Metodología de apoyo a la decisión en la selección de carteras de proyectos con beneficios o impactos de carácter social

por

Nancy Maribel Arratia Martínez

en opción al grado de

Maestría en Ciencias

en Ingeniería de Sistemas

San Nicolás de los Garza, Nuevo León

mes 2012
Metodología de apoyo a la decisión en la selección de carteras de proyectos con beneficios o impactos de carácter social

por

Nancy Maribel Arratia Martínez

en opción al grado de

Maestría en Ciencias

en Ingeniería de Sistemas

San Nicolás de los Garza, Nuevo León mes 2012
Los miembros del Comité de Tesis recomendamos que la Tesis «Metodología de apoyo a la decisión en la selección de carteras de proyectos con beneficios o impactos de carácter social», realizada por el alumno Nancy Maribel Arratia Martínez, con número de matrícula 1301630, sea aceptada para su defensa como opción al grado de Maestría en Ciencias en Ingeniería de Sistemas.

El Comité de Tesis

Fernando López Irarragorri
Asesor

Igor S. Litvinchev
Revisor

Eduardo René Fernández González
Revisor

Vo. Bo.

Dr. Alan G. Castillo Rodríguez
División de Estudios de Posgrado

San Nicolás de los Garza, Nuevo León, mes 2012
ÍNDICE GENERAL

Resumen

1. Introducción
 1.1. Contextualización del problema
 1.1.1. Antecedentes
 1.2. Objetivo
 1.3. Justificación
 1.4. Hipótesis
 1.5. Tareas científicas
 1.6. Contribución esperada
 1.7. Conclusiones

2. Marco Teórico
ÍNDICE GENERAL

2.3.2. Proceso de decisión .. 13

2.4. Análisis multicriterio en la toma de decisiones 15
 2.4.1. ¿Qué es el análisis de decisión multicriterio? 15
 2.4.2. Algunas técnicas de análisis multicriterio 16

2.5. Programación lineal .. 17

2.6. Optimización multiobjetivo .. 19
 2.6.1. Metaheurísticos multiobjetivo 21

2.7. Sistemas difusos y programación difusa 23
 2.7.1. Conjuntos difusos ... 23
 2.7.2. Números difusos .. 26
 2.7.3. Lógica difusa ... 27

2.8. Conclusiones .. 28

3. Descripción del problema .. 29

3.1. Introducción .. 29

3.2. Descripción del problema .. 29
 3.2.1. Caracterización mediante actividades 33
 3.2.2. Asignación total y/o parcial de recursos 33
 3.2.3. Interdependencias ... 34
 3.2.4. Supuestos ... 36

3.3. Descripción del estado del arte 37

3.4. Conclusiones .. 40
ÍNDICE GENERAL

4. Metodología propuesta 41

4.1. Introducción ... 41

4.2. Metodología de apoyo a la toma de decisiones para el problema de selección de cartera ... 41

4.2.1. Descripción del problema de cartera 43

4.2.2. Pre-selección de propuestas 45

4.2.3. Modelo de cartera de proyectos 46

4.2.4. Generación de carteras de proyectos 47

4.2.5. Selección de cartera de proyectos 47

4.3. Caso de estudio: Selección de carteras de proyectos con beneficios o impactos sociales ... 48

4.3.1. Descripción del problema de cartera de proyectos con beneficios o impactos de carácter social .. 48

4.3.2. Pre-selección de propuestas 48

4.3.3. Descripción del modelo matemático 48

4.3.4. Generación de carteras de proyectos 51

4.3.5. Selección final de cartera 52

4.4. Conclusiones .. 52

5. Resultados experimentales 53

5.1. Introducción .. 53

5.2. Descripción del experimento 53

5.2.1. Experimentación ... 54
ÍNDICE GENERAL

5.2.2. Experimentación ... 55

5.2.3. Análisis de modelos de cartera 58

5.3. Conclusiones .. 70

6. Conclusiones y Recomendaciones 72

6.1. Introducción ... 72

6.2. Conclusiones ... 72

6.3. Trabajo futuro .. 73

A. Metodología de revisión del estado del arte 74

B. Modelo matemático propuesto 76

C. Resultados: Efectos sinérgicos 82
ÍNDICE DE FIGURAS

4.1. Proceso de apoyo a la decisión . 43

5.1. Gráfico de efectos sinérgicos. 57

5.2. Tiempos de solución al problema de cartera con 2,5,10,15 actividades. 58
<table>
<thead>
<tr>
<th>Nivel</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Comparación de resultados</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparación de resultados</td>
<td>55</td>
</tr>
<tr>
<td>5.3</td>
<td>Resultados a instancias aleatorias</td>
<td>56</td>
</tr>
<tr>
<td>5.4</td>
<td>Ejemplo numérico 4PB1R00</td>
<td>62</td>
</tr>
</tbody>
</table>
RESUMEN

Nancy Maribel Arratia Martínez.

Candidato para el grado de Maestro en Ciencias
con especialidad en Ingeniería de Sistemas.

Universidad Autónoma de Nuevo León.
Facultad de Ingeniería Mecánica y Eléctrica.

Título del estudio:

METODOLOGÍA DE APOYO A LA DECISIÓN EN LA
SELECCIÓN DE CARTERAS DE PROYECTOS CON
BENEFICIOS O IMPACTOS DE CARÁCTER SOCIAL

Número de páginas: ??.

OBJETIVOS Y MÉTODO DE ESTUDIO: Objetivo general: Profundizar en el estudio y análisis del problema de selección de carteras de proyectos con beneficios o impactos de carácter social prestando principal atención al desglose de proyectos en actividades, a la asignación total o parcial de recursos y a los efecto que se producen en el alcance de los objetivos.

Objetivos específicos:

1. Desarrollar una metodología para el apoyo a la toma de decisiones que incorpore de manera explícita la modelación del desglose de actividades que
Resumen

conforman los proyectos, interdependencias y las asignación parcial o total de recursos.

2. Desarrollar un modelo matemático considerando características generales del problema de cartera, así como otras características específicas que se identifican en el problema sujeto a estudio y que más delante son detalladas.

3. Realizar experimentaciones que permitan el análisis de los efectos que se producen al considerar el desglose de actividades, la asignación parcial de recursos y la existencia de interdependencias entre proyectos y/o actividades.

A este respecto se desarrolla un metodología de apoyo a la decisión a manera de guía para actuar ante la problemática de selección de cartera de proyectos. Asimismo se propone la incorporación de la modelación de ciertas característica descritas en los objetivos, las cuales permiten una representación con mayor generalidad en la construcción de un modelo matemático.

Contribuciones y conclusiones: La metodología de apoyo a la decisión y el modelo matemático desarrollado para el problema de selección de carteras de proyectos con beneficios o impactos sociales constituyen en su mayoría las principales aportaciones. Aunado al estudio y análisis del estado del arte del problema.

En conclusión, hemos observado el buen desempeño del modelo propuesto respecto a la obtención de resultados en las distintas experimentaciones. Y gracias a comparaciones con resultados reportados en otros trabajos ha sido posible validar y mostrar la eficiencia del modelo en instancias de gran escala. De acuerdo a estas evidencias se concluye que el modelo propuesto constituye una herramienta útil de solución al problema sujeto a estudio. Por último, la metodología propuesta se presenta para el apoyo a la decisión por lo que representa un aporte significante para la documentación existente para abordar el problema de cartera de proyectos.

Firma del asesor: _______________________

Fernando López Irarragorri
Actuellement se destinan grandes cantidades de dinero y recursos para el apoyo de proyectos de investigación y desarrollo en organizaciones públicas y privadas. Por lo cual es de gran relevancia seguir estrategias de alto nivel que permitan la toma de decisiones eficientes en la selección de propuestas de proyectos a financiar, e incorporen las preferencias y objetivos de la organización, institución o empresa a cargo.

De manera general, el problema de selección de carteras de proyectos sociales consiste en elegir un subconjunto de propuestas que compiten por financiamiento y los cuales tienen un impacto social o beneficio esperado.

En este trabajo se desarrolla una metodología de apoyo a la decisión para el problema de selección de carteras de proyectos con beneficios o impactos de carácter social, por lo que puede considerarse como un problema de la clase de carteras de proyectos sociales. Específicamente se investiga la incorporación de manera explícita de la modelación de la caracterización de proyectos mediante actividades que los componen y que puedan afectar de manera significativa el impacto de la cartera seleccionada, así como la asignación parcial de recursos en las mismas.

Este documento está estructurado de la siguiente forma: introducción, marco teórico, descripción del problema, metodología propuesta, experimentación y por último conclusiones y recomendaciones.

El primer capítulo incluye los elementos principales del diseño de la investi-
gación: la contextualización y antecedentes del problema de cartera, los objetivos, justificación, hipótesis y contribución esperada.

El segundo capítulo se centra en el marco teórico, se presentan los fundamentos teóricos y resultados más relevantes para el desarrollo de la investigación tratada en esta tesis.

La descripción del problema sujeto a estudio, así como una descripción del estado del arte son presentadas en el tercer capítulo. Mientras que en el cuarto capítulo se presenta la metodología propuesta, que incluye el modelo teórico y la descripción detallada de la metodología propuesta para abordar el problema de selección de cartera.

En el quinto capítulo se exponen los resultados de la experimentación, se describe el experimento, los resultados, el análisis de resultados y las conclusiones.

1.1 Contextualización del problema

Una de las principales tareas de dirección en muchas organizaciones e instituciones en el sector público y privado, consiste en decidir la manera de invertir y gestionar recursos en el apoyo a proyectos potenciales en distintos ámbitos [12].

Los problemas de cartera de proyectos se clasifican en dos clases principales: dinámico y estático [19, 8, 25]. En la clase dinámica existe un conjunto de proyectos activos y un conjunto de propuestas de proyectos. Las decisiones a tomar involucran la continuación o terminación de proyectos activos y el apoyo de nuevos (propuestas). En este trabajo consideraremos únicamente el caso estático, que considera sólo propuestas de proyectos, que son candidatos. La decisión consiste en cuáles propuestas apoyar.

Un ejemplo que ilustra la importancia de este trabajo es el financiamiento de proyectos y productos relacionados con servicios del conocimiento llevado a cabo en los años 2010 y 2011 por parte del Banco Mundial, destinando 6373.88 y 2765.13.
millones de dólares respectivamente [1].

Para facilitar la comprensión del problema estudiado en este trabajo, es necesario definir algunos conceptos fundamentales.

Un proyecto puede ser definido como una tarea compleja que se desarrolla en alguna organización en un periodo de tiempo determinado, está compuesto por un conjunto de actividades o tareas relacionadas entre sí, y tiene un objetivo bien definido, al igual que un programa y presupuesto [4]. Una cartera es un grupo de proyectos que en conjunto buscan el alcance de los objetivos establecidos respetando restricciones de uso y disponibilidad de recursos.

El riesgo es una importante característica de los proyectos. Una definición de riesgo es la que se presenta en Tzvi Raz et al. [39], quienes definen los riesgos como eventos no deseados que pueden causar retrasos, gastos excesivos, los resultados no satisfactorios del proyecto, la seguridad o el medio ambiente, y el fracaso, incluso total.

En este trabajo se pretende considerar la asignación parcial de recursos y de forma adicional, el riesgo asociado a los recursos que se asignan a cada una de las actividades que componen los proyectos, dada la importancia de éstas en el alcance de los objetivos propios de los proyectos.

1.1.1 ANTECEDENTES

A continuación se presentan algunas investigaciones previas de interés que tienen relación con el problema sujeto a estudio.

En 1952, Markowitz [29] desarrolla un modelo para la inversión de activos. El cual contempla dos criterios, por un lado la maximización de retornos y por el otro la minimización del riesgo representado por la varianza. Algunos otros trabajos para la optimización de carteras financieras pueden verse en [20, 30, 14].

En cuanto a las carteras de proyectos, la literatura existente se enfoca en inves-
Capítulo 1. Introducción

tigación y desarrollo en el sector privado. Ghasemzadeh y Archer [16] integran una metodología para la selección de carteras de proyectos tomando ventaja de las características más útiles de algunos métodos existentes y se implementa en un prototipo PASS (Project Analysis and Selection System) como herramienta para el apoyo a la toma de decisiones. La propuesta consta de cinco procesos; pre-selección, análisis individual de proyectos, selección, selección de la cartera óptima y ajuste. La metodología toma en consideración la incertidumbre y el riesgo, pero se asume que los parámetros pueden ser aproximados con exactitud.

Meade y Presley [31] introducen un modelo basado en ANP (Analytic Network Process), mostrando su utilidad en el problema de selección de proyectos de investigación y desarrollo.

Un enfoque de tres fases es presentado por Stummer y Heidenberger [37], incluye la reducción del conjunto de proyectos, la obtención del espacio de soluciones de las carteras eficientes mediante un modelo de programación lineal entero y finalmente el tomador de decisiones es guiado por un sistema interactivo para asegurar se representen correctamente las preferencias. La principal limitación es, sin duda, el máximo de treinta proyectos que se pueden manejar en la segunda y tercera fase.

H. Eilat et al. [19] presentan una metodología para la creación y evaluación de carteras balanceadas de proyectos de investigación y desarrollo. Para tratar la variabilidad de algunas características en los proyectos, se fijan umbrales y se calculan índices de riesgo, eficiencia y balance. El índice del riesgo de un proyecto es visto como el producto de los fondos totales que se le destinan y la probabilidad de no llevarse a cabo con éxito. Sólo permanecen aquellos proyectos que se mantengan
dentro de los umbrales establecidos. Básicamente, no se contempla la evaluación de
riesgo de la cartera, sino que se controla el nivel de riesgo de la misma, mediante el
análisis individual de proyectos.

En el trabajo de J. Wang, W.-L. Hwang [41] un modelo difuso de opciones com-
puestas es usado para evaluar el valor de cada proyecto de investigación y desarrollo,
y así mejorar su evaluación respectiva de riesgo.

A. F. Carazo et al. [2] presentan un modelo de programación entero multiobje-
tivo no lineal para el problema de selección y calendarización de carteras de proyectos.
Consideran interdependencias de proyectos que pueden producir efectos adicionales
de beneficio y efectos de incremento o decremento de recursos. Este trabajo está in-
spirado en el trabajo de Stummer & Heidenberger [37] y dadas las características que
se consideran en los dos trabajos, nosotros hemos inspirado nuestro trabajo en el de
ellos. Considerando además una serie de ajustes que corresponden a características
de nuestro problema que en sus trabajos no son contemplados.

De entre los trabajos de selección de cartera de proyectos públicos de investi-
gación y desarrollo, en Litvinchev et al. [23] se desarrolla un modelo de programación
lineal entero mixto bi-objetivo, no se consideran sinergias, pero a diferencia de los
otros trabajos revisados, se contemplan la posibilidad de la asignación parcial de
los recursos solicitados por los proyectos. En la experimentación, logran resolver
instancias de hasta 25000 proyectos en tiempos razonables.

1.2 **Objetivo**

Objetivo general: Profundizar en el estudio y análisis del problema de selec-
ción de carteras de proyectos con beneficios o impactos de carácter social prestando
principal atención al desglose de proyectos en actividades o tareas, a las posibles
interdependencias, a la asignación total o parcial de recursos y a los efectos que
producen en el alcance de los objetivos.
Objetivos específicos:

1. Desarrollar una metodología para el apoyo a la toma de decisiones que incorpore de manera explícita la modelación del desglose de actividades que conforman los proyectos, interdependencias y las asignación parcial o total de recursos.

2. Desarrollar un modelo matemático considerando características generales del problema de cartera, así como otras características específicas que se identifican en el problema sujeto a estudio y que más delante son detalladas.

3. Realizar experimentaciones que permitan el análisis de los efectos que se producen al considerar el desglose de actividades, la asignación parcial de recursos y la existencia de interdependencias entre proyectos y/o actividades.

1.3 JUSTIFICACIÓN

La justificación de este trabajo se centra en tres puntos principales:

1. Impacto social. Debido al efecto que las soluciones obtenidas pueden generar en la población.

 Los proyectos con beneficios o impactos sociales están enfocados a dar solución a problemas o necesidades de la población, por lo que es fácil ver que el seleccionar un grupo de ellos, afecta de manera significativa el desarrollo de la población en la que se llevan a cabo. Además, son de importancia para el área de investigación a la que pertenecen, esto, por los aportes que se producen, ya sean teóricos o prácticos.

2. Impacto económico. Como resultado de la buena administración de recursos, donde se contempla la posibilidad de problemas o incluso el fracaso de proyectos. Un factor que puede influir en el alcance de objetivos de los proyectos que
forman parte de la cartera seleccionada, es la cantidad de recursos asignada a cada una de las actividades que se desglosan. El asignar recursos sin tomar esto en cuenta, puede llevar al financiamiento de proyectos, que quizá, por los recursos insuficientes no alcancen la realización de sus objetivos.

