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Abstract: The aim of this work was to evaluate the corrosion behavior of the AA6061 and AlSi10Mg
alloys produced by extruded and additive manufacturing (selective laser melting, SLM). Alloys were
immersed in two electrolytes in H2O and 3.5 wt. % NaCl solutions at room temperature and their
corrosion behavior was studied by electrochemical noise technique (EN). Three different methods
filtered EN signals, and the statistical analysis was employed to obtain Rn, the localization index
(LI), Kurtosis, skew, and the potential spectral density analysis (PSD). The Energy Dispersion Plots
(EDP) of wavelets method was employed to determine the type of corrosion and the Hilbert–Huang
Transform (HHT), analyzing the Hilbert Spectra. The result indicated that the amplitude of the
transients in the time series in potential and current is greater in the AlSi10Mg alloy manufactured
by additive manufacturing. The amplitude of the transients decreases in both alloys (AA6061 and
AlSi10Mg) as time increases.

Keywords: corrosion; additive manufacturing; electrochemical noise; wavelets; Hilbert–Huang;
skewness; Kurtosis

1. Introduction

The Layered Manufacturing about the nature of the process is additive manufacturing,
where three-dimensional parts can be made [1–3].

Additive Manufacturing (A.M.) technologies have been developed to fabricate parts
using metal powder. A.M. can be classified into two processes: (1) laser metal deposition
(LMD), known as direct laser fabrication (DLF), (2) selective laser melting (SLM), selective
electron beam melting (SEBM), or direct metal laser sintering (DMLS) [3,4].

Emerging layer-by-layer manufacturing technology for producing metallic compo-
nents and parts is additive manufacturing by selective laser melting (SLM). This technique
uses a laser to transform metallic powder into a solid piece [5–7]. The advantages of this
technique are reduced consumption of raw materials and energy, rapid and continuous
production, and the fabrication of geometrically complex parts [8,9]. The SLM process
produces an unusual microstructure due to its rapid solidification. The microstructure
differences change the mechanical and corrosion properties compared to components made
by conventional methods [10,11].
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AlSi10Mg alloy is applied in industries such as automotive and aerospace due to its
low density, corrosion, and mechanical resistance [12]. Factors as differences in phases,
segregation, or dissimilar grain sizes can affect the mechanical properties of the materi-
als [13,14].

The corrosion resistance of Al-Si alloys manufactured by SLM is highly dependent on
surface conditions. Having a rough surface can degrade both electrochemical performance
and material life under dynamic loads. Furthermore, corrosion resistance is also related
to the natural ability of the material to form a passive and adherent layer under regular
atmospheric conditions [15,16].

Fathi et al. [2] studied the corrosive behavior in AlSi10Mg alloy manufactured by SLM
in a 3.5 wt. % NaCl solution, similar to the seawater environment, compared to the A360.1
alloy manufactured by die casting. It was found that the material manufactured by MA
exhibits greater resistance to corrosion than the material manufactured by die casting. The
extra-fine microstructure included homogeneously distributed Si particles and an absence
of intermetallic particles containing Fe and Cu. They are present in the A360.1 alloy.

The electrochemical noise (EN) technique is employed to study corrosion processes,
mainly localized processes. Transients manifested in potential and current time series are
related to different corrosion processes as localized re-passivation or pitting [17–21].

Ma et al. [22,23] mentioned that the surface area of working electrodes, symmetry, and
electrolyte influence the measurement. Different methods can be employed to analyze cor-
rosion processes. According to Xia et al. [24], time and the time-frequency domain as noise
resistances and statistical parameters and power spectral density help identify corrosion
rates and types. Additionally, alternative methods as the Hilbert–Huang transform and
Wavelets can be used [24–35].

This research aimed to study the corrosion behavior of AA6061 and AlSi10Mg alloys
produced by extruded and additive manufacturing, immersed at 3.5 wt. % in NaCl and
H2O solutions at room temperature by electrochemical noise technique. Characterization
by electrochemical techniques of aluminum alloys could find potential applications in the
aeronautical industry as in fuselage and aircraft wings.

