Figure 4.22: Simulation test: Behaviour of the currents−idq

rotor speed. Therefore, it is possible to know if the proposed observer does a correct estimation

of the speed and angular position. Similarly, it possible to know if the controller does a correct

reference tracking. The adaptive laws have been implemented by considering the parameters

given in Table 4.4 and are shown in Figure 4.23.

Table 4.4: Parameters for the sensorless control-2 in experimental test

AHOSMO-2
γ02 ko2

0.001 3

ASTWCs-2
ϑ22 γcΩ2

kcΩ2
ϑ23 γcid2

kcid2
180 0.0001 35 20 0.0005 30

Then, in Figure 4.24, it possible to see the convergence of the estimated speed towards the

real speed with good performance. In Figure 4.25, the estimation of the angular position and its

angular error are plotted and a small error is obtained. It is possible to see a good performance

over wide speed range, i.e., high, medium and low speed. However, the error increases when

the speed is very close to zero. On the other hand, in Figure 4.26, the acceleration has been

estimated in order to compensate the estimation error of angular position and speed.

The estimates of the observer are interconnected in the controllers to control the speed and

the current of the IPMSM. In Figure 4.27, the tracking of the speed and the tracking error are

showed. The tracking error shows that the performance of the proposed strategy is good and

the tracking is ensured with good accuracy even close to zero.
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Figure 4.23: Experimental test: Behaviour of adaptive gains for the observer and controllers

Figure 4.24: Experimental test: Speed estimation and estimation error

Moreover, the tracking of the current id and the behaviour of the current iq are shown in

Figure 4.28. The current id tracks a reference equal to 0, and the current iq has a behaviour

according to the load torque and the speed. In adittion, the behaviour of the control inputs−vdq
using adaptive laws are shown in the Figure 4.29.

As can be seen the proposed strategy only requires the angular position estimation error eθe

to estimate angular position, speed and acceleration using an observer based on a parameter
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Figure 4.25: Experimental test: Angular position estimation and angular position estimation
error

Figure 4.26: Experimental test: Estimation of acceleration

free virtual system. From this information, the sensorless scheme is possible. The proposed

strategy has been validated experimentally, with good effectiveness at low, medium and high

speed in closed loop.

On the other hand, it is possible to see in simulation that the tracking errors and estimation

errors show the effect of adding white noise. It is clear that the chattering has been attenuated.

However, the effects of white noise are present in the signals. On the other hand, during the
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Figure 4.27: Experimental test: Speed tracking and tracking error

Figure 4.28: Experimental test: Behaviour of the currents−idq

experimental test, these errors are more important compared to those obtained in the simula-

tion. It is well-known that in the experiments the effect caused by external disturbances (e.g.

inverter) and the noise appears in the measured signals. However, the proposed strategy works

well and attenuate the effects of chattering, uncertain parameters and unmodeled dynamics.
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Figure 4.29: Experimental test: Profiles of the voltages−vdq with adaptive laws.

4.5 Conclusion

In this chapter, experimental and simulation tests were introduced to show the performance of

the proposed sensorless control. The experimental tests have been carried out in Laboratoire

des Sciences du Numérique de Nantes (LS2N) of the Ecole Centrale De Nantes, France. The

extraction of the angular position estimation error has been successfully achieved from the

measurable currents iαβ and the observers have been implemented obtaining good results. Then,

angular position, speed and acceleration have been estimated. These estimates have been

interconnected with the controller in closed-loop to control the electrical machine. In this way,

the sensorless control applied in the experimental setup has shown a good performance under

a wide speed range, even very close to zero.

An stability analysis under the action of the observer estimates has been introduced. This

analysis is simpler due to that the separation principle holds.



Conclusion

In this work a new alternative for sensorless control of the IPMSM was proposed. The main

contributions of this work have been the following:

• A strategy to extract the angular error eθe was proposed, and based on a virtual system

without parameters of the IPMSM, two Adaptive High-Order Sliding Mode Observers

(AHOSMOs) were designed to estimate angular position, speed and acceleration over

a wide speed range, and overcome the issues caused by parametric uncertainties. The

angular position estimation error is independent of all machine parameters and high-

frequency signal injection characteristics. Therefore, this can improve the feasibility of

the design and reduces the cost of the implementation.