Aunado a esto, una práctica común en los trabajos de la literatura que han sido revisados, es, la asignación total de los recursos solicitados. Sin embargo, en casos reales existe la posibilidad de asignación parcial de recursos, al considerar esto se da mayor flexibilidad, posibilitando el apoyo de un mayor número de proyectos.

3. Objetividad. Al incorporar el desglose de actividades de cada proyecto al modelo de optimización de carteras éste además de permitir el realizar una mejor distribución de recursos considerando el nivel de importancia o de aportación de cada actividad a los objetivos específicos de cada proyecto también hace que la medida de calidad de la cartera sea más objetiva.

1.4 HIPÓTESIS

Las hipótesis consideradas para el desarrollo de esta investigación son, la primera, que al incorporar el desglose de actividades que conforman los proyectos impacta positivamente en la administración de recursos y a su vez en los objetivos de los proyectos. La segunda, el empleo de modelos de programación lineal entero mixto permiten tratar de manera satisfactoria la caracterización de proyectos mediante actividades o tareas, la posibilidad de asignación parcial de recursos a las actividades de cada proyecto y su efecto en las medidas de impacto consideradas.

1.5 TAREAS CIENTÍFICAS

Para el desarrollo de este trabajo se han desarrollado las siguientes tareas científicas.
1. Diseño de la investigación.

2. Revisión del estado del arte.

3. Familiarización de las teorías que conforman la base teórica.

4. Elaboración del modelo matemático.

5. Metodología propuesta para la solución del problema.

6. Desarrollo e implementación de métodos para la obtención de soluciones.

7. Escritura de tesis.

1.6 CONTRIBUCIÓN ESPERADA

Las contribuciones esperadas se centran en:

- Modelo matemático para el problema de la cartera que incluye de forma explícita el desglose de actividades, la asignación parcial de recursos, las posibles interdependencias y restricciones de recursos por área de investigación y desarrollo que atienden a estrategias de la organización.

- Procedimiento de solución del problema de la cartera, que detalle de manera sencilla el proceder ante la situación que se describe en este trabajo.

1.7 CONCLUSIONES

En este capítulo se ha planteado el problema sujeto a estudio, del cual es posible considerar características que pueden llevar a la formulación del problema de selección de cartera de proyectos con beneficios o impactos sociales adquiriendo un alto grado de objetividad y generalidad. Se muestra el interés presente en el trabajo abordado así como algunos antecedentes del mismo y se describe brevemente el diseño de la investigación y las contribuciones esperadas.
CAPÍTULO 2

MARCO TEÓRICO

2.1 INTRODUCCIÓN

En este capítulo se abordan las bases teóricas que han servido de apoyo a lo largo de esta investigación. Primero, el problema de selección de cartera (sección 2.2), seguido de la teoría de decisión (sección 2.3), posteriormente, análisis multicriterio en la toma de decisiones (MCDA) (sección 2.4), una introducción a la programación lineal (sección 2.5), optimización multiobjetivo (sección 2.6) donde se introducen algunos conceptos teóricos de métodos exactos y aproximados como metaheurísticas. Y finalmente sistemas difusos y programación difusa (sección 2.7).

2.2 PROBLEMA SELECCIÓN DE CARTERAS DE PROYECTOS

Un proyecto puede ser definido como un conjunto de actividades llevadas a cabo en la búsqueda de un fin específico, y está caracterizado por sus objetivos, horario (planificación) y presupuesto.

Organizaciones, empresas, instituciones, centros de investigación y grupos corporativos son algunos de los agentes económicos que pueden tener un interés específico en apoyar el desarrollo de proyectos en distintas áreas. Generalmente el proceso inicia mediante un llamado de propuestas de proyectos a
financiar, en la mayoría de los casos no es posible apoyar todas las propuestas, pues la cantidad de recursos solicitados excede el monto disponible. Se considera la existencia de un ente de decisión llamado tomador de decisiones (DM por sus siglas en inglés) o un grupo de decidores quienes serán los representantes de la organización, buscando el cumplimiento de los criterios solicitados así como el alcance de objetivos de la mejor manera posible.

Las propuestas de dichos proyectos inicialmente deben cumplir con una serie de requerimientos solicitados por la dirección, por lo cual se realiza una revisión previa donde se descartan aquellas que no cumplan con los criterios solicitados. Las propuestas aprobadas pasan a una competencia por financiamiento. Aquí es cuando surgen las carteras de proyectos, que no son más que subconjuntos de proyectos que cumplen ciertas restricciones y tienen beneficios o impactos esperados, los cuales están determinados por los objetivos o aspectos a considerar por la organización.

La selección de carteras de proyectos públicos o sociales consiste en la selección de un subconjunto de proyectos que compiten por financiamiento y que maximizan medidas de impacto o de beneficio. Los proyectos que conforman la cartera deben respetar restricciones de disponibilidad y uso de recursos, así como algunas otras estipulaciones de la organización, pudiendo ser de carácter estratégico.

F. Ghasemzadeh, N.P. Archer [16] señalan ciertos factores que derivan dificultades asociadas a la selección de carteras de proyectos: (1) considerar múltiples objetivos (incluso algunos en conflicto), (2) el que algunos objetivos pueden ser cualitativos, (3) el efecto de la incertidumbre y el riesgo en los proyectos, (4) la posible necesidad de balance de la cartera seleccionada en términos de importantes factores, como el riesgo y tiempo de completar el proyecto, (5) las interdependencias presentes en proyectos, (6) que el número de carteras factibles sea enorme, en la mayoría de los casos.
2.3 Toma de decisiones

"La toma de decisiones es uno de los procesos cognitivos básicos del comportamiento humano mediante el cual se elige la opción preferida o un curso de acción de entre un conjunto de alternativas basado en ciertos criterios",[42].

Gran cantidad de situaciones en la vida cotidiana implican la toma de decisiones, pero en muchos casos no llevamos a cabo un proceso de apoyo a la decisión que permita el estudio tanto de las alternativas como de las posibles consecuencias producidas por la elección de un curso de acción. Sin embargo, existen situaciones decisionales que requieren de un amplio análisis o del seguimiento de alguna metodología de apoyo a la decisión.

En la documentación existente de toma de decisiones se ha dado lugar a cuatro enfoques o paradigmas [10]:

- **Normativo.** Derivan modelos de racionalidad con normas establecidas a priori y que se postulan como necesarias para el comportamiento razonable. Las desviaciones de estas normas reflejan errores o deficiencias de la DM que debe ser ayudado para aprender a decidir de una manera racional. Estos modelos están destinados a ser universales, puesto que deben aplicarse a todos los DM que quieren comportarse racionalmente.

- **Descriptivo.** Derivan modelos de racionalidad a partir de la observación de cómo toman decisiones los DM’s y es posible vincular las decisiones hechas con la calidad de los resultados. Estos modelos son de carácter general, en cuanto a que deben aplicarse a la de toma de decisiones que enfrentan problemas similares.

- **Prescriptivo.** Descubren modelos de racionalidad para un DM dadas sus respuestas a las preguntas relacionadas con las preferencias. El modelado consiste en descubrir el modelo de la persona que está siendo ayudado a decidir, es decir, revelando su sistema de valores. Por lo tanto, los modelos no tienen
la intención de ser general, en vez de eso deben ser adecuado sólo para el DM en un contexto particular. De hecho, el DM puede estar en dificultades al tratar de responder a las preguntas del analista y/o no puede proporcionar una descripción completa de la situación del problema y sus valores.

- Constructivo. Construyen modelos de racionalidad para una DM dadas sus respuestas a las preguntas relacionadas con las preferencias. Sin embargo, la discusión entre la DM y el analista no es neutral. El modelado consiste en la construcción de un modelo para la persona que está siendo ayudado a decidir, adecuado al DM y a su contexto particular.

2.3.1 Problemas de decisión

Un problema de decisión es aquel en el que se tienen un conjunto de alternativas y se desea elegir aquella que represente la mejor opción, en base a ciertos criterios que representan las preferencias de algún ente decisor.

En este sentido, los problemas de decisión pueden ser clasificados respecto a los siguientes elementos [24]:

- Según la naturaleza de las consecuencias asociadas a las alternativas.
 - Decisión bajo certeza.
 - Decisión bajo incertidumbre.
 - Decisión bajo estricta incertidumbre.

- Según la cardinalidad del conjunto de alternativas.
 - Finito, número pequeño.
 - Infinito, número muy grande o infinito contable o infinito incontable.

- Según las operaciones que se realizan sobre el conjunto de alternativas.
 - Jerarquización.
 - Selección.
 - Clasificación.
Si el tomador de decisiones es una persona o un grupo de personas.

Las decisiones bajo certeza están dadas si la información sobre los resultados de las distintas opciones es completa y conocemos con toda seguridad las consecuencias de las posibles decisiones; el riesgo, si cada acción conduce a uno de un conjunto de posibles resultados específicos, cada resultado se produce con una probabilidad conocida; la incertidumbre, si alguna acción o ambos tiene como consecuencia una serie de posibles resultados específicos, pero donde las probabilidades de estos resultados son completamente desconocidos o no son significativas [18].

2.3.2 PROCESO DE DECISIÓN

Uno de los modelos que describen el proceso de decisión es el propuesto por Herber Simon [36], donde estructura el proceso de decisión mediante tres fases: inteligencia, diseño y selección. Y más recientemente, el trabajo de Alexis Tsoukiàs [38], describe cuatro artefactos cognitivos del proceso de apoyo a la toma de decisiones.

De forma general, la metodología de apoyo a la toma de decisiones puede ser descrita empleando los artefactos cognitivos y los elementos asociados de Tsoukiàs [38] de la siguiente manera:

1. Representación de la situación del problema.
 La situación del problema involucra definir elementos del tipo organizacional, algunas preguntas útiles son quién tiene el problema?, por qué se da el problema?, quién o quiénes intervienen en el proceso de decisión?, qué se espera obtener? y qué consecuencias se producen de las decisiones y a quién se dirigen?.

2. Formulación del problema.
 En esta parte del proceso de apoyo a la toma de decisiones se emplea toda la información correspondiente al problema para construir una formulación
Capítulo 2. Marco Teórico

formal y abstracta. Tsoukiás [38] define los elementos que forman parte de la formulación del problema:

- Conjunto de posibles acciones.
- Los puntos de vista con los que las posibles acciones son observadas, analizadas, evaluadas, y comparadas.
- El problema.

3. Construcción del modelo de evaluación.

Regularmente este proceso se describe a través de ciertos elementos:

a) Conjunto de alternativas.

b) El conjunto de atributos con los que se observan y describen las alternativas.

c) Los posibles escalas de esos atributos.

d) Los criterios con los que se evalúan las alternativas, de acuerdo a las preferencias del tomador de decisiones.

La construcción de la solución final regularmente se obtiene a través del modelo de evaluación en forma abstracta y formal por lo que debe trasladarse a un lenguaje interpretable para el tomador de decisiones.

Esta etapa implica que el analista se asegure que el modelo represente de manera correcta al problema en cuestión y qué se modela adecuadamente las preferencias del tomador de decisiones. Además, la solución final debe ser válida de acuerdo al proceso de decisión.
2.4 **ANÁLISIS MULTICRITERIO EN LA TOMA DE DECISIONES**

De acuerdo a lo antes mencionado, un problema de decisión puede ser visto como aquel en el que se tiene un conjunto de alternativas y se desea elegir aquella que represente el mejor compromiso, en base a ciertos criterios que representan las preferencias de algún ente decisor.

Ehrgott [13] distingue los siguientes tipos de problemas de decisión, con base en la descripción del conjunto de alternativas:

1. Problemas con un número finito de alternativas que son explícitamente conocidos. El objetivo es seleccionar el preferido. La ayuda de decisión multicriterio se refiere a este tipo de problemas.

2. Problemas discretos donde se describe el conjunto de alternativas por las restricciones en forma de funciones matemáticas.

3. Los problemas continuos. El conjunto de alternativas se da generalmente a través de restricciones.

Para el apoyo a la toma de decisiones que involucran más de un criterio se han desarrollado un gran número de técnicas que permiten analizar la situación de decisión de manera más clara. Uno de los principales enfoques es el análisis de decisión multicriterio.

2.4.1 **¿QUÉ ES EL ANÁLISIS DE DECISIÓN MULTICRITERIO?**

Una forma de análisis multicriterio que se enfoca en problemas de decisión presentes en organizaciones del sector público o privado es el análisis de decisión multicriterio.

El análisis de decisión multicriterio es un enfoque que constituye un camino para
mejorar la comprensión de la situación de decisión y la necesaria comparación de alternativas en problemas de decisión con múltiples objetivos. MCDA fue abordado de manera completa por primera vez en Keeney y Raiffa [26], trabajo cuya utilidad sigue vigente.

Los métodos básicos de MCDA son capaces de descomponer un problema complejo en piezas manejables que mejoran la visualización del proceso de decisión para la selección de una o varias alternativa según el problema de decisión.

Los siguientes son algunos conceptos relevantes de la decisión multicriterio.

Alternativas. Son las opciones disponibles, es decir, son las posibles acciones en un problema de decisión. Y constituyen el espacio de soluciones.

Atributo. Son características, propiedades, o aspectos de las alternativas. Son asociados a los objetivos.

Objetivo. Son direcciones de mejora en base a las preferencias del ente decisor.

Nivel de aspiración. Es el nivel de aceptación de un atributo.

Metas. Son valores o niveles que se espera alcanzar por los atributos en la mejor alternativa.

Criterios. Son las reglas de aceptabilidad de las alternativas y engloban los tres conceptos objetivos, metas y atributos. Establecen la manera en que se evaluaran las alternativas y pueden ser cuantitativos o cualitativos.

2.4.2 ALGUNAS TÉCNICAS DE ANÁLISIS MULTICRITERIO

Existe gran variedad de métodos que se basan en distintos fundamentos teóricos [22]:

☐ Modelos de optimización

Emplean puntuaciones numéricas para determinar el mérito de una opción en comparación con otras en una sola escala (una descripción de este enfoque es presentada en la sección 2.6).
□ Aspiración por metas
Se establecen niveles de alcance deseables o satisfactorios para cada criterio.

□ Modelos de sobreclasificación
Comparan el desempeño de dos (o más) alternativas a la vez, inicialmente en términos de cada criterio para identificar el grado en que se puede preferir uno sobre el otro.

Linkov [22] también describe cuatro enfoques principales del análisis de decisión multicriterio:
(1) Métodos elementales, los cuales incluyen el análisis de pros y contras, el método maximin y maximax, métodos conjuntivos y disyuntivos, el método lexicográfico, el análisis de árbol de decisión y diagramas de influencia.
(2) Teoría de la utilidad multiatributo (MAUT).
(3) Proceso analítico jerárquico (AHP).
(4) Sobreclasificación.

2.5 PROGRAMACIÓN LINEAL

La programación matemática es una potente técnica de modelado usada en el proceso de toma de decisiones. Cuando se trata de resolver un problema de este tipo, el proceso se llevan a cabo siguiendo las siguientes etapas [15]:

1. Identificar las posibles decisiones que pueden tomarse; esto lleva a identificar las variables del problema concreto. Normalmente, las variables son de carácter cuantitativo y se buscan los valores que optimizan el objetivo.

2. Determinar qué decisiones resultan admisibles; esto conduce a un conjunto de restricciones que se determinan teniendo presente la naturaleza del problema en cuestión.
3. Se calcula el coste/beneficio asociado a cada decisión admisible; esto supone determinar una función objetivo que asigna, a cada conjunto posible de valores para las variables que determinan una decisión, un valor de coste/beneficio. El conjunto de todos estos elementos define el problema de optimización.

La programación lineal (PL), que trata exclusivamente con funciones objetivos y restricciones lineales, es una parte de la programación matemática, y una de las áreas más importantes de la matemática aplicada [15].

El problema de programación lineal consiste en determinar los valores de el sistema que (a) son no negativos y satisfacen ciertos límites, (b) satisfacen un sistema de restricciones lineales, y (c) minimizan o maximizan una función lineal [43].

