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Abstract: This research aimed to conduct a passive layer state study on martensitic and semi-
austenitic precipitation hardening stainless steels (PHSS) passivated in citric acid and nitric acid
baths at 49 and 70 ◦C for 50 and 75 min and subsequently exposed in 5 wt.% NaCl and 1 wt.%
H2SO4 solutions. Corrosion behavior of the passivated material was observed by using potentiody-
namic polarization (PP) according to the ASTM G5-11 standard. The microstructural analysis was
performed by optical microscopy and scanning electron microscopy (SEM), while the passivated
layer was characterized by X-ray photoelectron spectroscopy (XPS). The results indicated that the
semi-austenitic-NA-50 min-70 ◦C sample showed the best corrosion resistance behavior in both
solutions. The XPS characterization confirmed that the martensitic and semi-austenitic surface film
presented a mixture of chemical compounds, such as Cr2O3 and Fe(OH)O, respectively.

Keywords: martensitic and semi-austenitic; PH stainless steel; passivation; potentiodynamic
polarization; X-ray photoelectron spectroscopy

1. Introduction

Corrosion deterioration of materials in the aircraft industry is a major problem affecting
economic, safety, and logistical issues. Corrosion protection methods seek to be friendly
to the environment due to the demands in the aeronautical sector. Passivation treatment
is a protection method commonly used in stainless steels (SS) to increase their corrosion
resistance [1–4]. Stainless steels are widely used in the industry due to their excellent
mechanical resistance, corrosion resistance, and impact resistance.

According to their microstructures, stainless steels are classified into ferritic (α),
martensitic (α’), austenitic (γ), duplex (mixture of ferrite and austenite), and precipi-
tation hardening (PH) [1,5,6]. Three main types are typically used in the aeronautical
industry: austenitic, martensitic, and PH stainless steel. Good performance in aggressive
environments has been observed due to their corrosion, mechanical, and high-temperature
properties. They can be used in aircraft components such as actuators, fasteners, and
landing gear supports [6–8]. Aeronautical materials such as stainless steel are used in
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various components and are commonly exposed to different atmospheres such as industrial
and marine.

The precipitation hardening stainless steels (PHSS) are a group with excellent corrosion-
resistant alloys that can be heat-treated with precipitation hardening, also called aging,
to provide high tensile strength. The alloying elements of these steels are Chromium, the
main element to form the protective passivation layer, and Nickel, which helps stabilize
the austenitic phase and improve mechanical resistance. Furthermore, in small amounts of
other metals, additional elements include Molybdenum, which helps to improve localized
corrosion resistance, and Tungsten Aluminum, Titanium, and Niobium can form inter-
metallic compounds to improve mechanical resistance [1,9,10]. According to the parent
phase, PH stainless steels are grouped into three main classes austenitic (γ), semi-austenitic
(γ and δ), and martensitic (α’). The chemical composition is the main reason for obtaining
excellent properties and the final microstructure of the PHSS [11–16].

The semi-austenitic grades PHSS basically austenitic with annealed treatment. Austenitic
PHSS features an austenitic phase in both the age-treated and annealed conditions. Marten-
sitic PHSS is also called single-treatment steel and has a martensitic microstructure. After
aging treatment, the martensitic and semi-austenitic PHSS can reach tensile strengths
greater than 1300 MPa. However, they decrease ductility when passing from the annealed
to the aged-treated condition. For values around 950 MPa, however, austenitic PHSS does
not have ductility by high mechanical strength after aging treatment. In the aerospace
sector, martensitic and austenitic stainless steels are limited to specific components due to
the tribological properties of these steels. Stainless steels 17-4PH, 17-7PH and 15-7Mo were
introduced by Armco (Middletown, OH, USA) in 1948. Nevertheless, years later, PHSS
steels such as AM350 and AM355 (both semi-austenitic), Custom 630, Custom 455, and
Custom450 (all martensitic) were developed [17,18].