• Two Adaptive Super-Twisting Controllers (ASTWCs) were designed to track the desired

speed reference and a desired d-axis current reference. These controllers were intercon-

nected with the AHOSMOs achieving a sensorless control strategy.

• The gains for both, the control and observer, were reparameterized in terms of a single

parameter to reduce the tuning time. The main advantage of this strategy is that adaptive

laws were easy to implement, which has avoided overestimation of gains that increases

chattering, reduced time to adjust gains, and reduced damage to the system.

• The closed-loop stability analysis under the action of the observer has been improved

because the separation principle holds.

134
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This work has been presented as follows:

In the first place, a state of the art of electrical machines and their main characteristics, as

well as their applications were presented. After this, the two main classifications of sensorless

control methods were presented, as well as their advantages and disadvantages. The problem

statement, objectives and the contributions were included in this section. Then, the organi-

zation of the thesis was addressed. In addition, a list of publications in indexed journals and

conferences has been presented.

In chapter one, a summary of the different types of PMSM was presented, as well as a brief

introduction to the IPMSM. Considering that the dynamic model of the IPMSM is necessary

for the design of control strategies, the modeling of the IPMSM was carried out. In addition,

the parameter-free virtual system was presented in this section in order to design the observers

without machine parameters. On the other hand, in order to test the performance of the

different proposals of this thesis, the benchmark used in simulation and experimental tests was

provided, as well as the description of the hardware of the experimental setup.

In chapter two, a new method to extract the angular position estimation error eθe was

introduced. The information of eθe was extracted by considering the currents iαβ without

machine model information. The extraction of eθe has been used to design observers based on

a virtual system without parameters of the IPMSM in order to overcome the issues caused by

parametric uncertainties. Then, two adaptive observers have been designed. Both adaptive

observers have been proposed with reparameterized gains, i.e., the gains depend on a single

parameter. Based on this reparametrization, an adaptive law was designed for each observer.

The designed observers have been applied considering the extraction of the angular error to

estimate the angular position, speed and acceleration. Simulation results and a comparative

study were introduced.

In chapter three, two adaptive controllers based on super twisting were proposed. Both

adaptive controllers have the reparameterized gains in terms of a single parameter such as

the proposed adaptive observers in chapter two. This has allowed designing an adaptive law

for each control in order to improve its performance, avoiding large gains and saving tuning

time. Simulation results were presented to show the performance of this strategies. Moreover,
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considering some results of the literature, a comparative study was introduced.

In chapter four, two schemes of sensorless control were introduced. The interconnection

among the proposed observers and controllers was carried out to show the performance of the

system under the action of observer estimates. Then, two sensorless controllers were applied

to the IPMSM. Simulation and experimental results have been illustrated showing a good

performance and effectiveness for a wide speed range, showing that the extraction of eθe has

been made successfully. Therefore, thanks to the virtual system without parameters of the

IPMSM, greater precision has been achieved in the estimates. It is worth mentioning that

thanks to the robustness of the sliding modes, good results have been obtained in the tracking

of references despite uncertainties and disturbance.

In this work, a new alternative to sensorless control has been introduced. Therefore, based

on the presented alternative, it is possible to show that to extract the angular error of the

electrical motor, it is not always necessary to use dynamic equations of the motor, allowing to

design observers without the use of a dynamic model of the machine.

Some perspectives are given below:

For the design of observers in the sensorless control of an electrical motor, it is necessary to

know the initial condition of the motor rotor, which is an open problem that requires further

study to improve the performance of the proposed schemes. In addition, when the electrical

machine is stopped and it is desired to know the angular position for the control application, it

is necessary to inject high-frequency signals to excite the system, which generates noise in the

signals and the need to use filters. For this reason, it is necessary to investigate more about the

elimination of filters and high-frequency injection to avoid phase shifts in the obtained signal

as well as acoustic noise, so that the speed control at zero speed can be less complex.
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Appendix A

Reparameterized gains

A.1 Reparameterized gains for the proposed observers

Consider the following algebraic Lyapunov equation in order to compute the observer gains