La definición matemática formal de un problema de programación lineal, es,

\[
\begin{align*}
\text{Minimizar} & \quad z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\
\text{Sujeto a} & \quad a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\
& \quad a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\
& \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
& \quad a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n = b_m \\
& \quad x_1, x_2, \ldots, x_n \geq 0
\end{align*}
\]

Esta notación también puede ser representada de forma matricial.

\[
\begin{array}{c}
\text{Minimizar} \\
\text{sujeto a}
\end{array}
\begin{array}{c}
c^T x = z \\
A x = b \\
x \geq 0
\end{array}
\]

Algunos problemas bastante conocidos que pueden ser abordados mediante programación lineal, son: el problema de transporte, el problema de planificación de la producción, el problema de la dieta, problema de red de flujo, el problema de cartera de valores y cartera de proyectos, entre otros.
En muchos casos realistas, algunas de las variables no son reales sino enteras, o incluso están más restringidas siendo binarias, es decir, que toman exclusivamente los valores 0 ó 1. El empleo de variables enteras hace más complejo el problema de programación lineal, debido a la ausencia de continuidad [15]. Esta clase de problemas es conocida como programación lineal entero-mixto.

Un problema de programación lineal entero mixto (PPLEM) general puede ser formulado de la siguiente forma:

\[
\begin{align*}
\text{Minimizar} & \quad z = \sum_{i=1}^{n} c_i x_i \\
\text{Sujeto a} & \quad \sum_{i=1}^{n} a_{ji} x_i = b_j; \quad j = 1, 2, \ldots, m. \\
& \quad x_i \geq 0; \quad i = 1, 2, \ldots, n. \\
& \quad x_i \in \mathbb{N}; \quad \text{para todos o algunos } i = 1, 2, 3, \ldots, n.
\end{align*}
\]

En esta notación \(\mathbb{N} \) representa el conjunto \{0, 1, 2, \ldots\}.

2.6 Optimización multiobjetivo

Muchos problemas del mundo real, usualmente requieren ser tratados considerando más de un objetivo o criterio que están en conflicto, por lo que a diferencia de la optimización con un objetivo, no es posible obtener una solución óptima, más bien se busca encontrar un conjunto de soluciones que representan compromisos aceptables en base al sistema de preferencias particular del tomador de decisiones.

Algunas dificultades se identifican cuando se incrementa el número de criterios [11]:

- Se degrada rápidamente la capacidad del algoritmo para encontrar la frontera de pareto.
- Se vuelve difícil o casi imposible para el tomador de decisiones establecer juicios válidos para comparar soluciones con criterios en conflicto.
El cardinal de una porción representativa conocida de la frontera de pareto (ver definición más adelante) puede ser muy grande.

Formalmente, un problema de optimización multiobjetivo puede definirse como

\[
\text{Maximizar o minimizar } F = [f_1(x), f_2(x), f_3(x), ..., f_p(x)],
\]
\[x \in X.\]

Donde \(X \subset \mathbb{R}^n \) es una región factible y \(F \) el vector de funciones objetivo.

Como ha sido mencionado anteriormente, en los problemas multiobjetivo los objetivos están en conflicto, por ello raramente se encuentra una solución que optimice a la vez a cada uno de ellos. El concepto de optimalidad está definido de manera distinta a aquellos problemas con un objetivo. La optimización clásica de optimalidad para estos problemas es conocida como optimalidad de pareto.

Un vector solución \(x^* \in X \) es un óptimo de Pareto si \(\exists \ i \) tal que \(f_i(x) > f_i(x^*) \) para algún \(x \in X \) implica que \(f_j(x) < f_j(x^*) \) por lo menos para algún \(j \). En otras palabras, \(x^* \) es un óptimo de Pareto si no existe otro punto factible \(x \in X \) que mejore alguno de los objetivos sin causar simultáneamente un empeoramiento en alguno de los otros criterios[33]. Un óptimo de pareto también se conoce como solución eficiente o no dominada.

Una solución dominada es aquella que no es eficiente. El conjunto de todas las soluciones eficientes es llamado conjunto eficiente, frontera eficiente o frontera de Pareto.

En los problemas de optimización multiobjetivo se pueden distinguir dos tareas principales [3]:

1. Encontrar un conjunto de soluciones con optimalidad de Pareto.

2. Elegir la solución preferida del conjunto de soluciones.
El tomador de decisiones es quien provee información subjetiva de las preferencias para elegir la mejor solución.

Existen distintas técnicas de programación matemática para resolver problemas multiobjetivo, una manera de clasificarlas es con respecto a la incorporación de las preferencias del tomador de decisiones en el proceso de búsqueda. Hay tres maneras de hacer esto [3]:

1. A priori.
 a) Programación por metas.
 b) Método lexicográfico.

2. Durante la búsqueda.
 a) Geoffrion-Dyer-Feinberg (GDF).
 b) Método de punto referencia.

3. A posteriori.
 a) Método de la suma ponderada.
 b) Normal Boundary Intersection.
 c) Método de la ϵ-restricción.
 d) Programación Compromiso.

2.6.1 Metaheurísticos multiobjetivo

A pesar de que no existe un consenso general de qué es una metaheurística, existen algunas definiciones que describen claramente el término de metaheurística. Por ejemplo, Osman y Laporte definen una metaheurística formalmente como un proceso iterativo que guía una heurística subordinada, combinando de forma inteligente diferentes conceptos para explorar y explotar el espacio de búsqueda [40].
Voss et al. definen una metaheurística como un proceso maestro iterativo que guía y modifica las operaciones de heurísticas subordinadas para producir, de forma eficiente, soluciones de alta calidad. En cada iteración, puede manipular una solución (completa o incompleta) o un conjunto de soluciones. Las heurísticas subordinadas pueden ser procedimientos de alto o bajo nivel, o simplemente una búsqueda local o método constructivo [40].

Para el tratamiento y la resolución de problemas de optimización multiobjetivo existe gran cantidad de algoritmos metaheurísticos, lo que complica la tarea de clasificarlos[33]. Es posible afirmar que existen dos grandes grupos de heurísticas: los basados en búsquedas por entornos, especialmente diseñados para búsquedas locales, y los basados en poblaciones, algunas de ellas, [33] son:

1. Búsquedas por entornos.
 a) Temple simulado.
 b) Búsqueda tabú.
 c) GRASP.

2. Basados en Poblaciones.
 a) Algoritmos evolutivos.
 1) MOGA
 2) NSGA y NSGA II
 3) NPGA y NPGA 2
 4) SPEA y SPEA II

Otras algoritmos metaheurísticos son, Búsqueda dispersa, Colonia de hormigas(ACO), Cúmulo de partículas (PSO), Evolución Diferencial (DE), Algoritmos culturales, Sistema Inmune Artificial. Una descripción de estas técnicas puede verse en [33].
2.7 **SISTEMAS DIFUSOS Y PROGRAMACIÓN DIFUSA**

La información con la cual se trabaja en situaciones del mundo real algunas veces es imprecisa o inexacta, por lo cual es de gran utilidad una teoría para expresar estos términos correctamente.

Lofti A. Zadeh [44] introdujo la teoría de los conjuntos difusos para formar un enfoque entre la precisión clásica de las matemáticas y la información imprecisa del mundo real. "Un conjunto difuso(borroso) es una clase de objetos con un continuo de grados de pertenencia. Este conjunto se caracteriza por una función de pertenencia que asigna a cada objeto un grado de pertenencia que oscila entre cero y uno", [44].

La lógica difusa y la teoría de conjuntos difusos son usados para modelar significados imprecisos [9]. Por ejemplo, en vez de decir "verdadero. o "falso."el enunciado "Luis es viejo", la lógica difusa asigna un número real entre 0 y 1 que indica el grado de "vejez"de Luis. Y la teoría de conjuntos difusos asigna un número real entre 0 y 1 a Luis que indica el grado con el cual él es un miembro del conjunto de gente alta.

2.7.1 **CONJUNTOS DIFUSOS**

Un conjunto difuso puede ser definido como un conjunto de pares ordenados, donde el primer componente es un elemento del conjunto X y el segundo un elemento de conjunto $[0,1]$.

Definición 2.1 (Conjunto difuso) *Sea X un conjunto no vacío. Un conjunto difuso A en X es caracterizado por su función de pertenencia $\mu_A : X \rightarrow [0,1]$ donde $\mu_A(x)$ representa el grado de pertenencia de un elemento x en el conjunto difuso A para todo $x \in X$.*

Entonces, $A = \{(x, \mu_A(x)) | x \in X\}$.

Sí X es un conjunto finito, es decir, $X = x_1, x_2, x_3, ..., x_n$ un conjunto difuso A en X se representa
\[A = \{(\mu_A(x_1), x_1), (\mu_A(x_2), x_2), (\mu_A(x_3), x_3), \ldots, (\mu_A(x_n), x_n)\} \]

Ejemplo 2.2 Sea \(X = \{1, 2, 3, 4, 5, 6\} \) un conjunto que representan el número de hijos que tiene una pareja que vive en cierta región con una determinada cultura en particular y el conjunto difuso "una familia de tamaño ideal". El conjunto difuso puede ser definido como:
\[A = \{(0.9, 1), (1, 2), (0.7, 3), (0.5, 4), (0.3, 5), (0.05, 6)\} \].

Ejemplo 2.3 Supongamos que se desea comprar una computadora económica. El término económico puede ser representado por un conjunto difuso que depende del presupuesto disponible. Definimos:

- Una computadora con un precio de menos de 5000, es considerada como económica, cualquiera que se encuentre en ese rango es vista como tal.
- Un precio mayor a 5000 y menor a 10000, es visto como de costo medio.
- Una computadora con precio entre 10000 y 20000 es considerada como de costo alto.
- Un precio de más de 20000 es de costo muy alto.

La siguiente figura muestra la función de pertenencia del término económico de una computadora.

La familia de todos los conjuntos difusos se denota por \(F(X) \). \(\mu_A(x) = 1 \) representa total pertenencia, \(\mu_A(x) = 0 \) implica no-pertenencia y valores entre 0 y 1 significa pertenencia parcial.

Un conjunto difuso \(A \) en \(X \), es llamado *normal* si existe una \(x \) tal que \(\mu_A(x) = 1 \), de lo contrario se denomina *subnormal*. El soporte de \(A \) denotado \(supp(A) \), es el
subconjunto de X cuyos elementos tienen grado de pertenencia distinto de cero en A.

Un conjunto α–corte de un conjunto difuso A en X, es un conjunto no difuso denotado por $[A]^\alpha$ y definido por $[A]^\alpha = \{ t \in X \mid \mu_A(t) \geq \alpha \}$ si $\alpha \geq 0$ y $[A]^\alpha = \text{cl}(\text{supp}A)$ si $\alpha = 0$. Cuando $\mu_A(t) > \alpha$, entonces se dice que es un α–corte estricto.

Ejemplo 2.4 Sea $X = \{-3, -2, -1, 0, 1, 2, 3\}$ y el conjunto difuso definido como $A = \{(0.0, -3), (0.4, -2), (0.8, -1), (1.0), (0.9, 1), (0.5, 2), (0.2, 3)\}$. Entonces, $[A]^{0.5} = \{-1, 0, 1\}$

Definición 2.5 (Convexidad de un conjunto difuso) Un conjunto difuso A en X es llamado convexo si $[A]^\alpha$ es subconjunto convexo de X para todo $\alpha \in [0, 1]$.

En seguida se presentan algunas operaciones de la teoría de conjuntos difusos formuladas por Zadeh.

Sean A y B conjuntos difusos en X.

Definición 2.6 (Operaciones de teoría de conjuntos difusos)

Vacío. Un conjunto vacío A, lo es siempre y cuando su función de pertenencia es cero.

Unión. $\forall x \in X, A \cup B = \max\{\mu_A(x), \mu_B(x)\}$.

Intersección. $\forall x \in X, A \cap B = \min\{\mu_A(x), \mu_B(x)\}$.

Igualdad. $A = B \iff \mu_A(x) = \mu_B(x), \forall x \in X$.

Contención. $A \subseteq B \iff \mu_A(x) \leq \mu_B(x), \forall x \in X$.

Complemento. $\mu_A(x)' = 1 - \mu_A(x)$.
2.7.2 Números difusos

Un número difuso A, es aquel definido en \mathbb{R}, con una función de membresía convexa y al menos un elemento x con un a grado de membresía igual a 1. La familia de números difusos será denotada por F.

Sea A un número difuso. Entonces $[A]^\gamma$ es subconjunto cerrado y convexo de \mathbb{R} para todo $\gamma \in [0,1]$.

$a_1(\gamma) = \min [A]^\gamma$ y $a_2(\gamma) = \max [A]^\gamma$

Es decir, a_1 denota el lado izquierdo y a_2 denota el lado derecho del γ - corte. Es fácil ver que si $\alpha \leq \beta$, entonces $[A]^\alpha \supset [A]^\beta$.

Definición 2.7 Un conjunto difuso A es llamado número difuso triangular con pico (o centro) en a, lado izquierdo con $\alpha > 0$ y lado derecho con $\beta > 0$, si su función de pertenencia tiene la siguiente forma

$$A(t) = \begin{cases}
1 - \frac{a - t}{\alpha} & \text{si } a - \alpha \leq t \leq a \\
1 - \frac{t - a}{\beta} & \text{si } a \leq t \leq a + \beta \\
0 & \text{en otro caso.}
\end{cases}$$

denotando $A = (a, \alpha, \beta)$.

Definición 2.8 Un conjunto difuso A es llamado número difuso trapezoidal con intervalo de tolerancia $[a, b]$, lado izquierdo con α y lado derecho con β, si su función de pertenencia tiene la siguiente forma

$$A(t) = \begin{cases}
1 - \frac{a - t}{\alpha} & \text{si } a - \alpha \leq t \leq a \\
1 & \text{si } a \leq t \leq b \\
1 - \frac{t - b}{\beta} & \text{si } a \leq t \leq b + \beta \\
0 & \text{en otro caso}
\end{cases}$$

denotando $A = (a, b, \alpha, \beta)$.
Definición 2.9 Cualquier número difuso \(A \in F \) puede ser descrito como

\[
A(t) = \begin{cases}
L\left(\frac{a-t}{\alpha}\right) & \text{si } t \in [a-\alpha,a] \\
1 & \text{si } t \in [a,b] \\
R\left(\frac{t-b}{\beta}\right) & \text{si } t \in [b,b+\beta] \\
0 & \text{en otro caso.}
\end{cases}
\]

donde \([a,b]\) es el pico (o centro) de \(A \), \(L : [0,1] \rightarrow [0,1] \) y \(R : [0,1] \rightarrow [0,1] \) funciones continuas y no-crecientes con \(L(0) = R(0) = 1 \) \(R(1) = L(1) = 0 \). Llamamos a este intervalo difuso de tipo-LR y se denota \(A = (a,b,\alpha,\beta)_{LR} \)

2.7.3 LÓGICA DIFUSA

La lógica difusa es una herramienta poderosa que actualmente está siendo usada extensivamente en muchas aplicaciones de la industria. En general, la lógica difusa permite la imitación del proceso del razonamiento humano, cuantificando información imprecisa y tomando decisiones basadas en datos vagos o incompletos [28].

Algunas de las características principales de la lógica difusa [44]:

(i) el razonamiento exacto es considerado como un caso límite del razonamiento aproximado,

(ii) todo es una cuestión de grado;

(iii) el conocimiento se interpreta como una colección elástica o, equivalentemente, restricción difusa en un conjunto de variables,

(iv) la inferencia es vista como un proceso de propagación de restricciones elásticas,

(v) cualquier sistema lógico puede ser difusificado.

La teoría de conjuntos difusos es empleada para definir sistemas difusos con variables lingüísticas y un conjunto de reglas de la forma "sí A entonces B". Hay dos
características principales de los sistemas difusos que les dan un mejor rendimiento para aplicaciones específicas: (i) Los sistemas difusos son adecuados para el razonamiento incierto o aproximado, especialmente para los sistemas con modelos matemáticos que son difíciles de obtener, y (ii) La lógica difusa permite que la toma decisiones con valores estimados en información incompleta o incierta.

El sistema de inferencia difusa consiste en tres procesos fundamentales: fusificación, inferencia y desfusificación.

La fusificación es el proceso de convertir valores bien definidos (crisp) en valores difusos. En la inferencia se relacionan los conjuntos difusos de entrada y salida para establecer las reglas lógicas que definirán el sistema. Y finalmente, en el proceso de desfusificación los valores de salida obtenidos en la inferencia frecuentemente deben ser trasladados a valores bien definidos a través de algunos métodos matemáticos.