2. Materials and Methods
2.1. Materials

The materials used in this work were AA6061 and AlSi10Mg (Al-A.M) alloys. The
chemical composition of the alloys was obtained by X-ray fluorescence (Olympus DELTA
XRF. Richmond, TX, USA). Table 1 presents the chemical composition of each aluminum alloy.

Table 1. Chemical composition of the used aluminum alloys (wt. %).

Alloy Si Fe Cu Mg Zn Ti Cr Mn Al

AA6061-
T6 0.6 ± 0.03 0.7 ± 0.35 0.18 ±

0.01
0.9 ±
0.045

0.25 ±
0.013

0.015 ± 7.5 ×
10−4

0.35 ±
0.018 - Bal.

AlSi10Mg
(A.M) 10.1 ± 0.5 0.16 ±

0.008
0.001 ± 5
× 10−5

0.35 ± 18
× 10−4

0.002 ± 1
× 10−4

0.01 ± 5 ×
10−4 - 0.002 ± 1

× 10−4 Bal.

The AlSi10Mg (Al-A.M) alloy was produced by additive manufacturing using selective
laser melting (SLM). The printing parameters and metallurgical processing are reported
in Table 2. The average diameter of the AlSi10Mg powder used (TLS Technik, Bitterfeld-
Wolfen, Germany) was 38 µm (StDev 14 µm). The SLM manufacturing procedure was
conducted by an SLM 280HL machine (Solutions GmbH, Hamburg, Germany). Bars were
printed vertically, length = 100 mm and diameter = 10 mm.
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Table 2. SLM processing parameters are used to manufacture aluminum alloys.

Parameter Value

Laser power, W 400
Scanning speed, mm/s 230

Layer thickness, µm 30
Hatch spacing, µm 110

Energy density, J/mm3 527
Scan rotation between successive layers 90◦

2.2. Microstructural Characterization

The aluminum specimens were polished using metallographic techniques according
to ASTM E3 [36]. The material was sequentially polished using different SiC grit papers
with 400, 600, and 800 grades, followed by ultrasonic cleaning in ethanol (C2H5OH) and
deionized water. The etching of polish samples was elaborated with a Kroll solution based
on ASTM E 407 [37].

The microstructural analysis was carried out by optical microscopy (OM, Olympus,
Hamburg, Germany) and scanning electron microscopy (SEM, JEOL-JSM-5610LV, Tokyo,
Japan) for identifying the microstructure of samples a magnification of 500× and 1000×
operating at 20 kV, WD = 11 mm. The chemical composition of these alloys was obtained
by energy-dispersive X-ray Spectroscopy (EDS, Tokyo, Japan).

2.3. Corrosion Test

Electrochemical noise measurements were conducted at room temperature using
potentiostat/galvanostat/ZRA Gill-AC from ACM Instruments (Manchester, UK).

A standard three-electrode cell was used composed of two nominally identical spec-
imens used as the working electrodes (WE1 and WE2) and saturated calomel electrode
(SCE) as reference electrodes [33,35,38]. Measurements were made at 0, 24, 48, and 120 h.
For each experiment, 2048 data points were obtained with a scanning rate of 1 data/s [33].

The polynomial method was employed to remove the trend from EN signals and
process statistical, PSD, and HHT information. To make an energy-disperse plot (EDP),
an orthogonal wavelet transform was applied to the original signal (with DC) because
this method separates the DC from the EN signal. EN analysis with the Hilbert–Huang
transform (HHT) was necessary to obtain the intrinsic functions (IMF) of the EN signal by
an empirical decomposition method (EMD). Finally, the instantaneous frequencies were
plotted with a Hilbert spectrum. Data analysis was carried out with the MATLAB 2018a
program (Math Works, Natick, MA, USA).

3. Results
3.1. Microstructural Analysis

The microstructures of the initial samples were analyzed by an optical microscope
(OM). Figure 1a shows that in the Al-6061, the Al microstructure was in the α-Al matrix,
which precipitated the Mg2Si. For the microstructure, it is evident that the eutectic was
relatively coarse and discontinuous. This is attributed to the dissolution of eutectics in
the solid solution during the solution treatment and the subsequent precipitation during
aging (Figure 1b). The AlSi10Mg (Al-A.M) alloy matrix had a dendritic microstructure. The
microstructure evolved due to the SLM manufacture, where the eutectic phase of silicon
was observed and some pores of various sizes [16,39,40].
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Figure 1. OM micrograph of alloys (initial conditions); (a) Al-6061 and (b) AlSi10Mg (Al-A.M).