The alloying element that provides corrosion resistance in stainless steel is chromium,
which reacts with oxygen and forms a protective surface layer based on chromium oxide
(Cr2O3) [19,20]. Passivation is a chemical process used on stainless steel with an oxidant
agent, according to specification ASTM A967 [21]. However, an alternative to nitric acid
passivation is citric acid because it is non-toxic and biodegradable. Based on the literature,
it is observed that there is scarce information on the benefits of using citric acid in the
passivation of stainless steels [22–25]. The Boeing Company evaluated the use of citric
acid as an alternative for the passivation of stainless steel in aeronautical components [26].
In 2008, the National Aeronautics and Space Administration (NASA) began a research
project evaluating the use of nitric acid in the passivation treatment of welded parts, using
accelerated tests such as a salt chamber [27]. Likewise, the effectiveness of using citric acid
to passivate stainless steel has also been reported [28].

A number of investigations of stainless steels have been focused on their corrosion
behavior, such as passivation, corrosion rates, pitting nucleation potentials, transpassive
regions, and corrosion mechanisms. Typical electrochemical techniques of DC and AC are
galvanodynamic (PG), potentiodynamic (PP), cyclic potentiodynamic polarization (PPC),
electrochemical impedance spectroscopy (EIS), and electrochemical noise (EN).

The AISI 304 SS corrosion in ferric chloride (FeCl3) solution using electrochemical
noise was studied by Suresh and Mudali [29]. The results indicated a relationship between
the frequency domain (power spectral density, PSD) and time-domain (statistical analysis)
that determines the localized corrosion mechanism. Lara et al. [30] evaluated the passivated
15-5PH and 17-4PH SS employing EN and PPC. The results indicated that a similar passive
layer formed in both passivating acid solutions. Bragaglia et al. [31] used PP to determine
the behavior of passivated and unpassivated 304 SS austenitic in acid solutions. The pitting
potential increased with the passivation, particularly nitric acid.

Marcelin et al. [32] studied the characterization of the electrochemical behavior of
martensitic stainless steel; the results indicated that the corrosion process was controlled
by passive film properties formed during air exposure. Impedance diagrams allowed the
characterization of the oxide film and the charge transfer process.
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In 2004, El-Taib Heakal et al. [33] concluded that the effect of pH on the electrochemical
behavior of austenitic stainless steels in naturally aerated and nitrogen-deaerated buffer
solutions was studied. Potentiodynamic polarization and electrochemical impedance spec-
troscopy techniques were used. The results indicate that corrosion current (icorr) decreases
with pH due to an effect of alloying elements such as molybdenum. Ameer et al. [34]
reported potentiodynamic polarization results showed that icorr and ic increase with in-
creasing either Cl− or SO4

2− concentration, indicating the decrease in the passivity of the
formed film. The stability of naturally grown passive films on Mo-containing stainless
steel was studied by El-Taib Heakal et al. [35] in aerated and deaerated buffer solutions
with different pH and in sulfate and chloride solutions. Analysis of the EIS data indicates
that the total resistance (RT) of the passive film has higher values in aerated solutions
and is generally lower in basic solutions. This indicates that lower solution pH favors the
formation of oxide films, offering better corrosion resistance. The higher values of RT in
Na2SO4 solutions suggest the formation of more stable passive films in sulfate than in
chloride solutions.

Recent investigations on PHSS have focused on hydrogen diffusion, fatigue behavior,
and microstructural characterization [36–45]. Samaniego et al. [46] studied the corrosion
behavior of CUSTOM450 and AM350 passivated PHSS steels using electrochemical noise
and electrochemical impedance spectroscopy in acid baths. The CUSTOM 450 PHSS
showed the best results for corrosion behavior in acid baths.

This work aimed to study the passive state of martensitic and semi-austenitic PHSS
passivated in citric and nitric acid baths at 49 and 70 ◦C for 50 and 75 min, immersed in
5 wt.% NaCl and 1 wt.% H2SO4 solutions, applying potentiodynamic polarization (PP).
The microstructural analysis was performed by scanning electron microscopy (SEM) and
optical microscopy (OM). The passivated layer was characterized by X-ray photoelectron
spectroscopy (XPS).

2. Experimental Methodology
2.1. Materials

In the current investigation, the martensitic and semi-austenitic PHSS steels were
employed and tested in the as-received condition. The nominal chemical composition of
these PHSS [47,48] is shown in Table 1.