\section*{2.8 CONCLUSIONES}

En este capítulo se ha presentado de forma general las bases teóricas que han servido de apoyo en la realización de esta investigación. En la primera parte se describe el problema general de selección de cartera. También consideramos conveniente presentar algunos fundamentos del análisis de decisión multicriterio y optimización multiobjetivo. Debido a que una de las aportaciones de este trabajo es el desarrollo de un modelo matemático para el problema sujeto a estudio, en la sección de Programación lineal se presentan algunos conceptos básicos y las formulaciones generales de un problema de programación lineal y un problema de programación lineal entero mixto.
3.1 INTRODUCCIÓN

En este capítulo se describe detalladamente el problema sujeto a estudio, las características generales y específicas que lo definen y los supuestos considerados (Sección 2.2). Después, como resultado de la metodología aplicada para realizar la revisión del estado del arte (ver en Apéndice A), se presenta un análisis general de los trabajos que abordan el problema de selección de cartera de proyectos así como los algunos de los enfoques empleados (Sección 3.3).

3.2 DESCRIPCIÓN DEL PROBLEMA

En este trabajo abordamos el problema de selección de cartera de proyectos con beneficios o impacto de carácter social.

El concepto de proyecto de inversión social, lo hemos definido como un grupo de tareas o actividades que requieren recursos, llevadas a cabo durante un período determinado de tiempo en una o más regiones en particular, con un impacto en los objetivos establecidos y están enfocados a dar solución a problemas o necesidades de la población.

Tal como en su definición, en este trabajo se pretende caracterizar a los proyectos mediante las actividades que lo componen y que se establecen en las propuestas.
En la literatura se describen algunas características comunes que distinguen a los proyectos sociales [7, 17]:

- Muchas veces tienen repercusión económica indudable, pero que se manifiesta de modo indirecto, a largo plazo, y en forma muy difícil de cuantificar.

- Generalmente, además de su potencial impacto económico sobre el bienestar de toda o parte de la sociedad, el proyecto se caracteriza por otros atributos intangibles, que también son relevantes y que tomados integralmente determinan el beneficio esperado.

- Son importantes las consideraciones de equidad (grado de repercusión y grupo social beneficiado).

La selección de cartera de proyectos sociales formalmente es una actividad periódica que consiste en seleccionar una cartera o conjunto de proyectos con beneficios o impactos sociales, que compiten por apoyo financiero, buscando reunir los objetivos fijados por una organización, sin exceder los recursos disponibles o violar restricciones establecidas [16].

Hoy en día, este problema a tomado mucha importancia gracias a la gran cantidad de dinero y recursos que cada año se destinan a la investigación y desarrollo en distintas áreas. Al centrar la investigación en el problema que se produce en organizaciones ya sea públicas o privadas, es importante destacar que existen grandes diferencias en comparación con la problemática generada en ambos sectores. Regularmente, el problema que se produce en organizaciones privadas suele ser del tipo dinámico a diferencia de los proyectos sociales. Además de otras diferencias, como criterios de selección, características mismas de los proyectos, en algunos casos del sector privado los proyectos son evaluados más de una vez en el proceso de su implementación, y los criterios que se miden en la cartera suelen estar relacionados con factores económicos tales como las ventas esperadas, retorno de la inversión, mercado, etc.
Capítulo 3. Descripción del problema

En carteras de proyectos sociales, un criterio importante es el impacto social, y regularmente no se esperan ganancias más que las generadas por el mismo.

En el proceso de selección, la organización es quién funge como agente económico destinando una cantidad específica de recursos para financiar proyectos sociales. Dichos proyectos se presentan como propuestas y de llevarse a cabo producen efectos en uno o más sectores sociales y responden a los objetivos del proyecto. La organización, habiendo establecido sus propios objetivos buscará la manera de seleccionar una cartera de proyectos que promueva el alcance de éstos manteniendo el presupuesto disponible. Regularmente, una persona o grupo de personas designados por la organización son los responsables en el proceso de toma de decisiones. Las decisiones que deben tomarse son, qué proyectos formarán parte de la cartera y la cantidad de recursos que se destina para cada proyecto. Un importante punto a considerar es, si existe alguna interdependencia en los proyectos que forman parte de la cartera de manera que se produzca algún efecto adicional de beneficio o impacto, o bien de incremento o decremento de recursos.

Para poder esclarecer los detalles del problema, se presentan sus características estructurales.

1. Existe un conjunto de propuestas de proyectos que compiten por financiamiento. Cada una de ellas es revisada por un grupo de evaluadores quienes les asignan un valor de impacto social.

2. Cada propuesta incluye un estimado de los recursos necesarios.

3. Del anterior, se sugiere por parte de los evaluadores un rango de recursos que pueden ser asignados a cada proyecto.

4. Cada uno de los proyectos pertenecen a un área específica, por ejemplo, su área de investigación.

5. Existe un presupuesto máximo disponible menor a lo solicitado por todas las
propuestas.

6. Del presupuesto disponible se asigna una cantidad máxima y una cantidad mínima de recursos para cada área, según las políticas de la organización.

7. La cantidad solicitada por cada propuesta es desglosada en los recursos necesarios asociados a las actividades que lo componen. Estas cantidades regularmente son imprecisas por lo que es preferente al igual que en proyectos, establecer un rango que indica las cantidades mínima y máxima de recursos a asignar a cada actividad.

8. La decisión de financiación es tomada una única vez en un período de tiempo.

9. Todos los proyectos están planificados para iniciar y terminar en un mismo período de tiempo.

10. Cada una de las actividades que conforman un proyecto deben iniciar y terminar en el mismo período.

11. Se considera la existencia de interdependencias de proyectos o actividades, produciendo sinergias con efectos de beneficio, de incremento o decremento de recursos.

12. De acuerdo a algunas especificaciones de la organización, pueden existir relaciones entre proyectos y/o actividades de manera que se restrinje de un grupo de ellos el número de los cuales se incluirán a la cartera, por ejemplo, varias versiones de proyectos, proyectos que no pueden estar activos simultáneamente, etc.

Las características principales que distinguen al problema sujeto a estudio de otros trabajos del problema de selección de cartera se detallan a continuación son: la caracterización de proyectos mediante actividades, asignación parcial de recursos y interdependencias de proyectos y/o actividades.
3.2.1 Caracterización mediante actividades

Es común hablar de un proyecto como una conjunto de actividades las cuales para llevarse a cabo requieren una cantidad de recursos. Siendo así, cada una de estas actividades deben tener una aportación al impacto del proyecto, contribuyendo a la medida de calidad de la cartera. Por lo que resulta relevante su consideración.

En las propuestas de proyectos que compiten por financiamiento es necesario presentar cierta información adicional, es decir, en el caso de los recursos solicitados por el proyecto también hace falta incluir el monto solicitado por actividad, así como su índice o grado de importancia para el alcance de los objetivos fijados.

Con esto, se espera obtener una medida más clara de la aportación de cada proyecto respecto a los fondos asignados a cada una de las actividades que lo componen, así como una idea más objetiva del cumplimiento de los objetivos de los proyectos.

3.2.2 Asignación total y/o parcial de recursos

En gran cantidad de trabajos sobre este problema la decisión se centra en la selección de proyectos, asignando los recursos solicitados a las propuestas que se eligen para formar parte de la cartera. Sin embargo en el caso real no siempre pasa esto, en algunos casos sólo se asigna una fracción de lo solicitado. Tomando esto en cuenta, se considera que dado el presupuesto solicitado por cada proyecto, el grupo de personas encargadas de revisar y evaluar las propuestas de proyectos, en algunos casos apoyados por personal experto, analicen si existe una subestimación o sobreestimación de lo solicitado. Con la idea de establecer un rango de recursos como el presupuesto solicitado para esa propuesta, dando flexibilidad a la decisión de qué cantidad de recursos asignar a los proyectos seleccionados. De manera análoga
para el presupuesto solicitado para llevar a cabo las actividades que conforman cada proyecto.

Mediante la asignación parcial es posible que el tomador de decisiones esté dispuesto a asignar una cantidad menor de recursos a proyectos o actividades asumiendo y aceptando concientemente el riesgo en la consecución de los objetivos de los proyectos y en el impacto de la cartera, buscando elevar los niveles de impacto en los objetivos establecidos.

Entonces, el fondo asignado a un proyecto será variable correspondiendo a la suma de los recursos asignados a sus actividades.

3.2.3 **INTERDEPENDENCIAS**

Según Mait Rungi [34] las sinergias de proyectos producidas por interdependencias, están presentes cuando el valor y/o el costo total de un conjunto de proyectos son diferentes de la suma de los valores y costos de los proyectos individuales respectivamente.

La tarea de identificar los conjuntos interdependientes de actividades y proyectos corren a cargo de los evaluadores y revisores de las propuestas u otro personal designado por la organización. Los beneficios que se producen por efectos sinérgicos son vistos desde la perspectiva de la organización. Por ejemplo, es posible que se haga una reducción de recursos para apoyar algunas actividades, afectando quizás los intereses de los directores de los proyectos a los que pertenecen, pero el beneficio está en los ahorros, en presupuesto, que pueden ser asignados para apoyar otras actividades.

En este trabajo se consideran las interdependencias entre actividades de dos o más proyectos, produciendo sinergias de los siguientes tipos: (1) de beneficio, (2) incremento de recursos, (3) decremento de recursos. Además definimos un grupo de interdependencias especiales: (4) técnicas. Actuanc-
do sobre grupos o conjuntos de sinergias de las cuales solo un subconjunto de ellas puede estar activas simultáneamente. Su funcionamiento permite tener un mayor control sobre las sinergias de cualquier tipo, y nos ayuda a restringir relaciones de complementariedad e incompatibilidad.

INTERDEPENDENCIAS DE BENEFICIO

Se considera como beneficio al efecto adicional de mejora que se produce en las medidas de impacto de la cartera cuando se seleccionan dos o más actividades que forman parte de un conjunto interdependiente para formar parte de la cartera.

Dado que los beneficios se especifican en función de las medidas de impacto o criterios de evaluación, algunos ejemplos de este tipo de interdependencias pueden ser:

- En el sector público, proyectos de creación de viviendas y proyectos de espacios culturales en un área geográfica específica puede incrementar el factor de impacto social en términos de tamaño de población beneficiada u otro aspecto.

INTERDEPENDENCIAS DE RECURSOS

Cuando actividades que pertenecen a un conjunto interdependiente son elegidas simultáneamente, es posible que exista un decremento o quizá un incremento en los recursos que solicitan. Algunos de los posibles ejemplos son:

- Digamos en una organización pública, una medida de impacto posible es la magnitud de generación de empleos, si un proyecto requiere del recurso humano y otro a ejecutar dentro de la misma área también requiere recurso humano, quizá pueda existir la manera de reducir costos a través de la contratación de personal apto para realizar ambas actividades digamos administrativas.
INTERDEPENDENCIAS DE TIPO TÉCNICO

Las interdependencias de tipo técnico representan especificaciones estratégicas de la organización hacia las propuestas de proyectos.

Los siguientes puntos representan posibles casos que se pueden modelar con esta clase de interdependencias:

- La existencia de varias versiones de proyectos, y extendiéndolo hasta versiones de actividades, implican el especificar que no pueden ser seleccionadas simultáneamente.

- Algunas estrategias pueden estar relacionadas a establecer una máxima y/o mínima cantidad de actividades de alguna clase a incluirse a la cartera. Incluso es posible restringir grupos de sinergias.

- La existencia de incompatibilidad de actividades, proyectos o grupos de ellos, donde sólo uno de ellos puede llevarse a cabo.

- La existencia de complementariedad de actividades, proyectos o grupos de ellos, donde o se seleccionan todos para formar parte de la cartera o ninguno. Por ejemplo, proyectos en los cuales todas sus actividades sean imprescindibles, así el proyecto se apoya sólo si todas sus actividades también lo son.

3.2.4 SUPUESTOS

Para la elaboración de esta investigación se considerarán una serie de supuestos, los cuales se enuncian a continuación:

- El presupuesto disponible es conocido y es destinado al apoyo de proyectos en distintas áreas específicas, las cuales tienen un monto mínimo y máximo asociado para su financiamiento correspondiente a especificaciones estratégicas de balanceo.
Existe una persona(o grupo de personas) al que nos referiremos como tomador de decisiones, que representan las preferencias y prioridades de la organización, fungiendo como entidad de decisión (DM por sus siglas en inglés).

El tomador de decisiones es capaz de expresar las ventajas o desventajas que aporta los grupos sinérgicos.

La decisión de financiamiento se realiza una vez, en un período de tiempo (caso estático).

Cada proyecto puede ser dividido en un conjunto de actividades, las cuales requieren de recursos para su ejecución. Cada actividad tiene una individual aportación al impacto del proyecto.

Las actividades de cada proyecto tienen un valor de importancia distinto asociado al alcance de los objetivos del proyecto al que pertenece. Este valor o índice de importancia es proporcionado en las propuestas de proyectos y revisado por los evaluadores.

Los evaluadores son capaces de estimar con precisión el rango del presupuesto a asignar de cada una de las actividades y proyectos.

El riesgo de alcance de objetivos de cada proyecto está asociado a la cantidad de recursos que se le asignan a las actividades que se desglosan de él.

3.3 Descripción del estado del arte

La construcción de carteras surge en los años 50’s y ha evolucionado a través de los 70’s para convertirse en una útil herramienta de planificación. Entre los años 1980 y 1990 se extiende el uso de la gestión de carteras a la selección de nuevos productos y a la asignación de recursos en la investigación y desarrollo[32].

La selección de cartera de proyectos es un problema que es tratado siguiendo distintas metodologías, a pesar de esto, no existe un consenso en las técnicas que
Las técnicas empleadas para la selección de proyectos pueden ser categorizadas de la siguiente forma[6]: (1) Revisión por pares no estructurada, (2) scoring, (3) programación matemática, (4) modelos económicos, (5) técnicas de análisis de decisiones, (6) inteligencia artificial incluyendo la teoría difusa y otros métodos interactivos.

En [16] integran una metodología para la selección de carteras de proyectos tomando ventaja de las características más útiles de algunos métodos existentes y se implementa en un prototipo PASS (Project Analysis and Selection System) como herramienta para el apoyo a la toma de decisiones. En las etapas de pre-proceso se identifican estrategias y se incluye un enfoque para seleccionar los métodos más apropiados de acuerdo a algunos aspectos designados por la organización. La metodología toma en consideración la incertidumbre y el riesgo, pero se asume que los parámetros pueden ser aproximados con exactitud y no se especifican detalles de su obtención.

En Dickinson et al. [32], presentan un modelo desarrollado por la compañía Boeing para el problema de cartera proyectos de mejora de productos. También muestran el uso de una matriz de dependencias para la cuantificación de interdependencias de proyectos.

Meade y Presley [31] construyen un modelo empleando el enfoque multiatributo para la toma de decisiones ANP(Analytic Network Process) para la selección de proyectos de investigación y desarrollo. El caso de estudio que analizan se desarrolla en una compañía privada donde se tienen dos alternativas, desarrollar un sistema nuevo o actualizar el modelo existente de un producto. En el modelo, estructuran las alternativas y criterios e identifican atributos y subcomponentes correspondientes. También establecen categorías para las medidas empleadas. Ellos consideran la posible modelación de interdependencias de proyectos pero no se concreta de manera explícita. En este trabajo no se exploran casos de gran escala, en cuanto al número de proyectos y la consideración de incertidumbre y riesgo tampoco son analizadas.
Un enfoque de tres fases es presentado por Stummer y Heidenberger (2003) [37], una de ellas es la obtención del espacio de soluciones de las carteras eficientes mediante un modelo de programación lineal entero. El tomador de decisiones se apoya en un sistema interactivo para asegurar la correcta representación de las preferencias moviéndose en el espacio de soluciones en busca del alcance de niveles de aspiración. La principal limitación es, sin duda, el máximo de treinta proyectos que se pueden manejar en la segunda y tercera fase.

H. Eilat et al. [19] presentan una metodología para la creación y evaluación de carteras de proyectos de investigación y desarrollo. Trata la variabilidad de algunas características como el riesgo, eficiencia y balance. Básicamente, no se contempla la evaluación de riesgo de la cartera, sino que se controla el nivel de riesgo de la misma, mediante el análisis individual de proyectos. Sí se modelan interdependencias en proyectos, pero la incertidumbre que existe no es analizada.

A. F. Carazo et al. [2] presentan un modelo de programación entero multiobjetivo no lineal inspirado en el trabajo de Stummer & Heidenberger (2003) para el problema de selección y calendarización de carteras de proyectos. No consideran el riesgo e incertidumbre de los proyectos, pero si las interdependencias de proyectos de beneficio y de recursos al igual que otras posibles especificaciones estratégicas de la organización. A causa de algunas de las características que se consideran en los dos trabajos, nosotros hemos inspirado el nuestro en el de ellos.