3.2. Electrochemical Noise

In the electrochemical noise signal, there are random, stationary, and continuous
current variables. It is important to separate the DC signal from the aforementioned
variables to analyze the EN data. The corrosion data, presented at low frequencies, were
conserved [27,28,33,41–44].

The EN signal was filtered by a polynomial filter grade 5 to analyze only random and
stationary components. The visual, statistical, PSD, and HHT analyses were made with the
signal filter to obtain a study without false frequency and interference.

Figure 2 shows the EN signal in the potential for the Al-6061 and Al-A.M. samples
in H2O at 0, 24, 48, and 120 h. The samples presented potentials in 10−3 orders. When
samples were exposed for 0 h, the behavior was similar, but at 24, 48, and 120 h, Al-6061
decreased the amplitude; meanwhile, Al-A.M. increased the amplitude. Figure 3 shows
the EN signal in the current at 0, 24, 48, and 120 h. Al-A.M. presented a higher amplitude
of fluctuations than Al-6061, related to a faster corrosion kinetic. After 120 h of exposure,
the Al-A.M. signal showed the presence of transients.
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Figure 3. Time series electrochemical current noise (ECN) data in H2O solution, (a) 0 h, (b) 24 h,
(c) 48 h, and (d) 120 h.

Figure 4 shows the EN signal of the potential for the Al-6061 and Al-A.M. samples in
NaCl at 0, 24, 48, and 120 h. Al-6061 and Al-A.M. presented 10−3 order transients at 0, 24,
and 48 h. At 120, Al-A.M. presented higher fluctuations than Al-6061. Figure 5 shows the
EN signal of the current in NaCl at 0, 24, 48, and 120 h. Both samples presented the same
behavior at 0, 24, and 48 h, but after 120 exposition hours, Al-A.M. increased the current
demand, related to higher corrosion kinetic than Al-6061.
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Figure 5. Time series electrochemical current noise (EPN) data in NaCl solution, (a) 0 h, (b) 24 h,
(c) 48 h, and (d) 120 h.

The statistical analysis in Tables 3 and 4 shows that the localization index (LI) had
mixed and localized corrosion values, but skewness had values of uniform corrosion. The
discrepancies in LI, skewness, and Kurtosis results could be related to the predominance of
the uniform corrosion processes.

Table 3. EN statistical parameters for Al-6061 alloys and electrolytes.

H2O Solution

Time (h) Rn (Ω·cm2) icorr (mA/cm2) LI Corrosion
Type Skewness Corrosion

Type Kurtosis Corrosion
Type

0 19,405.77± 970 1.3 × 10−6 ±
6.5 × 10−8 0.032 Mix 0.17 Uniform 2.67 Uniform

24 25,422.38 ± 1271 1.0 × 10−6 ±
5.0 × 10−8 0.131 Localized 0.27 Uniform 2.33 Uniform

48 20,344.82 ± 1017 1.2 × 10−6 ±
6.0 × 10−8 0.051 Mix −0.008 Uniform 2.55 Uniform

120 13,476.44 ± 674 1.9 × 10−6 ±
9.5 × 10−8 0.044 Mix 0.81 Uniform 11.31 Uniform

NaCl Solution

0 1810 ± 90 14.4 × 10−6 ±
7.2 × 10−7 0.044 Mix −0.002 Uniform 2.23 Uniform

24 4881.08 ± 244 9.1 × 10−6 ±
4.5 × 10−7 0.056 Mix 0.037 Uniform 3.00 Uniform

48 3021.06 ± 151 8.6 × 10−6 ±
4.3 × 10−7 0.27 Localized −0.3 Uniform 2.93 Uniform

120 5277.3 ± 263 4.9 × 10−6 ±
2.5 × 10−7 0.055 Mix −0.45 Uniform 3.82 Mix
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Table 4. EN statistical parameters from Al-A.M. alloys and electrolytes.