Po + AT
o Po + PoAo − CT

o Co = 0 (A.1.1)

where Po is a symmetric positive-definite matrix,

Ao =


0 1 0

0 0 1

0 0 0

 , Co =
[
1 0 0

]
, (A.1.2)

then the solution of Po for (A.1.1) is given by

Po =


1 −1 1

−1 2 −3

1 −3 6

 (A.1.3)

Now, consider the following LTI system

149
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ẋ = Aox

y = Cox
(A.1.4)

where x ∈ ℜ3 is a state vector and y ∈ ℜ the output. Then, an observer for the system (A.1.4)

is given by
˙̂x = Aox̂+Ko(y − ŷ)

ŷ = Cox̂
(A.1.5)

where Ko is the gain. Then, the estimation error is given by e = x − x̂ and its dynamics can

be expressed by

ė = (Ao −KoCo)e (A.1.6)

Then, the gain Ko has the following values

Ko =


Ko1

Ko2

Ko3

 = P−1
o CT

o =


3

3

1

 (A.1.7)

A.1.1 Adaptive observer: Proposal 1

In this section, the gains of the proposed observer will be determined and computed in terms

of a single parameter.

Consider the following class of nonlinear system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = ρ(t)

y = x1

(A.1.8)

where x1, x2 and x3 are the states, ρ(t) is bounded function whose bound is unknown, and

y ∈ ℜ the output of the system.
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Now, a sliding mode observers for the system (A.1.8) is given by

˙̂x1 = x̂2 + K̃1,1|e1|
2
3 sign(e1)

˙̂x2 = x̂3 + K̃2,1|e1|
1
3 sign(e1)

˙̂x3 = K̃3,1sign(e1)

ŷ = x̂1

(A.1.9)

where x̂1, x̂2, and x̂3 are the estimated states, ŷ is the estimated output and K̃1,1, K̃2,1 and

K̃3,1 are the gains. Then, defining the following estimation errors ei = xi − x̂i, for i = 1, 2, 3;

the dynamics are given by
ė1 = e2 − K̃1,1|e1|

2
3 sign(e1)

ė2 = e3 − K̃2,1|e1|
1
3 sign(e1)

ė3 = ρ(t)− K̃3,1sign(e1)

(A.1.10)

and taking into account the dynamics of the estimation errors, the following change of variable

is established as follows

ζ1 =
e1

L2
o(t)

, ζ2 =
e2

L2
o(t)

, ζ3 =
e3

L2
o(t)

(A.1.11)

where Lo(t) > 0 is the single adaptive parameter. The dynamical system in terms of the new

variables is given by

ζ̇1 = − K̃1,1

L
2
3
o (t)

|ζ1|
2
3 sign(ζ1) + ζ2 − 2ζ1

L̇o(t)

Lo(t)

ζ̇2 = − K̃2,1

L
4
3
o (t)

|ζ1|
1
3 sign(ζ1) + ζ3 − 2ζ2

L̇o(t)

Lo(t)

ζ̇3 = − K̃3,1

L2
o(t)

sign(ζ1) +
ρ(t)

L2
o(t)

− 2ζ3
L̇o(t)

Lo(t)

(A.1.12)

Moreover, in order to simplify the state space representation, the following new change of

variable is introduced

ξ1 = |ζ1|
2
3 sign(ζ1), ξ2 =

ζ2
Lo(t)

, ξ3 =
3ζ3|ζ1|

1
3

2L2
o(t)

(A.1.13)
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and the dynamical system can be expressed by using the new variables as follows

ξ̇1 =
2Lo(t)

3|ζ1|
1
3

[
− K̃1,1

L
5
3
o (t)

ξ1 + ξ2

]
− 4L̇o(t)

3Lo(t)
ξ1

ξ̇2 =
2Lo(t)

3|ζ1|
1
3

[
− 3K̃2,1

2L
10
3
o (t)

ξ1 + ξ3

]
− 3L̇o(t)

Lo(t)
ξ2

ξ̇3 =
2Lo(t)

3|ζ1|
1
3

[
−(

3

2
)2
K̃3,1

L5
o(t)

ξ1 +

(
3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+
ξ3

2|ζ1|
2
3

(−3ξ1 + ξ2)