Litvinchev et al. [23] desarrollan un modelo de programación lineal entero mixto bi-objetivo para la selección de cartera en instituciones sociales. El modelo maximiza la calidad de la cartera seleccionada, no consideran interdependencias ni incertidumbre en los parámetros de los proyectos, y se asume una actitud neutral al riesgo. Por otro parte, algo que lo distingue de los otros trabajos revisados, es que, contemplan la posibilidad de la asignación parcial de los recursos solicitados por los proyectos, característica que también es analizada en la presente investigación. En la experimentación, logran resolver instancias de hasta 25000 proyectos en tiempos razonables.
En cuanto a la gestión de proyectos, algunos trabajos que contemplan características que son de interés para esta investigación son mencionados de manera general, a continuación:

Para dar flexibilidad a la gestión, respecto a la incertidumbre que existe en proyectos de investigación y desarrollo dinámicos, Huchzermeier y Loch [21] presentan un modelo de programación dinámica de opciones reales donde la incertidumbre operacional es tratada mediante cinco aspectos (precio o pronóstico de ventas, costo, tiempo, performance, requerimientos del mercado) y con esto mejorando la gestión del riesgo. Y posteriormente Santiago y Bifano [35] muestran una aplicación al modelo, en el proceso de ciclo de vida de un nuevo producto de alta tecnología. En cada período de evaluación, se decide qué estrategia emplear. Otra manera de interpretar esto es, asumiendo que cada estrategia es una posible actividad y en realidad se realiza un proceso de selección sobre las actividades (similar al de selección de proyectos) donde sólo una de ellas es elegida en cada punto de evaluación. Y claro que esas actividades se definen en base a la información actualizada de la situación del proyecto.

3.4 CONCLUSIONES

En este capítulo se exponen las características del problema de selección de cartera de proyectos sociales, detallando aquellas que distinguen el problema sujeto a estudio de otros problemas de cartera abordados en la literatura revisada. También se mencionan los supuestos considerados.

Como parte de la investigación de este problema se realiza una revisión del estado del arte. La metodología seguida se encuentra en el Apéndice A, y un análisis de los trabajos revisados se mencionan en la segunda parte del capítulo.
CAPÍTULO 4

METODOLOGÍA PROPUESTA

4.1 INTRODUCCIÓN

En la primer parte de este capítulo se presenta la metodología general para apoyo a la toma de decisiones en el problema de cartera siguiendo los artefactos cognitivos que propone Alexis Tsoukiás [38] y posteriormente se detalla la implementación de la metodología para abordar el problema sujeto a estudio, la selección de cartera de proyectos con beneficios o impactos de carácter sociales.

4.2 METODOLOGÍA DE APOYO A LA TOMA DE DECISIONES PARA EL PROBLEMA DE SELECCIÓN DE CARTERA

Mediante un estudio de la literatura del problema de selección de cartera es posible señalar algunos de los principales temas relacionados con la selección de cartera de proyectos con beneficios o impactos sociales, éstos son [31]: (1) la necesidad de relacionar los criterios de selección a las estrategias corporativas hacia una visión de desarrollo social, (2) la necesidad de considerar los beneficios sociales cualitativos y cuantitativos además de los riesgos de los proyectos candidatos, y (3) la necesidad de consensuar e integrar las necesidades y deseos de los principales actores sociales que serán afectados de manera directa o indirecta por los resultados de la convocatoria.
Atendiendo a estos temas, se propone una metodología de apoyo a la decisión para la selección de carteras de proyectos con beneficios o impactos de carácter social.

En la metodología de apoyo a la decisión propuesta se definen las siguientes etapas:

1. Descripción del problema de cartera
2. Pre-selección de propuestas
3. Modelo de cartera de proyectos
4. Generación de carteras de proyectos
5. Selección de cartera de proyectos

Alexis Tsoukiás [38] define los artefactos cognitivos que se construyen en el proceso de apoyo a la decisión como: representación de la situación del problema, formulación del problema, modelo de evaluación y recomendación final. Las primeras dos etapas de la metodología propuesta tienen correspondencia hacia el artefacto de representación de la situación del problema. En la tercera y cuarta etapa se construye el modelo de evaluación de cartera y se identifican las alternativas, por lo que corresponden hacia el artefacto de modelo de evaluación. Y la cuarta etapa es donde se proporcionan las carteras recomendadas y finalmente se selecciona la cartera final. En resumen, la metodología de apoyo a la toma de decisiones propuesta para el problema de selección de cartera cubre los artefactos cognitivos que define Alexis Tsoukiás [38]; la figura 4.1 muestra la comparación anterior.

En siguientes secciones se detallan las etapas de la metodología propuesta y las tareas involucradas para el apoyo a la toma de decisiones en el problema de selección de carteras de proyectos.
4.2.1 DESCRIPCIÓN DEL PROBLEMA DE CARTERA

Parte importante de la metodología es la descripción detallada del problema de cartera. Esto incluye toda la información del problema y lo asociado a los actores que se ven involucrados y forman parte del proceso de decisión.

En esta etapa se propone organizar la información en dos bloques, el primero consiste en definir los elementos que se designan por la organización en la parte inicial del proceso.

- Tomador de decisiones. Corresponde a una o más personas involucradas en el proceso de decisión.
- Personal experto para la revisión y evaluación de las propuestas.
- Objetivos de la convocatoria.
- Áreas de investigación y desarrollo que se promueven en al convocatoria.
- Condiciones y requerimientos de la convocatoria así como sus reglamentos.
Aunque pareciera que las razones que originan el problema de selección de cartera son bien conocidas, existen casos donde pueden variar según los intereses y realidades de la organización. La mayoría de las veces el problema de cartera es asociado a que el presupuesto disponible es insuficiente para financiar todas las propuestas por lo que es indispensable realizar una selección adecuada de ellas. Sin embargo, otra razón puede ser el deseo de apoyar la investigación y desarrollo de un número restringido de propuestas u otras cuestiones estratégicas. Atendiendo a lo anterior, debe esclarecerse cuáles son las circunstancias que originan el problema de selección de cartera y a partir de ellas formalizar los objetivos que fija la organización.

El grupo decisor puede estar formado por una o más personas que son designadas por los directivos de la organización, nos referimos a este grupo como tomador de decisiones. Éstos participantes deben conocer el problema y deben ser capaces de admitir las preferencias e ideales de la organización como propias a fin de alcanzar los objetivos establecidos en el proceso de financiamiento de propuestas. También se designa a una grupo de personal experto para realizar las revisiones y evaluaciones de las propuestas de proyectos. Como ya hemos mencionado anteriormente, la evaluación de propuestas es un subproblema de la selección de cartera de proyectos que no abordamos en esta investigación.

La selección de una cartera de proyectos y su financiamiento producen efectos ya sea a largo o corto plazo en áreas específicas. Para medir las posibles consecuencias de elegir una cartera en vez de otra es necesario observar la dirección en la que se dirigen y a quién se dirigen. Cada uno de estos elementos permiten tener una idea más clara de las posibles actitudes de la organización ante la problemática y de los ideales que plantea como órgano promotor.

La segundo bloque, consiste en la información asociada al problema, los criterios y atributos designados por el tomador de decisiones para la observación y evaluación de carteras, así como las características propias del problema. Toda esta información se ve involucrada para definir el modelo de evaluación de carteras en la etapa posterior de la metodología.
Primero, es importante definir cuáles son las decisiones que se tomarán; en esta parte el tomador de decisiones debe ser consciente de aquello que requiere la organización.

Las posibles decisiones que definen el curso de acción de la organización son:

- Qué cartera de propuestas de proyectos seleccionar para su financiamiento.
- Qué presupuesto se asignará a cada propuesta elegida considerando lo requerido por el director de proyecto y lo sugerido por los revisores.

Dependiendo de la situación particular del problema las decisiones pueden variar.

El tomador de decisiones debe definir los criterios mediante los cuales se observan y se evalúan las carteras de proyectos. Éstos deben definirse acorde a los objetivos de la organización puesto que guían la selección de la cartera.

Para el presupuesto a asignar a las propuestas, se debe considerar la relación que existe entre los recursos solicitados y el alcance de los beneficios de la propuesta.

Las características asociadas a las carteras de proyectos y a los proyectos mismos también deben identificarse, tales como la identificación de interdependencias, relaciones de complementariedad y de incompatibilidad, las actividades que conforman los proyectos y sus respectivos aportes al beneficio o impacto que se produce por su financiación.

Finalmente, habiendo detallado toda la información, el problema de selección de cartera de proyectos puede ser formulado formalmente como la selección de una cartera de propuestas de proyectos que bajo los aspectos definidos constituyen la mejor opción de acuerdo a las preferencias del tomador de decisiones.

4.2.2 Pre-selección de propuestas

Esta etapa tiene como finalidad descartar aquellas propuestas que no cumplan con los mínimos requerimientos aceptable estipulados por el tomador de decisiones.
El proceso se realiza mediante una revisión de propuestas, las que si satisfagan los mínimos requerimientos conformarán el conjunto de propuestas en competencia y que son consideradas para su financiamiento.

De forma general, la etapa de pre-selección puede realizarse de acuerdo a los siguientes puntos.

1. Primero, se identifican aquellos atributos que determinan la entrada de las propuestas a la competencia por financiamiento.

2. Para cada atributo de evaluación, es necesario fijar valores para los niveles mínimos y/o máximos admisibles. Éstos niveles representan los umbrales dentro de los que cada propuesta deben permanecer para ser considerada. Los valores son establecidos de acuerdo a las preferencias del tomador de decisiones representando los ideales de la organización.

3. En caso de de que no se halla realizado en la etapa anterior, cada propuesta debe ser evaluada en función de los atributos por el grupo de revisores o el personal designado. Si se mantienen valores dentro de los niveles aceptables entonces la propuesta se considera en competencia.

Siguiendo este proceso se obtienen propuestas más acorde a los ideales de la organización.

4.2.3 Modelo de cartera de proyectos

En esta etapa se propone la construcción del modelo de evaluación de las carteras de proyectos empleando programación matemática. Para la construcción del modelo de programación se definen medidas de cartera asociadas a los criterios seleccionados, preferentemente en la medida de lo posible se intenta interpretar en forma lineal. Cada una de las medidas corresponderá a un objetivo y con ellas se da lugar a un problema multiobjetivo.
También deben establecerse las restricciones en función de los atributos elegidos y sus escalas. En la sección 2.5 del capítulo 2 presentamos una introducción a la programación lineal y en la sección 2.6 se habla de la optimización multiobjetivo y algunos de los métodos empleados para abordar esta clase de problemas.

4.2.4 Generación de carteras de proyectos

La tarea esencial de esta etapa es la generación de un conjunto de carteras eficientes en función de los criterios y su evaluación. Una vez construido el modelo de cartera, se implementa y se da solución al problema. Esto conlleva a la obtención de alternativas no dominadas, a partir de las cuáles se actualiza la información preferencial del tomador de decisiones.

En la sección 2.7 se presentan los principales conceptos de la optimización multiobjetivo y la concepción de la optimalidad de Pareto.

La cantidad de soluciones que se encuentran es algo importante que se debe definir previamente y en caso de obtenerse un gran número de ellas, es posible aplicar alguna técnica para reducir el conjunto a uno más manejable.

4.2.5 Selección de cartera de proyectos

Finalmente una vez obtenido el conjunto de carteras de proyectos, éstas se presentan al tomador de decisiones quién en base a sus preferencias decide cuál de ellas es la ideal basándose en su perspectiva subjetiva. En caso de ser necesario, es posible asistir al tomador de decisiones realizando un ordenamiento de las soluciones o aplicando otra técnica qué le facilite identificar la más adecuada a sus preferencias. En la actualidad ya han sido desarrollados distintos sistemas de apoyo para la selección de la cartera. Algunos involucran también la generación de carteras, y otros sólo asisten al tomador de decisiones a elegir la más adecuada o a balancearla de acuerdo a sus preferencias.
4.3 **Caso de estudio: Selección de carteras de proyectos con beneficios o impactos sociales**

En esta parte del capítulo se describe la implementación de la metodología propuesta al caso de estudio.

4.3.1 **Descripción del problema de cartera de proyectos con beneficios o impactos de carácter social**

La primera etapa, de descripción del problema ha sido expuesta en la sección 3.2, por lo que en esta parte será omitida. Tal descripción involucra la caracterización de proyectos mediante actividades que requieren de recursos para su ejecución y tienen aportación a las medidas de impacto de la cartera. Dichas medidas consisten en el impacto social y la cantidad de propuesta que conforman la cartera. Además, en la descripción del problema de cartera se consideran interdependencias de tres clases, de beneficio, de incremento y decremento de recursos así como otra clase adicional que se asocia a medidas estratégicas.

4.3.2 **Pre-selección de propuestas**

La propuesta correspondiente a la etapa de pre-selección de proyectos, se realiza considerando los requerimientos mínimos y máximos de impacto social y monto de recursos solicitado por proyecto y actividad, ambos son considerados como aspectos relevantes para que los proyectos aspiren a ser considerados a financiamiento.

4.3.3 **Descripción del modelo matemático**

Anteriormente se ha presentado un análisis del estado del arte del problema de cartera de proyectos mediante el cual es posible observar la existencia de una gran cantidad de modelos desarrollados, de ellos, son pocos los que contemplan en su
totalidad los aspectos que son descritos como relevantes para dicho problema. Tales factores pueden ser, múltiples objetivos, interdependencias, incertidumbre, riesgo de proyectos, entre otros. De acuerdo a lo anterior, consideramos que Carazo et al.[2, 5] y de Stummer y Heidenberger [37] son dos trabajos que incorporan de forma generalizada varios aspectos del problema de cartera.

En torno a estas ideas hemos propuesto un modelo de programación lineal entero mixto para la selección de cartera de proyectos que ha sido inspirado en las ideas presentadas por Carazo et al. [2] y Stummer y Heidenberger [37], considerando un sólo período de planificación y un único tipo de recursos, el dinero. Los elementos que distinguen el modelo son los siguientes:

- La caracterización de proyectos mediante actividades que solicitan de recursos para su ejecución. Asimismo su correspondiente aportación a las medidas de desempeño de la cartera.

Es decir, en el modelo se introducen variables de decisión para cada actividad asociada a cada proyecto \((z_{ji})\), toman el valor de 1 cuando son seleccionadas para formar parte de la cartera y 0 en otro caso. También se conservan las variables tradicionales para proyectos \((y_{i})\), actuando en forma similar.

Adicionalmente, se añaden restricciones para establecer las relaciones de actividad-proyecto, en ellas se restringe lo siguiente: (1) si al menos una actividad es seleccionada entonces su proyecto respectivo también es seleccionado; (2) para cada proyecto, si ninguna de sus actividades es seleccionada entonces tampoco se selecciona el mismo.

- El empleo de ciertas medidas de desempeño de la cartera descritas por Litvinchev et al.[23, 27] a partir de las cuales se maximiza la calidad de la cartera. Esta situación involucra el ajuste de las medidas a la caracterización de proyectos mediante actividades.

- La consideración de asignación parcial y/o total de recursos. En este caso es necesario incorporar variables de naturaleza continua asociadas a cada activi-
dad para la asignación de recursos \((x_{ji})\). La cantidad de recursos asignada debe permanecer dentro de una cantidad mínima y un máxima que se estipula a partir del proceso de revisión de propuestas, considerando lo solicitado por el director de proyecto y el personal experto designado.

Las restricciones asociadas a este aspecto del modelo son: (1) la cantidad de recursos asignada a cada actividad debe permanecer dentro de el rango estipulado; (2) para cada proyecto, la suma de los recursos asignados a sus actividades también debe permanecer dentro del rango respectivo que se estipula.

Mediante la asignación parcial también se controla la selección de actividades, puesto que sólo son seleccionadas aquellas que son apoyadas suficientemente (respecto a lo estipulado).

- La modelación de interdependencias técnicas de actividades, proyectos o grupos de ellos. Para tal efecto se definen conjuntos interdependientes de actividades, proyectos o grupos de ellos y se restringe la selección de un número máximo y/o mínimo de ellos. Esto nos permite lidiar con situaciones estratégicas como la existencia de proyectos o actividades del tipo obligatorio, proyectos o actividades complementarios, incompatibles o contradictorios, entre otros.

Por otra parte, los aspectos más tradicionalmente modelados en el problema de cartera e incorporados al modelo propuesto corresponden a restricciones para no sobrepasar el presupuesto disponible y de recursos designados por área de investigación. También se modelan las interdependencias que producen efectos sinérgicos de beneficio y recursos de forma similar a Carazo et al.\cite{2,5}.