H2O Solution

Time (h) Rn (Ω·cm2) icorr (mA/cm2) LI Corrosion
Type Skewness Corrosion

Type Kurtosis Corrosion
Type

0 5145.31 ± 257 5.1 × 10−6 ±
2.6 × 10−7 0.344 Localized 0.046 Uniform 3.39 Localized

24 6547.6 ± 327 4.0 × 10−6 ±
2.0 × 10−7 0.17 Localized −0.46 Uniform 2.99 Uniform

48 3358.78 ± 168 7.7 × 10−6 ±
3.9 × 10−7 0.051 Mix 0.71 Uniform 2.55 Localized

120 6800.02 ± 340 5.7 × 10−6 ±
2.9 × 10−7 0.26 Localized 0.26 Uniform 4.02 Uniform

NaCl Solution

0 1810 ± 90 14.4 × 10−6 ±
7.2 × 10−7 0.044 Mix −0.002 Uniform 2.23 Uniform

24 4881.08 ± 244 9.1 × 10−6 ±
4.5 × 10−7 0.056 Mix 0.037 Uniform 3.00 Uniform

48 3021.06 ± 151 8.6 × 10−6 ±
4.3 × 10−7 0.27 Localized −0.3 Uniform 2.93 Uniform

120 5277.3 ± 263 4.9 × 10−6 ±
2.5 × 10−7 0.055 Mix −0.45 Uniform 3.82 Mix

3.2.1. Statistical Analysis

To obtain statistical parameters as Rn, it is necessary to obtain the standard deviation,
Equation (1). Those statistical parameters are related to the corrosion system [34,41].

σx =

√
x2 =

√√√√ 1
N

N

∑
i=1

(x1 − x)2 (1)

where x1 is the EN signal’s values, x the average, and n is the number of pints in the
recording. The signal employed can be of ECN or EPN.

Noise resistance (Rn) is the ratio of the potential standard deviation to the current
standard deviation related to the area of the sample (Equation (2)).

Rn =
σv

σI
× A (2)

The values of Rn and Rp are considered homologous to the Stern–Geary equation [45],
so values of Rn can be used to determine the corrosion kinetic.

The Irms is obtained by Equation (3):

r.m.s =
√

Xn2 + σ2 (3)

The localization index (LI) is obtained by Equation (4).

LI =
σi

Ir.m.s
(4)

The values obtained are related to the corrosion type, according to diverse authors [32–34,46].
Also, Kurtosis and skewness could define the corrosion type. Equations (5) and (6)

show how to obtain those parameters [47–49]:

skewness =
1
N

N

∑
i=1

(xi − x)3

σ3 (5)
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kurtosis =
1
N

N

∑
i=1

(xi − x)4

σ4 (6)

Tables 3 and 4 show Rn, icorr, skewness, and Kurtosis from the EN signal after removing
the DC signal with a 9th-grade polynomial.

High Kurtosis values can indicate instability or high amplitude transients in different
distributions, provoking different processes on the metal surface [50].

3.2.2. Power Spectral Density

With Equations (7) and (8), time-domain data is transformed to the frequency domain
employing a Fast Fourier Transformation [51].

Rxx(m) =
1
N

N−m−1

∑
n=0

x(n)·x(n + m), when values are from 0 < m < n (7)

Ψx(k) =
γ·tm

N
·

N

∑
n=1

(xn − xn)·e
−2πkn2

N (8)

To evaluate the slope and the frequency zero limits (Ψ0), information about the corrosion
mechanism and corrosion kinetic (respectively) Equation (9) can be applied [20,33,52,53]. It is
important to clarify that only PSD in current gives information about material dissolution
(Ψ0) [49–54].

logΨx = −βx log f (9)

The frequency zero limits (Ψ0) give material dissolution information because PSD is
related to the total energy present in the system [20,33,53]. It is essential to clarify that
material dissolution is only present in the current PSD [49–54].

Figure 6 shows the PSD in voltage in H2O at different immersion times, dBe vs. f
(Hz). The slope value (B) in voltage did not fit with the values of the intervals (see Table 5).
Figure 3a shows the behavior of stabilization, Figure 3b–d present fluctuations indicating
a possible pitting process; the change of slope at high frequencies corresponded with a
diffusion process related to the diffusion of pitting.
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Table 5. Parameters obtained by PSD for the Al-6061 alloy.