]
− 14L̇o(t)

3Lo(t)
ξ3

(A.1.14)

The resulting system (A.1.14) can be expressed in the following compact form

ξ̇ = αo

[(
Ao − G̃oCo

)
ξ + Φo

]
−Noξ

L̇o(t)

Lo(t)
(A.1.15)

where αo =
2Lo(t)

3|ζ1|
1
3

, ξ =
[
ξ1 ξ2 ξ3

]T
and

G̃o =



K̃1,1

L
5
3
o (t)

3K̃2,1

2L
10
3
o (t)

(
3

2
)2
K̃3,1

L5
o(t)


, No =


4

3
0 0

0 3 0

0 0
14

3

 ,Φo =


0

0(
3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+
ξ3

2|ζ1|
2
3

(
− K̃1,1

L
5
3
o (t)

ξ1 + ξ2

)
 .

(A.1.16)

Then, from (A.1.6), it is obtained that G̃o = P−1
o CT

o . Then, setting G̃o equal to (A.1.7), it

follows that 

K̃1,1

L
5
3
o (t)

3K̃2,1

2L
10
3
o (t)

(
3

2
)2
K̃3,1

L5
o(t)


=


3

3

1

 (A.1.17)

Therefore, the gains for the observer are computed and reparameterized in terms of Lo(t)
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as follows

K̃1,1 = 3L
5
3
o (t) K̃2,1 = 2L

10
3
o (t) K̃3,1 =

(
4

9

)
L5
o(t) (A.1.18)

such that, the compact system (A.1.15) can be rewritten as

ξ̇ = αo

[(
Ao − P−1

o CT
o Co

)
ξ + Φo

]
−Noξ

L̇o(t)

Lo(t)
(A.1.19)

A.1.2 Adaptive observer: Proposal 2

In this section, a second observer is designed for a class of nonlinear system given by (A.1.8).

The gains of the proposed observer will be determined and computed in terms of a single

parameter.

Consider the following sliding mode observer for the system (A.1.8),

˙̂x12 = x̂2 + K̃1,2|e12|
2
3 sign(e12)

˙̂x22 = x̂3 + K̃2,2|e12|
1
3 sign(e12)

˙̂x32 = K̃3,2sign(e12)

ŷ = x̂12

(A.1.20)

where x̂12 , x̂22 and x̂32 are the estimated states, ŷ is the output of the system and K̃1,2, K̃2,2

and K̃3,2 are the gains of the observer.

Consider the following estimation errors ei2 = x1 − x̂i2 , for i = 1, 2, 3; and their dynamics

as follows
ė12 = e22 − K̃1,2|e12|

2
3 sign(e12)

ė22 = e32 − K̃2,2|e12|
1
3 sign(e12)

ė32 = ρ(t)− K̃3,2sign(e12)

(A.1.21)

Taking into account the dynamics of the estimation errors, the following change of variable is

established as follows
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ξ12 =
|e12|

2
3 sign(e12)

Lo2(t)
ξ22 =

e22
L2
o2
(t)

ξ32 =
3e32|e12|

1
3

2L3
o2
(t)

(A.1.22)

where Lo2(t) is the single adaptive parameter. The dynamical system in terms of the new

variables is given by

ξ̇12 =
2Lo2(t)

3|e12|
1
3

[
− K̃1,2

Lo2(t)
ξ12 + ξ22

]
− L̇o2(t)

Lo2(t)
ξ12

ξ̇22 =
2Lo2(t)

3|e12|
1
3

[
− 3K̃2,2

2L2
o2
(t)
ξ12 + ξ32

]
− 2L̇o2(t)

Lo2(t)
ξ22

ξ̇32 =
2Lo2(t)

3|e12|
1
3

[
−
(
3

2

)2
K̃3,2

L3
o2
(t)
ξ12 +

(
3

2

)2 |e12 |
2
3ρ(t)

L4
o2
(t)

+
ξ32

2|e12|
2
3

[
−K̃1,2ξ12 + Lo2(t)ξ22

]]

− 3L̇o2(t)