El efecto sinérgico se produce cuando se apoya un subconjunto de \(C^s\) con cardinalidad menor a un número \(m^{s+}\) y mayor a un \(m^{s-}\) \cite{2,5}. Es decir, con esto se da la flexibilidad de no elegir el conjunto por completo, sino más bien un subconjunto que genere el efecto sinérgico. En caso de ser \(m^{s+}\) y \(m^{s-}\) iguales, se dice que el conjunto que produce el efecto sinérgico es estrictamente de una cardinalidad \(m^s\), donde \(m^s = m^{s+} = m^{s-}\).
Se añaden las siguientes restricciones de forma similar a Stummer & Heidenberger [37] y Carazo et al. [2, 5],

\[
\begin{align*}
\sum_{(j,i) \in C_s} z_{ji} - m^{s^+} + 1 & \leq |C^s| \sigma^s_1 \\
\sum_{(j,i) \in C_s} z_{ji} - m^{s^-} + |C^s| & \leq \sum_{(j,i) \in C_s} z_{ji} - m^{s^-} + |C^s| \\
m^{s^+} - \sum_{(j,i) \in C_s} z_{ji} + 1 & \leq |C^s| \sigma^s_2 \\
\sum_{(j,i) \in C_s} z_{ji} + |C^s| & \leq m^{s^+} - \sum_{(j,i) \in C_s} z_{ji} + |C^s| \\
\sigma^s & = \sigma^s_1 + \sigma^s_2 - 1,
\end{align*}
\]

donde \(z_{ji} \)

En (B.9) y (B.10) \(\sigma^s_1 \) y \(\sigma^s_2 \) indican si se cumplen los límites inferior y superior respectivamente. Se define \(\sigma^s \) en función de las dos anteriores para verificar si se activa la sinergia \(s \). \(\sigma^s_1 \) y \(\sigma^s_2 \) no pueden ser cero simultáneamente, pues eso implicaría que la suma \(\sum_{(j,i) \in C_s} z_{ji} \) fuera menor a \(m^{s^-} \) y mayor a \(m^{s^+} \) y esto es imposible pues \(m^{s^-} \leq m^{s^+} \). Mediante (B.11) es posible eliminar una importante debilidad presente del modelo de Carazo et al. [2], la no-linealidad.

En resumen, lo expuesto anteriormente representa en forma general el modelo de programación lineal entero mixto propuesto para el problema de cartera de proyectos. Asimismo los aspectos modelados permiten visualizar y tratar la situación de estudio con un alto grado de generalidad. Por último, cabe señalar que las medidas de desempeño han sido seleccionadas por el aporte formal que representan hacia el problema de selección de carteras de proyectos de investigación y desarrollo en organizaciones públicas, no obstante, no se descarta la consideración de otras medidas de desempeño.

4.3.4 Generación de carteras de proyectos

La cuarta etapa de la metodología es la generación de carteras. Como se presenta en el modelo matemático propuesto, se consideran dos medidas de de impacto
para la selección de la cartera. Dado que son dos objetivos proponemos la agregación de ambos en uno sólo mediante su ponderación.

El parámetro \(\pi \) es empleado para la ponderación, \(\pi \) y \(1 - \pi \) representan el grado de importancia de cada objetivo. Debe establecerse el mínimo y máximo valor que puede tomar \(\pi \). De esta manera, asignándole valores de acuerdo a los límites establecido y resolviendo el modelo de propuesto como un modelo mono objetivo de programación lineal entero mixto, es posible obtener un conjunto de soluciones que optimicen las medidas de impacto de acuerdo a su importancia relativa.

4.3.5 Selección final de cartera

Posteriormente, en la etapa final se presenta al tomador de decisiones un conjunto de carteras para que él las interprete y dé su punto de vista y finalmente de acuerdo a sus preferencias elija una de ellas. En este proceso el conjunto de soluciones es reducido u ordenado mediante algún método de análisis de decisión multicriterio.

4.4 Conclusiones

En este capítulo se presenta una metodología propuesta para el apoyo a la toma de decisión en el problema de selección de cartera de proyectos y también brevemente la descripción de su aplicación al caso de estudio que involucra proyectos con beneficios o impactos de carácter social.
5.1 Introducción

En este capítulo se presenta la planeación de los experimentos enfocados al problema de selección de cartera de proyectos con beneficios o impactos de carácter social así como los resultados obtenidos mediante el empleo del modelo propuesto. Posteriormente se presenta el análisis de resultados.

5.2 Descripción del experimento

Las experimentaciones realizadas en este trabajo están enfocados hacia el caso de estudio, es decir, el problema de cartera de proyectos con beneficios o impactos de carácter social. Para ello hemos considerado dos categorías de beneficio, la primera es el impacto social de la cartera y el segundo es el número de proyectos que conforman la cartera, de acuerdo a las medidas de desempeño presentadas en el trabajo de Litvinchev et al.[23, 27]. El único recurso a asignar es el dinero y sólo se considera un período de planeación.
Asimismo, las variables de decisión corresponden a los siguientes elementos:

- Cantidad de dinero asignada a cada actividad de cada proyecto que forma parte de la cartera seleccionada.
- Si un proyecto forma parte de la cartera o no.
Si una actividad es financiada o no, dado que el proyecto al que pertenece forma parte de la cartera.

Las instancias resueltas se obtuvieron empleando el modelo propuesto e incorporando la suma ponderada de las medidas asociadas a las categorías de beneficio como único objetivo a maximizar. Y se resolvieron en el solver cplex 11.2.

En este sentido, la planeación de los experimentos se desarrolla en tres bloques:

1. Se prueba la efectividad del modelo así como la validez del mismo. A este respecto se comparan los resultados obtenidos en los trabajos de Litvinchev et al.[23, 27] y los resultados obtenidos mediante el modelo matemático propuesto.

2. Se diseña un experimento con instancia aleatorias generadas.

3. Se analizan los modelos propuestos por Stummer y Heidenberger [37] y Cara-zo et al. [2] con el modelo propuesto para comparar la efectividad respecto a la representación de diferentes características del problema concreto de la selección de cartera de proyectos.

5.2.1 Experimentación

Respecto al primer bloque de experimentación, se prueba el modelo con algunas instancias presentadas en Litvinchev et al.[23, 27]. Las cuales tiene las siguientes características:

Instancia 1. 400 proyectos, 4 áreas, 2 rubros y 0 sinergias.

Instancia 2. 1200 proyectos, 4 áreas, 2 rubros y 0 sinergias.

Instancia 3. 10000 proyectos, 4 áreas, 2 rubros y 0 sinergias.

Instancia 4. 10000 proyectos, 4 áreas, 15 rubros y 0 sinergias.

Instancia 5. 25000 proyectos, 4 áreas, 1 rubro y 0 sinergias.
Las tablas 5.1 y 5.2 muestran los resultados obtenidos al resolver las instancias con el modelo propuesto y los reportados en los trabajos comparados.

<table>
<thead>
<tr>
<th>Instancia</th>
<th>Litvinchev et al. [27]</th>
<th>Modelo propuesto</th>
<th>Mipgap</th>
<th>Impacto</th>
<th>Proyectos</th>
<th>Asignado</th>
</tr>
</thead>
<tbody>
<tr>
<td>P400A4R2S0</td>
<td>0.02</td>
<td>0.55</td>
<td>1e-004</td>
<td>211</td>
<td>292</td>
<td>50000</td>
</tr>
<tr>
<td>P1200A4R2S0</td>
<td>2.42</td>
<td>5.36</td>
<td>1e-003</td>
<td>604</td>
<td>565</td>
<td>150000</td>
</tr>
<tr>
<td>P10000A4R2S0</td>
<td>77</td>
<td>72.8</td>
<td>1e-003</td>
<td>4214</td>
<td>5300</td>
<td>1250000</td>
</tr>
<tr>
<td>P10000A4R15S0</td>
<td>1038</td>
<td>588.47</td>
<td>1e-006</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.1: Comparación de resultados.

<table>
<thead>
<tr>
<th>Instancia</th>
<th>Litvinchev et al. [23]</th>
<th>Modelo propuesto</th>
<th>Mipgap</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25000A4R1S0</td>
<td>20</td>
<td>8.67</td>
<td>1e-006</td>
</tr>
</tbody>
</table>

Tabla 5.2: Comparación de resultados.

Los resultados muestran una clara reducción del tiempo de solución en las instancias de gran escala empleando el modelo propuesto.

5.2.2 EXPERIMENTACIÓN

De acuerdo al segundo bloque de experimentación, se generan distintos grupos de instancias variando el tamaño de proyectos, el número de rubros y sinergias, con el fin de observar el correcto funcionamiento del modelo en instancias de gran escala que sin duda se asemejan a los casos reales que surgen en organizaciones públicas. Para cada grupo se generan 15 instancias, las del primero grupo son de 100 proyectos 2 áreas, 5 rubros y 5 interdependencias. El segundo, 500 proyectos, con 2 áreas, 15 rubros y 40 sinergias. Y el tercero, 1000 proyectos, con 2 áreas, 15 rubros y 200 sinergias.

Los resultados obtenidos en tiempos de solución promedio por grupo de instancias se presentan en la tabla 5.3.
Tabla 5.3: Resultados a instancias aleatorias.

Adicionalmente, ha manera de profundizar en el estudio del modelo propuesto y su desempeño en la obtención de resultados se diseñan experimentaciones adicionales enfocadas hacia el análisis del efecto que se produce al incorporar las sinergias y la variación de la cantidad de actividades en proyectos.

ANÁLISIS DEL EFECTO DE SINERGIAS

Como ya se ha mencionado anteriormente, la medida de calidad de la cartera está compuesta por dos objetivos, el impacto total de la cartera y el número de proyectos seleccionados, ambos a ser maximizados.

Una de las características del problema de cartera de proyectos que se modelan en este trabajo es la existencia de interdependencias. Para observar los efectos que se producen en comparación con el caso en el que se asume la independencia de proyectos y/o actividades, hemos obtenido una parte de la aproximación de la frontera de Pareto para una instancia de 1000 proyectos, 10 actividades, 2 áreas, 50 sinergias con densidad máxima de 100 actividades y con un presupuesto disponible de 1000000.

Es bastante lógico que los valores de impacto sean superiores en el caso en el que consideran interdependencias, pues se producen efectos sinérgicos de beneficio adicionales. La cantidad de proyectos aprobados en el caso con sinergias, permanece por encima de los aprobados en el caso sin sinergias. Los resultados numéricos de esta experimentación se muestran en el Apéndice C.
Figura 5.1: Gráfico de efectos sinérgicos.

ANÁLISIS DE LA CANTIDAD DE ACTIVIDADES

En esta parte de la experimentación creamos cuatro grupos de instancias variando la cantidad de actividades. Cada una de las instancias comparten los siguientes parámetros:

- Proyectos: 1000
- Areas: 2
- Sinergias: 50
- Densidad de sinergias: 100
- Presupuesto: 1000000

Los grupos de instancias corresponden a 2, 5, 10 y 15 actividades. En la figura 5.2.2 se observan los tiempos obtenidos para distintas cantidades del número de actividades, cuando se tienen 2 actividades el tiempo promedio de solución es de 30.1 segundos y el caso en el que son 15 tarda en promedio 535.75 segundos.
Figura 5.2: Tiempos de solución al problema de cartera con 2,5,10,15 actividades.

5.2.3 Análisis de modelos de cartera

Una parte de la investigación consiste en el análisis de dos modelos de cartera de proyectos que han servido de referencia para el desarrollo del modelo propuesto en este trabajo. Es importante notar que la implementación del problema estudiado en los modelos que fueron tomados de referencia no es trivial. Es por esto que consideramos relevante realizar algunos experimentos pequeños; de manera que fuera posible observar las características del problema que no pueden ser representadas de forma simple. Aunado a esto, se hicieron algunas adecuaciones necesarias que serán descritas más adelante.

En las siguientes dos subsecciones se describe de manera general y breve dos trabajos que forman parte de la literatura revisada en esta investigación y que presentan los modelos de cartera de proyectos en los que se inspira el modelo de cartera propuesto, primero el de Stummer & Heidenberger [37] y posteriormente el trabajo de Carazo et al.[2].
Modelo de cartera de Stummer & Heidenberger [37]

En éste trabajo se presenta un enfoque de tres fases con el que se obtiene la cartera de proyectos más atractiva. La primera consiste de un pre-análisis donde reducen el número de las propuestas. En la segunda fase mediante un modelo multiobjetivo de programación lineal entero determinan el espacio de soluciones eficientes. Y finalmente ayudan al tomador de decisiones a encontrar una solución compromiso a través de la exploración del espacio de soluciones mediante un sistema interactivo.

El modelo que se desarrolla en el trabajo de Stummer & Heidenberger [37] tiene las siguientes características:

1. Las variables son del tipo binario y corresponden a cada proyecto, tomando el valor de 1 cuando el proyecto es añadido a la cartera.

2. De manera general, consideran distintas categorías de beneficio cada una con una función objetivo específica y distintas categorías de beneficio recursos las cuales también pueden ser vistas como objetivos.

3. Las funciones objetivo formuladas, se estructuran con la suma del beneficio individual de cada proyecto más beneficios extra por los efectos de las interrelaciones entre proyectos.

4. Para cada interdependencia se define un conjunto de los proyectos que se interrelacionan y se produce el efecto extra de beneficio o recursos de dos maneras. La primera, si un número de proyectos mayor a un m_j se incluyen a la cartera. Y la segunda es si a lo más un número de proyectos de algún conjunto interdependiente se incluyen a la cartera.

5. Las interdependencias que se consideran son de beneficio y de recursos.

6. Algunas restricciones estratégicas y lógicas pueden ser tratadas con un tipo de restricciones que limita el número de proyectos activos de algún tipo. Los
casos que mencionan que pueden ser tratados son:
- Varias versiones de proyectos.
- La necesidad de fijar un mínimo número de proyectos para ser incluidos a la cartera, de aquellos que pertenecen a algún tipo en particular, como nuevas tecnologías, o de alta prioridad, o áreas de investigación.

7. Consideran restricciones de para satisfacer mínimos beneficios de alguna clase. Así como restricciones para no sobrepasar los recursos disponibles.

MODELO DE CARRERA DE PROYECTOS DE CARAZO ET AL. [2]

En el trabajo de Carazo et al. [2] desarrollan un modelo de programación multiobjetivo binario para el problema de selección y calendarización de cartera de proyectos.

Este modelo tiene las siguientes características:

1. Las variables son del tipo binario, se define una por cada proyecto y período, indicando el período de inicio.

2. Cada proyecto tiene asociado un número de períodos de duración. Y una vez iniciado el proyecto, se mantiene activo hasta su término.

3. Se consideran distintos atributos en los que se desea evaluar la cartera en cada período del horizonte de planeación. Además de distintas categorías de beneficio.

4. Se definen conjuntos de proyectos de los cuales si un número de ellos menor o igual a un valor M_j y mayor o igual a un valor m_j entonces se genera un valor de incremento o decrecimiento en uno o más atributos (sinergias). Las funciones objetivo se definen para cada período y cada atributo, y están compuestas de la suma de la contribución individual de cada proyecto más el efecto de sinergias entre los mismos.
5. Las restricciones se dividen en temporales y globales. Las primeras incluyen restricciones para no exceder los recursos disponibles de cada categoría considerando sinergias de incremento o decremento de recursos, y restricciones que permiten transferir recursos inutilizados a períodos posteriores, activación de sinergias y restricciones lineales para restringir proyectos activos en cada periodo de acuerdo a limitaciones fijadas por la organización.

6. Las restricciones globales se presentan para lidiar con algunas situaciones como:
- Para restringir el que cada proyecto debe iniciar solo una vez, obligatoriamente o todo lo contrario y se restringe para no ser elegible.
- Restringir períodos límites en los que deben iniciar un conjunto de proyectos.
- Dado un conjunto de proyectos, se restringe el número de proyectos que se agregan a la cartera.
- Precedencia de proyectos.

Ejemplo Numérico

Antes de intentar representar el problema estudiado con los dos modelos anteriores, analizamos algunas características del problema y los efectos que se producen con su consideración al resolver un ejemplo de 4 proyectos. Las detalles generales del ejemplo son:

<table>
<thead>
<tr>
<th>Parámetros</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Presupuesto disponible</td>
<td>550</td>
</tr>
<tr>
<td>Proyectos</td>
<td>4</td>
</tr>
<tr>
<td>Areas</td>
<td>2</td>
</tr>
<tr>
<td>Actividades</td>
<td>2</td>
</tr>
<tr>
<td>Sinergias</td>
<td>1</td>
</tr>
</tbody>
</table>

Las restricciones que se establecen por la organización respecto a los recursos
destinados por área de investigación son los siguientes:

<table>
<thead>
<tr>
<th>Areas</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>450</td>
</tr>
<tr>
<td>2</td>
<td>180</td>
<td>400</td>
</tr>
</tbody>
</table>

Los datos de las 4 propuestas de proyectos que compiten por financiamiento son los siguientes:

<table>
<thead>
<tr>
<th>Proyectos</th>
<th>Actividad1</th>
<th>Actividad2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. mMin</td>
<td>mMax</td>
<td>tarea</td>
</tr>
<tr>
<td>1 150</td>
<td>460</td>
<td>1</td>
</tr>
<tr>
<td>2 120</td>
<td>198</td>
<td>1</td>
</tr>
<tr>
<td>3 104</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>4 200</td>
<td>290</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 5.4: Ejemplo numérico 4PB1R00.