Al-6061 Alloy

Time (h) Ψ0 (dBi) Zn0 (Ω·cm2) B (dB (V)) B (dB (A))

H2O

0 −138.01 38,612.3 −9.5 −8.4
24 −101.59 12,627.58 −11.4 −11.1
48 −99.61 4252.54 −11.7 −10.8

120 −118.61 70,334.05 −9.4 −9.5

NaCl

0 −86.81 363.47 −9.7 −14.8
24 −90.53 6027.83 −14.8 −15.3
48 −93.04 2217.93 −12.6 −14.2
120 −103.81 13,962.53 −8.7 −10

Figure 7 shows the PSD in the current of H2O at different immersion times, dBi vs. f
(Hz). The current slope value (B) was related to the pitting process in all the immersion
times (see Table 6). The value of ψ0 was higher for the Al-A.M. samples than for conven-
tional aluminum (see Table 6), related to the high corrosion kinetic for Al-A.M. samples.
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Figure 8 shows the PSD in voltage in NaCl at different immersion times, dBe vs. f (Hz).
The Al-A.M. and Al-6061 samples showed similar behavior at 0, 24, and 48 h, but at 120 h,
the Al-A.M. sample presented higher values than Al-6061 and higher slope (see Table 6).
Figure 9 shows the PSD in the current in NaCl at different immersion times, dBi vs. f (Hz).
Slope values corresponded to the pitting process for both samples (see Tables 5 and 6). The
ψ0 value was higher for Al-6061 at 0, 24, and 48 h, but at 120, Al-A.M. presented a higher
value. The increase in the ψ0 value indicated that Al-A.M. increased its corrosion kinetics
concerning the time of exposure in NaCl. Additionally, Al-6061 showed a decrease in ψ0,
meaning a stabilization in the electrolyte.
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Table 6. Parameters obtained by PSD for the Al-A.M. alloy.

Al-A.M.—Alloy

Time (h) Ψ0 (dBi) Zn0 (Ω·cm2) B (dB (V)) B (dB (A))

H2O

0 −94.11 7473.53 −13.1 −13.1
24 −88.42 9077.61 −10.6 −10.2
48 −83.69 3030.07 −12.1 −10.3
120 −100.11 2410.34 −13.8 −10.8

NaCl

0 −95.09 1320.19 −9.5 −13.5
24 −100.81 10,368.45 −10.2 −11.4
48 −94.37 1609.84 −10.6 −12.1
120 −90.08 1629.51 −11.9 −11.6
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3.2.3. Noise Impedance (Zn)

The noise impedance, Zn (f), also called spectral noise resistance, is defined as [50,55]:

Zn =

√
ψV( f )
ψI( f )

(10)

Zn is calculated by the square root of the PSD division of potential and current [33,41,55].
The electrochemical noise impedance is related to the corrosion resistance, and the inverse
is related to the conductance and corrosion rates [37,56].

Figure 10 presents the noise impedance (Zn) in H2O. The behavior of Al-A.M. samples
corresponded with the values obtained in ψ0. The Al-A.M. samples presented the lower
values of Zn0 (see Table 6), associated with lower corrosion resistance. In the whole graph,
Al-6061 presented higher values of Zn.

Figure 11 shows the noise impedance (Zn) vs. f (Hz). The behavior for Zn0, rather than
for ψ0, and the noise impedance of Al-6061 increased after 48 h (see Table 6) of exposition
in NaCl, meaning an increase in corrosion resistance of this alloy.