PHSS samples were prepared by metallography (grinding and polishing employed
400, 500, 600, and 800 grade SiC sandpaper) and, subsequently, cleaned for 10 min using
ultrasonic in ethanol and deionized water [49].

Table 1. Chemical composition of the martensitic and semi-austenitic precipitation hardening stainless
steel (wt.%).

PHSS
Elements

Cr Ni Mo Mn Cu Ti Nb N Si S C Fe

Martensitic 14.0–16.0 5.0–7.0 0.50–1.0 1.00 1.25–1.75 0.90–1.40 0.5–0.75 ≤0.1 1.00 0.030 ≤0.05 Balance

Semi-
austenitic 16.0–17.0 4.0–5.0 2.50–3.25 0.50–1.25 – – – 0.07–0.13 ≤0.50 0.030 0.07–0.11 Balance

2.2. Passivation Treatment

The passivation treatment followed the specification ASTM A967-17 [21] and ASTM
A380-17 [50], which regulated the stages of pretreatment, passivation, time, temperature
and final treatment. See Figure 1.

A design of experiments 5 (DoE) was carried out; due to different combinations of acid
solutions, applied with 3-factor; and 2-tier to obtain the optimal concentration, temperature,
and passivation time in the baths.

Table 2 shows the passivation treatment parameters exposure for each type of PHSS.
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Figure 1. Diagram of passivation treatment of PHSS.

Table 2. Nomenclature and passivation treatment parameters.

PHSS Passivation Baths Time (min) Temperature (◦C) Nomenclature Samples *

semi-austenitic

C6H8O7 50 49 semi-austenitic-CA-75 min-49 ◦C
HNO3 50 70 semi-austenitic-NA–50 min-70 ◦C
HNO3 50 70 semi-austenitic-NA–50 min-70 ◦C

C6H8O7 75 49 semi-austenitic-CA–75 min-49 ◦C

martensitic

HNO3 75 70 martensitic-NA–75 min–70 ◦C
HNO3 50 49 martensitic-NA–50 min–49 ◦C

C6H8O7 50 49 martensitic-CA–50 min–49 ◦C
C6H8O7 75 49 martensitic-CA-75 min-49 ◦C

* Citric acid (CA) and nitric acid (NA).

2.3. Microstructural Characterization

Optical microscopy (OM, Olympus, Hamburg, Germany) was used to determine the
microstructure of PHSS; while the micrographs were taken by scanning electron microscopy
(SEM, JEOL-JSM-5610LV, Tokyo, Japan) using a secondary electrons (SE) detector at 500×,
operating at 20 kV, WD = 14 mm.

2.4. Corrosion Test

Corrosion measurements were conducted at room temperature using an electrochem-
ical interface mod. 1287A—Solartron (Bognor Regis, UK) two 5 wt.% NaCl and 1 wt.%
H2SO4 solutions [5,6]. The corrosion cell configuration consisted of a working electrode,
WE (material to study), a reference electrode of saturated calomel (SCE), and a platinum
mesh that served as a counter electrode (CE) for the current measurements [6,51,52]. The
potentiodynamic polarization (PP) parameters regarding the potential scan range were
applied between −1.0 and 1.0 V from OCP and a sweep rate of 0.06 V/min, according to
ASTM G5-11 [50,53]. Tests were realized in triplicate.

2.5. XPS Characterization

High-resolution XPS analyses determined the oxide layer’s surface chemical compo-
sition and valence states in the martensitic and semi-austenitic PHSS. A Thermo Fisher
Scientific ESCALAB 250 Xi equipment (Waltham, MA, USA) was operated at a pressure of
10 mBar; the analysis conditions for the high-resolution zones and analysis radius of µm,
(eV step energy, 45◦ of “take-off angle” with 0.1 eV step), and the excitation of the analyzed
photoelectrons were measured with a monochromatic Al KAlpha X-ray source (1486 eV).
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3. Results and Discussion
3.1. OM-SEM Microstructural

OM and SEM techniques were applied to study the microstructures of the samples in
initial conditions. Figure 2 shows the martensitic and semi-austenitic PHSS micrographs
(a, b) OM and (a’, b’) SEM-SE. The martensitic PHSS shows a martensitic (α‘) phase, and
semi-austenitic PHSS contains a microstructure of austenite (γ) and delta (δ) ferrite phase,
respectively. The SEM analysis corroborates the results. The presence of austenite (γ) in
semi-austenitic steels is a thermodynamically stable phase, where an aging treatment can
transform this phase. Likewise, alloying elements were found to indicate the presence of
the delta ferrite (δ) phase [54–56].
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(initial conditions): (a,b) OM; (a’,b’) SEM-SE.