En el ejemplo se incluye una interdependencia formada por las actividades (3,1) y (3,2), es decir, las actividades 1 y 2 del proyecto 3. Si se apoyan ambas se produce un valor adicional de beneficio (impacto) de 2 unidades.

Los valores \(m\text{Min} \) y \(m\text{Max} \) establecen el rango de lo que se le puede asignar a cada proyecto, de manera análoga \(r\text{min}, r\text{max} \) para las actividades y \(a\text{Min} \) y \(a\text{Max} \) el rango de las áreas. \(\rho \) indica la importancia de la actividad respecto a los objetivos específicos de cada proyecto. Muchas veces sólo se tiene una cantidad y se asume que si un proyecto es seleccionado, entonces se le asigna esa cantidad de recursos.

Cuando hablamos de asignación total nos referimos al problema de cartera en el que se emplean variables del tipo 0-1, es decir, una variable correspondiente a un proyecto con valor de 1 indica que será enteramente financiado. El valor de 0 implica no apoyar dicho proyecto.

A diferencia de la asignación total, la asignación parcial corresponde a una relajación
continua donde se puede asignar cualquier cantidad entre un valor mínimo y un máximo.

Para resolver la instancia de 4 proyectos a través de un modelo general que maximiza el total impacto de la cartera seleccionada se consideran dos casos, en el primero se realiza la asignación total y en el segundo caso se hace asignación parcial de recursos. La siguiente estructura corresponde a las distintas consideraciones que se toman para resolver la instancia.

1. Caso I. Asignación total de recursos.

 a) Sin considerar actividades.

 1) Estrategia I. Cantidades mínimas de proyecto.
 2) Estrategia II. Cantidades máximas de proyecto.
 3) Estrategia III. Caso mixto. Se asigna cantidad mínima o máxima de proyectos.

 b) Considerando actividades.

 1) Estrategia I. Cantidades mínimas de actividades.
 2) Estrategia II. Cantidades máximas de actividades.
 3) Estrategia III. Caso mixto. Se asigna cantidad mínima o máxima de actividades.

2. Caso II. Asignación parcial de recursos.

 a) Considerando actividades.

Los resultados obtenidos al resolver la instancia se presentan organizados siguiendo la estructura anterior. Primero el caso de asignación total de recursos a nivel proyecto, sin considerar actividades. Siguiendo la estrategia I se observa que la solución obtenida consta de tres proyectos y los recursos totales para financiar esta
cartera son 470, una importante observación de este caso es que existe una considerable fracción de los recursos disponibles sin utilizar. Al parecer, esta es una limitación que se hace presente cuando se considera la asignación total.

Considerando la estrategia II, ni siquiera es posible obtener una solución factible que satisfaga las restricciones de área. Y finalmente en la última estrategia, al existir la posibilidad de elegir entre dos cantidades para asignar a cada proyecto (mínimo y máximo) se mejora la asignación de recursos manteniendo el mismo impacto que en la estrategia I.

Si se considera la caracterización de proyectos a través de actividades las cuáles requieren de una cantidad de recursos, los resultados al resolver el ejemplo se vuelven más flexibles. En el caso donde se asigna la cantidad mínima de recursos solicitados por actividad se obtiene una cartera que incluye a los cuatro proyectos mejorando el impacto social. En el proyecto 4 sólo se financió una de las actividades, esto es permitido, pero es posible restringir la existencia de actividades imprescindibles. Cuando se asigna la cantidad máxima de recursos solicitados por las actividades, ya es posible encontrar solución factible. Y claramente al emplear la estrategia III, se sigue mejorando la asignación de recursos.

Finalmente en el caso II, donde se realiza la asignación parcial y se consideran actividades, se obtiene una solución que resulta ser igual de buena en el impacto y
en el número de proyectos que la solución obtenida en la tabla anterior. La diferencia se encuentra en que se realiza una entera asignación de recursos disponibles.

<table>
<thead>
<tr>
<th>Considerando actividades</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluciones</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Recursos</td>
<td>Impacto</td>
<td>N. proyectos</td>
</tr>
<tr>
<td>Asignación parcial</td>
<td>151-75 60-60 52-52 0-100</td>
<td>550</td>
<td>26.35</td>
<td>4</td>
<td>.34/.67</td>
<td>.39/.39</td>
<td>.30/.30</td>
</tr>
</tbody>
</table>

Con este análisis se esclarecen algunas de las limitaciones que se presentan al implementar ciertas consideraciones en los modelos de cartera, tales como la asignación total, asignación parcial, la percepción de los proyectos como único elemento que requiere de recursos para el alcance de los objetivos o la caracterización mediante actividades.

IMPLEMENTACIÓN EN EL MODELO DE CARAZO ET AL. [2]

En esta parte de la investigación, para modelar el problema decidimos estudiar su implementación a detalle en el modelo de Carazo et al. [2]. Con esto se pretende destacar las similaridades y diferencias del problema que ellos abordan en comparación con el modelo estudiado en esta tesis. En su trabajo desarrollan un modelo de selección y planificación de carteras de proyectos con interdependencias.

En el trabajo de Carazo et al. [2] se presenta un problema con variables 0-1 por lo que asumiremos que cada actividad tiene un monto solicitado y cada proyecto tiene un presupuesto máximo en lugar de un rango, centrando el problema en decidir qué actividades incluir a la cartera. Para dicha implementación continuaremos con el ejemplo numérico antes presentado. Antes, es necesario realizar una serie de consideraciones y ajustes, los cuales se detallan a continuación:

1. Consideramos en el modelo un sólo período, en el cual se llevarán a cabo los proyectos que formen parte de la cartera y un único tipo de recursos, dinero.
2. Trasladaremos las variables para realizar la selección no de proyectos, sino de actividades. Las variables son,

\[x_i = \begin{cases}
 1 & \text{si la actividad } i \text{ corresponde a algún proyecto es incluida en la cartera}, \\
 0 & \text{en otro caso}.
\end{cases} \]

Siendo \(I \) el conjunto de todas las actividades de cada uno de los proyectos. Y \(J \) el conjunto de proyectos.

3. Consideraremos dos tributos de evaluación o categorías de beneficio que corresponden a,

- el impacto de la cartera,

\[C_d(x) = \sum_{j \in J} w_j \sum_{i \in A_j} \rho_i x_i + \sum_{s \in S} g_s(x) a_s \] (5.1)

- y la cantidad de proyectos incluidos en la cartera.

\[C_p(x) = \sum_{s \in J} g_s^p(x) \] (5.2)

donde \(J \) es el conjunto de proyectos, \(w_j \) el valor de impacto del proyecto y \(rho_i \) la importancia de la actividad \(i \) en el proyecto \(j \). En el siguiente punto detallamos las variables en (2) que nos permiten identificar los proyectos que han sido elegidos para formar parte de la cartera.

4. Al trasladar las variables para representar la selección de actividades que se financiarán, es necesario identificar aquellas que pertenecen a cada proyecto. Para proponemos definir sinergias especiales. Esto es, una sinergia para cada proyecto, que se activa si se decide apoyar al menos una de sus actividades.

Se define un conjunto \(A_s \) de actividades correspondientes al proyecto \(s \) para \(s \in J \). Estas sinergias se activan si al menos una de las actividades de un conjunto \(A_s \) es apoyada.

5. Restricciones de recursos. Para restringir que lo asignado a las actividades no exceda el presupuesto máximo de cada proyecto, se añade lo siguiente,

\[g_s(x) \sum_{i \in A_s} r_i x_i \leq M_s^+, \ s \in J \] (5.3)
6. Adicionales, se añaden las restricciones de presupuesto máximo y mínimo destinado a cada área, que son fijados por la organización a través del tomador de decisiones.

\[
P_k^- \leq \sum_{s \in J_k} g_s(x) \sum_{i \in A_s} r_i x_i \leq P_k^+
\]

(5.4)

\(J_k\) es el conjunto de los proyectos que pertenecen al área \(k \in K\). \(P_k^-\) y \(P_k^+\) son los valores mínimo y máximo correspondiente al área \(k \in K\).

7. La restricción correspondiente a no sobrepasar el presupuesto disponible, sigue una estructura similar a la que se presenta en el modelo estudiado.

\[
\sum_{i \in I} r_i x_i + \sum_{s \in S'} g_s(x) a_s \leq R,
\]

donde \(r_i\) indica los recursos solicitados por la actividad \(i\) y \(a_s\) el valor del efecto de la sinergia de incremento o decremento de recursos \(s \in S'\). El conjunto \(S'\) es el conjunto de las sinergias de recursos.

8. Para la activación de sinergias, se mantiene la estructura de las presentes en el trabajo de Carazo et al. (2010), esto es, una sinergia \(s\) se activa si al menos se incluye a la cartera un subconjunto del conjunto \(A_s\) con cardinalidad \(\leq a m_s^- \) y \(\geq a m_s^+\). Empleando las restricciones que incluyen en Carazo et al.[2] y Stummer y Heidenberger [37], las restricciones de activación de sinergias serían,

\[
\sum_{i \in A_s} x_i - m_s^- + 1 \leq |A_s| g_s^m(x) \leq \sum_{i \in A_s} x_i - m_s^- + |A_s|
\]

(5.6)

\[
m_s^+ - \sum_{i \in A_s} x_i + 1 \leq |A_s| g_s^M(x) \leq m_s^+ - \sum_{i \in A_s} x_i + |A_s|
\]

(5.7)

Con (6) se verifica si el número de actividades de la sinergia \(s\) es mayor o igual al valor \(m_s^-\). Y en (7) si es menor o igual al valor \(m_s^+\). Si \(g_s^m(x)\) y \(g_s^M(x)\) ambos son \(1\), entonces la sinergia se activa.

En Carazo et al. [2] se verifica esto con, \(g_s(x) = g_s^m(x)g_s^M(x)\), lo cual hace no-lineal su modelo.
9. Una importante observación, es que, mediante la siguiente restricción

\[g_s = g^m_s + g^M_s - 1, \tag{5.8} \]

se elimina la no-linealidad del modelo en la activación de sinergias del modelo estudiado. Pues al analizar las variables, \(g^m_s(x) \) y \(g^M_s(x) \) resulta obvio el que no pueden ser ceros simultáneamente.

10. En las sinergias especiales que hemos definido antes, las de proyectos, donde \(s \in J \) sólo se verifica (6), pues por definición (7) siempre se cumple, por lo que \(g_s(x) = g^m_s(x) \).

11. Las interdependencias técnicas se definen para controlar la activación de sinergias, las mismas no son contempladas en el modelo que se analiza ni en el trabajo de Stummer y Heidenberger [37]. Estas sinergias especiales surgen cuando, de un conjunto de sinergias solo un subconjunto de cardinalidad limitada pueden estar activas de manera simultánea. Esto puede ser implementado como,

\[E^-_s \leq \sum_{s \in T} g_s \leq E^+_s, \tag{5.9} \]

donde \(T \) es el conjunto de sinergias que pertenecen a un interdependencia técnica.

Una vez detalladas las principales adecuaciones para ajustar el modelo de Carazo et al. [2] a nuestro problema, el modelo es verificado en el ejemplo numérico.

Ejemplo numérico

El modelo no estructurado para el ejemplo 4PB1R00 considerando la cantidad máxima solicitada de recursos, corresponde al siguiente.

Como ya se ha mencionado, en las sinergias definidas para cada proyecto, solo es necesario considerar una restricción de activación, siendo \(g^m_s = g_s \).
Maximizar
\[\pi((8.3)(.5x_1 + .5x_2) + 7.6(.5x_3 + .5x_4) + 5.6(.5x_5 + .5x_6) + 5.7(.5x_7 + .5x_8)+2g_1(x)) + (1 - \pi)(g^{\mu}_{1}(x) + g^{\mu}_{2}(x) + g^{\mu}_{3}(x)) \]

sujeto a

(recursos por proyecto1) \[230x_1 + 230x_2 \leq 460 \]
(recursos por proyecto2) \[99x_3 + 99x_4 \leq 198 \]
(recursos por proyecto3) \[75x_5 + 75x_6 \leq 150 \]
(recursos por proyecto4) \[145x_7 + 145x_8 \leq 290 \]
(recursos por area 1) \[200 \leq 230x_1 + 230x_2 + 99x_3 + 99x_4 \leq 450 \]
(recursos por area 2) \[180 \leq 75x_5 + 75x_6 + 145x_7 + 145x_8 \leq 400 \]
(Presupuesto disponible) \[230x_1 + 230x_2 + 99x_3 + 99x_4 + 75x_5 + 75x_6 + 145x_7 + 145x_8 \leq 550 \]
(sinergia de beneficio) \[(x_5 + x_6) - 2 + 1 \leq 2g^{\mu}_{1}(x) \leq (x_5 + x_6) - 2 + 2 \]
(sinergia de beneficio) \[2 - (x_5 + x_6) + 1 \leq 2g^{M}_{1}(x) \leq 2 - (x_5 + x_6) + 2 \]
(sinergia de beneficio) \[g_1(x) = g^{\mu}_{1}(x) + g^{M}_{2}(x) \]
(sinergia de proyecto1) \[(x_1 + x_2) - 1 + 1 \leq 2g^{\mu}_{1}(x) \leq (x_1 + x_2) - 1 + 2 \]
(sinergia de proyecto2) \[(x_3 + x_4) - 1 + 1 \leq 2g^{\mu}_{2}(x) \leq (x_3 + x_4) - 1 + 2 \]
(sinergia de proyecto3) \[(x_5 + x_6) - 1 + 1 \leq 2g^{\mu}_{3}(x) \leq (x_5 + x_6) - 1 + 2 \]
(sinergia de proyecto4) \[(x_7 + x_8) - 1 + 1 \leq 2g^{\mu}_{4}(x) \leq (x_7 + x_8) - 1 + 2 \]

\[x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \in \{0, 1\}, \]

\[g_1(x), g^{\mu}_{1}(x), g^{M}_{1}(x), g^{\mu}_{2}(x), g^{M}_{3}(x), g^{\mu}_{4}(x), g^{M}_{5}(x) \in \{0, 1\}. \]

La solución a este problema se obtuvo con el solver cplex. Las características de la solución se mencionan a continuación.

Los proyectos seleccionados fueron el 1, 3 y el 4. Y los recursos necesarios para financiar esta cartera suman 525. Aunque es un ejemplo muy pequeño, en la solución se observa que una fracción del presupuesto no es distribuida entre las propuestas por el valor estricto que se solicita, siendo desaprovechado. En el caso real, esa fracción correspondería a miles de pesos que no se estarían utilizando por lo cual es necesario extender este modelo a uno con variables continuas quebríen la flexibilidad necesaria. El carácter estricto de los recursos asignados es una importante limitante identificada.

Dadas estos resultados, el estudio se extiende hacia el desarrollo de un mod-
el caso continuo de las variables de asignación, la modelación de interdependencias, relaciones de complementariedad y de incompatibilidad de dos o más actividades pertenecientes a dos o más proyectos. Restricciones de área así como otras cuestiones propias del problema.

5.3 Conclusiones

En este capítulo se presentan las experimentaciones realizadas para el estudio del problema de selección de cartera de proyectos y para analizar el desempeño del modelo propuesto en la obtención de resultados. También, se identifican los principales elementos del problema que están asociados a la complejidad del modelo en la obtención de resultados. Y por último, se presenta un estudio de la implementación del problema en dos modelos presentes en la literatura revisada mediante ligeros ajustes propuestos. Esto involucra un análisis de las características del problema que se pueden modelar trivialmente y de las características que no se pueden incorporar sin realizar grandes modificaciones.

Se estudia el comportamiento de las soluciones, considerando la importancia de los rubros asociados a las actividades que se desarrollan en cada proyecto lidiando con la imprecisión de los recursos solicitados.

También se observa que al incluir en el modelo el desglose de la cantidad asignada de recursos por rubros, aumenta la complejidad del problema, pero continúa
siendo computacionalmente tratable con el modelo propuesto.
CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

6.1 INTRODUCCIÓN

Los principales resultados de la investigación del problema de cartera de proyectos sociales se exponen en este capítulo y se exponen las conclusiones del trabajo.