3.2.4. Wavelet Method

Wavelets methods decompose a signal with a high–low filter: low frequencies are
named approximations, and high frequencies are called details [43,57,58]. To obtain the
total energy of an N number of data, Equation (11) is employed [34]:

E =
N

∑
n−1

x2
n (11)
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Furthermore, energy fractions of details and approximation are giving by Equation (12):

EDd
j =

1
E

N

∑
n=1

d2
j,n EDs

j =
1
E

N

∑
n=1

s2
j,n (12)

The total energy analyzed is equal to each component energy of the wavelet transform,
Equation (13):

E = EDs
j

j

∑
j=1

EDd
j (13)
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For this research, the number of crystals to analyze was eight details and one approx-
imation. When energy was accumulated on the first crystals (D1–D3), it was attributed
to a metastable pitting process. When major energy was presented on the crystals from
D4 to D6, it was associated with localized corrosion; if energy was present in crystals D7
and D8, it was due to diffusion, a generalized or controlled process [43,51,59]. Crystal S8
(approximation) was related to the DC from the EN signal. Equation (16) must be applied
to determine each crystal time [60]:(

cj
1, cj

2

)
=
(

2−j∆t, 2j−1∆t
)

(14)

where c is a crystal and ∆t is the time display. High-frequency crystals are the first, and
low-frequency phenomena are presented in the last crystals.

Figure 12 shows the EDP from the ECN signal in H2O. For both alloys, the maximum
energy accumulation was found in crystals D7 and D8. However, Al-A.M. presented a
higher percentage of energy accumulation at 0 h of exposure, decreasing at 24, 48, and 120 h.
The higher energy accumulation at 0 h was related to the high porosity of the samples. At
0 h, an ionic diffusion in porous occurred. Both samples presented a diffusion of pitting.
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Figure 12. Wavelets in the H2O solution (a) Al-6061 and (b) Al-A.M.

Figure 13 shows the EDP from the ECN signal in NaCl. The Al-6061 in Figure 12a
presented a higher energy accumulation after 48 h, with energy at crystals D4 to D8. The
presence of the energy at intermedium crystals was related to a possible diffusion of pitting.
The Al-A.M. sample presented a similar behavior in H2O, where high porosity presence
produced an ionic diffusion. After 120 h of exposure, the Al-A.M. sample presented an
increase in energy accumulation related to the possible diffusion of pitting by Cl− ions.
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3.2.5. Hilbert–Huang Transform Analysis

Another advanced method to determine the corrosion type and mechanism is HHT,
which helps remove DC from the original signal [61]. In addition, this method can localize
the frequency and time when the energy interchange is occurring. The energy is called
instantaneous energy and is calculated by an empirical method of decomposition (EMD) to
obtain intrinsic functions (IMF) and apply HHT as proposed by Huang et al. [62] to study
non-stationary signals. A spectrum with time-frequency energy distribution is generated,
permitting localized energy to accumulate [33,46,63–65]. EMD, proposed by Huang, is
expressed in Equation (15):

x(t) =
N

∑
i=1

h(i)(t) + d(t) (15)

d(t) is the average of the trend at a low frequency of the time series x(t) and cannot be
decomposed. h(i)(t) is the ith term of IMF that is generated. The numbers must satisfy the
conditions that the extreme and cross numbers are equal or differ by a maximum of 1 and
that each point using the local maximum and minimum must be 0 [49,57,63]. The HHT
Equation (16) is governed by:

yj(t) =
1
π

p
∫ ∞

−∞

hj(τ)

t − τ
dτ (16)

where yj(t) is the Hilbert transform and IMF are represented with hj; p is related to the
Cauchy principle and is linked with an average of IMF [60].

Figures 14 and 15 show the time–frequency–energy spectra generate by HHT in H2O.
Al-6061 presented a few energy accumulations at high and medium, and the maximum
energy was localized at low frequencies at 0, 24, and 48 h. The accumulation of energy
related to the pitting diffusion is shown in Figure 14d, where energy was present only at
low frequencies. Al-A.M. presented energy accumulation at high and low frequencies at
all times but with high energy at low frequencies (1 × 10−2 Hz). Al-A.M.’s behavior was
related to the porosities that predisposed the alloy to pit.
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Figures 16 and 17 show the time–frequency–energy spectra generated by HHT in
NaCl. Al-6061, in Figure 16, presented a behavior related to the diffusion of pitting. The
sample presented energy at high and low frequencies (1 × 100 and 1 × 10−1 Hz) but
increased a low frequency (1 × 10−2). The behavior at 0 and 24 h was related to the process
of high frequencies being (pitting) diffused. At 48 and 120 h (Figure 16c,d), the behavior
was similar and associated with the pitting diffusion at 0 and 24 h. Al-A.M. showed
(Figure 17a–d) a behavior of pitting diffusion.
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3.2.6. SEM Corrosion Product Analysis