Lo2(t)
ξ32

(A.1.23)

and can be written in a compact form as follows

ξ̇o2 = αo2

[(
Ao − G̃o2Co

)
ξo2 + Φo2

]
−Do2ξo2

L̇o2(t)

Lo2(t)
(A.1.24)

where αo2 =
2Lo2(t)

3|e12|
1
3

, ξo2 =
[
ξ12 ξ22 ξ32

]T
and

G̃o2 =



K̃1,2

Lo2(t)

3K̃2,2

2L2
o2
(t)(

3

2

)2
K̃3,2

L3
o2
(t)


, Do2 =


1 0 0

0 2 0

0 0 3

 , (A.1.25)

Φo2 =


0

0(
3

2

)2 |e12|
2
3ρ(t)

L4
o2
(t)

+
ξ32

2|e12|
2
3

[
−K̃1,2ξ12 + Lo2(t)ξ22

]
 . (A.1.26)

Then, from (A.1.6), it is obtained that G̃o2 = P−1
o CT

o . Then, setting G̃o2 equal to (A.1.7), it
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follows that 

K̃1,2

Lo2(t)

3K̃2,2

2L2
o2
(t)

(
3

2
)2
K̃3,2

L3
o2
(t)


=


3

3

1

 (A.1.27)

Therefore, the gains for the observer (A.1.20) are computed and reparameterized in terms of

Lo2(t) as follows

K̃1,2 = 3Lo2(t) K̃2,2 = 2L2
o2
(t) K̃3,2 =

(
2

3

)2

L3
o2
(t) (A.1.28)

such that, the compact system (A.1.24) can be rewritten as

ξ̇o2 = αo2

[(
Ao − P−1

o CT
o Co

)
ξo2 + Φo2

]
−Do2ξo2

L̇o2(t)

Lo2(t)
(A.1.29)

A.2 Reparameterized gains for the proposed controllers

Consider the following algebraic Lyapunov equation in order to compute the control gains

Pc + AT
c Pc + PcAc − CT

c Cc = 0 (A.2.1)

where Pc is a symmetric positive-definite matrix,

Ac =

0 1

0 0

 , Cc =
[
1 0

]
. (A.2.2)

Then the solution of Pc for A.2.1 is given by

Pc =

 1 −1

−1 2

 . (A.2.3)
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Similarly, as the previous section A.1, consider the following LTI system

ẋc = Acxc

yc = Ccxc

(A.2.4)

where xc ∈ ℜ2 is a state vector and yc ∈ ℜ the output. Then, an observer for the system

(A.2.4) is given by
˙̂xc = Acx̂c +Kc(yc − ŷc)

ŷc = Ccx̂c

(A.2.5)

where Kc are the gains. Then, the estimation error is given by ec = xc − x̂c and its dynamics

can be expressed by

ėc = (Ac −KcCc)ec = (Ac − P−1
c CT

c Cc)ec (A.2.6)

Then, the gain Kc has the following values

Kc =

Kc1

Kc2

 = P−1
c CT

c =

2
1

 (A.2.7)

A.2.1 Adaptive control: Proposal 1

In this section, the gains of the proposed controller (3.1.6) will be determined and computed

in terms of a single parameter.

Consider the following system

ΣSTW :

Υ̇1 = −K̃c1|Υ1|1/2sign(Υ1) + Υ2,

Υ̇2 = −K̃c2sign(Υ1) + d(t)

(A.2.8)

with d(t) = δ̇(t). Now, consider the following change of coordinates

z1 =
Υ1

L2
c(t)

z2 =
Υ2

L2
c(t)

(A.2.9)

where Lc(t) is the single adaptive parameter. The dynamical system in terms of the new
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variables is given by

ż1 = − K̃c1

Lc(t)
|z1|

1
2 sign(z1) + z2 −

2z1L̇c(t)

Lc(t)

ż2 = − K̃c2

L2
c(t)

sign(z1) +
d(t)

L2
c(t)

− 2z2L̇c(t)

Lc(t)

(A.2.10)

Moreover, in order to simplify the state space representation, the following new change of

variable is introduced

£1 = |z1|
1
2 sign(z1) £2 =

z2
Lc(t)

(A.2.11)

and the dynamical system can be expressed by using the new variables as follows

£̇1 =
Lc(t)