The martensitic stainless steels have higher carbon contents than most that are semi-
austenitic. This reduces the corrosion resistance but increases mechanical properties
such as toughness and increases the susceptibility to chromium carbide precipitation
at grain boundaries.

The pitting corrosion is often measured using the pitting resistance equivalent number
(PREN). From this theoretical standpoint, and based on their chemical compositions, the
pitting corrosion resistance of various grades of stainless steels can be compared [57,58].
High PREN values indicate higher corrosion resistance (see Table 3). The PREN is deter-
mined by the alloying elements such as chromium, molybdenum, and nitrogen contents,
and the most commonly used version of the Equation (1) is:

PREN = Cr + 3.3Mo + 16N (1)
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Table 3. Pitting resistance equivalent numbers of the martensitic and semi-austenitic precipitation
hardening stainless steel.

PHSS Cr Mo N PREN

Martensitic 14.0–16.0 0.50–1.0 ≤0.1 17.26

Semi-austenitic 16.0–17.0 2.50–3.25 0.07–0.13 25.37

3.2. Corrosion Test
Potentiodynamic Polarization

The corrosion behavior was observed by using potentiodynamic polarization. The
Tafel extrapolation of PP was employed to determine the corrosion current density, icorr
(µA·cm−2), potential corrosion, Ecorr (V), and corrosion rate [5,59–62]. The presence of a
linear section in the potentiodynamic polarization curve is necessary for using the Tafel
extrapolation method. A range of ±300 mV on Ecorr was determined to be in the linear
section of at least one decade of current [63–65]. The PP obtained for the martensitic and
semi-austenitic PHSS passivated in acid baths at 49 and 70 ◦C for 50 and 75 min and
immersed in 5 wt.% NaCl and 1 wt.% H2SO4 solutions are shown in Figures 3 and 4.

The results for PHSS immersed in NaCl solution shows that the active Ecorr (−0.384 V)
value was recorded for the Martensitic-CA–50 min–49 ◦C, while the Semi-austenitic-NA–
50 min–70 ◦C and Martensitic-NA–75 min–70 ◦C samples have the highest Ecorr (both
−0.234 V). Pitting potentials (Epitt) have values from 0.401 up to 0.934 V. The semi-austenitic-
NA–50 min–70 ◦C showed the best behavior of the nitric acid passivation treatment,
which was corroborated by the lower corrosion rate (2.55 × 10−4 mm/yr) obtained. The
passivation (range of 0.638 to 1.119 V) showed just a trend in PHSS steels since it was not
fully defined.
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Figure 4 shows the results for PHSS immersed in H2SO4. The corrosion potentials
(Ecorr) were found in the range of −0.266 and −0.349 V, respectively. Pitting potential (Epitt)
values were observed from 0.766 up to 0.875 V. All steels under study had a higher and
more defined passivation range (0.692 to 1.055 V) than the samples immersed in NaCl. The
corrosion rates are higher (×10−2 mm/yr) except for the semi-austenitic-NA–50 min–70 ◦C
sample that presented a low corrosion rate (3.62 × 10−4 mm/yr).

Tables 4 and 5 show the electrochemical parameters obtained by potentiodynamic
polarization (PP) curves. High values of corrosion rates in PHSS immersed in 5 wt.% NaCl
solution (within the same order of magnitude) were recorded for nitric acid (×10−4 mm/yr)
and citric acid (×10−3 mm/yr) passivation. Low values of corrosion rate in PHSS im-
mersed in 1 wt.% H2SO4 solution (in the order of ×10−2 mm/yr) were recorded, except
for the semi-austenitic-NA–50 min–70 ◦C sample, which presented a low corrosion rate
(3.62 × 10−4 mm/yr). Passivation current and ipass, values are higher for samples exposed
to sulfuric acid, ranging from 0.506 up to 9.837 µA·cm−2.