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS)
analyzed the morphology of the aluminum alloys and the elements presented on the
surface after the electrochemical experiments, see Figures 18–21.
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Figure 19. SEM-EDS surface micrographs of Al-6061 (a) alloys in NaCl solution and EDS spectrum analysis: (b) blue box
and (c) green box.
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Figure 21. SEM-EDS surface morphology micrographs of Al-A.M. (a,d) alloys in NaCl solution and EDS spectrum analysis:
(b) green box, (c) red box, (e) orange box, and (f) blue box.

In the EDS energy spectrum, aluminum, magnesium, and silicon were observed to be
corresponding to the base elements of the alloys under study.

Aluminum alloys in H2O and NaCl solutions (Figure 18a,b, Figures 19, 20 and 21a,b)
did not have oxygen, but there was corrosion and pitting products in some cases. When the
AA6061 alloy was in contact with water (Figure 18d), it had small pits of about 2 microns.
The presence of oxygen was indicated in the red box (average 13.90 wt. %), Figure 19c, the
spectra EDS indicated the presence of oxygen and silicon in the darker zone, marked with
a blue box (average 20.36 and 28.60 wt. %), respectively [16].

The Al-6061 and Al-A.M. alloys exposed to sodium chloride presented corrosion
products (Figures 19 and 21) with more severe corrosion, having a greater presence of
oxygen in the grain boundary zones for Al-A.M. alloys.

4. Discussion

The corrosion resistance of aluminum and its alloys depends on the chemical com-
position of the material. The alloying elements determine the mechanical and corrosion
resistance properties of these alloys.

Microstructural analysis indicated that alloys produced by additive manufacturing- se-
lective laser melting were more susceptible to localized corrosion (see results skewness, Kur-
tosis, and localization index). The porosity of A.M. alloys was a compromise between me-
chanical strength and adequate pore size to obtain specific operating properties [52,66–68].
Pores are stress concentrators; Seah et al. [69] concluded that porosity makes material
susceptible to localized corrosion. Nevertheless, an increase in the porosity of metals led
to a lower corrosion potential value, which resulted in increased susceptibility of porous
materials to localized corrosion. The microstructure obtained by the A.M. process pre-
sented differences from the conventional process (e.g., extruded). The microstructures of
A.M. materials can present non-uniform structures (dendritic microstructure), affecting the
electrochemical behavior of the material [70].
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The microstructure obtained by the A.M process presented differences from the con-
ventional process. The microstructures of the A.M. materials can present non-uniform
structures, affecting the electrochemical behavior of material [71]. The materials manufac-
tured by A.M. presented a poor passive layer. For the Al-alloys studied in this research,
the non-uniform passive layer created induced the pitting. This behavior was related to
a non-uniform microstructure. Some cases reported that the defecting passive layer pro-
moted crevice corrosion. Additionally, cathodic reactions generated hydrogen and exposed
the alloy to HIC. HHT results showed how a weak, passive layer was created; even in
H2O and NaCl. The energy presented at high and medium frequencies (Figures 15 and 17)
was associated (particularly in Figures 15b–d and 17b–d) with localized attacks due to a
non-homogenous passive layer. For the characteristic of the poor passive layer, the local-
ized attacks began to diffuse after a time, so high energy was presented at low frequencies
indicating pitting diffusion. Other authors such as Lin et al. [72,73] commented that in
order to improve the corrosion resistance of light alloys it is important to consider the effect
of precipitate pretreatments on the microstructure, seeking to ensure that they are well
distributed. The concentration of precipitates of Cu, Zn, or Mg can cause cracks or failures
in the alloys, and this was reflected in the transients of the electrochemical noise-generating
drops in potential and increase in the current [72,73].