6.2 CONCLUSIONES

En este trabajo se estudia el problema de selección de cartera de proyectos de investigación y desarrollo con beneficios o impactos de carácter social. Asimismo se propone la modelación de características adicionales a las tratadas tradicionalmente con el objeto de formalizar un modelo de cartera de proyectos con un alto grado de generalidad. Con esta finalidad se desarrolla un modelo de programación lineal entero mixto específico para el problema de selección de carteras de proyectos sociales que proporciona soluciones a instancias de gran escala en tiempos razonables.

En resumen, este trabajo hemos modelado los proyectos como un conjunto de actividades que requieren de ciertos recursos para su ejecución, en caso de ser elegidas las actividades se considera la asignación de recursos total o parcial. Y las interdependencias se consideran entre de actividades o proyectos.

El modelo de programación lineal entero mixto propuesto para el problema de selección de carteras de proyectos sociales proporciona soluciones a instancias de
gran escala en tiempos razonables.

Según resultados experimentales se ha corroborado que la eficiencia computacional (tiempo y proximidad a la solución exacta) dependen principalmente de la cantidad de actividades, de la cantidad de sinergias y la densidad de sinergias en primer lugar, y en segundo lugar de la cantidad de proyectos, de los límites de asignación de recursos para las áreas, los proyectos y las actividades.

El modelo propuesto ha resultado ser eficiente para resolver instancias de hasta 10000 proyectos con 15 actividades y 200 sinergias.

6.3 Trabajo futuro

Algunas de las tareas que forman parte del trabajo futuro son:

- Generalizar el modelo, considerando otras medidas de impacto a las que se presentan en este trabajo de modo que se adecúen a los atributos que sean designados por la organización.

- Generalizar la metodología propuesta a la consideración de distintos tipos de recursos.

- Investigar la planificación temporal de proyectos y actividades para añadirla a la metodología propuesta para el apoyo a la selección y planificación de carteras de proyectos de carácter social.

- Formalizar en el modelo propuesto la consideración del riesgo, su medida y efectos.
La revisión del estado del arte fue realizada siguiendo la metodología que se presenta a continuación:

1. Inicialmente se define el tema y subtemas.
 - Selección de cartera, Optimización de cartera.
 - Selección de cartera de proyectos, optimización de cartera de proyectos.
 - Proyectos de investigación y desarrollo, proyectos públicos.
 - Riesgo, evaluación de riesgo, riesgo de proyectos.
 - Gestión de riesgo, gestión de riesgo de proyectos.

2. De entre un conjunto de 50 a 60 artículos más citados recopilados previamente de scholar.google.com y relacionados con el tema y un conjunto de palabras clave, se eligen los 20 más citados o aquellos con más de 50 citas. Registrando cada uno en un archivo Bibtex.

3. Del total de artículos identificar los 20 autores más citados, ordenando en forma descendente según las citas de los artículos en los que aparecen (se suman las citas).

4. Clasificar los artículos según subtemas, fechas de publicación.
5. Crear dos tablas, una para artículos y otra de autores que incluye las características de cada uno así como su clasificación (clásico, contemporáneo, reciente).

6. Se repite 1-5 con la lista de bibliografías de los artículos más citados. Obteniendo otra lista de 20 artículos y autores más citados cada una con su respectiva tabla.

7. Para cada uno de los artículos crear ficha bibliográfica, incluyendo su novedad científica y crítica personal.
Primero definimos los conjuntos y parámetros.

Conjuntos

J Conjunto de proyectos compitiendo por apoyo financiero, $j = 1, 2, 3, ... |J|$.

K Conjunto de áreas a las que pertenecen los proyectos, con índices $k = 1, 2, 3, ..., |K|$.

J_k Conjunto de proyectos que pertenecen al área k.

I Conjunto de actividades con índices $i = 1, 2, 3, ..., |I|$.

S Conjunto de índices de las sinergias, $S = \{1, 2, 3, ..., |S|\}$.

C Conjunto de todas las sinergias.

C_s Conjunto de elementos(pares) de la sinergia s, $C_s = \{(j_1,i_1),(j_2,i_2)...(j_{|C_s|},i_{|C_s|})\}$.

B Conjunto de sinergias de beneficio, $B \subset C$.

L Conjunto de sinergias de reducción de recursos, $L \subset C$.

H Conjunto de sinergias de incremento de recursos, $H \subset C$.

τ Conjunto de sinergias técnicas donde $T \in \tau$ se define como un conjunto de índices de sinergias que a su vez pertenecen a una sinergia técnica, $T = \{s_1, s_2, ..., s_{|T|}\}$.

Parámetros
η^s Valor sinérgico de reducción de recursos de la sinergia s.
λ^s Valor sinérgico de incremento de recursos de la sinergia s.
v^s Valor sinérgico de beneficio de la sinergia s.

R^-_{ji} Mínimo monto para apoyar la actividad i del proyecto j.
R^+_{ji} Máximo monto para apoyar la actividad i del proyecto j.

PG Cantidad máxima de presupuesto.
P^+_k Máxima cantidad para apoyar el área k.
P^-_k Mínima cantidad para apoyar el área k.

M^-_j Mínimo monto para apoyar el proyecto j asegurando el éxito.
M^+_j Máximo monto para apoyar el proyecto j.

w_j El valor de importancia o de beneficio del proyecto j, evaluado por el tomador de decisiones.

m^s+ Cantidad máxima de actividades a apoyar en caso de activarse la sinergia s.

m^s- Cantidad mínima de actividades a apoyar en caso de activarse la sinergia s.

E^+_T Número máximo de sinergias permitidas para activarse por un conjunto de sinergias técnicas.
E^-_T Número mínimo de sinergias permitidas para activarse por un conjunto de sinergias técnicas.

Las variables de decisión

1) Variables para la asignación de recursos a las actividades de cada uno de los proyectos.

x_{ji} Monto designado para apoyar la actividad i del proyecto j.
2) Variables binarias de selección de actividades de cada proyecto,

\[y_j = \begin{cases}
1 & \text{si el proyecto } j \text{ es suficientemente financiado.} \\
0 & \text{d.o.m.}
\end{cases} \]

3) Variables binarias de selección de proyectos,

\[z_{ji} = \begin{cases}
1 & \text{si la actividad } i \text{ del proyecto } j \text{ es apoyada, } R_{ji}^- \leq x_{ji} \leq R_{ji}^+. \\
0 & \text{d.o.m.}
\end{cases} \]

4) Variables binarias de activación de sinergias,

\[\sigma^s_1 = \begin{cases}
1 & \text{si el conjunto sinérgico tiene cardinalidad } \geq m^{s-} \\
0 & \text{d.o.m.}
\end{cases} \]

\[\sigma^s_2 = \begin{cases}
1 & \text{si el conjunto sinérgico tiene cardinalidad } \leq m^{s+} \\
0 & \text{d.o.m.}
\end{cases} \]

\[\sigma^s = \begin{cases}
1 & \text{si la sinergia } s \text{ es activada, } \sigma^s = \sigma^s_1 + \sigma^s_2 - 1 \\
0 & \text{d.o.m.}
\end{cases} \]

Objetivos:

\[\sum_{j \in J} w_j \left(a_j y_j + b_j \sum_{i \in I} \rho_{ji} x_{ji} \right) + \sum_{s \in B} v^s \sigma^s \quad (B.1) \]

\[\sum_{j \in J} y_j \quad (B.2) \]

Se consideran 2 objetivos (B.1) y (B.2), el primero formado por la suma del valor individual de cada proyecto y la suma total de beneficio extra por sinergias de
proyectos, el segundo objetivo es el total de proyectos que son suficientemente apoyados. Regularmente en algunos modelos se emplea un umbral para fijar la cantidad mínima de proyectos, en este caso, es visto como un objetivo. Pensando en situaciones donde tengamos dos carteras con igual medida de calidad y sin gran diferencia de recursos, pues es normalmente deseable elegir aquella con mayor número de proyectos.

Los parámetros a_j y b_j se definen de la misma forma que en Litvinchev et al. [23, 27] de manera que sus valores correspondientes son:

$$a = \alpha - \frac{M_j^- (1 - \alpha)}{M_j^+ - M_j^-}, \quad b = \frac{1 - \alpha}{M_j^+ - M_j^-}.$$

Restricciones:

$$\sum_{j \in J} \sum_{i \in I} x_{ji} \leq P_G (\text{máximo presupuesto}), \quad (B.3)$$

$$P_k^- \leq \sum_{j \in J_k} \sum_{i \in I} x_{ji} \leq P_k^+, \quad k \in K (\text{límite de recursos por área}), \quad (B.4)$$

$$M_j^- y_j \leq \sum_{i \in I} x_{ji} \leq M_j^+ y_j, \quad j \in J \ (\text{indica si el proyecto es suficientemente apoyado}), \quad (B.5)$$

$$R_{ji}^- z_{ji} \leq x_{ji} \leq R_{ji}^+ z_{ji}, \quad \begin{cases} i \in I, j \in J \quad (\text{se da suficiente apoyo a la actividad } i \text{ ó no se apoya}), \\ (j, i) \not\in L \cup H \end{cases} \quad (B.6)$$

$$y_j \leq \sum_{i \in I} z_{ji}, \quad j \in J \ (\text{si todas las actividades no son apoyadas, tampoco el proyecto}), \quad (B.7)$$

$$\sum_{i \in I} z_{ji} \leq |I| y_j, \quad j \in J (\text{si al menos una actividad se apoya, el proyecto también se apoya}), \quad (B.8)$$

Restricciones de sinergias

Las sinergias han sido vistas inicialmente en este trabajo como conjuntos de activi-
dades que de apoyarse cada una de ellas producen un efecto sinérgico dando lugar a algún tipo de beneficio o incremento-decremento de recursos. A partir de ahora se redefinen considerando el cardinal del conjunto sinérgico no como un valor fijo, sino más bien flexible.

La sinergia tiene efecto o es activada cuando se apoya un subconjunto de C^s con cardinalidad menor a un número m^{s+} y mayor a m^{s-}. Es decir, con esto se da la flexibilidad de no elejir el conjunto por completo, sino más bien un subconjunto que genere el efecto sinérgico, véase también en A. F. Carazo et al. [2].

En caso de ser m^{s+} y m^{s-} iguales, se dice que el conjunto que produce el efecto sinérgico es estrictamente de una cardinalidad m^s, donde $m^s = m^{s+} = m^{s-}$.

Se hace añadidas las siguientes restricciones de forma similar a Stummer & Heidenberger [37] y A. F. Carazo et al.[2],

\[
\sum_{(j,i)\in C^s} z_{ji} - m^{s-} + 1 \leq |C^s| \sigma^s_1 \leq \sum_{(j,i)\in C^s} z_{ji} - m^{s-} + |C^s| \tag{B.9}
\]

\[
m^{s+} - \sum_{(j,i)\in C^s} z_{ji} + 1 \leq |C^s| \sigma^s_2 \leq m^{s+} - \sum_{(j,i)\in C^s} z_{ji} + |C^s| \tag{B.10}
\]

\[
\sigma^s = \sigma^s_1 + \sigma^s_2 - 1, \tag{B.11}
\]

En (B.9) y (B.10) σ^s_1 y σ^s_2 indican si se cumplen los límites inferior y superior respectivamente. Se define σ^s en función de las dos anteriores para verificar si se activa la sinergia s. σ^s_1 y σ^s_2 no pueden ser cero simultáneamente, pues eso implicaría que la suma $\sum_{(j,i)\in C^s} z_{ji}$ fuera menor a m^{s-} y mayor a m^{s+} y esto es imposible pues $m^{s-} \leq m^{s+}$. Además, la restricción (B.11) permite eliminar una importante debilidad presente del modelo de A. F. Carazo et al. [2], la no-linealidad.

Sinergias de incremento-decremento de recursos

\[
\sum_{(j,i)\in C^s} x_{ji} \leq \sum_{(j,i)\in C^s} R^+_i z_{ji} - \eta^s \sigma^s, \ s \in L \text{ (sinergia de decreto)}, \tag{B.12}
\]
Apéndice B. Modelo matemático propuesto

\[
\sum_{(j,i) \in C^s} x_{ji} \geq \sum_{(j,i) \in C^s} R^-_{ji} z_{ji} + \lambda^s \sigma^s, \ s \in H \text{ (sinergia de incremento)}, \quad (B.13)
\]

Sinergias técnicas

Las sinergias técnicas se definen para mantener control sobre las sinergias de actividades que pudieran activarse. Actúan restringiendo una cantidad máxima de sinergias activas de algún tipo o que pertenecen a algún conjunto.

Llamamos \(T \) al conjunto que contiene los índices de las sinergias que deben restringirse, es decir, \(T = \{s_1, s_2, \ldots, s_{|T|}\} \), de manera que sólo un número menor o igual a \(E^+_t \) y/o mayor o igual a \(E^-_t \) de ellas pueden estar activas. El conjunto de todos los \(T \) es \(\tau \).

Las restricciones son,

\[
E^-_T \leq \sum_{s \in T} \sigma^s \leq E^+_T, \ T \in \tau \quad (B.14)
\]

en caso de ser necesario puede ser menor estricto o igual.

Restricciones adicionales. Proyectos por área

En algunos casos, en que se desee balancear la cartera, no en función de los apoyos asignados por área de inversión sino en número de proyectos apoyados por área. Se restringe,

\[
d^-_j \leq \sum_{j \in J_k} y_j \leq d^+_j, \quad (B.15)
\]

donde \(d^-_j \) y \(d^+_j \) son los límites inferior y superior respectivamente.

Finalmente se incluyen las restricciones de la naturaleza de las variables.

\[
x_{ji} \geq 0, \ y_j, \ z_{ji}, \ \sigma^s, \sigma_1^s, \sigma_2^s \in \{0, 1\}. \quad (B.16)
\]
Con sinergias

<table>
<thead>
<tr>
<th>pi</th>
<th>Impacto</th>
<th>Cant. Proy</th>
<th>Impacto</th>
<th>Cant. proy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1107.82</td>
<td>497</td>
<td>1047.26</td>
<td>491</td>
</tr>
<tr>
<td>0.96004</td>
<td>1107.693471</td>
<td>501</td>
<td>1047.18</td>
<td>495</td>
</tr>
<tr>
<td>0.92008</td>
<td>1107.425963</td>
<td>506</td>
<td>1046.94</td>
<td>499</td>
</tr>
<tr>
<td>0.88012</td>
<td>1107.134209</td>
<td>508</td>
<td>1046.34</td>
<td>504</td>
</tr>
<tr>
<td>0.84016</td>
<td>1106.232241</td>
<td>513</td>
<td>1045.44</td>
<td>509</td>
</tr>
<tr>
<td>0.8002</td>
<td>1104.956011</td>
<td>519</td>
<td>1044.12</td>
<td>515</td>
</tr>
<tr>
<td>0.76024</td>
<td>1104.464432</td>
<td>521</td>
<td>1043.24</td>
<td>518</td>
</tr>
<tr>
<td>0.72028</td>
<td>1102.43733</td>
<td>527</td>
<td>1040.77</td>
<td>525</td>
</tr>
<tr>
<td>0.68032</td>
<td>1096.373942</td>
<td>541</td>
<td>1036.04</td>
<td>536</td>
</tr>
<tr>
<td>0.64036</td>
<td>1090.625148</td>
<td>552</td>
<td>1029.28</td>
<td>549</td>
</tr>
<tr>
<td>0.6004</td>
<td>1082.726516</td>
<td>565</td>
<td>1020.64</td>
<td>563</td>
</tr>
<tr>
<td>0.56044</td>
<td>1071.23089</td>
<td>581</td>
<td>1009.04</td>
<td>579</td>
</tr>
<tr>
<td>0.52048</td>
<td>1057.398094</td>
<td>597</td>
<td>996.164</td>
<td>594</td>
</tr>
<tr>
<td>0.48052</td>
<td>1041.350537</td>
<td>613</td>
<td>979.105</td>
<td>611</td>
</tr>
<tr>
<td>0.44056</td>
<td>1013.048665</td>
<td>637</td>
<td>950.887</td>
<td>635</td>
</tr>
<tr>
<td>0.4006</td>
<td>986.5816276</td>
<td>656</td>
<td>924.587</td>
<td>654</td>
</tr>
<tr>
<td>0.36064</td>
<td>947.4717169</td>
<td>680</td>
<td>882.072</td>
<td>680</td>
</tr>
<tr>
<td>0.32068</td>
<td>896.1511787</td>
<td>707</td>
<td>830.262</td>
<td>707</td>
</tr>
<tr>
<td>0.28072</td>
<td>832.7353947</td>
<td>734</td>
<td>769.28</td>
<td>733</td>
</tr>
</tbody>
</table>
BIBLIOGRAFÍA

84