Table 4. Parameters obtained by PP for passivated martensitic and semi-austenitic. PHSS in 5 wt.%
NaCl solution.

Sample Ecorr
(Volts)

Epitt
(Volts)

icorr
(µA·cm−2)

ipass
(µA·cm−2)

Range
Passive
(Volts)

CR (mm/yr)

Semi-austenitic-CA–50 min–49 ◦C −0.365 0.422 7.82 × 10−1 0.352 0.736 1.26 × 10−3

Semi-austenitic-NA–50 min–70 ◦C −0.234 0.934 1.58 × 10−1 0.082 1.119 2.55 × 10−4

Martensitic-NA–75 min–70 ◦C −0.234 0.565 1.37 × 10−1 0.119 0.740 2.25 × 10−4

Martensitic-CA–50 min–49 ◦C −0.384 0.401 3.44 × 10−1 0.480 0.688 5.65 × 10−3
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Table 5. Parameters obtained by PP for passivated martensitic and semi-austenitic. PHSS in 1 wt.%
H2SO4 solution.

Sample Ecorr
(Volts)

Epitt
(Volts)

icorr
(µA·cm−2)

ipass
(µA·cm−2)

Range
passive
(Volts)

CR (mm/yr)

Semi-austenitic-CA–75 min–49 ◦C −0.314 0.875 0.7 × 10−1 9.837 1.055 1.13 × 10−2

Semi-austenitic-NA–50 min–70 ◦C −0.226 0.766 2.24 × 10−1 0.506 0.692 3.62 × 10−4

Martensitic-NA–50 min–49 ◦C −0.282 0.898 2.25 × 10−1 8.529 0.899 3.69 × 10−2

Martensitic-CA–75 min–49 ◦C −0.349 0.857 5.37 × 10−1 8.193 0.880 8.82 × 10−2

The current results indicate that all systems showed a mixed activation and passivation
followed by a transpassivation or secondary passivation trend.

Cheng et al. [66] stated that stainless steels commonly have primary and secondary
passive films formed before and after transpassivation. When the passivated material
begins to dissolve, the electrode potential is too noble (positive values). This represents
a corrosion mechanism called transpassivation [5,6]. Studies on the formation of pas-
sive stainless-steel films have focused on the main passive region but not on the second
film [28,67–76].

The PP curves show passivation behavior for the martensitic and semi-austenitic PHSS
in acid solutions. The dissolution of the passive layer in the anodic region is the start of the
transpassivation region [77–79]. The chromium oxidation transforms the primary passive
film into a second passive film [80–82]. The film growth period involves iron and chromium
oxidation [5,6,83–87].

The transpassive region is above 300 mV vs. ECS for samples in NaCl solution and is
above 0.700 V for samples in H2SO4 solution. The passive film formed with nitric and citric
acid baths at longer times has higher passivation ranges in H2SO4 than in NaCl solution.

3.3. XPS Analysis

XPS measurements determine the valence states, oxide layer composition, and surface
chemical in the passivated martensitic and semi-austenitic PHSS, as shown in Figures 5–11.

XPS analysis was conducted with the Avantage software (Waltham, MA, USA). The
NIST database (National Institute of Standards and Technology; Gaithersburg, MD, USA)
was used to perform the deconvolution calculations of the XPS spectra and assign the
chemical compounds through the binding energy peaks.

High-resolution XPS spectra are shown in Figures 5–11, obtained for Cr 2p and
O 1s. In XPS spectra for Cr 2p, four chemical compounds were found: Cr2O3, Cr7C3,
CrO3 and Cr(C6H6)2, as shown in Figures 5a, 6a, 7a, 8a, 9a, 10a and 11a. According to
the literature [88–90], the Cr2O3 presence corresponding to the passive layer composi-
tion can be found from 576 to 578 eV; the obtained binding energy peaks ranged from
576.69 to 577.07 eV, according to the values reported for the chromium oxide layers. Fi-
nally, Figures 5a’, 6a’, 7a’, 8a’, 9a’, 10a’ and 11a’ summarize the parameters obtained from
full width at half maximum (FWHM) fitting, area ratio, and the peak binding energy,
respectively.