2|z1|
1
2

[
− K̃c1

L2
c(t)

£1 +£2

]
−£1

L̇c(t)

Lc(t)

£̇2 =
Lc(t)

2|z1|
1
2

[
− 2K̃c2

L4
c(t)

£1 +
2|z1|

1
2d(t)

L4
c(t)

]
− 3£2

L̇c(t)

Lc(t)

(A.2.12)

System (A.2.12) can be expressed in compact form as follows

£̇ = αc

[(
Ac − G̃cCc

)
£+ Φc

]
−Nc£

L̇c(t)

Lc(t)
(A.2.13)

with αc =
Lc(t)

2|z1|
1
2

, £ =
[
£1 £2

]T
and

G̃c =


K̃c1

L2
c(t)

2K̃c2

L4
c(t)

 , Nc =

1 0

0 3

 , Φc =

 0

2|z1|
1
2

L4
c(t)

(d(t))

 . (A.2.14)

Then, from (A.2.6), it is obtained that G̃c = P−1
c CT

c . Then, setting G̃c equal to (A.2.7), it

follows that 
K̃c1

L2
c(t)

2K̃c2

L4
c(t)

 =

2
1

 (A.2.15)

Therefore, the gains for the controller (3.1.6) are computed and reparameterized in terms of
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Lc(t) as follows

K̃c1 = 2L2
c(t) K̃c2 =

L4
c(t)

2
(A.2.16)

Finally, the compact system (A.2.13) can be expressed as follows

£̇ = αc

[(
Ac − P−1

c CT
c Cc

)
£+ Φc

]
−Nc£

L̇c(t)

Lc(t)
(A.2.17)

A.2.2 Adaptive control: Proposal 2

In this section, the gains of the proposed controller (3.2.5) will be determined and computed

in terms of a single parameter.

Consider the following system as follows

ΣSTW2 :

ż12 = −K̃c3|z12|
1
2 sign(z12) + z22

ż22 = −K̃c4sign(z12) + d(t)

(A.2.18)

with d(t) = δ̇(t). Now, introducing the following change of variable

£12 =
|z12|

1
2 sign(z12)

Lc2(t)
£22 =

z22
L2
c2
(t)

(A.2.19)

where Lc2(t) is the single adaptive parameter. Then the dynamics of the system, in terms of

these new variables, are given by

£̇12 =
Lc2(t)

2|z12|
1
2

[
− K̃c3

Lc2(t)
£12 +£22

]
−£12

L̇c2(t)

Lc2(t)

£̇22 =
Lc2(t)

2|z12|
1
2

[
− 2K̃c4

L2
c2
(t)

£12 +
2|z12|

1
2d(t)

L3
c2
(t)

]
− 2£22

L̇c2(t)

Lc2(t)

(A.2.20)

System (A.2.20) can be expressed in compact form as follows

£̇c2 = αc2

[(
Ac − G̃c2Cc

)
£c2 + Φc2

]
−Dc2£c2

L̇c2(t)

Lc2(t)
(A.2.21)
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with αc2 =
Lc2(t)

2|z12|
1
2

, £c2 =
[
£12 £22

]T

G̃c2 =


K̃c3

Lc2(t)

2K̃c4

L2
c2
(t)

 Dc2 =

1 0

0 2

 Φc2 =

 0

2|z12 |
1
2

L3
c2
(t)

[d(t)]

 (A.2.22)

Then, from (A.2.6), it is obtained that G̃c2 = P−1
c CT

c . Then, setting G̃c2 equal to (A.2.7), it

follows that 
K̃c3

Lc2(t)

2K̃c4

L2
c2
(t)

 =

2
1

 (A.2.23)

Therefore, the gains for the controller (3.2.5) are computed and reparameterized in terms

of Lc2(t) as follows

K̃c3 = 2Lc2(t) K̃c4 =
L2
c2
(t)

2
(A.2.24)

Finally, the system (A.2.21) can be expressed as follows

£̇c2 = αc2

[(
Ac − P−1

c CT
c Cc

)
£c2 + Φc2

]
−Dc2£c2

L̇c2(t)

Lc2(t)
(A.2.25)