Pitting diffusion was also attributed to Cl- ions attack. Authors such as Chiu et al. [74]
related the Cl- ions attack with the deterioration of the passive layer in A.M. materials.
Interstitial ions deteriorated the oxide layer, and an aggressive ion penetration and dis-
solution occurred on the surface. Further, an adsorption phenomenon can occur on the
surface metal. Azar et al. [75] found a connection for chloride adsorption on alumna
surface film selecting in different interfaces between precipitates. The alumina film was
soluble in alkaline pHs generated in oxygen reduction, dissolving the non-uniform passive
layer. The oxygen reduction occurred in anodic reactions, which were visible in time series
and HHT. When anodic transients presented a higher oxygen reduction, a dissolution of
material occurred in high-energy transients. As high-energy transients occurred at low
frequencies, it can be related in PSD with the events occurring in ψ0, where a material
dissolution happened. Microstructure properties as precipitates induced the autocatalytic
process, and the authors Melia et al. [76] associated the precipitates with an increase in the
corrosion process. Further, Kubacki et al. [77] observed an aluminum dissolution due to a
discontinuous silicon melt, and Revilla et al. [78] also attributed a poor melting process
with the corrosion susceptibility of alloys.

Furthermore, Xu et al. [79] observed a non-uniform passive layer develop when the
material was exposed to NaCl at 3.5%. The material presented surface exfoliation and
pitting corrosion and related the corrosion resistance to the homogeneity of the grain
refinement of microstructure. This research presented the same behavior, where grain
was not homogenous, and SEM-EDS images showed surface exfoliation and pitting that
occurred on the surface.

The non-homogenous passive layer was also related to surface defects associated with
the manufacturing process inducing a pitting attack [80]. Sander et al. [81] attributed the
repassivation problems to the porosity of additive manufacturing samples. Additionally,
the results suggested that scan speed and laser power did not play an important factor.
Defects such as porosity can be identified by the visual and HHT method. In visual analysis,
the transients presented in Figures 2–5 at 0 immersion hours were higher for A.M. than
for conventionally manufactured samples. HHT method showed in Figures 15a and 17a
that there was high activity in energy at high and medium frequencies (from 0.5 to 0.75)
compared to the conventionally manufactured sample (0.25 to 0.4). The porosities increased
the anodic-cathodic process occurring on the surface; therefore, HHT (Figures 15a and 17a)
presented a higher energy diffusion at higher and medium frequencies. The cathodic-
anodic process was fast, so electrochemical noise is a powerful technique to determine the
homogeneity of metal surfaces in the first seconds of the test.
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Some authors [81–86] suggested applying heat treatments to reduce this class of
defects and increase microstructure uniformity. This way, corrosion resistance increased
because when the microstructure is uniform, corrosion pitting or a non-uniform passive
layer is reduced. Additionally, post-heat treatment in AlSi10Mg alloys with temperatures
between 200 and 300 ◦C reported good results. When the temperature increased to 400 ◦C,
the formation of Mg2Si precipitates increased the probability of a localized attack because
Si acted as a cathode. This information helped to determine future works of this research
by applying heat treatments to A.M. samples.

5. Conclusions

In this work, characterization by electrochemical noise of Al-6061 and Al-A.M. (AlSi10Mg)
alloys produced by extruded and additive manufacturing could find potential applications
in the aeronautical industry.

• Microstructural analysis indicated that alloys produced by additive manufacturing-
SLM were more susceptible to localized corrosion due to porosity.

• EN results showed that the amplitude of the transients in both the potential and
current time series was greater in the AlSi10Mg (Al-A.M.) alloy manufactured by
additive manufacturing.

• The localization index, skewness, and Kurtosis results showed that they must be inter-
preted to measure the disorder and distribution of transients and not as a mechanistic
method for aluminum alloys.

• EN results showed that Zn and Ψ0 parameters should be considered a counterpart to
calculate the corrosion resistance of materials.

• Wavelets and HHT methods were more reliable in determining the corrosion type
for Al-6061 and Al-A.M. alloys than statistical methods. In H2O and NaCl, wavelets
and HHT presented similar results. For NaCl, the behavior was associated with a
slow process, but the energy presence at middle frequencies was significant, and an
unstable passive layer was attributed to Cl− ions.

• SEM-EDS observations indicated that Al-6061 and Al-A.M. alloys exposed to sodium
chloride presented corrosion products with more severe corrosion, having a greater
presence of oxygen in the grain boundary zones for Al-A.M. alloys.
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