In XPS spectra, the contributions of O 1s indicate binding energies for O 1s, from 532.23 to
532.94 eV according to the Gauss–Lorentz peak (see Figures 5b’, 6b’, 7b’, 8b’, 9b’, 10b’ and 11b’).
Five chemical species were found Cr2O3, Fe(OH)O, Fe2O3, SiO2 y Cr(OH)3. Natajaran et al. [91]
indicated that the presence of oxides gives rise to chrome hydroxides and oxide formation
on the surface due to OH−. The binding energy peaks obtained for Fe(OH)O and Fe2O3
ranged from 530.26 to 531.08 eV and 528.9 to 531.8 eV, respectively.

The detection of silicon oxide (SiO2) in the high-resolution XPS spectra of the O 1s
orbital, whose binding energy is between 532.23 and 532.94 eV, Figures 5b’, 7b’ and 11b’,
can be attributed to polishing or impurities in the passivating solutions. In the literature,
different species have been found in the oxides generated by the passivation treatment of
aged solutions [40,92].
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According to the literature, the formation of the chromium oxide layer increases
corrosion resistance thanks to the anticorrosive properties provided by chromium oxide.

The analysis of the O 1s contributions in most of the deconvolutions shows different
Fe oxides and hydroxides, mainly associated with Fe3+. The contributions by Cr 2p show
the main peak around 576 eV. As the XPS spectra appear with an inclination at an energy
value above 577 eV, the appearance of hydroxide and trioxide species will be more frequent.
When analyzing Cr 2p, however, the main peaks were found at an energy level of 576 eV,
presumably due to the chromium oxide layer derived from the passivation process.

According to Jung and Mesquita [92,93], there is a relationship between Fe oxides,
hydroxides, and Cr oxides. The more Fe is dissolved during the passivation process, the
more chromium oxides tend to enrich the passive layer, increasing the corrosion resistance.

Previous studies have revealed that passive films have a bilayer structure [94–96]. The
compact inner layer is mainly composed of chromium(III) oxide, while the porous outer
layer is mainly composed of iron and chromium oxides and hydroxides.
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4. Conclusions

This work studies the passive state of martensitic and semi-austenitic PHSS passivated
in citric and nitric acid baths at 49 and 70 ◦C for 50 and 75 min and immersed in 5 wt.% NaCl
and 1 wt.% H2SO4 solutions. From the current experimental results, it can be concluded
the following:

• OM-SEM characterization indicated that the martensitic PHSS presented a microstruc-
ture with a martensitic (α’) phase and a semi-austenitic PHSS containing a microstruc-
ture of austenite (γ) and delta (δ) ferrite phases, respectively. Based on the values
obtained from PREN, the semi-austenitic PHSS (25.37) presented a higher corrosion
resistance than the martensitic PHSS (17.26).

• Potentiodynamic polarization results indicated that martensitic and semi-austenitic
steels passivated in nitric acid showed lower corrosion resistance values (in the order
of ×10−4 mm/yr).

• Nitric acid passivation made the surface susceptible to localized corrosion. The
potentiodynamic polarization curves for PHSS immersed in 5 wt.% NaCl solution
indicated that the passivation showed a trend since it is not fully defined.

• Despite having a well-defined passivation layer, passive samples studied in H2SO4
solution presented an increase in corrosion kinetics.

• Passivation current, ipass, was found to have higher values for samples exposed to
sulfuric acid (from 0.506 up to 9.837 µA·cm−2).

• XPS analysis determined that the different chemical species on the surface film of
martensitic and semi-austenitic PHSS in this work included Cr2O3 and Fe(OH)O.
Passive films contained iron and chromium oxide and hydroxide.

• The samples passivated at 70 ◦C are the ones that presented the best results indepen-
dently of the steel, passivating solution, and time.

• The citric acid passivation process on PHSS could be a green alternative to the currently
employed nitric acid passivation process.
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